
NP complete problems

Some figures, text, and pseudocode from:
- Introduction to Algorithms, by Cormen, Leiserson, Rivest and Stein
- Algorithms, by Dasgupta, Papadimitriou, and Vazirani

Module objectives
• Some problems are too hard to solve in polynomial time
- Example of such problems, and what makes them hard

• Class NP\P
- NP: problems with solutions verifiable in poly time

- P: problems not solvable in poly time

• NP-complete, fundamental class in Computer Science
- reduction form on problem to another

• Approximation Algorithms:
- since these problems are too hard, will settle for non-optimal solution

- but close to the optimal

- if we can find such solution reasonably fast

Module objectives

• WARNING: This presentation trades rigor for intuition
and easiness

• The CLRS book ch 35 is rigorous, but considerably
harder to read
- hopefully easier after going through these slides

• For an introduction to complexity theory that is
rigorous and somewhat more accessible, see
- Michael Sipser : Introduction to Theory of Computation

2SAT problem

• 2-clause (aVb)
- true (satisfied) if either a or b true, false (unsatisfied) if both false

- a, b are binary true/false literals

- a = not (a) = negation (a). ¬T=F ; ¬F=T

- can have several clauses, e.g. (a∨b), (¬a∨c), (¬c∨d), (¬a∨¬b)

- truth table for logical OR: (T∨T)=T; (T∨F)=T; (F∨T)=T; (F∨F)=F

• 2-SAT problem: given a set of clauses, find an
assignment T/F for literals in order to satisfy all
clauses

2 SAT solution
• Example: satisfy the following clauses:

- (a∨b) ∧ (¬a∨c) ∧ (¬d∨b) ∧ (d ∨¬c) ∧ (¬c ∨ f) ∧ (¬f ∨ ¬g) ∧ (g ∨ ¬d)

• try a=TRUE
- a=T ⇒ ¬a=F ⇒ c=T ⇒ d=f=T ⇒ ¬g=T ⇒ g=F ⇒ ¬d=T contradiction

• try a=FALSE
- a=F ⇒ b=T, it works; eliminate first three clauses and a,b; now we have (d

∨¬c) ∧ (¬c ∨ f) ∧ (¬f ∨ ¬g) ∧ (g ∨ ¬d)

• try c=FALSE
- it works, eliminate first two clauses and c, remaining (¬f ∨ ¬g) ∧ (g ∨ ¬d)

• try g=TRUE
- g=T ⇒ ¬g=F ⇒ ¬f=T; done.

• assignment : TRUE(b, g) ; FALSE(a, c, f), EITHER (d)

2SAT algorithm

• pick one literal not assigned yet, say “a”, from a
clause still to be satisfied
- see if THINGS_WORK_OUT(a) //try assign a=TRUE

- if NOT, see if THINGS_WORK_OUT(¬a)// try assign a=FALSE

• if still NOT, return “NOT POSSIBLE”

• if YES (either way), keep the assignments made, and
delete all clauses that are satisfied by assignments

• repeat from the beginning until there are no
clauses left, or until “NOT POSSIBLE” shows up

How to try an assignment for 2SAT

THINGS_WORK_OUT (a)
‣ queue Q={a}

‣ while x=dequeue(Q)

‣ for each clause that contain ¬x like (y∨¬x) or (¬x∨y):

‣ if y=FALSE (or ¬y=TRUE) already assigned, return “NOT POSSIBLE”

‣ assign y=TRUE (or ¬y=FALSE), enqueue(y,Q)

‣ return the list of TRUE/FALSE assignments made.

2SAT algorithm
• running time: more than linear in number of clauses,

if we are unlucky
- easy to implement

- n = number of literals, c=number of clauses.

