
8.2 Solving Linear Recurrence Relations

Recall from Section 8.1 that solving a recurrence relation means to find explicit solutions for the recurrence
relation.

Definition 1. A linear homogeneous recurrence relation of degree k with constant coefficients is a recurrence
relation of the form

an = c1an−1 + c2an−2 + · · ·+ ckan−k, (*)

where c1, c2, . . . , ck ∈ R and ck 6= 0.

Linear refers to the fact that an−1, an−2, . . . , an−k appear in separate terms and to the first power.

Homogeneous refers to the fact that the total degree of each term is the same (thus there is no constant term)

Constant Coefficients refers to the fact that c1, c2, . . . , ck are fixed real numbers that do not depend on n.

Degree k refers to the fact that the expression for an contains the previous k terms an−1, an−2, . . . , an−k.

A consequence of the second principle of mathematical induction is that a sequence satisfying the recurrence
relation in the definition (*) is uniquely determined once we know the values of aj in the k initial conditions

a0 = C0, a1 = C1, . . . , ak−1 = Ck−1.

Example 1. The recurrence relation An = (1.04)An−1 is a linear homogeneous recurrence relation of degree
one. The recurrence relation Fn = Fn−1 + Fn−2 is a linear homogeneous recurrence relation of degree two.
The recurrence relation an = an−5 is a linear homogeneous recurrence relation of degree five.

Example 2 (Non-examples). The recurrence relation an = an−1an−2 is not linear. The recurrence rela-
tion mn = 2mn−1 + 1 is not homogeneous. The recurrence relation Bn = nBn−1 does not have constant
coefficients.

Linear homogeneous recurrence relations are studied for two reasons. First, they often occur in modeling
of problems. Second, they can be systematically solved. The basic approach for solving linear homogeneous
recurrence relations is to look for solutions of the form an = rn, where r is a constant.

Remark 1. Note that an = rn is a solution of the recurrence relation (*) if and only if

rn = c1r
n−1 + c2r

n−2 + · · ·+ ckr
n−k.

Divide both sides of the above equation by rn−k and subtract the right-hand side from the left to obtain

rk − c1rk−1 − c2rk−2 − · · · ck = 0. (**)

Consequently, the sequence {an} with an = rn is a solution of (*) if and only if r is a solution of (**).

Definition 2. We call the equation

rk − c1rk−1 − c2rk−2 − · · · ck = 0. (**)

the characteristic equation of the recurrence relation (*). The solutions of this equation are called the
characteristic roots of the recurrence relation (*).

As we will see, these characteristic roots can be used to give an explicit formula for all the solutions of
the recurrence relation.

We first consider the case of degree two.
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The Distinct-Roots Case

Consider a second-order linear homogeneous recurrence relation with constant coefficients:

ak = Aak−1 +Bak−2 for all integers k ≥ 2, (1)

where A and B are fixed real numbers. Relation (1) is satisfied when all the ai = 0, but it has nonzero
solutions as well. Suppose that for some number t with t 6= 0, the sequence

1, t, t2, . . . , tn, . . .

satisfies relation (1). This means that each term of the sequence equals A times the previous term plus B
times the term before that. So for all integers k ≥ 2,

tk = Atk−1 +Btk−2.

In particular, when k = 2, the equation becomes

t2 = At+B,

or equivalently,
t2 −At−B = 0. (2)

This is a quadratic equation, and the values of t that make it true can be found either by factoring or by
using the quadratic formula.

Now work backward. Suppose t is any number that satisfies equation (2). Does the sequence 1, t, t2, t3, . . . , tn, . . .
satisfy relation (1)? To answer this question, multiply equation (2) by tk−2 to obtain

tk−2 · t2 − tk−2 ·At− tk−2 ·B = 0.

This is equivalent to
tk −Atk−1 −Btk−2 = 0

or
tk = Atk−1 +Btk−2.

Hence the answer is yes: 1, t, t2, t3, . . . , tn, . . . satisfies relation (1).
This discussion proves the following lemma.

