Linear Programming

Linear Programs - example 1

maximize X

subject to
4x 1

le

le

=
=
=
=

@ Optimization problem
® x;,X2 = variables

® z=x1+X2 = objective

— linear in x variables

® 'subject to” constraints
4X1-X2 < 8
2X1+X2 < 10
5X1-2X2 = -2
X1, X2 = 0

also linear in x variables

Linear programs - feasible region

® Each linear ,
constraint “splits” unsatisfied
the space info two
halves

— Ysatisfied” half
(constraint holds)

“unsatisfied” half
(constraint doesnt hold)

satisfied £

N
©

separation is a line
given by the constraint

Linear programs - feasible region

@® Feasible reqion = intersection
of “satisfied” halfs for all
constraints

@® clearly solution(s) (x1,x2) must
be in this feasible region

— any other (x1,x2) outside_this region
violates some constraint(s)

Linear Programs - Objective

® z = x1+x2 is objective, to be
maximized (want the max z)

— other times want the min, “minimized”

Linear Programs - Objective

® z = x1+x2 is objective, to be
maximized (want the max z)

— other times want the min, “minimized”

@ for a fixed z, z=x1+x2 is a line
— "z line” or “objective line”
— 3 z lines drawn for z=0, z=4, z=8

— on each such line, any (x1,x2) gives in the
same objective

Linear Programs - Objective

® z = x1+x2 is objective, to be
maximized (want the max z)

— other times want the min, “minimized”

@ for a fixed z, z=x1+x2 is a line
— "z line” or “objective line”
— 3 z lines drawn for z=0, z=4, z=8

— on each such line, any (x1,x2) gives in the
same objective

@® only inferested in y objective lines
that intersect the feasible region

— out of these we want the “last” line that
intersects FR, in the direction of max
objective (dotted red direction)

the last intersection objective line is y=8

Linear Programs - example 2

maximize
2z = 311 + dxo
subject to
L1 S 4
25172 S 12
3r1 + 2x0 < 18
L1, L2 Z 0

Linear Programs - example 2

maximize
2z = 3x1 + dx9
subject to
L1 S 4
2%2 S 12
3r1 + 220 < 18
L1, L2 Z 0

Linear Programs - example 2

maximize
2z = 3x1 + 99
subject to
L1 S 4
200 < 12
3£B1 —+ 25132 S 18
L1y L2 = 0

17st

» X1

Linear Programs - example 2

maximize
2z = 3x1 + 99
subject to
L1 S 4
200 < 12
3£B1 —+ 2$2 S 18
T1,2x2 > 0

Linear Programs - example 2

maximize
2z = 3x1 + 99
subject to
L1 S 4
200 < 12
3£B1 —+ 2332 S 18
1,29 > 0

Linear Programs - example 2

max objective

o OijC'I'iVQ direction
z=3X1+5X2

— 4 objective lines
drawn: z=0,15,25,36

® last z line intersectin
feasible reagion: z=3

— Intersection point is
X1=2,X2=6

Linear Programs - example 2

® objective
Z=3X1+5X>

— 4 objective lines
drawn: z=0,15,25,36

® last z line intersectin
feasible reagion: z=3

— intersection point is
X1=2,X2=6

Linear Programs - solution

. . max objective
1IMax1Iinize solution z=36 direction

& = 3I1
subject to

L1 S 4

25172 S 12

3r1 + 2x0 < 18

x1,22 > 0

@® last y line intersectin
feasible reagion: z=3

— intersection point is
X1=2,X2=6

Linear Programs - solution

. . max objective
1IMax1Iinize solution z=36 { direction
! 4

P 3331 * X1=2[X>=6
subject to

L1 S 4

25172 S 12

3r1 + 2x0 < 18

r1,T2 = 0

@® last y line intersectin
feasible reagion: z=3

— intersection point is
X1=2,X2=6

LP - solution critical observations

max objective
solution z=36 {direction
4

X152;X2=0

@® OBSERVATION 1: the
solution is in a corner(vertex)

of the feasible region

@ precisely the corner that is
urtest in the direction of
max objective

LP - solution critical observations

® OBSERVATION 2: feasible o
region is a convex polygon max objective

multidimensional - Girestion
solution

— think of a ball in 3

dimensions, only not round
but with friangle sides

LP - solution critical observations

® OBSERVATION 2: feasible o
region is a convex polygon max objective
multidimensional direction

solution A

— think of a ball in 3

dimensions, only not round
but with friangle sides

® write objective for each
corner

LP - solution critical observations

® OBSERVATION 2: feasible o
region is a convex polygon max objective
multidimensional direction

solution
— think of a ball in 3 R B e A
dimensions, only not round ® A ~
but with friangle sides