- definitely polynomial, less than O(nc)

- 2SAT can be solved in linear time using graph path search

• 2SAT-MAX: if an instance to 2-SAT is not satisfiable,
satisfy as many clauses as possible
- this problem is much harder, “NP-hard”

3SAT
• CLRS book calls it “3-CNF satisfiability”

• same as 2SAT, but clauses contain 3 literals
- example (a∨b∨¬c), (¬b∨c∨¬a), (d∨c∨b), (¬d∨e∨c), (¬e∨b∨d)

• try to solve/satisfy this problem with an intelligent/
fast algorithm - can’t find such a solution
- exercise: why THINGS_WORK_OUT procedure is not applicable on

3SAT?

• this problem can be solved only by essentially trying
[almost] all possibilities
- even if done efficiently, still an exponential time/trials

• why is 3SAT problem so hard?

complexity = try all combinations

• why is 3SAT hard?
- no one knows for sure, but widely believe to be true (no proof yet)

- the answer seems to be that on problems that solution come from
an exponential space

- not enough space structure to search efficiently (polynomial time)

• proving either
- that no polynomial solution exists for 3SAT

- or finding a polynomial solution for 3SAT

• ... would make you rich and very famous

class NP = polynomial verification
• 2SAT, 3SAT very different for finding a solution

• but 2SAT, 3SAT same for verifying a solution : if
someone proposes a solution, it can be verified
immediately
- proposed solution = all literals assigned T/F

- just check every clause to be TRUE

• NP = problems for which possible solutions can be
verified quickly (polynomial)

• P = problems for which solutions can be found quickly
- obviously P⊆NP, since finding a solution is harder than verifying one

- 2SAT, 3SAT∈NP

- 2SAT∈P, 3SAT∉P

problems in NP\P

• NP\P problems : solutions are quickly verifiable, but
hard to find
- like 3SAT

- also CIRCUIT-SAT,

- CLIQUE

- VERTEX-COVER

- HAMILTONIAN-CYCLE

- TSP

- SUBSET-SUM

- many many others, generally problems asking “find the subset that
maximizes “

NP-reduction
• problem A reduces to problem B if
- any input x for pb A map> input y for pb B

- solution/answer for (y,B) map> solution/answer for (x,A)

- “map” has to be done in polynomial time

- A poly-map>B or A ≤p B (≤p stands for “polynomial-easier-than”)

• think “B harder than A”, since solving B means also
solving to A via reduction

• 3SAT reduces to CLIQUE
- 3SAT ≤p CLIQUE

• CLIQUE reduces to VERTEX-COVER
- CLIQUE ≤p VERTEX-COVER

reductions

CLIQUE problem
• a clique in undirected graph G=(V,E) is a set of

vertices S⊂V in which all edges exist: ∀u,v∈S (u,v)∈E
- a clique of size n must have all (n choose 2) edges

• Task: find the maximal set S that is a clique

CLIQUE problem
• a clique in undirected graph G=(V,E) is a set of

vertices S⊂V in which all edges exist: ∀u,v∈S (u,v)∈E
- a clique of size n must have all (n choose 2) edges

• Task: find the maximal set S that is a clique
• in the picture, two cliques

are shown of size 3 and 4

CLIQUE problem
• a clique in undirected graph G=(V,E) is a set of

vertices S⊂V in which all edges exist: ∀u,v∈S (u,v)∈E
- a clique of size n must have all (n choose 2) edges

• Task: find the maximal set S that is a clique
• in the picture, two cliques

are shown of size 3 and 4

• the maximal clique is of
size 4, as no clique of size
5 exists

CLIQUE problem
• a clique in undirected graph G=(V,E) is a set of

vertices S⊂V in which all edges exist: ∀u,v∈S (u,v)∈E
- a clique of size n must have all (n choose 2) edges

• Task: find the maximal set S that is a clique
• in the picture, two cliques

are shown of size 3 and 4

• the maximal clique is of
size 4, as no clique of size
5 exists

• CLIQUE is hard to solve:
we dont know any
efficient algorithm to
search for cliques.

3SAT reduces to CLIQUE

• idea: for the K clauses input to 3SAT, draw literals as vertices, and
all edges between vertices except
- across clauses only (no edges inside a clause)

- not between x and ¬x

• reduction takes poly time

• a satisfiable assignment ⇒ a clique of size K

• a clique of size K ⇒ satisfiable assignment

VERTEX COVER

• Graph undirected G = (V,E)

• Task: find the minimum
subset of vertices T⊂V,
such that any edge
(u,v)∈E has at least on end
u or v in T.