Lemma 1. Let A and B be real numbers. A recurrence relation of the form

ak = Aak−1 +Bak−2 for all integers k ≥ 2, (1)

is satisfied by the sequence
1, t, t2, t3, . . . , tn, . . . ,

where t is a nonzero real number, if, and only if, t satisfies the equation

t2 −At−B = 0. (2)

Lemma 2. If r0, r1, r2, . . . and s0, s1, s2, . . . are sequences that satisfy the same second-order linear homo-
geneous recurrence relation with constant coefficients, and if C and D are any numbers, then the sequence
a0, a1, a2, . . . defined by the formula

an = Crn +Dsn for all integers n ≥ 0

also satisfies the same recurrence relation.
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Given a second-order linear homogeneous recurrence relation with constant coefficients, if the character-
istic equation has two distinct roots, then Lemmas 1 and 2 can be used to find an explicit formula for any
sequence that satisfies a second-order linear homogeneous recurrence relation with constant coefficients for
which the characteristic equation has distinct roots, provided that the first two terms of the sequence are
known. This is made precise in the next theorem.

Theorem 1 (Distinct Roots Theorem). Suppose a sequence a0, a1, a2, . . . satisfies a recurrence relation

ak = Aak−1 +Bak−2 for all integers k ≥ 2, (1)

for some real numbers A and B with B 6= 0. If the characteristic equation

t2 −At−B = 0 (2)

has two distinct roots r and s, then a0, a1, a2, . . . is given by the explicit formula

an = Crn +Dsn,

where C and D are the numbers whose values are determined by the values a0 and a1.

Remark 2. To say “C and D are determined by the values of a0 and a1” means that C and D are the
solutions to the system of simultaneous equations

a0 = Cr0 +Ds0 and a1 = Cr1 +Ds1,

or, equivalently,
a0 = C +D and a1 = Cr +Ds.

This system always has a solution when r 6= s.

Proof. Suppose that for some real numbers A and B, a sequence a0, a1, a2, . . .satisfies the recurrence relation
ak = Aak−1 + Bak−2, for all integers k ≥ 2, and suppose the characteristic equation t2 − At − B = 0 has
two distinct roots r and s. We will show that

for all integers n ≥ 0, an = Crn +Dsn,

where C and D are numbers such that

a0 = Cr0 +Ds0 and a1 = Cr1 +Ds1.

Let P (n) be the equation
an = Crn +Dsn.

We use strong mathematical induction to prove that P (n) is true for all integers n ≥ 0. In the basis step,
we prove that P (0) and P (1) are true. We do this because in the inductive step we need the equation to
hold for n = 0 and n = 1 in order to prove that it holds for n = 2.

Show that P (0) and P (1) are true: The truth of P (0) and P (1) is automatic because C and D are
exactly those numbers that make the following equations true:

a0 = Cr0 +Ds0 and a1 = Cr1 +Ds1.

Show that for all integers k ≥ 1, if P (i) is true for all integers i from 0 through k, then
P (k + 1) is also true: Suppose that k ≥ 1 and for all integers i from 0 through k,

ai = Cri +Dsi.

We must show that P (k + 1):
ak+1 = Crk+1 +Dsk+1.
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Now by the inductive hypothesis,

ak = Crk +Dsk and ak−1 = Crk−1 +Dsk−1,

so

ak+1 = Aak +Bak−1

= A(Crk +Dsk) +B(Crk−1 +Dsk−1)

= C(Ark +Brk−1) +D(Ask +Bsk−1)

= Crk+1 +Dsk+1.

This is what was to be shown. [The reason the last equality follows from Lemma 1 is that since r and
s satisfy the characteristic equation (2), the sequences r0, r1, r2, . . . and s0, s1, s2, . . . satisfy the recurrence
relation (1).]

Example 3. The Fibonacci sequence F0, F1, F2, . . . satisfies the recurrence relation

Fk = Fk−1 + Fk−2 for all integersk ≥ 2

with initial conditions
F0 = F1 = 1.

Find an explicit formula for this sequence.

