NP complete problems

Some figures, text, and pseudocode from:

- Introduction to Algorithms, by Cormen, Leiserson, Rivest and Stein
- Algorithms, by Dasgupta, Papadimitriou, and Vazirani

Module objectives

- Some problems are too hard to solve in polynomial time
- Example of such problems, and what makes them hard
- Class NP\P
- NP: problems with solutions verifiable in poly time
- P: problems not solvable in poly time

NP-complete, fundamental class in Computer Science

- reduction form on problem to another
- Approximation Algorithms:
- since these problems are too hard, will settle for non-optimal solution
- but close to the optimal
- if we can find such solution reasonably fast

Module objectives

- WARNING: This presentation trades rigor for intuition and easiness
- The CLRS book ch 35 is rigorous, but considerably harder to read
- hopefully easier after going through these slides
- For an introduction to complexity theory that is rigorous and somewhat more accessible, see
- Michael Sipser : Introduction to Theory of Computation

2SAT problem

- 2-clause (aVb)
- true (satisfied) if either a or b true, false (unsatisfied) if both false
- a, b are binary true/false literals
- $\underline{a}=\operatorname{not}(a)=$ negation (a). $\neg T=F ; \neg F=T$
- can have several clauses, e.g. (avb), ($\neg a \vee c)$, ($\neg c \vee d)$, ($\neg a \vee \neg b)$
- truth table for logical OR: $(T \vee T)=T ;(T \vee F)=T ; \quad(F \vee T)=T ;(F \vee F)=F$
- 2-SAT problem: given a set of clauses, find an assignment T/F for literals in order to satisfy all clauses

2 SAT solution

- Example: satisfy the following clauses:
$-(a \vee b) \wedge(\neg a \vee c) \wedge(\neg d \vee b) \wedge(d \vee \neg c) \wedge(\neg c \vee f) \wedge(\neg f \vee \neg g) \wedge(g \vee \neg d)$
- try $a=$ TRUE
- $a=T \Rightarrow \neg a=F \Rightarrow c=T \Rightarrow d=f=T \Rightarrow \neg g=T \Rightarrow g=F \Rightarrow \neg d=T$ contradiction
- try $a=F A L S E$
- $a=F \Rightarrow b=T$, it works; eliminate first three clauses and a, b; now we have (d $\vee \neg c) \wedge(\neg c \vee f) \wedge(\neg f \vee \neg g) \wedge(g \vee \neg d)$
- try c=FALSE
- it works, eliminate first two clauses and c, remaining $(\neg f \vee \neg g) \wedge(g \vee \neg d)$
- try g=TRUE
- $g=T \Rightarrow \neg g=F \Rightarrow \neg f=T$; done.
- assignment : $\operatorname{TRUE}(b, g) ; \operatorname{FALSE}(a, c, f), \operatorname{EITHER}(d)$

2SAT algorithm

- pick one literal not assigned yet, say " a ", from a clause still to be satisfied
- see if THINGS_WORK_OUT(a) //ty assign $a=T R U E$
- if NOT, see if THINGS_WORK_OUT($\neg a) / /$ ty assign $a=F A L S E$
- if still NOT, return "NOT POSSIBLE"
- if YES (either way), keep the assignments made, and delete all clauses that are satisfied by assignments
- repeat from the beginning until there are no clauses left, or until "NOT POSSIBLE" shows up

How to try an assignment for 2SAT

THINGS_WORK_OUT (a)

- queue $Q=\{a\}$
while $x=$ dequeue(Q)

```
for each clause that contain \negx like (y\vee\negx) or ( }\neg\textrm{x}\vee\textrm{y})
```

if $y=F A L S E$ (or $\neg y=T R U E)$ already assigned, return "NOT POSSIBLE"
assign $y=T R U E$ (or $7 y=F A L S E)$, enqueue (y, Q)
return the list of TRUE/FALSE assignments made.