• NP-hard

CLIQUE reduces to VERTEX-COVER

• idea: start with graph G=(V,E) input of the CLIQUE problem

• construct the complement graph G’=(V,E’) by only considering
the missing edges from E: E’= {all (u,v)}\E
- poly time reduction

• clique of size K in G⇒ vertex cover of size |V|-k in G’

• vertex cover of size k in G’ ⇒ clique of size |V|-K in G

SUBSET-SUM problem

• Given a set of positive integers S={a1,a2,..,an} and an
integer size t

• Task: find a subset of numbers from S that sum to t
- there might be no such subset

- there might be multiple subsets

• Close related to discrete Knapsack (module 7)

3SAT reduction to SUBSET-SUM

• poly-time reduction

• SUBSET-SUM is NP complete

• CLRS book 34.5.5

NP complete problems
• problem A is NP-complete if
- A is in NP (poly-time to verify proposed solution)

- any problem in NP reduces to A

• second condition says: if one solves pb A, it solves via
polynomial reductions all other problems in NP

• CIRCUIT SAT is NP-complete (see book)
- and so the other problems discussed here, because they reduce to it

• NP-complete contains as of 2013 thousands well
known “apparently hard” problems
- unlikely one (same as “all”) of them can be solved in poly time. . .

- that would mean P=NP, which many believe not true.

P vs NP problem

• see book for co-NP class definition
• four possibilities, no one knows which one is true

• most believe (d) to be true

• prove P=NP: find a poly time solver for an NP-complete pb, for ex 3SAT
• prove P≠NP: prove that an NP-complete pb cant have poly-time solver

Approximation Algorithms

Some problems too hard

• ... to solve exactly

• so we settle for a non-optimal solution

• use an efficient algorithm, sometime Greedy

• solution wont be optimal, but how much non-optimal?
- objective(SOL) VS objective(OPTSOL)

Vertex Cover approx algorithm
• choose an edge (u,v)

- add u,v to VCover

- delete all edges with ends in u or v

• repeat until no edges left

• for the example in the picture:

Vertex Cover approx algorithm
• choose an edge (u,v)

- add u,v to VCover

- delete all edges with ends in u or v

• repeat until no edges left

• for the example in the picture:
- (a,i)

Vertex Cover approx algorithm
• choose an edge (u,v)

- add u,v to VCover

- delete all edges with ends in u or v

• repeat until no edges left

• for the example in the picture:
- (a,i)

Vertex Cover approx algorithm
• choose an edge (u,v)

- add u,v to VCover

- delete all edges with ends in u or v

• repeat until no edges left

• for the example in the picture:
- (a,i)

Vertex Cover approx algorithm
• choose an edge (u,v)

- add u,v to VCover

- delete all edges with ends in u or v

• repeat until no edges left

• for the example in the picture:
- (a,i)

Vertex Cover approx algorithm
• choose an edge (u,v)

- add u,v to VCover

- delete all edges with ends in u or v

• repeat until no edges left

• for the example in the picture:
- (a,i)

Vertex Cover approx algorithm
• choose an edge (u,v)

- add u,v to VCover

- delete all edges with ends in u or v

• repeat until no edges left

• for the example in the picture:
- (a,i)

Vertex Cover approx algorithm
• choose an edge (u,v)

- add u,v to VCover

- delete all edges with ends in u or v

• repeat until no edges left

• for the example in the picture:
- (a,i)

Vertex Cover approx algorithm
• choose an edge (u,v)

- add u,v to VCover

- delete all edges with ends in u or v

• repeat until no edges left

• for the example in the picture:
- (a,i)

Vertex Cover approx algorithm
• choose an edge (u,v)

- add u,v to VCover

- delete all edges with ends in u or v

• repeat until no edges left

• for the example in the picture:
- (a,i)