® write objective for each
corner

@ convexity means that each
vertex has :

LP - solution critical observations

® OBSERVATION 2: feasible o
region is a convex polygon max objective
multidimensional direction

solution
— think of a ball in 3 R B e A
dimensions, only not round L B N 1
but with friangle sides

® write objective for each
corner

@ convexity means that each
vertex has :

— higher obj neighbors in
the max-obj direction
(red)

LP - solution critical observations

OBSERVATION 2: feasible o
region is a convex polygon max objective
multidimensional direction

solution
— think of a ball in 3 B S A
dimensions, only not round @ A N T
but with friangle sides

write objective for each
corner

convexity means that each
vertex has :

— higher obj neighbors in
the max-obj direction
(red)

— |lower obj neighbors in
opposite direction (blue)

LP - simplex algorithm idea

feasible region (FR) convexity

means that each vertex has : max.objective
direction

— higher obj neighbors in the solution A
max-obj direcfion (red) A T

— lower obj neighbors in
opposite direction (blue)

LP - simplex algorithm idea

@ feasible region (FR) convexity
means that each vertex has : max_objective
direction

— higher obj neighbors in the solution A

max-obj direcfion (red)

— |lower obj neighbors in
opposite direction (blue)

® idea: start in any corner of FR

LP - simplex algorithm idea

@ feasible region (FR) convexity
means that each vertex has : max.objective
direction

— higher obj neighbors in the solution A
max-obj direcfion (red) A

— |lower obj neighbors in
opposite direction (blue)

® idea: start in any corner of FR

® "walk” to any adjacent corner
with higher objective

LP - simplex algorithm idea

@ feasible region (FR) convexity
means that each vertex has : max.objective
direction

— higher obj neighbors in the solution A
max-obj direcfion (red) A

— |lower obj neighbors in
opposite direction (blue)

® idea: start in any corner of FR

® "walk” to any adjacent corner
with higher objective

LP - simplex algorithm idea

@ feasible region (FR) convexity
means that each vertex has : max.objective
direction

— higher obj neighbors in the solution A
max-obj direcfion (red) A

— |lower obj neighbors in
opposite direction (blue)

idea: start in any corner of FR

"walk” to any adjacent corner
with higher objective

repeat

LP - simplex algorithm idea

@ feasible region (FR) convexity
means that each vertex has : max.objective
direction

— higher obj neighbors in the solution A
max-obj direcfion (red) A

— |lower obj neighbors in
opposite direction (blue)

idea: start in any corner of FR

"walk” to any adjacent corner
with higher objective

repeat

LP - simplex algorithm idea

@ feasible region (FR) convexity
means that each vertex has : max.objective

' direction
— higher obj neighbors in the solgon
max-obj direcfion (red) o

— |lower obj neighbors in
opposite direction (blue)

idea: start in any corner of FR

"walk” to any adjacent corner
with higher objective

repeat

LP - simplex algorithm idea

@ feasible region (FR) convexity
means that each vertex has : max.objective
direction

— higher obj neighbors in the solution A
max-obj direcfion (red) A

— |lower obj neighbors in
opposite direction (blue)

idea: start in any corner of FR

"walk” to any adjacent corner
with higher objective

repeat

LP - simplex algorithm idea

@ feasible region (FR) convexity
means that each vertex has : max.objective

. . . . : direction
— higher obj neighbors in the solution
max-obj direcfion (red) N

— |lower obj neighbors in
opposite direction (blue)

idea: start in any corner of FR

"walk” to any adjacent corner
with higher objective

repeat

stop when there is no higher-
obj neighbor: we found fhe
solution

LP examples: Shortest Path as LP

maximize d,

subject to
d, d, + w(u,v) foreachedge (u,v) € E

d 0.