Solution. The Fibonacci sequence satisfies part of the hypothesis of the distinct-roots theorem since the
Fibonacci relation is a second-order linear homogeneous recurrence relation with constant coefficients (A = 1
and B = 1). Is the second part of the hypothesis also satisfied? Does the characteristic equation

t2 − t− 1 = 0

have distinct roots? By the quadratic formula, the roots are

t =
1±

√
1− 4(−1)

2
=

{
1+
√
5

2
1−
√
5

2

and so the answer is yes. It follows from the distinct-roots theorem that the Fibonacci sequence is given by
the explicit formula

Fn = C

(
1 +
√

5

2

)n

+D

(
1−
√

5

2

)n

for all integers n ≥ 0, (3)

where C and D are the numbers whose values are determined by the fact that F0 = F1 = 1. To find C and
D, write

F0 = 1 = C

(
1 +
√

5

2

)0

+D

(
1−
√

5

2

)0

= C · 1 +D · 1 = C +D

and

F1 = 1 = C

(
1 +
√

5

2

)1

+D

(
1−
√

5

2

)1

= C

(
1 +
√

5

2

)
+D

(
1−
√

5

2

)
.

Thus the problem is to find numbers C and D such that

C +D = 1
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and

C

(
1 +
√

5

2

)
+D

(
1−
√

5

2

)
= 1.

This may look complicated, but in fact it is just a system of two equations in two unknowns. The solutions
are

C =
1 +
√

5

2
√

5
and D =

−(1−
√

5)

2
√

5
.

Substituting these values for C and D into formula (3) gives

Fn =

(
1 +
√

5

2
√

5

)(
1 +
√

5

2

)n

+

(
−(1−

√
5)

2
√

5

)(
1−
√

5

2

)n

,

or, simplifying,

Fn =
1√
5

(
1 +
√

5

2

)n+1

− 1√
5

(
1−
√

5

2

)n+1

(4)

for all integers n ≥ 0. Remarkably, even though the formula for Fn involves
√

5, all of the values of the
Fibonacci sequence are integers.

Theorem 1 does not work when characteristic equation has double root. In this case, ...

The Single-Root Case

Consider again the recurrence relation

ak = Aak−1 +Bak−2 for all integers k ≥ 2, (1)

where A and B are real numbers, but suppose now that the characteristic equation

t2 −At−B = 0. (2)

has a single real root r. By Lemma 1, one sequence that satisfies the recurrence relation is

1, r, r2, r3, . . . , rn, . . .

But another sequence that also satisfies the relation is

0, r, 2r2, 3r3, . . . , nrn, . . .

To see why this is so, observe that since r is the unique root of t2 − At − B = 0, the left-hand side of the
equation can be factored as (t− r)2, and so

t2 −At−B = (t− r)2 = t2 − 2rt+ r2. (5)

Equating coefficients in equation (5) gives

A = 2r and B = −r2. (6)

Let s0, s1, s2, . . . be the sequence defined by the formula

sn = nrn for all integers n ≥ 0.
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Then

Ask−1 +Bsk−2 = A(k − 1)rk−1 +B(k − 2)rk−2

= 2r(k − 1)rk−1 − r2(k − 2)rk−2

= 2(k − 1)rk − (k − 2)rk

= (2k − 2− k + 2)rk

= krk

= sk.

Thus s0, s1, s2, . . . satisfies the recurrence relation. This argument proves the following lemma.

Lemma 3. Let A and B be real numbers and suppose the characteristic equation

t2 −At−B = 0. (2)

has a single root r. Then the sequences 1, r, r2, r3, . . . , rn, . . . and 0, r, 2r2, 3r3, . . . , nrn, . . . both satisfy the
recurrence relation

ak = Aak−1 +Bak−2 for all integers k ≥ 2, (1)

Lemmas 2 and 3 can be used to establish the single-root theorem, which shows how to find an explicit
formula for any recursively defined sequence satisfying a second-order linear homogeneous recurrence relation
with constant coefficients for which the characteristic equation has just one root. Taken together, the distinct-
roots and single-root theorems cover all second-order linear homogeneous recurrence relations with constant
coefficients. The proof of the single-root theorem is very similar to that of the distinct-roots theorem.

Theorem 2 (Single-Root Theorem). Suppose a sequence a0, a1, a2, . . . satisfies a recurrence relation

ak = Aak−1 +Bak−2 for all integers k ≥ 2, (1)

for some real numbers A and B with B 6= 0. If the characteristic equation

t2 −At−B = 0 (2)

has a single (real) root r, then a0, a1, a2, . . . is given by the explicit formula

an = Crn +Dnrn,

where C and D are the numbers whose values are determined by the values a0 and any other known value of
the sequence.

