
On Covering Segments with Unit Intervals
Dan Bergren
School of Computing, DePaul University, Chicago, USA
bergren2@gmail.com

Eduard Eiben
Department of Computer Science, Royal Holloway, University of London, Egham, UK
eduard.eiben@rhul.ac.uk

Robert Ganian
Algorithms and Complexity Group, Vienna University of Technology, Vienna, Austria
rganian@gmail.com

Iyad Kanj
School of Computing, DePaul University, Chicago, USA
ikanj@cs.depaul.edu

Abstract
We study the problem of covering a set of segments on a line with the minimum number of unit-length
intervals, where an interval covers a segment if at least one of the two endpoints of the segment falls
in the unit interval. We also study several variants of this problem.

We show that the restrictions of the aforementioned problems to the set of instances in which all
the segments have the same length are NP-hard. This result implies several NP-hardness results in
the literature for variants and generalizations of the problems under consideration.

We then study the parameterized complexity of the aforementioned problems. We provide tight
results for most of them by showing that they are fixed-parameter tractable for the restrictions in
which all the segments have the same length, and are W[1]-complete otherwise.

2012 ACM Subject Classification Theory of computation → Parameterized complexity and exact
algorithms; Theory of computation → Computational geometry

Keywords and phrases Segment covering, unit intervals, NP-completeness, parameterized complexity

Digital Object Identifier 10.4230/LIPIcs.STACS.2020.13

Funding Robert Ganian: Robert Ganian acknowledges support by the Austrian Science Fund (FWF,
project P31336).

1 Introduction

Problem Definition and Motivation. The problem of covering a set of points on the (real)
line with the minimum number of closed unit-length intervals is a classical problem that can
be solved in polynomial time by a simple greedy algorithm (e.g., see exercise 16.2-5 in [8] and
exercise 5 in chapter 4 of [18]). A generalization of the above problem to that of covering a
set of segments on the real line with the minimum number of unit intervals, where an interval
covers a segment if at least one endpoint of the segment is in the interval, has been studied
in several works [2, 3, 4]. For clarity, throughout the paper, we distinguish the entities to be
covered from those used for covering, by referring to the former as segments and the latter
as intervals. It is easy to see that the greedy algorithm – referred to above – no longer works
for this generalization. In fact, this generalization turns out to be NP-hard, even though a
straightforward (polynomial-time) greedy algorithm works for the restriction in which all
segments have length at most 1 (unit).

© Dan Bergren, Eduard Eiben, Robert Ganian, and Iyad Kanj;
licensed under Creative Commons License CC-BY

37th International Symposium on Theoretical Aspects of Computer Science (STACS 2020).
Editors: Christophe Paul and Markus Bläser; Article No. 13; pp. 13:1–13:17

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:bergren2@gmail.com
https://orcid.org/0000-0003-2628-3435
mailto:eduard.eiben@rhul.ac.uk
mailto:rganian@gmail.com
mailto:ikanj@cs.depaul.edu
https://doi.org/10.4230/LIPIcs.STACS.2020.13
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

13:2 On Covering Segments with Unit Intervals

Recently, several variants and generalizations of the above segment covering problem
have been considered (as discussed below). Two natural variants arise based on whether the
unit intervals can be arbitrarily chosen on the line, or are restricted to a given input set;
the former version has been referred to as the continuous version as opposed to the latter
discrete version. Moreover, a more restricted notion of covering has been studied as well, that
we refer to henceforth as exact covering, in which exactly one endpoint from each segment
must be covered by the unit intervals.

In this paper, we study the classical and parameterized complexity of the variants of
segment covering by unit intervals discussed above, in most cases providing tight characteriza-
tions. The problem variants we study are: Continuous Segment Covering (Cont-SC);
Discrete Segment Covering (Disc-SC); Continuous Exact Segment Covering
(Cont-Exact-SC); and Discrete Exact Segment Covering (Disc-Exact-SC).

Related Work. Arkin et al. [2, 4] studied the exact covering problem of a set of color
classes, where each color class contains two points on the real line of the same color, with the
minimum number of intervals; here an interval covers a color class if it covers exactly one
point from the color class. This is precisely the notion of exact segment covering, in which
each color class corresponds to a segment whose endpoints are the two points in the class. It
was shown in [2] that the aforementioned problem is NP-hard, and that the case in which
the intervals are restricted to be unit intervals is NP-hard as well.

Arkin et al. [3, 4] also studied the problem of finding a conflict-free covering, where a
color class can have both points covered, but it is not allowed to use an interval that covers
both points of any color class. They showed that both the discrete and continuous versions
of the aforementioned problem are NP-hard, and gave approximation algorithms of ratios 3
and 2, respectively, for them. They also studied a problem variant in which each color class
consists of a horizontal or a vertical unit-length segment in the plane, and the goal is to
compute a minimum-cardinality set of axes-parallel unit squares such that exactly one point
from each segment is covered by the unit squares. They showed that this variant is NP-hard,
and gave an approximation algorithm of ratio 6 for it. Achaaryya et al. [1] studied several
variants of covering segments with axes-parallel unit squares in the plane. They obtained
approximation algorithms and showed the NP-hardness of the variant in which all segments
are horizontal unit segments.

The Cont-Exact-SC and Disc-Exact-SC problems under consideration are also
related to an NP-hard combinatorial problem, referred to as the “Paintshop” problem [5, 15],
that has applications in automotive industry. Other applications of covering line segments
(referred to as “stabbing”) with geometric objects (such as unit disks/squares) are in the
area of networks security (see [1, 19]).

Finally, we mention that there is a vast amount of literature on other notions of covering
and stabbing of geometric objects [7, 12, 13, 20, 21, 22].

Our Results. Our results for the Cont-SC, Disc-SC, Cont-Exact-SC, and Disc-Exact-
SC problems can be summarized as follows (recall that the covering elements in all these
segment covering variants are unit intervals):
(i) The restrictions of Cont-SC, Disc-SC, Cont-Exact-SC, and Disc-Exact-SC to

instances in which all segments have the same length are NP-hard.
This NP-hardness result has important implications. First, it strengthens and implies
several NP-hardness results in the literature about segment covering. The NP-hardness of
Cont-Exact-SC implies the NP-hardness result stated in Theorem 6 of [2]. Moreover,

D. Bergren, E. Eiben, R. Ganian, and I. Kanj 13:3

since we (can) assume that the uniform segment length in these restrictions of Cont-
SC and Disc-SC is more than 1 (otherwise, the problem is polynomial-time solvable
by a simple greedy algorithm), our NP-hardness result for Disc-SC implies the NP-
hardness result in Theorem 1 of [3] (since the segment length is more than 1 unit and
the intervals are unit intervals, the covering obtained is automatically a conflict-free
covering). Second, the NP-hardness results for Cont-SC, Disc-SC, Cont-Exact-SC,
and Disc-Exact-SC refine the complexity of these problems. For Cont-SC and
Disc-SC, we already know that the slices of these problems consisting of instances in
which each segment has length at most 1 unit are solvable in polynomial time by a
greedy algorithm. (Note that we do not know if the same holds for Cont-Exact-SC
and Disc-Exact-SC, as we do not know the complexity of their restrictions to instances
in which each segment has length at most 1.) The above result shows that the slices of
Cont-SC, Disc-SC, Cont-Exact-SC, and Disc-Exact-SC, consisting of instances
in which all segments have the same length, are NP-hard.
The crucial insight required for our NP-hardness results is that, while the problems are
one-dimensional, instances where the length of all segments differs significantly from
the length of all intervals in fact behave like two-dimensional objects. We employ this
in our proof by devising a series of two reductions, where we begin by considering a
2-dimensional segment covering problem whose instances are “nicely” embedded on a
grid. We show that this aforementioned problem is NP-hard via a reduction from the
restriction of Planar Vertex Cover to instances that are also “nicely” embedded
on a grid. It is worth noting that, while the idea of proving NP-hardness by reducing
from a problem with nice embedding properties (e.g., Planar 3-SAT) has been used
in previous work [1, 4], the presented reduction stands out due to requiring complex
“modularly constructed gadgets”. We compose the above reduction with a second one
that maps the segment covering problem on the grid to our 1-dimensional segment
covering problems.