2SAT algorithm

- running time: more than linear in number of clauses, if we are unlucky
- easy to implement
- $n=$ number of literals, $c=n u m b e r$ of clauses.
- definitely polynomial, less than O(nc)
- 2SAT can be solved in linear time using graph path search
- 2SAT-MAX: if an instance to 2-SAT is not satisfiable, satisfy as many clauses as possible
- this problem is much harder, "NP-hard"

3SAT

- CLRS book calls it "3-CNF satisfiability"
- same as 2SAT, but clauses contain 3 literals
- example (avbv $\neg \mathrm{c})$, ($\neg \mathrm{bvc} \vee \neg \mathrm{a})$, (dvcvb), ($\neg \mathrm{dvevc)}, \mathrm{(} \neg \mathrm{evbvd)}$
- try to solve/satisfy this problem with an intelligent/ fast algorithm - can't find such a solution
- exercise: why THINGS_WORK_OUT procedure is not applicable on
- this problem can be solved only by essentially trying [almost] all possibilities
- even if done efficiently, still an exponential time/trials
- why is 3SAT problem so hard?

complexity $=$ try all combinations

- why is 3SAT hard?
- no one knows for sure, but widely believe to be true (no proof yet)
- the answer seems to be that on problems that solution come from an exponential space
- not enough space structure to search efficiently (polynomial time)
- proving either
- that no polynomial solution exists for 3SAT
- or finding a polynomial solution for 3SAT
... would make you rich and very famous

class $N P=$ polynomial verification

- 2SAT, 3SAT very different for finding a solution
- but 2SAT, 3SAT same for verifying a solution : if someone proposes a solution, it can be verified immediately
- proposed solution = all literals assigned T/F
- just check every clause to be TRUE
- NP = problems for which possible solutions can be verified quickly (polynomial)
- $P=$ problems for which solutions can be found quickly
- obviously $P \subseteq N P$, since finding a solution is harder than verifying one
- 2SAT, 3SATENP
- 2SAT $\in P, 3 S A T \notin P$

problems in NP\P

NP\P problems : solutions are quickly verifiable, but hard to find

- like 3SAT
- also CIRCUIT-SAT,
- CLIQUE
- VERTEX-COVER
- HAMILTONIAN-CYCLE
- TSP
- SUBSET-SUM
- many many others, generally problems asking "find the subset that maximizes

NP-reduction

problem A reduces to problem B if

- any input x for $\mathrm{pb} A$ map> input y for $\mathrm{pb} B$
- solution/answer for (y, B) map> solution/answer for (x, A)
- "map" has to be done in polynomial time
- A poly-map $>B$ or $A \leq_{p} B$ (\leq_{p} stands for "polynomial-easier-than")
- think " B harder than A ", since solving B means also solving to A via reduction
- 3SAT reduces to CLIQUE
- 3SAT \leq_{p} CLIQUE
- CLIQUE reduces to VERTEX-COVER
- CLIQUE \leq_{p} VERTEX-COVER

reductions

CLIQUE problem

- a clique in undirected graph $G=(V, E)$ is a set of vertices $S \subset V$ in which all edges exist: $\forall u, v \in S(u, v) \in E$
- a clique of size n must have all (n choose 2) edges
- Task: find the maximal set S that is a clique

CLIQUE problem

- a clique in undirected graph $G=(V, E)$ is a set of vertices $S \subset V$ in which all edges exist: $\forall u, v \in S(u, v) \in E$
- a clique of size n must have all (n choose 2) edges
- Task: find the maximal set S that is a clique
- in the picture, two cliques
 are shown of size 3 and 4

CLIQUE problem

- a clique in undirected graph $G=(V, E)$ is a set of vertices $S \subset V$ in which all edges exist: $\forall u, v \in S(u, v) \in E$
- a clique of size n must have all (n choose 2) edges
- Task: find the maximal set S that is a clique
- in the picture, two cliques are shown of size 3 and 4
- the maximal clique is of size 4, as no clique of size 5 exists

CLIQUE problem

- a clique in undirected graph $G=(V, E)$ is a set of vertices $S \subset V$ in which all edges exist: $\forall u, v \in S(u, v) \in E$
- a clique of size n must have all (n choose 2) edges
- Task: find the maximal set S that is a clique
- in the picture, two cliques
 are shown of size 3 and 4
- the maximal clique is of size 4 , as no clique of size 5 exists
- CLIQUE is hard to solve: we dont know any efficient algorithm to search for cliques.

