Dynamic Programming
part 2

Week 7 Objectives

@ More dynamic programming examples
— Matrix Multiplication Parenthesis
— Longest Common Subsequence

@ Subproblem Optimal structure
@® Defining the dynamic recurrence
@ Bottom up computation

@ Tracing the solution

Subproblem Optimal Structure

@® Divide and conquer - optimal subproblems

® divide PROBLEM intfo SUBPROBLEMS, solve
SUBPROBLEMS

@® combine results (conquer)

@ critical /optimal structure: solution to the PROBLEM
must include solutions to subproblems (or subproblem
solutions must be combinable into the overall solution)

® PROBLEM = {DECISION/MERGING + SUBPROBLEMS}

Optimal Structure - NON GREEDY

® Cannot make a choice decision/CHOICE without
solving subproblems first

@® Might have to solve many subproblems before
deciding which results fo merge.

Matrix Multiplication (Parenthesis)

@ Task: multiply matrices A A% A,

@® Ai matrix has pi.1 rows and pi columns (size pi-1 X pi)
— Hrows of matrix A1 has to be the same as #columns of A;

@® Minimize the number of scalar multiplications

@® Note that matrices can be multiplied in any order:
= A(A PP i (AP (AP 5 A (A A P)
— A(size poxpr) * Ac(size pixp2) takes po*pi*p2 scalar multiplications

— order matters, example: A;(10x100), A2(100x5); As(5x50) (po= 10;
p1=100; p2=5; p3=50)

— then A7*(A2*As) takes 75000 scalar multiplications
— while (A*Az)*As takes 7500 scalar multip., 10 times less.

Matrix Multiplication (Parenthesis)

@ NAIVE SOLUTION: try all ways to put parenthesis
to see which one is best/minimum

- AK((AA)AG) - (AP (A™A) 5 AT(A(As*AL))
= (AP APy (A(AA) P

® P(n) = number of ways to parenthesize n matrices
@ recursion on n
it =1
P P(k)P(n—k) ifn>?2
@® why? proof this recursion

® show that this P(n) is exponential in n

Matrix Multiplication (Parenthesis)

® 1) characterize optimal solution structure

® optimal solution SOL parenthesis has a "main split”,
or “last product” - that is the last matrix
multiplication

— say it is between matrices Ax and Ak

prefix subchain

-~ " &5

((AiAits . .- AR)(Ars1Aisa . .. A;))

® then SOL parenthesis on the left side (A..*Ax) must
be optimal

suffix subchain

@® same for right side: parenthesis on (... A;) must
be optimal .

— why? use an exchange argument

Matrix Multiplication (Parenthesis)

® 2) dynamic programming recursion
® Cl] = min scalar mulip. fo muliply Ai*Ap,l*...*AjS

® A.*A.+ *. XA; can be comﬁufed by first deciding the
main split at some K, 1«

— for that split C[i,j] = Cli,k] + C[k+1,j] + pi-1*pk*pj
Cli, k] Pi-1I Pk P, Clk+1,j]

(AsAis. AS(AMAM A;))

— but we dont ka%w whgh IS bes’r Psea‘i/e to try all of them
if 2

Cliyil=4_. /=~ = A
MIN;<k<j]| k+1, j] pz‘-1pkpj} if 1 < J.

Matrix Multiplication (Parenthesis)

3) bottom up computation of =0\ ,
iblecl " - :

what is the right order to fill the ¢
table? ¢ [cl55)
=0

guarantee that values needed for 4
recursion are already computed when
we compute Cli,j] 0 (clas]
g

14

might need any value C[i,k] and C[k+1,j] P

. C[3,5]
] XC_QU_NU M@wlmjv‘f\ ¢'
X P\ < =Ty

2,3 crz,41l|lc[2,

0

- W(A=L)
) | s tle

L

- ves NS

—
need thesSe values for C[2,5]

Matrix Multiplication (Parenthesis)

3) bottom up computation of
table C[}

— what is the right order to fill the
table?

guarantee that values needed for
recursion are already computed when
we compute Cfi,j]

— might need any value C[i,k] and C[k+l,j] '/
L4

note length(i,j)=j-i = 2.2)

|_ =0

| cl2,3] : cl2,4)