(ii) We show that the restrictions of Cont-SC, Disc-SC, Cont-Exact-SC, and Disc-
Exact-SC to instances in which all segments have the same length are fixed-parameter
tractable (FPT). The FPT algorithm for Cont-SC combines several algorithmic ideas.
(The other FPT algorithms are similar.) It starts by computing an approximate solution
of ratio 3 whose intervals contain all (input) segment endpoints. The algorithm then
branches on all possibilities to determine how the approximate solution “interacts” with
an optimal solution. Based on the determined interaction, the algorithm identifies
endpoints of segments in the approximate solution, called anchors, around which the
intervals in an optimal solution are anchored (i.e., placed). The goal then becomes to
assign the endpoints of the segments to the anchors, where assigning an endpoint to
an anchor means that the endpoint (and hence the associated segment) is covered by
the interval in the optimal solution placed around that anchor. The algorithm then
exploits the restriction that all segments have the same length, to define a domination
relation among the anchors affecting each segment, which is then revealed through
further branching. With these domination relations revealed, the resulting problem can
be modeled as an instance of 2-Sat, which is solvable in polynomial time.

(iii) We show that Disc-SC and Cont-SC are W[1]-complete. Membership in W[1] is
proved using the characterization of W[1] by Chen et al. [6], whereas the W[1]-hardness
is proved via an FPT-reduction from the Multicolored Clique problem.
This reduction is quite involved, requiring gadget constructions that extend beyond the
standard toolkit used in conventional W[1]-hardness reductions from Multicolored

STACS 2020

13:4 On Covering Segments with Unit Intervals

Clique. The W[1]-completeness results, in conjunction with the results in (ii) above,
provide tight results for the parameterized complexity of Disc-SC and Cont-SC. Note
that, while the restrictions of Disc-SC and Cont-SC to instances in which all segments
have equal length have the same classical complexity as their general counterparts, these
restrictions exhibit a different behavior in terms of their parameterized complexity. The
parameterized complexity of Cont-Exact-SC and Disc-Exact-SC remains open.

2 Preliminaries

We assume familiarity with the basic notation and terminology used in graph theory and
parameterized complexity. We refer the reader to the standard books [10, 11] for more
information on these subjects. The asymptotic notation O∗ suppresses a polynomial factor
in the input length. For r ∈ N, we write [r] as shorthand for the set {1, . . . , r}.

We provide a brief overview of the basic parameterized complexity terminology used
throughout the paper. A parameterized problem Q is a subset of Ω∗ × N, where Ω is a fixed
alphabet. Each instance of Q is a pair (x, k), where k ∈ N is called the parameter. The
problem Q is called fixed-parameter tractable (FPT) if it can be solved in time f(k) · |x|O(1),
where f is a computable function. On the other hand, showing that a parameterized problem
Q is hard for the parameterized complexity class W[1] provides strong conditional evidence
that Q is not FPT. This is usually done by obtaining a suitable FPT-reduction, i.e., a
reduction which runs in time f(k) · |x|O(1) and where the parameter of the output instance is
upper-bounded by a function of the parameter of the input instance. We refer to the books by
Downey and Fellows [11] and Cygan et al. [9] for an in-depth introduction to parameterized
complexity.

2.1 Segment Covering Problems
The following problem will serve as a baseline for our problem definitions.

Discrete Segment Covering (Disc-SC)
Given: A set Γ of n intervals (called segments from here on out) on the rational line; a set
I of unit-intervals on the rational line; k ∈ N.
Parameter: k.
Question: Can the segments in Γ be covered by at most k intervals from I?

Recall that an interval I covers a segment S if at least one endpoint of S lies in I. The
Continuous Segment Covering problem (Cont-SC) is defined analogously to Disc-SC,
with the sole distinction that the intervals can be chosen arbitrarily (i.e., there is no set I
restricting which intervals may be chosen). For both of these problems, we also consider
their exact versions, where we require that each segment also has an endpoint that is not
contained in any interval (i.e., each segment must have precisely one “covered endpoint”);
we call the associated problems Cont-Exact-SC and Disc-Exact-SC.

Finally, we denote by Disc-Equal-SC, Cont-Equal-SC, Disc-Equal-Exact-SC and
Cont-Equal-Exact-SC the restrictions of Disc-SC, Cont-SC, Disc-Exact-SC and
Cont-Exact-SC, respectively, to instances in which all segments in Γ have the same length.
The restrictions of Cont-Equal-SC and Disc-Equal-SC to instances in which the length
of the segments is at most 1 unit can be easily solved in polynomial time using a greedy
approach; therefore, we will assume throughout this paper that the length of the segments in
the instances of Disc-Equal-SC and Cont-Equal-SC is more than 1 unit.

D. Bergren, E. Eiben, R. Ganian, and I. Kanj 13:5

vi1 vi2 viN−1 viN v′i1 v′i2 v′iN−1 v′iN

Figure 1 Illustration for the vertex-gadget construction. The segment Si = [vi
1, v

i
N] is shown in

cyan color.

I Remark 1. There are polynomial-time FPT-reductions from Cont-SC and Cont-Exact-
SC to Disc-SC and Disc-Exact-SC, respectively. The reduction from Cont-SC to
Disc-SC follows from the fact that, for an instance of Cont-SC, we can always assume
that the left endpoint of each covering unit-interval is an endpoint of a segment; if this is
not the case for a covering unit-interval, we can shift it to the right until its left endpoint
coincides with a segment’s endpoint.

3 Parameterized Complexity of Disc-SC and Cont-SC

In this section, we give a very high-level sketch of the W[1]-completeness proofs for Disc-SC
and Cont-SC. Membership in W[1] is proved using the characterization of W[1] by Chen et
al. [6]. The W[1]-hardness of Disc-SC is easier to explain as the set of covering unit-intervals
is restricted; the proof can then be modified in order to lift this restriction, and obtain a
W[1]-hardness proof for Cont-SC as well.

We show the W[1]-hardness of Disc-SC via an FPT-reduction from the W[1]-hard problem
Multi-Colored Clique: Given a graph G with a proper k-coloring of its vertices, where
each color class has cardinality N , decide if there exists a clique Q ⊆ V (G) of size k [16, 9];
the parameter is k.