3SAT reduces to CLIQUE

- idea: for the K clauses input to 3SAT, draw literals as vertices, and all edges between vertices except
- across clauses only (no edges inside a clause)
- not between x and $\neg x$
- reduction takes poly time
- a satisfiable assignment \Rightarrow a clique of size K
- a clique of size $K \Rightarrow$ satisfiable assignment

VERTEX COVER

- Graph undirected $G=(V, E)$
- Task: find the minimum subset of vertices $T \subset V$, such that any edge $(u, v) \in E$ has at least on end u or v in T.
- NP-hard

CLIQUE reduces to VERTEX-COVER

(a)

(b)

- idea: start with graph $G=(V, E)$ input of the CLIQUE problem
- construct the complement graph $\mathrm{G}^{\prime}=\left(\mathrm{VE}^{\prime}\right)$ by only considering the missing edges from $E: E^{\prime}=\{$ all $(u, v)\} \backslash E$
- poly time reduction
- clique of size K in $\mathrm{G} \Rightarrow$ vertex cover of size $|\mathrm{V}|-\mathrm{k}$ in G^{\prime}
- vertex cover of size k in $\mathrm{G}^{\prime} \Rightarrow$ clique of size $|V|-K$ in G

SUBSET-SUM problem

- Given a set of positive integers $S=\{a 1, a 2, . ., a n\}$ and an integer size \dagger
- Task: find a subset of numbers from S that sum to \dagger
- there might be no such subset
- there might be multiple subsets
- Close related to discrete Knapsack (module 7)

3SAT reduction to SUBSET-SUM

$\left.\begin{array}{rlllllll} & & x_{1} & x_{2} & x_{3} & C_{1} & C_{2} & C_{3} \\ C_{4} \\ \hline \nu_{1}= & 1 & 0 & 0 & 1 & 0 & 0 & 1 \\ \nu_{1}^{\prime} & = & 1 & 0 & 0 & 0 & 1 & 1\end{array}\right) 0$

- poly-time reduction
 - SUBSET-SUM is NP complete
 - CLRS book 34.5.5

Figure 34.19 The reduction of 3-CNF-SAT to SUBSET-SUM. The formula in 3-CNF is $\phi=$ $C_{1} \wedge C_{2} \wedge C_{3} \wedge C_{4}$, where $C_{1}=\left(x_{1} \vee \neg x_{2} \vee \neg x_{3}\right), C_{2}=\left(\neg x_{1} \vee \neg x_{2} \vee \neg x_{3}\right), C_{3}=\left(\neg x_{1} \vee \neg x_{2} \vee x_{3}\right)$, and $C_{4}=\left(x_{1} \vee x_{2} \vee x_{3}\right)$. A satisfying assignment of ϕ is $\left\langle x_{1}=0, x_{2}=0, x_{3}=1\right\rangle$. The set S produced by the reduction consists of the base-10 numbers shown; reading from top to bottom, $S=$ $\{1001001,1000110,100001,101110,10011,11100,1000,2000,100,200,10,20,1,2\}$. The target t is 1114444 . The subset $S^{\prime} \subseteq S$ is lightly shaded, and it contains $v_{1}^{\prime}, v_{2}^{\prime}$, and ν_{3}, corresponding to the satisfying assignment. It also contains slack variables $s_{1}, s_{1}^{\prime}, s_{2}^{\prime}, s_{3}, s_{4}$, and s_{4}^{\prime} to achieve the target value of 4 in the digits labeled by C_{1} through C_{4}.

NP complete problems

- problem A is NP-complete if
- A is in NP (poly-time to verify proposed solution)
- any problem in NP reduces to A
- second condition says: if one solves pb A, it solves via polynomial reductions all other problems in NP
- CIRCUIT SAT is NP-complete (see book)
- and so the other problems discussed here, because they reduce to it
- NP-complete contains as of 2013 thousands well known "apparently hard" problems
- unlikely one (same as "all") of them can be solved in poly time. . .
- that would mean $P=N P$, which many believe not true.