Vertex Cover approx algorithm
• choose an edge (u,v)

- add u,v to VCover

- delete all edges with ends in u or v

• repeat until no edges left

• for the example in the picture:
- (a,i)
- (h,j)

Vertex Cover approx algorithm
• choose an edge (u,v)

- add u,v to VCover

- delete all edges with ends in u or v

• repeat until no edges left

• for the example in the picture:
- (a,i)
- (h,j)

Vertex Cover approx algorithm
• choose an edge (u,v)

- add u,v to VCover

- delete all edges with ends in u or v

• repeat until no edges left

• for the example in the picture:
- (a,i)
- (h,j)

Vertex Cover approx algorithm
• choose an edge (u,v)

- add u,v to VCover

- delete all edges with ends in u or v

• repeat until no edges left

• for the example in the picture:
- (a,i)
- (h,j)

- (b,c)

Vertex Cover approx algorithm
• choose an edge (u,v)

- add u,v to VCover

- delete all edges with ends in u or v

• repeat until no edges left

• for the example in the picture:
- (a,i)
- (h,j)

- (b,c)

Vertex Cover approx algorithm
• choose an edge (u,v)

- add u,v to VCover

- delete all edges with ends in u or v

• repeat until no edges left

• for the example in the picture:
- (a,i)
- (h,j)

- (b,c)

Vertex Cover approx algorithm
• choose an edge (u,v)

- add u,v to VCover

- delete all edges with ends in u or v

• repeat until no edges left

• for the example in the picture:
- (a,i)
- (h,j)

- (b,c)
- (e,f)

Vertex Cover approx algorithm
• choose an edge (u,v)

- add u,v to VCover

- delete all edges with ends in u or v

• repeat until no edges left

• for the example in the picture:
- (a,i)
- (h,j)

- (b,c)
- (e,f)

Vertex Cover approx algorithm
• choose an edge (u,v)

- add u,v to VCover

- delete all edges with ends in u or v

• repeat until no edges left

• for the example in the picture:
- (a,i)
- (h,j)

- (b,c)
- (e,f)

Vertex Cover approx algorithm
• choose an edge (u,v)

- add u,v to VCover

- delete all edges with ends in u or v

• repeat until no edges left

• for the example in the picture:
- (a,i)
- (h,j)

- (b,c)
- (e,f)

• VC_approx={a,i,h,j,b,c,e,f}

• VC_OPTIM={b,d,e,g,k,i,h}

Vertex Cover approx algorithm
• choose an edge (u,v)

- add u,v to VCover

- delete all edges with ends in u or v

• repeat until no edges left

• for the example in the picture:
- (a,i)
- (h,j)

- (b,c)
- (e,f)

• VC_approx={a,i,h,j,b,c,e,f}

• VC_OPTIM={b,d,e,g,k,i,h}

Theorem:

• size(VC_gredy) ⩽ size(VC_optim) * 2
- approx ratio of 2

Set Cover problem

• set of towns S = {a,b,c,d,...,k}

• edge(u,v) : distance(u,v)<10miles

• Set Cover SC⊂S : a set of towns
such that every town is within 10
miles of some town in SC

Set Cover problem

• set of towns S = {a,b,c,d,...,k}

• edge(u,v) : distance(u,v)<10miles

• Set Cover SC⊂S : a set of towns
such that every town is within 10
miles of some town in SC

• S = {a,b,e,i} is a set cover
- every town within 10miles of one in S

Set Cover problem

• set of towns S = {a,b,c,d,...,k}

• edge(u,v) : distance(u,v)<10miles

• Set Cover SC⊂S : a set of towns
such that every town is within 10
miles of some town in SC

• S = {a,b,e,i} is a set cover
- every town within 10miles of one in S

• S= {i,e,c} a smaller set cover

Set Cover problem

• set of towns S = {a,b,c,d,...,k}

• edge(u,v) : distance(u,v)<10miles

• Set Cover SC⊂S : a set of towns
such that every town is within 10
miles of some town in SC