The reduction involves constructing three types of gadgets: vertex-selection gadgets,
edge-verification gadgets, and edge-synchronization gadgets. Vertex-selection gadgets encode
that k colorful vertices (i.e., no two vertices have the same color) in G are selected, and the
edge-verification and edge-synchronization gadgets encode that the selected vertices form a
clique. All the intervals and segments in the construction lie on the same (horizontal) line.
The vertex and edge gadgets are placed far apart on the line, such that for any two gadgets,
no two of their intervals overlap.

Vertex Gadgets. For each color class Ci = {vi1, . . . , viN}, i ∈ [k], we place a sequence Si of
N interleaved unit intervals [vir, v′ir], r ∈ [N], on the line, where the starting point of each
interval is separated from the starting point of the next by a distance of 1/N . We add the
intervals in Si, for i ∈ [k], to I as covering unit-intervals. For each sequence Si, we add
the segment Si = [vi1, viN] to Γ, which ensures that any solution must contain at least one
interval from Si, in order to cover Si. See Figure 1 for illustration.

Edge Gadgets. For each set of edges Eij , between color classes Ci and Cj , where i < j ∈ [k],
let mij = |Eij |. We place two interleaved sequences of unit-intervals. The construction of
the two sequences is identical, and is done as follows. Set M = mij . The first sequence S1

ij

consists of unit-intervals [e1
r, e
′1
r], r ∈ [M], such that |e1

re
1
r+1| = 1/M , for r ∈ [M − 1]; that is,

the left endpoints of two consecutive intervals in this sequence are at distance 1/M . Similarly,
S2
ij consists of unit-intervals [e2

r, e
′2
r], r ∈ [M], such that |e2

re
2
r+1| = 1/M , for r ∈ [M − 1].

We place S1
ij and S2

ij on the line in an interleaving fashion, such that [e2
r, e
′2
r] in S2

ij starts
1/(2M) units after [e1

r, e
′1
r] in S1

ij ends, for r ∈ [M]. Put it differently, the sequence S2
ij is

shifted 1 + 1/(2M) units to the right from S1
ij . The reason behind this placement is that, if

STACS 2020

13:6 On Covering Segments with Unit Intervals

e1
1 e1

2 e1
M−1 e

1
M e′11

e2
1

e′12

e2
2

e′1M−1

e2
M−1

e′1M

e2
M e′21 e′22 e′2M−1 e

′2
M

Figure 2 Illustration for the edge-gadget construction. The two segments S1
ij = [e1

1, e
1
M] and

S2
ij = [e′2

1 , e
′2
M] are shown in cyan color.

vir−1 v
i
r v

i
r+1 v′ir−1v

′i
r v
′i
r+1

e1
s e′1s e2

s e′2s

Figure 3 Illustration for the connection between a vertex-gadget and an edge-gadget that encodes
vertex-edge incidency. Only the relevant portions of the gadgets are shown, and for clarity, the two
gadgets are drawn on top of one another, rather than on the same line.

we assume that copies of the same interval are chosen from S1
ij ,S2

ij , a property that will be
ensured by the edge-synchronization gadgets discussed below, then the 1/(2M) units gap
between an interval [e1

r, e
′1
r] in S1

ij and its copy [e2
r, e
′2
r], r ∈ [M], in S2

ij is covered by any
choice of an interval from S1

ij and its copy in S2
ij , except the choice of [e1

r, e
′1
r] and [e2

r, e
′2
r].

This property is crucial for encoding vertex-edge incidences. We add the unit-intervals of
S1
ij and S2

ij to I as covering unit-intervals. We add the two segments S1
ij = [e1

1, e
1
M] and

S2
ij = [e′21 , e′2M] to Γ; these two segments ensure that any solution must contain at least one

interval from each of S1
ij and S2

ij . See Figure 2 for illustration.

Edge-synchronization Gadgets. For each edge-gadget consisting of two sequences S1
ij and

S2
ij of unit-intervals, we construct a sequence of interleaved unit-intervals, S3

ij , that is
constructed identically to S1

ij and S2
ij . We add the intervals in S3

ij to I as covering unit-
intervals. We add the segment S3

ij = [e3
1, e

3
M] to Γ, which ensures that any solution must

contain at least one interval from S3
ij . The intervals in S3

ij will ensure that, in the desired
solution, three copies of the same interval are chosen, one from each of S1

ij , S2
ij , and S3

ij .

Connecting the Gadgets. We encode vertex-edge incidences in G by adding segments
between vertex-gadgets and corresponding edges-gadgets. For a vertex vr, r ∈ [N], in color
class Ci (resp. Cj) in G, and an edge eij incident to vr and to some vertex in color class
Cj (resp. Ci), let [e1

s, e
′1
s] and [e2

s, e
′2
s] be the intervals corresponding to eij in S1

ij and S2
ij ,

respectively. Do the following (see Figure 3 for an illustration): (if r < N) create a segment
with one endpoint in the interval (vir, vir+1) in Si (resp. in (vjr , v

j
r+1)), and the other in

(e′1s , e2
s); and (if r > 1) create a segment with one endpoint in (v′ir−1, v

′i
r) in Si (resp. in

(v′jr−1, v
′j
r) in Sj), and the other in (e′1s , e2

s).
We encode edge-synchronization for each triplet of sequences S1

ij , S2
ij , and S3

ij , corre-
sponding to the edges in Eij , where |Eij | = mij , as follows (see Figure 4 for an illustration).
For each s ∈ [mij − 1]: (i) create a segment with one endpoint in the interval (e1

s, e
1
s+1) and

the other in (e′3s , e′3s+1); (ii) create a segment with one endpoint in (e2
s, e

2
s+1) and the other in

D. Bergren, E. Eiben, R. Ganian, and I. Kanj 13:7

e1
s e1

s+1 e′1s e2
s e
′1
s+1e

2
s+1 e′2s e′2s+1

(i) (ii)

(iii) (iv)

e3
s e3

s+1 e′3s e′3s+1

Figure 4 Illustration of the edge-synchronization gadget construction. The four types of the
inter-sequence segments are indicated. For clarity, S3

ij is drawn on top of S1
ij and S2

ij .

(e′3s , e′3s+1); (iii) create a segment with one endpoint in (e3
s, e

3
s+1) and the other in (e′1s , e′1s+1);

and (iv) create a segment with one endpoint in (e3
s, e

3
s+1) and the other in (e′2s , e′2s+1).

We can now show that (G, k) is a YES-instance of Multi-Colored Clique if and only
if (Γ, I, k′), where k′ = k + 3

(
k
2
)
, is a YES-instance of Disc-SC. We conclude with:

I Theorem 2. Disc-SC is W[1]-complete.

I Corollary 3. Cont-SC is W[1]-complete.

4 NP-Completeness of the Equal Segment-Length Variants

In this section we show that all of our considered problems are NP-complete even when
restricted to the case where all segments have equal length (i.e., Disc-Equal-SC, Cont-
Equal-SC, Disc-Equal-Exact-SC and Cont-Equal-Exact-SC). We do so via a two-
step reduction through the following intermediate problem:
Grid Segment Covering
Given: A set Γ of n vertical segments, each of length 1, with endpoints on a q × q grid
with q ≤ 100 · n; k ∈ N.
Parameter: k.
Question: Can the segments in Γ be covered by at most k horizontal segments of length 2?