— when computing Cli,j], length=j-i R NN
4

— values needed CP,I(] and C[k+1,j] have
smaller lengths for any k

Matrix Multiplication (Parenthesis)

3) bottom up computation of
table C[}

— what is the right order to fill the
table?

guarantee that values needed for
recursion are already computed when
we compute Cfi,j]

— might need any value C[i,k] and C[k+l,j] '/
L4

note length(i,j)=j-i = 2.2)

| 1
= o lct231(] crz4]

— when computing Cli,j], length=j-i R NN

— values needed CP,I(] and C[k+1,j] have
smaller lengths for any k

fill table C[] by length

— from cells with small length (main
diagonal) to cells of highlengths (corners)

Matrix Multiplication (Parenthesis)

3) bottom up computation of
table C[}

— what is the right order to fill the
table?

guarantee that values needed for
recursion are already computed when
we compute Cfi,j]

— might need any value C[i,k] and C[k+l,j] '/
L4

note length(i,j)=j-i = 24

| 1
= % ct2.31(] crz4]

— when computing Cli,j], length=j-i R NN

— values needed CP,I(] and C[k+1,j] have
smaller lengths for any k

fill table C[] by length

— from cells with small length (main
diagonal) to cells of highlengths (corners)

Matrix Multiplication (Parenthesis)

3) bottom up computation of
table C[}

— what is the right order to fill the
table?

guarantee that values needed for
recursion are already computed when
we compute Cfi,j]

— might need any value C[i,k] and C[k+l,j] '/
L4

note length(i,j)=j-i = 24

| 1
= % ct2isl|] crz4]

— when computing Cli,j], length=j-i R NN

— values needed CP,I(] and C[k+1,j] have
smaller lengths for any k

fill table C[] by length

— from cells with small length (main
diagonal) to cells of highlengths (corners)

Matrix Multiplication (Parenthesis)

3) bottom up computation of
table C[}

— what is the right order to fill the
table?

guarantee that values needed for
recursion are already computed when
we compute Cfi,j]

— might need any value C[i,k] and C[k+l,j] '/
L4

note length(i,j)=j-i = 24

= & c[2,3]:c[r’,4]
— when computing Cli,j], length=j-i R AN e

— values needed CP,I(] and C[k+1,j] have
smaller lengths for any k

fill table C[] by length

— from cells with small length (main
diagonal) to cells of highlengths (corners)

Matrix Multiplication (Parenthesis)

3) bottom up computation of
table C[}

— what is the right order to fill the
table?

guarantee that values needed for
recursion are already computed when
we compute Cfi,j]

— might need any value C[i,k] and C[k+l,j] '/
L4

note length(i,j)=j-i = 24

|_ =0

| 1
| ci23](] cl2,4]

— when computing C[i,j], length=j-i R P\ i —

— values needed CP,I(] and C[k+1,j] have ‘ ‘
smaller lengths for any k

fill table C[] by length

— from cells with small length (main
diagonal) to cells of highlengths (corners)

Matrix Multiplication (Parenthesis)

3) bottom up computation of
table C[}

— what is the right order to fill the
table?

guarantee that values needed for
recursion are already computed when
we compute Cfi,j]

— might need any value C[i,k] and C[k+l,j] '/
L4

note length(i,j)=j-i = 24

|_ =0

| 1
| ci23](] cl2,4]

— when computing C[i,j], length=j-i R P\ i —

— values needed CP,I(] and C[k+1,j] have ‘ ‘
smaller lengths for any k

fill table C[] by length

— from cells with small length (main
diagonal) to cells of highlengths (corners)

Matrix Multiplication (Parenthesis)

3) bottom up computation of
table C[}

— what is the right order to fill the
table?

guarantee that values needed for
recursion are already computed when
we compute Cfi,j]

— might need any value C[i,k] and C[k+l,j] '/
L4

note length(i,j)=j-i = 24

|_ =0

| 1
| ci23](] cl2,4]

— when computing C[i,j], length=j-i R P\ i —

— values needed CP,I(] and C[k+1,j] have ‘ ‘
smaller lengths for any k

fill table C[] by length

— from cells with small length (main
diagonal) to cells of highlengths (corners)