® Graph G=(VE) with weighted edges given by w
@ s=source; T= sink

@® distance d; from s to t is maximized (objective) but
each dy restricted o not more than d. + edge-w(u,v)

@ exercise: explain why this linear program finds the
shortest path from s to t

LP examples: Maximum Flow as LP

maximize E fsv —

velV

subject to
< c(u,v) foreachu,vel,

— fuy foreachu € V —{s,t}

> foreachu,v € .

® Graph G(V,E), c(u,v) = capacity of edge (u,v)

@® s= source, t=sink
o Fuv is the flow on edge u,v

@ constraints are given by symmeftry, and edge
capacities

@® objective is the flow from the source

Standard Form

maximize 2Xx;

subject to
+

IV IA TA TA

X1,X2,X3

@® objective is always "maximize” (not "minimize”)

@® all variables are constrained to be positive

'/

® all constraints (other than positive variables) are “<”,
none is ="

@® book discusses simple steps/arithmetic to get any linear
problem into standard form

Standard Form

® book discusses simple steps/arithmetic to get any
linear problem into standard form

if objective is "minimize"”, reverse the objective sign

if a constraint is "equal fo", replace it with 2 constraints "<" and

if a constraint is ">", reverse the signs to make it "<"

if a variable does not have the nonnegativity constraint, replace it
with a difference of two new variables, and add constraints that
these two variables are nonnegative.

Slack Form

maximize 2X

subject to
g — X1

-7 —+ X1
4 — X1
X1, X2, X3, X4, X5, Xg

@® same as standard form, plus..

® .. all constraints (other than x=0) are equalities

— book discusses the easy steps to get the system in slack form

® : right side of constraints, typically
present in objective

® : left side of constraints, not part of
the objective

Slack Form with matrices

x=0 implicit, no need to write it
z is the objective to be maximized
no need for “subject to”, just list the constraints
= {3,5,6}
= $4,2,4}
constraints in matrix form Axs<b

— A= constraints coefficients (matrix); b= constraints value (array)

® objective in matrix form cx

— ¢ = objective coefficients (array); v= free constant in objective

Simplex Algorithm

® N = { nonbasic variables indices};

@® B = { basic variables indices};
— NuB={l,2, ..,n+m}

® A = constraints coefficients
@ c = objective coefficients
® b = constraints value

@® v = constant term in the objective (if any)

Simplex Algorithm

start with a basic feasible solution, for example X=0;

Simplex Algorithm

2.X3
3x:3

SX3

2X3

® start with a basic feasible solution, for example X=0;
@ pick a basic variable with*positive coefficient in objective, say x1

— increase that basic var until one 6f the nonbasic x becomes O

A 3

— in our example X6 becomes O first, when x1=9; x6 equation called “tight”

Simplex Algorithm

2.X3
3X3

SX3

2x3

® start with a basic feasible solution, for example X=0;
@ pick a basic variable with*positive coefficient in objective, say x1

— increase that basic var until one 6f the nonbasic x becomes O

— in our example X6 becomes O first, when x1=9; x6 equation called “tight”

S
S

@® exchange/pivot x1 and x6 ‘2

— rewrite x1 from x6 tight equation X, =9—

X2
4

Simplex Algorithm

2.X3
3x:3

SX3

2X3

® start with a basic feasible solution, for example X=0;
@ pick a basic variable with*positive coefficient in objective, say x1

— increase that basic var until one 6f the nonbasic x becomes O

— in our example X6 becomes O first, when x1=9; x6 equation called “tight”

S
S

@® exchange/pivot x1 and x6 ‘2
X2 X3 X6

— rewrite x1 from x6 tight equation o s i

, 4 2 4 |
@ recompute nonbasic var x4, x5 ana The opbjecTive z using the x1 new formula

— update NBA,Cbyv : new basic/nonbasic variables, different coefficients, etc

Simplex Algorithm

5 27

3X3 9
SX3
2X3 21

= B =

® start with a basic feasible solution, for example X=0;
@ pick a basic variable with*positive coefficient in objective, say x1