For consistency with the terminology used in this paper (in the definition of segment
covering problems under consideration), we will abuse the notation and refer to the horizontal
(covering) segments of length 2 as intervals, and to the vertical segments of length 1 (to be
covered) as segments. We define the Exact Grid Segment Covering analogously to
Grid Segment Covering, with the sole distinction being that each segment in Γ must
have precisely one endpoint covered by the solution (i.e., the set of intervals). The main
technical obstacle on the way to the NP-hardness of our problems lies in showing that Grid
Segment Covering and Exact Grid Segment Covering are NP-hard. The following
theorem will serve as a starting point towards obtaining these results.

I Theorem 4 (Theorem 5.9 of [17]). Given a planar graph G of degree at most 3 with n > 4
vertices, there is a linear time algorithm that constructs a plane orthogonal drawing of G on
an bn2 c×b

n
2 c grid with at most bn2 c+ 1 bends1, and with the property that there is a spanning

tree of n− 1 straight-line edges, while all nontree edges have at most one bend.

1 A bend is the meeting point of a horizontal and a vertical line in the drawing of an edge.

STACS 2020

13:8 On Covering Segments with Unit Intervals

4.1 Grid Segment Covering is NP-Complete
We reduce from a restriction of the NP-complete problem [14] Planar 3-Vertex Cover
(i.e., Vertex Cover restricted to planar graphs of maximum degree 3). We first show that
this restriction remains NP-complete:

I Theorem 5. Planar 3-Vertex Cover is NP-hard even on instances with n vertices and
a plane orthogonal drawing on an n× n grid, with no bends, even when such an embedding is
provided as input.

With Theorem 5 in hand, we can proceed to the description of the reduction strategy.
Given an n-vertex instance (G, `) of Planar 3-Vertex Cover, the first step is to invoke
Theorem 5 to obtain a plane orthogonal drawing Ω of G on an n × n grid satisfying the
property that every edge is a horizontal or a vertical line segment in this grid. Next, we
refine the grid underlying Ω by a factor of 100 – more formally, we replace each cell in the
grid underlying Ω with a 100× 100 subgrid.

We first outline the reduction. The reduction will represent each vertex v in G with a
vertex gadget α(v). This gadget consists of a set of segments placed along the border of a
geometric object that is roughly centered around the position of v in Ω, and that extend
in the directions of the edges incident to v. These vertex gadgets will have the following
properties:

Vertical connections: If v and w are adjacent vertices in G, then there is an “interface”
spanning a 2×3 subgrid such that either α(v) is placed at the bottom right of the subgrid
and α(w) at the top left, or vice versa. This property will be used by the edge gadget
β(uv).
Duality of choice: There are two “optimal configurations” of intervals that allow us to
cover all segments in α(v): one uses the minimum number of intervals required but does
not help us cover the segments located in the edge gadgets connected to α(v), while the
other requires one extra interval but also helps us cover segments in the edge gadgets
connected to α(v). These optimal configurations cover each segment in α(v) only once.

The following lemma formalizes the precise properties we require from the vertex gadgets.
Further intuition about the construction of the gadgets is provided in Figure 5.

I Lemma 6. Given G, `, Ω as above, in polynomial time we can construct a mapping α
from the vertex set V (G) that maps each v ∈ V (G) to a gadget α(v). Each such gadget α(v)
consists of a set of |α(v)| segments and up to 3 “link” points, each corresponding to an edge
incident to v, with the following properties:

1. Any interval that can cover segments from α(v) cannot cover segments from any α(w)
for w 6= v.

2. There exists no set of intervals of size less than cost(α(v)) = |α(v)|−1
2 that covers all

segments in α(v); moreover, there exists a set of intervals of size cost(α(v)) which is an
exact covering of all segments in α(v).

3. There exists no set of intervals of size less than cost(α(v)) + 1 that covers all segments in
α(v) together with at least one link point of α(v); moreover, there exists a set of intervals
of size cost(α(v)) + 1 which is an exact covering of all segments in α(v) and additionally
covers all link points of α(v).

4. For each edge vw ∈ E(G) with two link points (xv, yv) and (xw, yw), it holds that either
xv = xw + 2 and yv = yw − 3 or vice-versa.

D. Bergren, E. Eiben, R. Ganian, and I. Kanj 13:9

(a, b)

(a, b′)

(a′, b)

Figure 5 A vertex gadget (blue) for a vertex v located at point (a, b). Link points are marked by
purple segments. The set of green intervals has size cost(α(v)) and exactly covers α(v). The set of
red interval has size cost(α(v)) + 1 and covers α(v) and all the link points.

After applying Lemma 6 to construct the vertex gadgets, we will construct, for each
edge vw, an edge gadget β(vw). This will consist of the segments [(xv, yv), (xv, yv − 1)],
[(xv + 1, yv − 1), (xv + 1, yv − 2)], and [(xv + 2, yv − 2), (xv + 2, yv − 3)].

We now proceed to the NP-hardness proof.

I Theorem 7. Grid Segment Covering and Exact Grid Segment Covering are
NP-complete.

Proof Sketch. Inclusion in NP is trivial. To show NP-hardness, we reduce from Planar
3-Vertex Cover. Given an instance (G, `) of Planar 3-Vertex Cover, we apply the
construction: notably, we use Theorem 4 to obtain an embedding of G on an orthogonal
grid, refine this grid by a factor of 100, and replace all vertices with vertex gadgets as per
Lemma 6, and all edges with edge-gadgets. Set k = `+ |E(G)|+

∑
v∈V (G) cost(α(v)). Now

it suffices to show that (G, `) is a YES-instance if and only if (Σ, k) is a YES-instance. J

4.2 Reductions from the Grid Segment Covering Problem
I Theorem 8. Disc-Equal-SC, Cont-Equal-SC, Disc-Equal-Exact-SC and Cont-
Equal-Exact-SC are NP-complete.

Proof Sketch. We sketch the reduction for Cont-Equal-SC. Let (Γ, k) be an instance of
Grid Segment Covering with endpoints on q × q grid. We construct an instance (Γ′, k′)
of Cont-Equal-SC as follows. For a segment I ∈ Γ with endpoints (w, h) and (w, h+ 1),
we add in Γ′ the segment [(q+3)h+w

2 , (q+3)(h+1)+w
2] and we let k′ = k. Note that if a segment

I ′ ∈ Γ′ has one endpoint at b ∈ Q, then there exist h ∈ N and w ∈ Q (with 0 ≤ w ≤ q)
such that b = (q+3)h+w

2 . Hence, if a unit interval covers endpoints b1 = (q+3)h1+w1
2 and

b2 = (q+3)h2+w2
2 , then it follows that h1 = h2, because otherwise |b2 − b1| ≥ 3

2 .
To conclude the proof for Cont-Equal-SC, it suffices to show that (Γ′, k′) is YES-instance

of Cont-Equal-SC if and only if (Γ, k) is YES-instance of Grid Segment Covering.
The construction is identical for Disc-Equal-Exact-SC, with the sole distinction being the
use of Exact Grid Segment Covering. The other two results follow from Remark 1. J

STACS 2020

13:10 On Covering Segments with Unit Intervals

5 FPT Algorithms for the Equal Segment-Length Variants

In this section, we give FPT algorithms for Cont-Equal-SC, Cont-Equal-Exact-SC,
Disc-Equal-SC, and Disc-Equal-Exact-SC. Before proceeding to the technical details,
we first discuss and give an overview of the FPT algorithm for Cont-Equal-SC.