P vs NP problem

- see book for co-NP class definition
- four possibilities, no one knows which one is true
- most believe (d) to be true
- prove P=NP: find a poly time solver for an NP-complete pb, for ex 3SAT
- prove $\mathrm{P} \neq \mathrm{NP}$: prove that an NP-complete pb cant have poly-time solver

Approximation Algorithms

Some problems too hard

- ... to solve exactly
- so we settle for a non-optimal solution
- use an efficient algorithm, sometime Greedy
- solution wont be optimal, but how much non-optimal?
- objective(SOL) VS objective(OPTSOL)

Vertex Cover approx algorithm

- choose an edge (u, v)
- add u,v to VCover
- delete all edges with ends in u or v

- repeat until no edges left
- for the example in the picture:

Vertex Cover approx algorithm

- choose an edge (u, v)
- add u,v to VCover
- delete all edges with ends in u or v

- repeat until no edges left
- for the example in the picture:
- (a,i)

Vertex Cover approx algorithm

- choose an edge (u, v)
- add u,v to VCover
- delete all edges with ends in u or v

- repeat until no edges left
- for the example in the picture:
- (a,i)

Vertex Cover approx algorithm

- choose an edge (u, v)
- add u,v to VCover
- delete all edges with ends in u or v

- repeat until no edges left
- for the example in the picture:
- (a,i)

Vertex Cover approx algorithm

- choose an edge (u, v)
- add u,v to VCover
- delete all edges with ends in u or v

- repeat until no edges left
- for the example in the picture: - (a,i)

Vertex Cover approx algorithm

- choose an edge (u, v)
- add u,v to VCover
- delete all edges with ends in u or v

- repeat until no edges left
- for the example in the picture:
- (a,i)

Vertex Cover approx algorithm

- choose an edge (u, v)
- add u,v to VCover
- delete all edges with ends in u or v

- repeat until no edges left
- for the example in the picture:
- (a,i)

Vertex Cover approx algorithm

- choose an edge (u, v)
- add u,v to VCover
- delete all edges with ends in u or v

- repeat until no edges left
- for the example in the picture:
- (a,i)

Vertex Cover approx algorithm

- choose an edge (u, v)
- add u,v to VCover
- delete all edges with ends in u or v

- repeat until no edges left
- for the example in the picture: - (a,i)

Vertex Cover approx algorithm

- choose an edge (u, v)
- add u,v to VCover
- delete all edges with ends in u or v

- repeat until no edges left
- for the example in the picture: - (a,i)

Vertex Cover approx algorithm

- choose an edge (u, v)
- add u,v to VCover
- delete all edges with ends in u or v

- repeat until no edges left
- for the example in the picture:
- (a,i)
$-\quad(h, j)$

Vertex Cover approx algorithm

- choose an edge (u, v)
- add u,v to VCover
- delete all edges with ends in u or v

- repeat until no edges left
- for the example in the picture:
- (a,i)
$-\quad(h, j)$

Vertex Cover approx algorithm

- choose an edge (u,v)
- add u,v to VCover
- delete all edges with ends in u or v

- repeat until no edges left
- for the example in the picture:
- (a,i)
$-\quad(h, j)$

Vertex Cover approx algorithm

- choose an edge (u,v)
- add u,v to VCover
- delete all edges with ends in u or v

- repeat until no edges left
- for the example in the picture:
- (a, i)
- (h, j)

- (b, c)

Vertex Cover approx algorithm

- choose an edge (u, v)
- add u,v to VCover
- delete all edges with ends in u or v
- repeat until no edges left
- for the example in the picture:
- (a, i)
- (h, j)

- (b, c)

Vertex Cover approx algorithm

- choose an edge (u, v)
- add u,v to VCover
- delete all edges with ends in u or v
- repeat until no edges left
- for the example in the picture:
- (a, i)
d
k,

- (h, j)
- (b, c)

Vertex Cover approx algorithm

- choose an edge (u, v)
- add u,v to VCover
- delete all edges with ends in u or v
- repeat until no edges left
- for the example in the picture:
- (a, i)
- (h, j)