Matrix Multiplication (Parenthesis)

@® 3) Bottom-up computation of Cl[]
— by diagonal from short length, to long length

@® keep track of split at k, for sequence [i...j]: Sli,jl=k
- A*A*.A; multiplied best as (A Ai™. A)(A ™. *A;)

MATRIX-CHAIN-ORDER(p)
1 n=np.length —1
2 let C[l..n,1..n] and S[1..n — 1,2..n] be new tables
3 fori=1ton
Cli,i| =0
for [=2 ton //l is the chain length
fori=1ton—-1[01+1
j=14+101-1
Cli,j] =0
fork=1toj—1
q = Cli,k] + C[k + 1, j] + pi—1PkD;
if ¢ < Cli, J]
Cli,jl =q
Sli, j] =k
14 return C' and S

Matrix Multiplication (Parenthesis)

@® 4) Trace the solution - Exercise
— use SIi,j] fo determine the main split
— run recursion on both sides of the split

@® also calculate the running time of the trace

Matrix Multiplication (Parenthesis)

@ Running time
— C[] table fills about 1/2* n * n cells - O(n?) cells

— each cell C[i,j] tries all k ; 1<k<j - ©O(n) steps
® Total ©(n°) time for bottom up computation

@® Trace solution: certainly lower than ©(n3), so it
doesnt add to the running time asymptote.

Top-down computation instead of bottom up

@ Suppose we want to do the computation fop down

® Recursively follow the recursion

P Rec-Matrix-Chain(p,i,j)//bad running time
» 1f(i==j) return 0;
P m[i,]]=®

b for k=i:j-1

» g=Rec-Matrix-Chain(p,i,k) + Rec-Matrix-Chain(p,k+1,j) + pi-1pxp;;

» if (g<m[i,]j]) m[i,]]l=q;

» return m[i,]]

@® Exponential number of calls VS bottom up which is
only ©(n?) for this section of the code

Top-down with memoization

@® memoization: “store, dont recompute” the computed
results; each actual computation only happen once

® init all mli,jl=e0; call MEMOIZATION-top-down(p,1,n)
P MEMQA ZATION=top-down(p,i,7)

(f (m[i,j]<w) réturn m[i,j] // look up previous computed values
if(1==J) m[1,]]

else for k=i:j-1

Rec—Matrix—Chain(p,i,Ez>+ ec-Matrix-Chain(p,k+1,3)) + pi-1pxPj;

P if (gq<m[i,3]) m[i,Fl=q; //Store va

return m[i,]]

Memoization

@® now same running time as bottom-up : O(n®) overall

@® bottom-up (DP) VS top-down (Memoization):

DP advan’ra]ge: no overhead (stack of calls, recursion), efficient when

the whole fable has to be computed anyway
DP requires a certain fill-order of the table
Memoization: better when not all values must be computed

Memoization follow literally the recursionl; easier to implement

Longest Common Subsequence
(LCS)

Longest Common Subsequence

® Given two X=(x1, X2, .., Xm) and Y=(y1Y2,...yn) find the
longest common subsequence

— it doesnt have to be continuos in either X orY

- lno’r tﬁr‘lique: possible that several common sequences have maximum
eng

@ example
— X=(absscddegt) Y=(xasbsdcggg)
- LCS:Z:(C(bSdg)

Longest Common Subsequence

® 1) Characterize optimal solution structure - (add
general army- needs more cannons story)

— notation: X1 = (Xl, X2, ey Xm-1); Yn-1= (y1,y2,..,yn-1) etc

® if X=(xi, X2, .., %) and Y=(Y1Y2,.,%) have an LCS
Z=(21,22,, 26 f?e%)‘4

Ol oo Y\uv\)

—/Exmzy%’rhen Zk=Xm=Yn and Zx.1 = LCS (Xm-1, Yn-1)

— (/£
= it Xm#Yn and zx#Xm then Z=LCS@,Y)

- if Xm#Yn and zk#Y, then Z=LC5(Xm@ﬁ e '\{“)