Let (Γ, k) be an instance of Cont-Equal-SC. The FPT algorithm starts by computing
an approximate solution, Sapx, for Γ of size at most 3k (assuming that a solution of size
k exists) whose intervals contain all endpoints of the segments in Γ. The algorithm then
guesses (i.e., branches on all possibilities) how Sapx interacts with a solution, Sopt, for Γ of
size at most k. Based on this guess, the algorithm identifies endpoints of segments in Sapx,
called anchors, around which the intervals in Sopt are anchored (i.e., placed). The goal then
becomes to assign the endpoints of the segments in Γ to the guessed anchors, where assigning
an endpoint to an anchor means that the endpoint (and hence the associated segment) is
covered by the interval in Sopt placed around that anchor, and then modeling the problem as
an instance of 2-Sat that stipulates that, for each segment, at least one of its endpoints is
covered by a unit-interval placed around an anchor. The issue, however, is that for a segment,
there could be four anchors whose intervals cover its (two) endpoints, and this cannot be
stipulated by size-2 clauses. This issue is resolved by exploiting the crucial property that all
segments have the same length, which enables us to define a notion of domination among
the anchors that could potentially cover the same segment, and guess this domination. Once
the domination relations among the anchors affecting each segment are revealed, encoding
the covering requirement using size-2 clauses becomes possible, as the number of anchors
affecting each segment can be reduced from 4 to 2. Extra clauses are then added to the 2-Sat
instance to enforce that the assignment corresponds to a proper placement of k unit-length
covering intervals that cover the segments in Γ. We proceed to the details.

Let (Γ, k) be an instance of Cont-Equal-SC. We start with the following simple result:

I Fact 9. In O(|Γ| log |Γ|) time, we can compute a solution Sapx to Γ that is within ratio 3
from an optimal solution and that contains all endpoints of the segments in Γ.

Proof. For a unit-length interval I, define the left dual (resp. right dual) of I, denoted, IL
(resp. IR), to be the interval that is the translation of I (along the horizontal line) to the
left (resp. to the right) by a vector whose length is equal to the length of the segments in
Γ. Observe that the set of segments in Γ whose right (resp. left) endpoints are covered by
a unit-length interval I is the same set of segments whose left (resp. right) endpoints are
covered by IL (resp. IR).

The approximation algorithm, denoted APX-ALGO, finds a set of unit-length intervals
of minimum cardinality that covers the endpoints of all the segments in Γ; the problem of
covering a set of N points on a line by the minimum number of unit-length intervals is known
to be solvable in O(N lgN) time by a greedy approach (e.g., see problem 16.2-5 in [8]).

Consider now an optimal solution for Γ, and for each interval I in the optimal solution,
add both its left and right duals IL and IR. We obtain a solution that contains all segment
endpoints and whose cardinality is at most thrice that of the optimal solution. Since APX-
ALGO produces an optimal solution for covering the endpoints of all segments in Γ, the
result follows. J

Based on the above, if |Sapx| > 3k, the instance (Γ, k) is a no-instance of Cont-Equal-
SC. Assume henceforth that |Sapx| ≤ 3k. Every endpoint of a segment in Γ is contained in
an interval of Sapx. Without loss of generality, we can assume that the intervals in Sapx are
pairwise disjoint, and that each starts at an endpoint of a segment in Γ (see also Remark 1).

D. Bergren, E. Eiben, R. Ganian, and I. Kanj 13:11

If not, we can process the intervals in Sapx to ensure this property, while maintaining the
property that every endpoint of a segment in Γ is contained in an interval of Sapx. To do
so, we repeatedly pick the leftmost two overlapping intervals in Sapx, say Ir, Is where Ir
starts before Is. We shift Is to the right until it no longer overlaps with Ir, while starting
at an endpoint in Γ and retaining the set of segment endpoints contained in Ir ∪ Is. If
at some point this shifting results in an interval that is devoid of segment endpoints, we
remove this interval from Sapx. Clearly, at the end of this process, the set Sapx consists of
pairwise-disjoint intervals that contain all endpoints of the segments in Γ, each of whose
intervals starts at an endpoint of a segment in Γ, and satisfying |Sapx| ≤ 3k.

Let Sopt be an optimal solution for Γ, and assume that |Sopt| ≤ k. W.l.o.g., we will
assume that Sopt is chosen so as to maximize the number of intervals that are common to
both Sopt and Sapx (i.e., maximize |Sopt ∩ Sapx|).

I Definition 10. An endpoint a of an interval in Sapx is called an anchor if there is an
interval I in Sopt that contains a, in which case we say that I induces a.

The FPT-algorithm for Cont-Equal-SC performs the following steps:

Step (1). Guessing the Anchors: The FPT-algorithm starts by guessing how Sopt interacts
with Sapx. First, it guesses the number k′ of intervals that are common to both Sapx and
Sopt (i.e., |Sapx ∩Sopt|). Then, the algorithm guesses the k′ common intervals, removes them
from Sapx, and updates Γ and the parameter k accordingly (by removing from Γ all segments
covered by the k′ intervals, and setting k = k − k′). By the same arguments made above
about Sapx, we can assume from now on that the intervals in Sopt are disjoint, and that each
starts at a segment endpoint. Every interval I ∈ Sopt intersects two consecutive intervals in
Sapx. Otherwise, if I intersects only one interval I ′ ∈ Sapx, since each interval in Sopt starts
at a segment endpoint, I would intersect I ′ only at the left endpoint of I, and all segment
endpoints in I must also be in I ′. This contradicts our choice of Sopt as an optimal solution
that maximizes |Sapx ∩ Sopt| (since I could be shifted left to obtain an optimal solution
containing I ′). Hence, if I contains the left (resp. right) endpoint of I ′, then it must contain
the right (resp. left) endpoint of the predecessor (resp. successor) interval of I ′ in Sapx. Next,
for each endpoint of an interval in Sapx, the algorithm guesses whether it is an anchor. Let
Υ be the set of guessed anchors.

Step (2). Restructuring the Anchors: From Step (1), if an anchor a ∈ Υ is the right
(resp. left) endpoint of an interval I ′ ∈ Sapx, then the interval I ∈ Sopt that induces a

intersects the successor (resp. predecessor) of I ′ in Sapx, and hence, the left (resp. right)
endpoint of the successor (resp. predecessor) of I ′ must be an anchor induced by I as well. If
after Step (1) Υ does not conform to the above, then we can reject the guess, as there will be
another guess that satisfies the above property. Based on this property, we will remove from
Υ the anchors that are right endpoints of intervals in Sapx. After removing these anchors,
each interval in Sopt induces exactly one anchor in Υ that is the left endpoint of an interval
in Sapx. Since the intervals in Sapx are pairwise disjoint, any two anchors in Υ are more
than 1-unit apart. Consequently, if |Υ| > k, then we can reject the guess in Step (1), as no
solution of size at most k realizing the guess exists.