Example 4. Suppose a sequence b0, b1, b2, . . . satisfies the recurrence relation

bk = 4bk−1 − 4bk−2 for all integers k ≥ 2, (7)

with initial conditions
b0 = 1 and b1 = 3.

Find an explicit formula for b0, b1, b2, . . ..

Solution. This sequence satisfies part of the hypothesis of the single-root theorem because it satisfies a
second-order linear homogeneous recurrence relation with constant coefficients (A = 4 and B = −4). The
single-root condition is also met because the characteristic equation

t2 − 4t+ 4 = 0
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has the unique root r = 2 [since t2 − 4t+ 4 = (t− 2)2].
It follows from the single-root theorem that b0, b1, b2, . . . is given by the explicit formula

bn = C · 2n +Dn2n for all integers n ≥ 0, (8)

where C and D are the real numbers whose values are determined by the fact that b0 = 1 and b1 = 3. To
find C and D, write

b0 = C · 20 +D · 0 · 20 = C

and
b1 = C · 21 +D · 1 · 21 = 2C + 2D.

Hence the problem is to find numbers C and D such that

C = 1

and
2C + 2D = 3.

Substitute C = 1 into the second equation to obtain

2 + 2D = 3,

and so

D =
1

2
.

Now substitute C = 1 and D = 1
2 into formula (8) to conclude that

bn = 2n +
1

2
n2n = 2n

(
1 +

n

2

)
for all integers n ≥ 0.

Theorem 3. Let c1, c2, . . . , ck be real numbers. Suppose that the characteristic equation

rk − c1rk−1 − c2rk−2 − · · · − ck = 0

has k distinct roots r1, r2, . . . , rk. Then a sequence {an} is a solution of the recurrence relation

an = c1an−1 + c2an−2 + · · ·+ ckan−k

if and only if
an = A1r

n
1 +A2r

n
2 + · · ·+Akr

n
k

for n = 0, 1, 2, . . ., where A1, A2, . . . are constants.

Example 5. Find the solution to the recurrence relation

an = 6an−1 − 11an−2 + 6an−3

with the initial conditions a0 = 2, a1 = 5, and a2 = 15.

Solution. The characteristic polynomial of this recurrence relation is

r3 − 6r2 + 11r − 6

By the rational root test, the possible roots are ±1,±2,±3,±6. We find that r = 1 is a root. We find the
other roots by dividing r− 1 into r3− 6r2 + 11r− 6. The characteristic roots are r1 = 1, r2 = 2, and r3 = 3.
Hence, the solutions to this recurrence relation are of the form

an = A · 1n +B · 2n + C · 3n.

7



To find the constants A,B, and C, use the initial conditions. This gives

a0 = 2 = A+B + C

a1 = 5 = A+ 2B + 3C

a2 = 15 = A+ 4B + 9C

When these three simultaneous equations are solved for A,B, and C, we find that A = 1, B = −1, and
C = 2. Hence, the unique solution to this recurrence relation and the given initial conditions is the sequence
{an} with

an = 1− 2n + 2 · 3n.

Theorem 4 gives an analogue of Theorem 3 where roots can have multiplicity.

Theorem 4. Let c1, c2, . . . , ck be real numbers. Suppose that the characteristic equation

rk − c1rk−1 − · · · − ck = 0

has t distinct roots r1, r2, . . . , rt with multiplicities m1,m2, . . . ,mt respectively, so that mi ≥ 1 for i =
1, 2, . . . , t and m1 +m2 + · · ·+mt = k. Then a sequence {an} is a solution of the recurrence relation

an = c1an−1 + c2an−2 + · · ·+ ckan−k

if and only if

an = (α1,0 + α1,1n+ · · ·+ α1,m1−1n
m1−1)rn1

+ (α2,0 + α2,1n+ · · ·+ α2,m2−1n
m2−1)rn2

+ · · ·
+ (αt,0 + αt,1n+ · · ·+ αt,mt−1n

mt−1)rnt

for n = 0, 1, 2, . . ., where αi,j are constants for 1 ≤ i ≤ t and 0 ≤ j ≤ mi − 1.
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