- (b, c)
- $\quad(e, f)$

Vertex Cover approx algorithm

- choose an edge (u, v)
- add u,v to VCover
- delete all edges with ends in u or v
- repeat until no edges left
- for the example in the picture:
- (a, i)
- (h, j)

- (b, c)
- $\quad(e, f)$

Vertex Cover approx algorithm

- choose an edge (u, v)
- add u,v to VCover
- delete all edges with ends in u or v
- repeat until no edges left
- for the example in the picture:
- (a, i)
- (h, j)

- $\quad(b, c)$
- (e, f)

Vertex Cover approx algorithm

- choose an edge (u, v)
- add u,v to VCover
- delete all edges with ends in u or v
- repeat until no edges left
- for the example in the picture:
- (a,i)
- (h, j)

- $\quad(b, c)$
- $\quad(e, f)$
- VC_approx $=\{a, i, h, j, b, c, e, f\}$
- VC_OPTIM=\{b,d,e,g,k,i,h\}

Vertex Cover approx algorithm

- choose an edge (u, v)
- add u,v to VCover
- delete all edges with ends in u or v
- repeat until no edges left
- for the example in the picture:
- (a,i)
- (h, j)
- (b, c)
- (e,f)
- VC_approx=\{a,i,h,j,b,c,e,f\}
- VC_OPTIM=\{b,d,e,g,k,i,h\}

Theorem:

- size(VC_gredy) \leqslant size(VC_optim) * 2
- approx ratio of 2

Set Cover problem

- set of towns $S=\{a, b, c, d, \ldots, k\}$
- edge(u,v) : distance(u,v)<10miles
- Set Cover SCcS : a set of towns such that every town is within 10 miles of some fown in SC

Set Cover problem

- set of towns $S=\{a, b, c, d, \ldots, k\}$
- edge(u,v) : distance(u,v)<10miles
- Set Cover SCcS : a set of towns such that every town is within 10 miles of some fown in SC
- $S=\{a, b, e, i\}$ is a set cover
- every town within 10 miles of one in S

Set Cover problem

- set of towns $S=\{a, b, c, d, \ldots, k\}$
- edge(u,v) : distance(u,v)<10miles
- Set Cover SCcS : a set of towns such that every town is within 10 miles of some fown in SC
- $S=\{a, b, e, i\}$ is a set cover
- every town within 10 miles of one in S
- $S=\{i, e, c\}$ a smaller set cover

Set Cover problem

- set of towns $S=\{a, b, c, d, \ldots, ., k\}$
- edge(u,v) : distance(u,v)<10miles
- Set Cover SCcS : a set of towns such that every town is within 10 miles of some fown in SC
- $S=\{a, b, e, i\}$ is a set cover
- every town within 10 miles of one in S
- $S=\{i, e, c\}$ a smaller set cover
- TASK: find minimum size SetCover
- NP complete
- general version of Vertex Cover

Set Cover approx algorithm

Set Cover approx algorithm

- pick the vertex with most connections/degree
- $\operatorname{deg}(\mathrm{a})=6$
- eliminate " a " and all " a "-neighbors

Set Cover approx algorithm

- pick the vertex with most connections/degree
- $\operatorname{deg}(a)=6$
- eliminate " a " and all " a "-neighbors
- $\operatorname{deg}(a)=6$
- eliminate " a " and all " a "-neighbors

Set Cover approx algorithm

- pick the vertex with most connections/degree
- $\operatorname{deg}(a)=6$
- eliminate " a " and all " a "-neighbors
- pick the next vertex with most connections to uncovered towns
- deg_now(g)=1
- eliminate g and g -neighbors

Set Cover approx algorithm

- pick the vertex with most connections/degree
- $\operatorname{deg}(a)=6$
- eliminate " a " and all " a "-neighbors
f. - pick the next vertex with most connections to uncovered towns
- deg_now(g)=1
- eliminate g and g -neighbors

Set Cover approx algorithm

- pick the vertex with most connections/degree
- $\operatorname{deg}(a)=6$
- eliminate " a " and all " a "-neighbors
f. - pick the next vertex with most connections to uncovered towns
- deg_now(g)=1
- eliminate g and g -neighbors
- repeat for j then for c

