NP complete problems

Some figures, text, and pseudocode from:
- Introduction to Algorithms, by Cormen, Leiserson, Rivest and Stein
- Algorithms, by Dasgupta, Papadimitriou, and Vazirani



Module objectives

@ Some problems are too hard to solve in polynomial fime

— Example of such problems, and what makes them hard

@® Class NP\P

— NP: problems with solutions verifiable in poly time

— P: problems not solvable in poly time

® NP-complete, fundamental class in Computer Science

— reduction form on problem to another

@ Approximation Algorithms:
— since these problems are too hard, will settle for non-optimal solution
— but close to the optimal

— if we can find such solution reasonably fast



Module objectives

® WARNING: This presentation trades rigor for intuition
and easiness

@® The CLRS book ch 35 is rigorous, but considerably
harder to read

— hopefully easier affer going through these slides

@ For an introduction to complexity theory that is
rigorous and somewhat more accessible, see

— Michael Sipser : Introduction to Theory of Computation



2SAT problem

® 2-clause (aVb)

— true (satisfied) if either a or b true, false (unsatisfied) if both false
— a, b are binary true/false literals

— a =not (a) = negation (a). —T=F ; —F=T
— can have several clauses, e.g. (avb), (—avc), (—cvd), (—av—b)
— truth table for logical OR: (TVT)=T; (TVF)=T; (FvT)=T; (FVF)=F

@ 2-SAT problem: given a set of clauses, find an
alssignmemL T/F for literals in order to satisfy all
clauses



2 SAT solution

@® Example: satisfy the following clauses:
— (avb) A (+avc) A (+dvb) A (d vac) A (A v f) A (+f v ~g) A (g v -d)

® try a=TRUE

— a=T = -a=F = c=T = d=f=T = -g=T = g=F = -d=T contradiction

® try a=FALSE

— a=F = b=T, it works; eliminate first three clauses and a,b; now we have (d
\/-IC) A (-.C \Y F) A (-|F \Y -lg) A (g \% -ld)

® iry c=FALSE

— it works, eliminate first two clauses and ¢, remaining (-f v =g) A (g v =d)

- g='|' = _,ng = -f=T; done.

@® assignment : TRUE(b, g) ; FALSE(q, ¢, f), EITHER (d)



2SAT algorithm

@ pick one literal not assigned yet, say "a”, from a
clause still fo be satisfied

— see if THINGS_WORK_OUT( a ) //try assign a=TRUE
- if NOT, see if THINGS_WORK_OUT( —a )// try assign a=FALSE

® if still NOT, return "NOT POSSIBLE"

@ if YES (either way), keep the assignments made, and
delete all clauses that are satisfied by assignments

® repeat from the beginning until there are no
clauses left, or until 'NOT POSSIBLE" shows up



How to try an assignment for 2SAT

THINGS_WORK_OUT (a)
» queue Q={a}

» while x=dequeue(Q)

» for each clause that contain —-x like (yV™x) or (7xVy):

» 1if y=FALSE (or —y=TRUE) already assigned, return “NOT POSSIBLE”

| * » assign y=TRUE (or —y=FALSE), enqueue(y,Q)

» return the list of TRUE/FALSE assignments made.



2SAT algorithm

@® running time: more than linear in number of clauses,
if we are unlucky

— easy to implement
— n = number of literals, c=number of clauses.
— definitely polynomial, less than O(nc)

— 2SAT can be solved in linear time using graph path search

® 2SAT-MAX: if an instance to 2-SAT is not satisfiable,
satisfy as many clauses as possible

— this problem is much harder, "NP-hard”



3SAT

® CLRS book calls it “3-CNF satisfiability”

® same as 2SAT, but clauses contain 3 literals

— example (avbv—c), (—bvecv—a), (dvevb), (—dvevc), (—evbvd)

® try to solve/satisfy this problem with an intelligent/
fast algorithm - cant find such a solution

- g)gi"_lg’i?se: why THINGS_WORK_OUT procedure is not applicable on

@ This problem can be solved only by essentially trying
[almost] all possibilities

— even if done efficiently, still an exponential time/trials

@ why is 3SAT problem so hard?



complexity = try all combinations

® why is 3SAT hard?

