
Greedy Algorithms

Week 5 Objectives

• Subproblem structure

• Greedy algorithm

• Mathematical induction application

• Greedy correctness

Subproblem Optimal Structure

• Divide and conquer - optimal subproblems

• divide PROBLEM into SUBPROBLEMS, solve
SUBPROBLEMS

• combine results (conquer)

• critical/optimal structure: solution to the PROBLEM
must include solutions to subproblems (or subproblem
solutions must be combinable into the overall solution)

• PROBLEM = {DECISION/MERGING + SUBPROBLEMS}

Optimal Structure - GREEDY

• PROBLEM = {DECISION/MERGING + SUBPROBLEMS}

• GREEDY CHOICE: can make the DECISION without
solving the SUBPROBLEMS
- the GREEDY CHOICE looks good at the moment, and it is globally

correct
- example : pick the smallest value
- solve SUBPROBLEMS after decision is made

• GREEDY CHOICE: after making the DECISION, very
few SUBPROBLEMS to solve (typically one)

Optimal Structure - NON GREEDY

• Cannot make a choice decision/CHOICE without
solving subproblems first

• Might have to solve many subproblems before
deciding which results to merge.

Ex: Fractional Knapsack

• fractional goods (coffee, tea, flour, maize...) sold by
weight

• supply (weights/quantities available) w1,w2,w3,w4...

• values (totals) v1,v2,v3,v4...
- ex: coffee w1=10pounds; coffee overall value v1=$40

• knapsack capacity (weight) = W

• task : fill the knapsack to maximize value

Ex: Fractional Knapsack

• naive approaches may lead to a bad solution
- choose by biggest value - tea first
- choose by smallest quantity - flour first

• choose by quality is correct- coffee first
- qcoffee=30/25; qtea=40/50; qflour=15/20; qmaize=10/70

0

17.5

35

52.5

70

coffee val=30 tea val=40 flour val=15 maize val=10

W
ei

gh
t

av
ai

la
bl

e

weight=25

weight=50

weight=20

weight=70

Ex: Fractional Knapsack

• solution: compute item quality (value/weight)

• qi=vi/wi

• sort items by quality q1>q2>q3>...

• LOOP
- take as much as possible of the best quality
- if knapsack full, STOP
- if stock depletes (knapsack not full), move on to the next quality

item, repeat
- END LOOP

Fractional Knapsack - greedy proof
• proving now that the greedy choice is optimal
- meaning that the solution includes the greedy choice.

• greedy choice: take as much as possible form best
quality (below item with quality q1)
- items available sorted by quality: q1>q2>q3>..., greedy choice is to take

as much as possible of item 1, that is quantity w1

• contradiction/exchange argument
- suppose that best solution doesnt include the greedy choice:

SOL=(r1,r2,r3,...) quantities chosen of these items, and that r1 is not
the max quantity available (of max quality item), r1<w1

- create a new solution SOL’ from SOL by taking more of item 1 and
less of the others

- e=min(r2,w1-r1); SOL’=(r1+e,r2-e,r3,r4...)

- value(SOL’) - value(SOL) = e(q1-q2)>0 which means SOL’ is better
than SOL: CONTRADICTING that SOL is best solution

Fractional Knapsack - greedy proof

• english explanation:
- say coffee is the highest quality,
- the greedy choice is to take max possible of coffee which is

w1=10pounds

• contradiction/exchange argument
- suppose that best solution doesnt include the greedy choice:

SOL=(8pounds coffee, r2 of tea, r3 flours,...) r1=8pounds<w1=10pounds
- create a new solution SOL’ from SOL by taking out 2pounds of tea

and adding 2 pounds of coffee; e=2pounds

- e=min(r2,w1-r1); SOL’=(r1+e,r2-e,r3,r4...)

- value(SOL’) - value(SOL) = e(q1-q2)>0 which means SOL’ is better
than SOL: CONTRADICTING that SOL is best solution

Activity Selection Problem

• S=set of n activities given by start and finish time
ai= (si,fi) i=1:n, fi>si

• Determine a selection that gives a maximal set
- select maximum number of activities
- no overlapping activities can be selected

Activity Selection Problem

• Greedy solution: sort activities by their finishing time
- f1<f2<f3...
- select the activity that finishes first a = (s1,f1)
- discard all overlapping activities with selected one : discard all

activities with starting time si<f1
- repeat

• intuition: activity that finishes first is the one that
leaves as much time as possible for other activities

Activity Selection Problem
• Proof of greedy choice optimality
- activities sorted by finishing time f1<f2<f3...
- greedy choice pick the activity a with earliest finishing time f1
- want to show that activity a is included in one of the best solutions

(could be more than one optimal selection of activities)

• Exchange argument
- SOL a best solution.
- if SOL includes a, done.
- suppose the best solution does not select a, SOL= (b,c,d,...) sorted

by finishing time fb<fc<fd. Then create a new solution that replaces b
with a SOL’=(a, c, d,...).

- This solution SOL’ is valid, a and c dont overlap: sc>fb>fa

- SOL’ is as good as SOL (same number of activities) and includes a

Mathematical Induction

• property P(n) = {TRUE, FALSE} for n=integer
- want to prove P(n)=TRUE for all n

• Base cases: P(n)=TRUE for any n⩽n0

• Induction Step: prove P(n+1) for next value n+1
- if P(t)=TRUE for certain values of t<n+1 then prove by mathematical

derivation/arguments than P(n+1)=TRUE

• Then P(n) = TRUE for all n

Mathematical Induction- Example

• P(n): 1+2+3+...+n = n(n+1)/2

• base case n=1 : 1=1*2/2 - correct

• induction step : lets prove P(n+1) assuming P(n)
- P(n+1) : 1+2+3+...+n + (n+1) = (n+1)(n+2)/2.
- assuming P(n) TRUE : 1+2+3...+(n+1) = [1+2+3+...+n] + (n+1) = n(n+1)/2 +

(n+1) = (n+1)(n+2)/2; so P(n+1) TRUE

• thus P(n) TRUE for all n>0

Activity Selection - Induction Argument

• s(a)= start time; f(a)=finish time

• SOL={a1,a2,...,ak} greedy solution
- chosen by earliest finishing time

• OPT = {b1,b2,...,bm} optimal solution, sorted by
finishing time; optimal means m max possible

• prove by induction that f(ai)⩽f(bi) for all i=1:k
- base case f(a1)⩽f(b1) because f(a1) smallest in the whole set

- inductive step: assume f(an-1)⩽f(bn-1). Then bn is a valid choice for
greedy at step n because f(an-1)⩽f(bn-1)⩽s(bn). Since greedy picked
an over bn, it must be because an fits the greedy criteria f(an)⩽f(bn)

• so f(ak)⩽f(bk). If m>k then any bk+1 item would also
fit into greedy solution (CONTRADICTION) thus m=k