Step (3). Domination among Anchors: Let a, b be two anchors, and let S ⊆ Γ. We say
that a dominates b w.r.t. S, written as a �S b or b �S a, if the set of segments in S covered
by (the interval in Sopt inducing) a is a superset of the set of segments in S covered by (the

STACS 2020

13:12 On Covering Segments with Unit Intervals

interval in Sopt inducing) b. For convenience, we will define the notion of an empty anchor,
denoted ⊗; the set of segments covered by the empty anchor is the empty set φ, and hence,
every anchor dominates ⊗. We will use the notion of domination, in conjunction with a
guessing process, to reduce the instance (Γ, k), resulting from Steps (1) and (2) above, to an
instance of 2-Sat, which can then be solved in polynomial time. To do so, we consider the
intervals in Sapx from left to right, and construct an instance F of 2-Sat. We initialize F to
the empty set, and we will add clauses to F as follows.

Let I ∈ Sapx be the interval currently under consideration (when scanning the intervals
in Sapx from left to right), and let S be the set of segments whose left endpoints are on I.
(We are not concerned at this point about the set of segments whose right endpoint are on I
since those have been considered earlier in the process.) Observe that, since all segments in
Γ have the same length, and all covering intervals have the same length, the right endpoints
of the segments in S fall either on one or on two intervals in Sapx. (Otherwise, there would
be two segments whose left endpoints lie on I, and hence, of distance at most 1 unit, but
whose right endpoints are more than one unit apart.) This property, which again stems from
the fact that all segments in Γ have the same length, is crucial, and is the key idea behind
the FPT algorithm, as will be seen below.

We treat the more complex case in which the right endpoints of the segments in S fall on
two intervals I1, I2 in Sapx, where I2 is the successor of I1 in Sapx; the case where they fall
on one interval is simpler, and is a subcase of the treated case, as we explain below. Partition
S into S1,S2, where S1 consists of those segments in S whose right endpoints are on I1, and
S2 of those whose right endpoints are on I2. Let a be the left endpoint of I if it is an anchor,
and a = ⊗ otherwise; let b be the left endpoint of the successor of I in Sapx if its an anchor,
and b = ⊗ otherwise; let u be the left endpoint of I1 if it is an anchor, and u = ⊗ otherwise;
let s be the left endpoint of I2 if it is an anchor, and s = ⊗ otherwise; and let t be the left
endpoint of the successor of I2 in Sapx if it is an anchor, and t = ⊗ otherwise. Observe
that, since each of the anchors a and u covers a prefix (possibly empty) of the sequence of
segments in S1 when ordered from left to right, one of the two anchors must dominate the
other w.r.t. S1. Similarly, each of b and s covers a suffix (possibly empty) of the sequence of
segments in S1, and hence one must dominate the other w.r.t. S1. With respect to S2, one
of a and s must dominate the other, and one of b and t must dominate the other. Therefore,
(i) either a �S1 u or u �S1 a and (ii) either b �S1 s or s �S1 b; and w.r.t. the segments in
S2, we have (iii) either a �S2 s or s �S2 a, and (iv) either b �S2 t or t �S2 b.

The algorithm now guesses, for each of Cases (i) – (iv) above, which anchor dominates
the other. This guessing results in four cases w.r.t. each of S1 and S2 that are described
below, and hence, results in sixteen cases overall. If the right endpoints of the segments in S
fall on one interval I1, then the guessing results only in the four cases w.r.t. S1 distinguished
below (and anchor t would not be needed). We will create Boolean variables corresponding
to endpoints of segments in Γ. A Boolean variable of the form xh, where x is an endpoint of
a segment S ∈ Γ and h is an anchor, is true if and only if point x (and hence S) is covered by
the interval inducing h. We will then form an instance of 2-Sat that encodes the instance
(Γ, k) of Cont-Equal-SC under the assumed guess. For simplicity of the presentation, we
make the following assumptions. If a Boolean variable xh, associated with anchor h, is such
that either h = ⊗, or the distance between x and h is more than 1 unit (i.e., more than the
length of a unit-length covering interval), then we set/fix the value of xh to false. We start
by associating with every endpoint x of a segment in Γ two Boolean variables as follows. Let
h and h′ be the two anchors directly to the left and right, respectively, of x. We associate

D. Bergren, E. Eiben, R. Ganian, and I. Kanj 13:13

a b u s t

I suc(I) I1 I2 suc(I2)

Figure 6 Illustration for Cases 1-4 w.r.t. S1 and S2. The two red circles designate the endpoints
x, y of a segment S ∈ S1, and the green circles designate the endpoints x′, y′ of a segment S′ ∈ S2,
where x is to the left of y and x′ is to the left of y′. For clarity, only the endpoints of S, S′ are
shown. If the guess w.r.t. S1 is that a � u and s � b and w.r.t. S2 is that s � a and b � t then
clauses {xa ∨ ys} and {x′

b ∨ y′
s} are added to F .

the two Boolean variables xh and xh′ with x. (Note that h or h′ could be ⊗, or of distance
more than 1 unit from x, and in which case the corresponding Boolean variable would be set
to false.) The four cases distinguished w.r.t. S1 are (see Figure 6 for illustration):

Case 1: a � u and b � s. For each endpoint x on I such that x is the left endpoint of a
segment in S1, add the clause {xa ∨ xb} to F .

Case 2: a � u and s � b. For each endpoint x on I such that x is the left endpoint of a
segment S in S1, let y be the right endpoint of S. Add the clause {xa ∨ ys} to F .

Case 3: u � a and b � s. For each endpoint x on I such that x is the left endpoint of a
segment S in S1, let y be the right endpoint of S. Add the clause {xb ∨ yu} to F .

Case 4: u � a and s � b. For each endpoint x on I such that x is the left endpoint of a
segment S in S1, let y be the right endpoint of S. Add the clause {yu ∨ ys} to F .

Similarly, we can distinguish four cases w.r.t. S2, based on the two domination relations
in (iii) and (iv) discussed earlier, and add clauses to F accordingly.

After processing the intervals in Sapx, guessing domination, associating Boolean variables,
and adding clauses to F , we add to F the following “enforcement” clauses. For every anchor
a, and every two variables xa, za, corresponding to segment endpoints x, z, respectively,
associated with a:

(E1) If x and z are on the right (resp. left) side of a, and if z (resp. x) is to the right
(resp. left) of x, add {za ∨ xa} (resp. {xa ∨ za}) to F ; and (E2) if x and z are on opposite
sides of a and the distance between them is more than 1 unit, add {xa ∨ za} to F . The
enforcement clauses ensure that any satisfying assignment to F corresponds to an assignment
of segment endpoints to anchors satisfying: (1) All endpoints assigned to the same anchor
can be covered by a unit interval (E2); and (2) if an endpoint of a segment S that is assigned
to an anchor h is covered by the interval Ih inducing h, then any segment endpoint assigned
to h that is between that endpoint of S and h is also covered by Ih (E1).