• S = {a,b,e,i} is a set cover
- every town within 10miles of one in S

• S= {i,e,c} a smaller set cover

• TASK: find minimum size SetCover
- NP complete

- general version of Vertex Cover

Set Cover approx algorithm

Set Cover approx algorithm
• pick the vertex with most

connections/degree
- deg(a)=6

- eliminate “a” and all “a”-neighbors

Set Cover approx algorithm
• pick the vertex with most

connections/degree
- deg(a)=6

- eliminate “a” and all “a”-neighbors

Set Cover approx algorithm
• pick the vertex with most

connections/degree
- deg(a)=6

- eliminate “a” and all “a”-neighbors

• pick the next vertex with
most connections to
uncovered towns
- deg_now(g)=1

- eliminate g and g-neighbors

Set Cover approx algorithm
• pick the vertex with most

connections/degree
- deg(a)=6

- eliminate “a” and all “a”-neighbors

• pick the next vertex with
most connections to
uncovered towns
- deg_now(g)=1

- eliminate g and g-neighbors

Set Cover approx algorithm
• pick the vertex with most

connections/degree
- deg(a)=6

- eliminate “a” and all “a”-neighbors

• pick the next vertex with
most connections to
uncovered towns
- deg_now(g)=1

- eliminate g and g-neighbors

• repeat for j then for c

Set Cover approx algorithm
• pick the vertex with most

connections/degree
- deg(a)=6

- eliminate “a” and all “a”-neighbors

• pick the next vertex with
most connections to
uncovered towns
- deg_now(g)=1

- eliminate g and g-neighbors

• repeat for j then for c

Set Cover approx algorithm
• pick the vertex with most

connections/degree
- deg(a)=6

- eliminate “a” and all “a”-neighbors

• pick the next vertex with
most connections to
uncovered towns
- deg_now(g)=1

- eliminate g and g-neighbors

• repeat for j then for c

• VertexCover = {a,g,j,c}, size 4

Set Cover approx algorithm

• SetCover_approx = {a,j,c,g}, size 4

• SetCover_optimal = {b,i,e}, size 3

Set Cover approx algorithm

• SetCover_approx = {a,j,c,g}, size 4

• SetCover_optimal = {b,i,e}, size 3

• Theorem:
size(SetCover_greedy)⩽ size(SetCover_optim)* log(|V|)

• approx ratio is log(n)

CLIQUE approximation

• much harder to approximate CLIQUE than VECTOR-
COVER

• see wikipedia CLIQUE page
- http://en.wikipedia.org/wiki/Clique_problem#Approximation_algorithms

• there can be no polynomial time algorithm that
approximates the maximum clique to within a factor
better than O(n1 − ε), for any ε > 0

3SAT approximation algorithm

• simple algorithm: assign each literal to TRUE or
FALSE randomly, independently

• success: for any 3SAT clause (a∨b∨c) the probability
of evaluating FALSE is computed as the probability
of all three literals to be FALSE
- p[(a∨b∨c)=FALSE] = 1/2 * 1/2 * 1/2 = 1/8

• we can expect about 7/8 of the clauses to be
satisfied and 1/8 to be not satisfied

• approx rate (expected) 8/7

SUBSET-SUM problem

• Given a set of positive integers S={a1,a2,..,an} and an
integer size T
- Task: find a subset of numbers from S that sum to t

• Idea: while traversing the array, keep a list with all
partial sums
- index 0: L0={0}

- index 1: L1= {0, a1}

- index 2: L2= {0, a1, a2, a1+a2}

- index 3: L3= {0, a1, a2, a3, a1+a2, a1+a3, a2+a3, a1+a2+a3}

• at index n, verify if T is in the final list

SUBSET SUM exact algorithm

• exponential running time !
- because the list Li size can become exponential

• exercise: compare with DP solution based on discrete
Knapsack

SUBSET SUM approx algorithm

• TRIM(L, ε/2n) truncates long lists to avoid exponential list size

- values truncated are closely approximated by the values staying in the list

• (1+ ε) approximation rate, for a given ε

• εis a parameter of the TRIM function

