Greedy Algorithms




Week 5 Objectives

@ Subproblem structure
@ Greedy algorithm
@ Mathematical induction application

@ Greedy correctness




Subproblem Optimal Structure

@® Divide and conquer - optimal subproblems

® divide PROBLEM intfo SUBPROBLEMS, solve
SUBPROBLEMS

@® combine results (conquer)

@ critical /optimal structure: solution to the PROBLEM
must include solutions to subproblems (or subproblem
solutions must be combinable into the overall solution)

® PROBLEM = {DECISION/MERGING + SUBPROBLEMS}




Optimal Structure - GREEDY

® PROBLEM = {DECISION/MERGING + SUBPROBLEMS}

® GREEDY CHOICE: can make the DECISION without
solving the SUBPROBLEMS

the GREEDY CHOICE looks good at the moment, and it is globally
correct

example : pick the smallest value
solve SUBPROBLEMS after decision is made

® GREEDY CHOICE: after making the DECISION, very
few SUBPROBLEMS to solve (fypically one)




Optimal Structure - NON GREEDY

® Cannot make a choice decision/CHOICE without
solving subproblems first

@® Might have to solve many subproblems before
deciding which results fo merge.




Ex: Fractional Knapsack

@ fractional goods (coffee, tea, flour, maize...) sold by
weight

® supply (weights/quantities available) wl,w2,w3,w4...
@® values (totals) vi,v2,v3Va..

— ex: coffee wl=10pounds; coffee overall value vl=$40
® knapsack capacity (weight) =W

@® task : fill the knapsack to maximize value




Ex: Fractional Knapsack
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coffee val=30 tea val=40 flour val=15 maize val=10

@ naive approaches may lead to a bad solution
— choose by biggest value - tea first
— choose by smallest quantity - flour first

@® choose by quality is correct- coffee first
- qcoFFee=30/ 25; q’rea=4o/ 50; qﬂour=15/ 20; qmaize=lo/ 70




Ex: Fractional Knapsack

® solution: compute item quality (value/weight)
® g=vi/wi

@ sort items by quality ql>q2>g3>...

® LOOP

take as much as possible of the best quality
if knapsack full, STOP

if stock depletes (knapsack not full), move on to the next quality
item, repeat

END LOOP




Fractional Knapsack - greedy proof

@ proving now that the greedy choice is optimal
— meaning that the solution includes the greedy choice.

@® greedy choice: take as much as possible form best
quality (below item with quality ql)

— items available sorted by quali’r]?/: cil>q2>q3>..., greedy choice is o take
as much as possible of item 1, that is quantity wl

@ contradiction/exchange argument

- SLg)pose that best solution doesnt include the greedy choice:
SOL=(r1,r2,r3,..) quantities chosen of these items, and that rl is not
the max quantity available (of max quality item), ri<wl

— create a new solution SOL from SOL by taking more of item 1 and
less of the others

- e=min(r2,wl-rl); SOU=(rl+er2-e,r3r4..)

- value(SOL) - valueEOLg = egql-q2)>0 which means SOL is better
than SOL: CONTRADICTING that SOL is best solution




Fractional Knapsack - greedy proof

@® english explanation:
— say coffee is the highest quality,

- the 8reedy choice is to take max possible of coffee which is
wl=10pounds

@ contradiction/exchange argument

— suppose that best solution doesnt include the greedy choice:
SOL=(8pounds coffee, r2 of tea, r3 flours,...) rI=8pounds<wl=10pounds

create a new solution SOL from SOL by taking out 2pounds of tea
and adding 2 pounds of coffee; e=2pounds

- e=min(r2,wl-rl); SOU=(rl+e,r2-e,r3r4..)

- value(SOL) - values_\SOI_g = eéql-q2)>0 which means SOL is better
than SOL: CONTRADICTING that SOL is best solution




Activity Selection Problem

@® S=sef of n activities given by start and finish time
ai= (s;,fi) i=l:n, fi>si

@ Defermine a selection that gives a maximal set
— select maximum number of activities
— no overlapping activities can be selected




Activity Selection Problem

@® Greedy solution: sort activities by their finishing time
fl<f2<f3..
select the activity that finishes first a = (s;,f1)

discard all overlapping activities with selected one : discard all
activities with starting time si<f;

repeat

@® intuition: activity that finishes first is the one that
leaves as much time as possible for other activities




Activity Selection Problem

@® Proof of greedy choice optimality
— activities sorted by finishing time fl<f2<f3...
— greedy choice pick the activity a with earliest finishing time f1
— want to show that activity a is included in one of the best solutions
(could be more than one optimal selection of activities)
@ Exchange argument
SOL a best solution.
if SOL includes a, done.

supFose the best solution does not select a, SOL= (b,cd,..) sorted
by inishing time fp<f<fq. Then create a new solution that replaces b

with a SOC=(q, ¢, d,...).
— This solution SOL is valid, a and ¢ dont overlap: sc>fp>f,

— SOL is as good as SOL (same number of activities) and includes a




Mathematical Induction

® property P(n) = { ¢ for n=integer
— want to prove P(n)=TRUE for all n

® Base cases: P(n)=TRUE for any n<no

@® Induction Step: prove P(n+l) for next value n+l

- if P(t)= for certain values of t<n+l then prove by mathematical
derivation/arguments than P(n+1)=

® Then P(n) = TRUE for all n




Mathematical Induction- Example

® P(n): 1+2+3+..4+4n = n(n+1)/2
® base case n=1 : 1=1*2/2 - correct

@ induction step : lets prove P(n+1) assuming P(n)
- P(n+1) : 14+243+..4+n + (n+1) = (n+1)(n+2)/2.

— assuming P(n) TRUE : 1+2+3..+(n+1) = [1+2+3+..4+n] + (n+1) = n(n+1)/2 +
(n+1) = (N+1)(n+2)/2; so P(n+1) TRUE

@ thus P(n) TRUE for all n>0




Activity Selection - Induction Argument

@® s(a)= start time; f(a)=finish time
® SOL={a;,az,..,ax} greedy solution

— chosen by earliest finishing fime
® OPT = {by,bs,....bm} optimal solution, sorted by
finishing time; optimal means m max possible
@ prove by induction that f(a;)<f(bi) for all i=l:k
— base case f(a;)<f(b;) because f(a;) smallest in the whole set

— inductive step: assume f(an1)<f(bn.1). Then by, is a valid choice for
greedy at step n because f(an-1)<f(bn-1)<s(bn). Since greedy 1Picked
an over by, it must be because an fits the greedy criteria f(an)<f(bn)

® so f(ax)<f(bk). If m>k then any by, item would also
fit into greedy solution (CONTRADICTION) thus m=k
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