The FPT algorithm accepts if any of the guesses it makes leads to a formula F that is a
YES-instance of 2-Sat, and rejects otherwise. We obtain the following result:

I Theorem 11. Cont-Equal-SC can be solved in time O((24 · 3 · e5/3)k · n logn) =
O(28k · n logn), where n = |Γ|, and hence is FPT.

Proof. We first argue the correctness of the algorithm. The instance (Γ, k) is a YES-instance
of Cont-Equal-SC if and only if there exists an optimal solution Sopt for Γ containing at
most k intervals. The algorithm guesses in Step (1) the intervals in Sapx that are in Sopt,
and updates (Γ, k) accordingly. As explained before, we may assume that the intervals in the
optimal solution sought (if it exists), Sopt, are pairwise disjoint, start at segment endpoints,
and that each interval in Sopt intersects two consecutive intervals in Sapx. The algorithm
then guesses which endpoints of intervals in Sapx are anchors (w.r.t. Sopt).

STACS 2020

13:14 On Covering Segments with Unit Intervals

The algorithm in Step (2) removes anchors from the set Υ of anchors, so that each anchor
is the left endpoint of its interval in Sapx. Note that after this restructuring, each interval
in the sought solution Sopt contains exactly one anchor in Υ. Moreover, any two anchors
are more than 1 unit apart, and hence, if |Υ| > k, then the algorithm can safely reject the
current guess, as it does in Step (2), since no solution Sopt of size k conforming to the current
guess exists. It is clear that a solution Sopt to (Γ, k) exists if and only if there exists a guess
of a set Υ of anchors satisfying the above conditions.

The algorithm then proceeds to determining how the intervals in the solution sought
should be “anchored” (or placed) around their anchors in order to cover all segments in Γ.
To do so, the algorithm considers the intervals in Sapx from left to right. For an interval I
under consideration, the set of segments S whose left endpoints lie on I must be covered by
Sopt. The right endpoints of the segments in S lie on at most two intervals of Sapx; we argue
the more complicated case in which these endpoints lie on exactly two intervals, I1, I2, where
I2 is the successor of I1 in Sapx, as this case subsumes the other one. The set of segments
S can be partitioned into S1 and S2, as explained in Step (3) of the algorithm, depending
on which interval in I1, I2 the right endpoint of the segment in S lies on. Let the anchors
a, b, u, s, t be as defined in Step (3) of the algorithm. Observe that, since each of the anchors
a and u covers a prefix (possibly empty) of the sequence of segments in S1 when ordered
from left to right, one of the two anchors must dominate the other w.r.t. S1. Similarly, each
of the anchors b and s covers a suffix (possibly empty) of the sequence of segments in S1
(when ordered from left to right), and hence one must dominate the other w.r.t. S1. With
respect to S2, one of the two anchors a and s must dominate the other, and one of b and
t must dominate the other. The algorithm guesses each of these domination relations, for
each interval I ∈ Sapx and set of segments S whose left endpoints lie on I. If the algorithm
guesses correctly, then for each segment in Γ, it assigns each of its two endpoints to an anchor
such that the segment is covered by an interval inducing one of the anchors assigned to its
endpoints. After guessing the domination relations among the anchors, the algorithm creates
an instance F of 2-Sat that, for each segment S ∈ Γ and each endpoint of S, associates a
Boolean variable whose value is true if and only if the endpoint of the segment is covered by
the interval inducing the anchor assigned to the endpoint (based on the domination relation).
The algorithm then adds enforcement clauses to F ensuring (the converse) that a satisfying
assignment to F corresponds to an assignment of segment endpoints to anchors satisfying:
(1) All endpoints assigned to the same anchor can be covered by a unit interval (E2); and (2)
if an endpoint x of a segment that is assigned to an anchor h is covered by the interval Ih
inducing h, then any segment endpoint assigned to h that is between x and h is also covered
by Ih (E1).

Given the above, it is not difficult to verify that the instance (Γ, k) is a YES-instance of
Cont-Equal-SC if and only if there is a guess for the algorithm that yields a YES-instance
F of 2-Sat, and hence, that the algorithm is correct. Next we analyze the running time of
the algorithm.

First, observe that computing Sapx can be done in O(n lgn) time, as this can be done
by sorting the endpoints in Γ. Moreover, all processing steps for the intervals in Sapx and
segments Γ can be carried out in time O(n lgn). Therefore, we only need to analyze the size
of the search tree needed to simulate the guesses performed by the algorithm. The algorithm
performs guessing only in Step (1) and Step (3).

In Step (1), the algorithm guesses a number k′ ∈ {0, . . . , k}, and then it guesses a subset
of k′ intervals in Sapx. The total number of branches needed to simulate these guesses is
at most

∑k
k′=0

(3k
k′

)
. For each guess of k′ intervals, the algorithm removes these intervals

D. Bergren, E. Eiben, R. Ganian, and I. Kanj 13:15

from Sapx, updates Γ and sets k = k − k′. Removing k′ intervals from Sapx leaves Sapx with
at most 3k − k′ intervals. The algorithm then guesses which endpoints of the (remaining)
intervals in Sapx are anchors. Since we can assume that the anchors in question are left
endpoints of their intervals, guessing the anchors can be simulated by choosing a subset of
(k − k′) endpoints, out of the at most (3k − k′) left endpoints of the (remaining) intervals in
Sapx. Therefore, the total number of branches needed to simulate all guesses in Step (1) is
at most

∑k
k′=0

(3k
k′

)
·
(3k−k′

k−k′

)
.

In Step (3), the algorithm guesses the domination relations among anchors. At this point,
the number of anchors (by Step (2)) is at most k − k′. In the guessing, each guess made
is w.r.t. an interval I ∈ Sapx and the two anchors a and b, as defined in Step (3). We will
charge each guess to the two anchors that play the roles of a and b w.r.t. some interval
I ∈ Sapx. There are four guesses made, resulting in sixteen cases, and each of a and b is
involved in the same number of guesses. Therefore, eight cases need to be distinguished with
respect to each of a and b. Since each of the at most k′ anchors can play the role of a once
and of b once, over all intervals in Sapx (note that a domination relation involving an empty
anchor is determined, not guessed), it follows that the total number of cases that each anchor
can be involved in is sixteen, which results in a total number of branches of at most 24k′

over all anchors.
It follows that the size of the search tree needed to simulate all the guesses performed by

the algorithm is
∑k
k′=0

(3k
k′

)
·
(3k−k′

k−k′

)
· 24k′ . Next, we upper bound this expression.