L) = Joi (i) sy X
A 1 1

Longest Common Subsequence

® 2) dynamic recursion
® Cli,j] = LCS (X,Y;) where Xi=(x1,%2,...xi) Yi=(Y..Y2,--Yi)
® C[i,j] iS

; for base case i=0 or j=0

—(C—[I\l J- 1]+1 i ftoripp0 ar1dx\i=/yj>

; for i,j>0 and xi#yj

C \otle @ CFw %y
WA ™ - SO(V{A&
= Owg éx)uw\ﬁjmp
-y

o) iyl B gt

Longest Common Subsequence

® 3) bottom up computation

® in order to compute Cli,j] j=1j=2
we need to have already -
computed the following '~
three values: =9

- Cli-1,j-1]

Longest Common Subsequence

® 3) bottom up computation

® in order to compute Cli,j] j=1j=2
we need to have already -
computed the following '~
three values: =9

- C[l—llJ—l]

® fill row by row, each row
from left to right

Longest Common Subsequence

LCS-LENGTH(X,Y)
1 m = X.length
2 n=Y.length
@ 3) bottom up compu’raﬁon 3 let S[1..m,1..n] and C[0..m,0..n] be
4 fori=1tom
@® keep track of the solution: s
S[i,jJ] remembers which 6
one of the three ;

possibilities we used:

C[:,0] =0
for j=0ton

C[0,4] =0
fortc=1tom vowS>S

9" forj=1ton sl a v

pal

- Cli-Lj-11+1 ; S[i,j] ="\" 10 {if T == y;

- Clijl ; Shi="t = = led g
13 Iseif C[i — 1,45] > C[i,5 — 1]
15 Sl gl="~"

16 else C|i, j] = Cli, 57 — 1]

17 Sli, 7] = “ <7

18 return C and S

- Cli-Lj] ; Slijl="<"

Longest Common Subsequence

® 3) bottom up computation

— illustrated are C[] and S[] tables
on the same gri

— Cli,j] is the size of LCS(X,Y;)

® Sli,j] is the arrow pointing
to the subproblem

— “\"indicates a common item, part

of LCS; subproblem decreases
both i and |

1 “indicates discarding last vale
of Xi; decrease i

“«<" indicates discarding last value
of Y, decrease j

D D [A= = = T O O
w 2w Ao a0 a0 T =2 = Ao

Longest Common Subsequence

@® 4) trace solution

® start at S[m,n], follow arrows: > @ , R

3
@® every “".“r means a common u (8) p (o) 4 (8)(»
item is found by LCS

L,

>

o (w)

PRINT-LCS(S, X, i, j)

ifi==00rj==0
return

if S[Z,]] i ;\ »
PRINT-LCS(S, X,i— 1,57 —1)
print x;

elseif S|i, j| == “1”
PRINT-LCS(S, X,i — 1, j)

elsePRINT-LCS(S, X,4,5 — 1)

—

=N
\ @
G,

w—=a>w Teo-2>2w0 T~ o

N =N =D =N —
w = w Ao oo

00 ~J O O & QU N =

Longest Common Subsequence

@® Running time
— bottom up computation fills a table of m x n cells
— each cell takes constant time

® overall ®(mn)

® Trace solution O(m+n)

— we "walk” on the table towards the [0,0] cell either vertical or
horizontal or diagonal.

WL = T Teee (o, - - k)

[?-\Q Al ek zﬁwf-ﬂj\f.

-
T: iw Vooney o ot \o \[Coes Ci\i\,@f Wi‘e/
V\&Sﬁ&(ﬁg C o
S
V\S&O&l; L(t)Q/IA - "W\j

DA

i i © acle L L Yorc (g\\“\
(7 o et -)

W N
) “ocoA\m @ \IQV/
N | 4 vy =T
_‘_f_,
A \ \

CQ (\1((20(\(?qrc(a Cegh %och(afm) vecls xgo(?
WAV O\U Ve b\,uﬂl’ >

‘ﬂ ﬂwj —> O{TSeL o e CS«J@V(@>
) o0 T e

C) Nlg + T

gt @ ! Cclfc&qfiqﬁ DO« S#&Q
CD V¢ V\\f? V\N;@j&}@(C gb