— no one knows for sure, but widely believe o be true (no proof yet)

— the answer seems to be that on problems that solution come from
an exponential space

— not enough space structure to search efficiently (polynomial time)
@ proving either
— that no polynomial solution exists for 3SAT

— or finding a polynomial solution for 3SAT

® .. would make you rich and very famous



class NP = polynomial verification

@ 2SAT, 3SAT very different for finding a solution

@ but 2SAT, 3SAT same for if
someone proposes a solution, it can be verified
immediately

— proposed solution = all literals assigned T/F

— just check every clause to be TRUE

@® NP = problems for which possible solutions can be
verified quickly (polynomial)

@® P = problems for which solutions can be found quickly

— obviously PCNP, since finding a solution is harder than verifying one

— 2SAT, 3SATeNP
— 2SATeP, 3SAT¢P



problems in NP\P

@ NP\P problems : solutions are quickly verifiable, but
hard tfo find

— like 3SAT

— also CIRCUIT-SAT,

— CLIQUE

— VERTEX-COVER

— HAMILTONIAN-CYCLE
- TSP

— SUBSET-SUM

— many many others, generally problems asking “find the subset that
maximizes ...



NP-reduction

@® problem A reduces to problem B if

— any input x for pb A ™5 input y for pb B
— solution/answer for (y,B) > solution/answer for (x,A)
— "map” has to be done in polynomial time

—  AP-mapsB or A <, B (<, stands for “polynomial-easier-than”)

@® think "B harder than A’, since solving B means also
solving o A via reduction

® 3SAT reduces to CLIQUE
— 3SAT <, CLIQUE

® CLIQUE reduces to VERTEX-COVER
— CLIQUE ¢, VERTEX-COVER



reductions

@IRCUIT-SA@

SAT

(3-CNF-SAT)

(cuizué/ E?BSET-SUM)

(VERTEX-COVER)

CHAM-CYCLE)

TSP



CLIQUE problem

® a clique in undirected graph G=(V,E) is a set of
vertices ScV in which all edges exist: vu,veS (u,v)eE

— a clique of size n must have all (n choose 2) edges

@® Task: find the maximal set S that is a clique



CLIQUE problem
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CLIQUE problem

® a clique in undirected graph G=(V,E) is a set of
vertices ScV in which all edges exist: vu,veS (u,v)eE

— a clique of size n must have all (n choose 2) edges

@® Task: find the maximal set S that is a clique

@® in the picture, two cliques
N are shown of size 3 and 4

m KTA 3 . .

® the maximal clique is of
>< size 4, as no clique of size
| 2 .. 5 exists

-t s
® CLIQUE is hard to solve:
we dont know any

efficient algorithm to
- search for Sgliques.




3SAT reduces to CLIQUE

(:3 — xl VXZVX:;

.l\ o,

@® idea: for the K clauses input to 3SAT, draw literals as vertices, and
all edges between vertices except

— across clauses only (no edges inside a clause)

= not between x and -x
@ reduction takes poly time
@® a satisfiable assignment = a clique of size K

@® a clique of size K = satisfiable assignment



VERTEX COVER

@® Graph undirected G = (V,E)

- ® Task: find the minimum
subset of vertices TcV,
g such that anz edge
(u,v)€E has at least on end

uorvinT.

® NP-hard



CLIQUE reduces to VERTEX-COVER

P

(a) (b)
@® idea: start with graph G=(VE) input of the CLIQUE problem

@® construct the complement E,raph G'=(V,E) by only considering
the missing edges from E: E'= {all (uv)}\E

— poly time reduction

@ clique of size K in G= vertex cover of size [V|-k in G’

@ vertex cover of size k in G' = clique of size |[V|-K in G



SUBSET-SUM problem

® Given a set of positive integers S=1al,a2,..,an} and an
integer size t

® Task: find a subset of numbers from S that sum to t
— there might be no such subset

— there might be multiple subsets

® Close related to discrete Knapsack (module 7)



3SAT reduction to SUBSET-SUM

Xy, X2 x3 € G G C
Yy, = 1 0 0 1 0 0 1 . .
T O O O VO TR @ poly-time reduction
v, = 0 1 0 0 0O O 1
! = 0 1 0 1 1 1 0 .
IO O @® SUBSET-SUM is NP complete
v, = 0 0 1 1 1 0 0
0 = 0 0 0 1 0 0 0
S ® CLRS book 34.5.5
g = L0 0 0 0 1 0 0
s, = 0 0 0 0 2 0 O
8 == 0 0 0 0 0 1 0
55 = 0 0 0 0 0 2 0
C P — 0 0 0 0 0 0 1
s, = 0 0 0 0 0 0 2
t = 1 1 | 4 4 4 4