Set Cover approx algorithm

- pick the vertex with most connections/degree
- $\operatorname{deg}(a)=6$
- eliminate " a " and all " a "-neighbors

5. pick the next vertex with most connections to uncovered towns

- deg_now(g)=1
- eliminate g and g -neighbors
- repeat for j then for c

Set Cover approx algorithm

- pick the vertex with most connections/degree
- $\operatorname{deg}(a)=6$
- eliminate " a " and all " a "-neighbors

5. - pick the next vertex with most connections to uncovered towns

- deg_now(g)=1
- eliminate g and g -neighbors
- repeat for j then for c
- VertexCover $=\{a, g, j, c\}$, size 4

Set Cover approx algorithm

- SetCover_approx $=\{a, j, c, g\}$, size 4
- SetCover_optimal = \{b,i,e\}, size 3

Set Cover approx algorithm

- SetCover_approx $=\{a, j, c, g\}$, size 4
- SetCover_optimal = \{b,i,e\}, size 3
- Theorem:
size(SetCover_greedy) \leqslant size(SetCover_optim)* $\log (\mid \mathrm{VI})$
- approx ratio is $\log (n)$

CLIQUE approximation

- much harder to approximate CLIQUE than VECTORCOVER
- see wikipedia CLIQUE page
- http://en.wikipedia.org/wiki/Clique_problem\#Approximation_algorithms
- there can be no polynomial time algorithm that approximates the maximum clique to within a factor better than $O\left(n^{1-\varepsilon}\right)$, for any $\varepsilon>0$

3SAT approximation algorithm

- simple algorithm: assign each literal to TRUE or FALSE randomly, independently
- success: for any 3SAT clause ($a \vee b \vee c$) the probability of evaluating FALSE is computed as the probability of all three literals to be FALSE
- $p[(a \vee b v c)=F A L S E]=1 / 2 * 1 / 2 * 1 / 2=1 / 8$
- we can expect about $7 / 8$ of the clauses to be satisfied and $1 / 8$ to be not satisfied
- approx rate (expected) $8 / 7$

SUBSET-SUM problem

- Given a set of positive integers $S=\{a 1, a 2, . ., a n\}$ and $a n$ integer size T
- Task: find a subset of numbers from S that sum to \dagger
- Idea: while traversing the array, keep a list with all partial sums
- index 0: $\mathrm{L}_{0}=\{0\}$
- index 1: $L_{1}=\{0, a 1\}$
- index 2: $L_{2}=\{0, a 1, a 2, a 1+a 2\}$
- index 3: $L_{3}=\{0, a 1, a 2, a 3, a 1+a 2, a 1+a 3, a 2+a 3, a 1+a 2+a 3\}$
- at index n, verify if T is in the final list

SUBSET SUM exact algorithm

Exact-Subset-Sum (S, t)
$1 \quad n=|S|$
$2 \quad L_{0}=\langle 0\rangle$
3 for $i=1$ to n
$4 \quad L_{i}=\operatorname{MERGE}-\operatorname{Lists}\left(L_{i-1}, L_{i-1}+x_{i}\right)$
5 remove from L_{i} every element that is greater than t
6 return the largest element in L_{n}

- exponential running time !
- because the list L_{i} size can become exponential
- exercise: compare with DP solution based on discrete Knapsack

SUBSET SUM approx algorithm

Approx-Subset-Sum (S, t, ϵ)
$1 \quad n=|S|$
$2 \quad L_{0}=\langle 0\rangle$
3 for $i=1$ to n
$4 \quad L_{i}=\operatorname{MERGE}-\operatorname{Lists}\left(L_{i-1}, L_{i-1}+x_{i}\right)$
$5 \quad L_{i}=\operatorname{Trim}\left(L_{i}, \epsilon / 2 n\right)$
6 remove from L_{i} every element that is greater than t
7 let z^{*} be the largest value in L_{n}
8 return z^{*}

- $\operatorname{TRIM}(L, \varepsilon / 2 n)$ truncates long lists to avoid exponential list size
- values truncated are closely approximated by the values staying in the list
- $(1+\varepsilon)$ approximation rate, for a given ε
- ε is a parameter of the TRIM function