— increase that basic var until one 6f the nonbasic x becomes O

— in our example X6 becomes O first, when x1=9; x6 equation called “tight”

S
S

@® exchange/pivot x1 and x6 ‘2
X2 X3 X6

— rewrite x1 from x6 tight equation i e e ESL D
, 4 2 4 |
@ recompute nonbasic var x4, x5 ana The opbjecTive z using the x1 new formula

— update NBA,Cbyv : new basic/nonbasic variables, different coefficients, etc

Simplex Algorithm

+

repea;: pick a basic variable with positive coeficient in objective,
say X

— increase that basic var until one of the nonbasic x becomes 0: X5 becomes O
first; x5 equation is “tight”

@ exchange/pivot x3 and x5
— rewrite x3 from x5 tight equation x3 = 3/2—3x,/8 —x5/4 + x¢/8

— recompute nonbasic var x1, x4 and the objective z using the x3 new formula

— update NBA,Cby : new basic/nonbasic variables, different coefficients, etc

Simplex Algorithm

+

repea;: pick a basic variable with positive coeficient in objective,
say X

— increase that basic var until one of the nonbasic x becomes 0: X5 becomes O
first; x5 equation is “tight”

@ exchange/pivot x3 and x5
— rewrite x3 from x5 tight equation x3 = 3/2—3x,/8 —x5/4 + x¢/8

— recompute nonbasic var x1, x4 and the objective z using the x3 new formula

— update NBA,Cby : new basic/nonbasic variables, different coefficients, etc

Simplex Termination

@® four possibilities:
® 1) didnt start (a feasible initial solution was not given)

— return "infeasible"

® 2) at some iteration, all basic variable have negative
coefficients

— STOP: solution is obtained by setting the basic vars to O, and compute the
original variables

@® 3) at some iteration, no constraint x=0 is violated by
increasing a basic var

— STOP: the system is unbounded (objective can be increased to o0)

@® 4) Cycling back and forth between variable-values with
no progress on objective

— fix the algorithm, so this never happens

Simplex termination: cycling

@ its possible that SIMPLEX starts cycling between
some variables, without making progress

— this can occur when multiple solutions realizes the maximum
objective

® how to avoid this behavior: Bland's rule

when choosing variables, if ties exist, choose variables with the
smallest index

thats when choosing basic var to increase

or when constraints become tight

SIMPLEX running time

® SIMPLEX terminates after at most ("+m) iterations

m
— Assuming a feasible initial solution

— using Bland's rule fo break ties

® exFonen’rial running time (worst case), but quite
efficient in practice.

@® under certain probabilistic assumptions of the input,
SIMPLEX runs in expected polynomial time.

@® variants of SIMPLEX on GRAPH/NEWORK problems
run in polynomial time

— shortest-paths, maximum-flow, minimum-cost-flow problems

Initial Feasible Solution

® initial feasible solution sometimes easy, set X=0
@ sometimes tricky

@ use a different "auxiliary” LP to determine if problem
— is infeasible (no solution)

— is feasible, obtain a slack form and initial feasible solution

Initial Feasible Solution

maximize —Xo

subject to
n

E aijXj—Xo < b fori=1,2,....m,

=l
Xy = 0 g =010 n.

@ Auxiliary LP: add variable X
— constraints add -xo to original LP, x0>0

— objective is -Xo

® The origrinal LP is feasible if and only if the auxiliary

LP has

— optimal solution fo aux LP with xo=0 includes a feasible solution to
original LP in X1, X2, X3,...

he optimal solution with max objective xo=0

— the auxiliary LP has a feasible initial solution when xo small
enough; from there it can be solved using SIMPLEX

Fundamental Theorem of LP

® Any linear program, either:

has an optimal solution with finite objective value. SIMPLEX returns
such a solution (might be one of the many optimal solutions)

is infeasible, or no solution satisfies the constraints. SIMPLEX
returns "infeasible"

is unbounded (objective can reach any high value). SIMPLEX returns
"unbounded"