Applying the well-known upper bound
(
r
s

)
≤ (e · r/s)s on the binomial coefficient in

both binomial terms
(3k
k′

)
and

(3k−k′

k−k′

)
, where e is the base of the natural logarithm, and

simplifying, we obtain:
k∑

k′=0

(
3k
k′

)
·
(

3k − k′

k − k′

)
· 24k′

(1)

≤ (3e)k · 24k + (3e)k ·
k−1∑
k′=0

24k′
· (k/k′)k

′
· ((k − k′/3)/(k − k′))k−k

′
(2)

≤ (3e)k · 24k + (3e)k ·
k−1∑
k′=0

24k′
· (k/k′)k

′
· e2k′/3 (3)

= (3e)k · 24k + (3e)k ·
k−1∑
k′=0

((24 · e2/3 · k)/k′)k
′

(4)

≤ (3e)k · 24k + (3e)k · O((24 · e2/3)k) = O((24 · 3 · e5/3)k). (5)

In Inequality (2), we split the summation – a minor technicality – in order to avoid a
denominator of 0 in the term ((k−k′/3)/(k−k′))k−k′ , resulting from approximating

(3k−k′

k−k′

)
,

when k′ = k. We obtain Inequality (3) from Inequality (2), by upper bounding the term
((k−k′/3)/(k−k′))k−k′ by e2k′/3. This is done by rewriting the term ((k−k′/3)/(k−k′))k−k′

in the form (1 + 1/x)x, and using the well-known inequality (1 + 1/x)x ≤ e, for all x > 0. We
obtain Inequality (5) from Inequality (4) by showing that the function ((24 · e2/3 · k)/k′)k′ is
increasing in k′, which then can be used to upper bound the summation

∑k
k′=0((24 · e2/3 ·

k)/k′)k′ by O((24 · 3 · e2/3)k). J

We can obtain FPT algorithms for Disc-Equal-SC, Disc-Equal-Exact-SC, and
Cont-Equal-Exact-SC as well. The ideas leading to the FPT algorithm for Disc-Equal-
SC are the same as those for Cont-Equal-SC, albeit the technical details become more
complicated and the running time is significantly worse. The complications are mainly due to

STACS 2020

13:16 On Covering Segments with Unit Intervals

the stipulation that the covering intervals cannot be arbitrarily chosen, and must be selected
from the set I, given as input. This makes it harder to obtain an approximate solution
with the desired properties – and leads to a worse approximation ratio, and to restructure
the anchors. In particular, we can no longer make the simplifying assumptions about the
structure of the intervals in Sapx and Sopt. The FPT results for Disc-Equal-Exact-SC
and Cont-Equal-Exact-SC are byproducts of that for Disc-Equal-SC.

I Theorem 12. Disc-Equal-SC, Disc-Equal-Exact-SC, Cont-Equal-Exact-SC can
be solved in time O(230k · (|Γ| lg |Γ|+ |I| lg |I|)), and hence are FPT.

6 Conclusion

In this paper, we considered several variants of segment covering by unit intervals. We
established the NP-hardness of the restrictions of these problems to instances in which all
segments have the same length. In addition to its importance per se, this result strengthens
and implies a number of NP-hardness results in the literature. We also presented parameter-
ized complexity results for several of these problems, showing their W[1]-hardness for the
general case, and presenting FPT algorithms for their restrictions to instances in which all
segments have the same length. Our work gives rise to two open questions:

1. What is the parameterized complexity of Cont-Exact-SC and Disc-Exact-SC?
2. What is the complexity of the restriction of Cont-Exact-SC and Disc-Exact-SC to

instances in which all segments have length at most 1 unit?

References
1 A. Acharyya, S. Nandy, S. Pandit, and S. Roy. Covering segments with unit squares. Compu-

tational Geometry: Theory and Applications, 79:1–13, 2019.
2 E. Arkin, A. Banik, P. Carmi, G. Citovsky, M. Katz, J. Mitchell, and M. Simakov. Choice is

hard. In ISAAC, volume 9472 of Lecture Notes in Computer Science, pages 318–328. Springer,
2015.

3 E. Arkin, A. Banik, P. Carmi, G. Citovsky, M. Katz, J. Mitchell, and M. Simakov. Conflict-free
covering. In CCCG, 2015.

4 E. Arkin, A. Banik, P. Carmi, G. Citovsky, M. Katz, J. Mitchell, and M. Simakov. Selecting
and covering colored points. Discrete Applied Mathematics, 250:75–86, 2018.

5 P. Bonsma, T. Epping, and W. Hochstättler. Complexity results on restricted instances of a
paint shop problem for words. Discrete Applied Mathematics, 154(9):1335–1343, 2006.

6 Y. Chen, J. Flum, and M. Grohe. Machine-based methods in parameterized complexity theory.
Theoretical Computer Science, 339(2-3):167–199, 2005.

7 M. Claverol, E. Khramtcova, E. Papadopoulou, M. Saumell, and C. Seara. Stabbing circles
for sets of segments in the plane. Algorithmica, 80(3):849–884, 2018.

8 T. Cormen, C. Leiserson, R. Rivest, and C. Stein. Introduction to Algorithms. The MIT Press,
3rd edition, 2009.

9 M. Cygan, F. Fomin, L. Kowalik, D. Lokshtanov, D. Marx, M. Pilipczuk, M. Pilipczuk, and
S. Saurabh. Parameterized Algorithms. Springer, 2015.

10 R. Diestel. Graph Theory, 4th Edition. Springer, 2012.
11 R. Downey and M. Fellows. Fundamentals of Parameterized Complexity. Texts in Computer

Science. Springer, Berlin, Heidelberg, 2013.
12 T. Erlebach and E. J. van Leeuwen. Approximating geometric coverage problems. In SODA,

pages 1267–1276. SIAM, 2008.

D. Bergren, E. Eiben, R. Ganian, and I. Kanj 13:17

13 T. Erlebach and E.J. van Leeuwen. PTAS for weighted set cover on unit squares. In APPROX-
RANDOM, volume 6302 of Lecture Notes in Computer Science, pages 166–177. Springer,
2010.

14 M. R. Garey and D. S. Johnson. The rectilinear steiner tree problem in NP complete. SIAM
Journal of Applied Mathematics, 32:826–834, 1977.

15 A. Gupta, S. Kale, V. Nagarajan, R. Saket, and B. Schieber. The approximability of the binary
paintshop problem. In APPROX-RANDOM, volume 8096 of Lecture Notes in Computer
Science, pages 205–217. Springer, 2013.

16 S. Hartung and R. Niedermeier. Incremental list coloring of graphs, parameterized by conser-
vation. Theoretical Computer Science, 494:86–98, 2013.

17 G. Kant. Drawing planar graphs using the canonical ordering. Algorithmica, 16(1):4–32, 1996.
18 J. Kleinberg and E. Tardos. Algorithm Design. Addison-Wesley Longman Publishing Co., Inc.,

Boston, MA, USA, 2005.
19 K. Kobylkin. Stabbing line segments with disks: Complexity and approximation algorithms.

In AIST, volume 10716 of Lecture Notes in Computer Science, pages 356–367. Springer, 2017.
20 S. Langerman and P. Morin. Covering things with things. Discrete & Computational Geometry,

33(4):717–729, 2005.
21 R. Madireddy and A. Mudgal. Stabbing line segments with disks and related problems. In

CCCG, pages 201–207, 2016.
22 J. Wang, W. Li, and J. Chen. A parameterized algorithm for the hyperplane-cover problem.

Theoretical Computer Science, 411(44-46):4005–4009, 2010.

STACS 2020

	Introduction
	Preliminaries
	Segment Covering Problems

	Parameterized Complexity of Disc-SC and Cont-SC
	NP-Completeness of the Equal Segment-Length Variants
	Grid Segment Covering is NP-Complete
	Reductions from the Grid Segment Covering Problem

	FPT Algorithms for the Equal Segment-Length Variants
	Conclusion