Figure 34.19 The reduction of 3-CNF-SAT to SUBSET-SUM. The formula in 3-CNF is ¢ =
C1ACo AC3AC4, where C1 = (X1Vﬂx2 V—'X3), kg = (—'xl V—'x2Vﬂx3), Ly = (—axlv—-x2Vx3),
and C4 = (x1 V x2 V x3). A satisfying assignment of ¢ is (x; = 0, x2 = 0,x3 = 1). The set S
produced by the reduction consists of the base-10 numbers shown; reading from top to bottom, S =
{1001001, 1000110, 100001, 101110, 10011, 11100, 1000, 2000, 100, 200, 10, 20, 1, 2}. The target ¢
is 1114444, The subset S” C S is lightly shaded, and it contains v}, v5, and v3, corresponding to the
satisfying assignment. It also contains slack variables sy, 57, 55, 53, 54, and s, to achieve the target

value of 4 in the digits labeled by C; through Cjy.



NP complete problems

@® problem A is NP-complete if
— A is in NP (poly-time tfo verify proposed solution)

— any problem in NP reduces to A

@® second condition says: if one solves pb A, it solves via
polynomial reductions all other problems in NP

@ CIRCUIT SAT is NP-complete (see book)

— and so the other problems discussed here, because they reduce fto it

® NP-complete contains as of 2013 thousands well
known “apparently hard™ problems

— unlikely one (same as "all”) of them can be solved in poly time. . .

— that would mean P=NP, which many believe not true.



P vs NP problem

- —— E—

/Pszzco_NP> /  NP=coNP \
\ \ @ 4

(a) (b)

A)/;JP NP\ (NP@ NP\

(c)

see book for co-NP class definition

four possibilities, no one knows which one is frue

most believe (d) to be true

prove P=NP: find a poly time solver for an NP-complete pb, for ex 3SAT
prove P£NP: prove that an NP-complete pb cant have poly-time solver



Approximation Algorithms



Some problems too hard

@® .. o solve exactly
@® so we seftle for a non-optimal solution
@® use an efficient algorithm, sometime Greedy

@ solution wont be optimal, but how much non-optimal?
— objective(SOL) VS objective(OPTSOL)



Vertex Cover approx algorithm

@® choose an edge (u,v)

— add uyv to VCover

— delete all edges with ends in u or v
@ repeat until no edges left
@ for the example in the picture:
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Vertex Cover approx algorithm

@® choose an edge (u,v)

— add uyv to VCover

— delete all edges with ends in u or v

@ repeat until no edges left

c
@ for the example in the picture:
b = (ai)
d = ()
f
a e 7
k. / g
: / h
1

J



Vertex Cover approx algorithm
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Vertex Cover approx algorithm

@® choose an edge (u,v)
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Vertex Cover approx algorithm

@® choose an edge (u,v)

= add u,v to VCover

— delefe all edges with ends in u or v
@ repeat until no edges left
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Vertex Cover approx algorithm

@® choose an edge (u,v)

= add u,v to VCover

— delefe all edges with ends in u or v
@ repeat until no edges left

c
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Vertex Cover approx algorithm

@® choose an edge (u,v)

= add u,v to VCover

— delefe all edges with ends in u or v
@ repeat until no edges left
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Vertex Cover approx algorithm

@® choose an edge (u,v)

— add uyv to VCover

— delete all edges with ends in u or v
@ repeat until no edges left

@ for the example in the picture:
- (ai)
= (hJ)
- (bo)
- (ef)
® VC_approx={a,ih.jbc.e,f}

® VC_OPTIM={bd,.e,gkih}



Vertex Cover approx algorithm

@® choose an edge (u,v)

— add uyv to VCover

— delete all edges with ends in u or v
@ repeat until no edges left

C
\ @® for the example in the picture:
b = (ai)
= (hJ)
- (bo)

o f/ - @f

® VC_approx=ia,ih,jbc.e,f}
: ® VC_OPTIM={bd,e,gk,ih}

: h
J/ Theorem:

® size(VC_gredy) < size(VC_optim) * 2

— approx ratio of 2



Set Cover problem

@ set of towns S = {a,b,cd,... k}
@® edge(u,v) : distance(u,v)<10miles
f @ Set Cover SCcS : a set of towns

a . such that every town is within 10
miles of some fown in SC
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Set Cover problem

@ set of towns S = {a,b,cd,... k}
@® edge(u,v) : distance(u,v)<10miles

@® Set Cover SCcS : a set of towns

such that every town is within 10
miles of some fown in SC

® S =4{a,be,} is a set cover

— every town within 10miles of one in S
@ S=ii,e,c} a smaller set cover

® TASK: find minimum size SetCover
— NP complete

— general version of Vertex Cover



Set Cover approx algorithm




Set Cover approx algorithm

@® pick the vertex with most
connections/degree

- deg(a)=6

— eliminate "a” and all “a”-neighbors
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Set Cover approx algorithm

@® pick the vertex with most
connections/degree

] — deg(a)=6
b — eliminate "a” and all “a”-neighbors
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Set Cover approx algorithm

@® pick the vertex with most
connections/degree

@° — deg(a)=6
‘&b — eliminate "a” and all “a”-neighbors
5 @ pick the next vertex with

e
O < most connections to
- uncovered towns

kQ\ g
3 ODh — deg_now(g)=1
1

— eliminate g and g-neighbors

@® repeat for j then for c

® VertexCover = 1a,9.j,C}, Size 4



Set Cover approx algorithm

@® SetCover_approx = {a,j,C,q}, Size 4

® SetCover_optimal = {bji,e}, size 3




Set Cover approx algorithm

@® SetCover_approx = {a,j,C,q}, Size 4

® SetCover_optimal = {bji,e}, size 3

® Theorem:

size(SetCover_greedy)s< size(SetCover_optim)* log(|VI)

® approx ratio is log(n)



CLIQUE approximation

® much harder to approximate CLIQUE than VECTOR-
COVER

@® see wikipedia CLIQUE page
— http://en.wikipedia.org/wiki/Clique_problem#Approximation_algorithms

@® there can be no polynomial time algorithm that
approximates the maximum clique fo within a factor

better than O(n' = €), forany € > O



3SAT approximation algorithm

@ simple algorithm: assign each literal to TRUE or
FALSE randomly, independently

@ success: for any 3SAT clause (avb.c) the probability
of evaluating FALSE is computed as the probability
of all three literals to be FALSE

- P[(a\/bvc)zFALSE] =1/2 * 1/2 X 1/2 =1/8

@® we can expect about 7/8 of the clauses to be
satisfied and 1/8 to be not satisfied

@ approx rate (expected) 8/7



SUBSET-SUM problem

® Given a set of positive integers S=1al,a2,..,an} and an
integer size T

— Task: find a subset of numbers from S that sum to t

@® Idea: while fraversing the array, keep a list with all
partial sums

— index O: Lo={0}
— index 1: Li= {0, al}
— index 2: L= {0, al, a2, al+a2}

— index 3: L3= {0, al, a2, a3, al+a2, al+a3, a2+a3, al+a2+a3}

® at index n, verify if T is in the final list



SUBSET SUM exact algorithm

EXACT-SUBSET-SUM(S, ¢)
1 n=|S]
Lo, = (0)
fori = 1ton
L; = MERGE-LISTS(L;_1,L;—1 + Xx;)
remove from L; every element that is greater than ¢
return the largest element in L,

AN B Wi

@ exponential running time !

— because the list L; size can become exponential

@® exercise: compare with DP solution based on discretfe
Knapsack



SUBSET SUM approx algorithm

APPROX-SUBSET-SUM(S, ¢, €)

1 n = |S]
2 Lo = (0)
3 fori = 1ton
L; = MERGE-LISTS(L;_1, L;—1 + Xx;)
L; = TRIM(L;,€/2n)
remove from L; every element that i1s greater than ¢
let z* be the largest value in L,
return z~

oo JON U H

® TRIM(L, € /2n) truncates long lists to avoid exponential list size

— values truncated are closely approximated by the values staying in the list

® (1+ ¢) approximation rate, for a given ¢

@® ¢ is a parameter of the TRIM function



