Linear Programming

Linear Programs – example 1

maximize $x_1 + x_2$ subject to

$$4x_1 - x_2 \leq 8$$

$$2x_1 + x_2 \leq 10$$

$$5x_1 - 2x_2 \geq -2$$

$$x_1, x_2 \geq 0$$

- Optimization problem
- x_1, x_2 = variables
- $z=x_1+x_2 = objective$
 - linear in x variables
- Subject to constraints
 - $4x_1-x_2 \leq 8$
 - $2x_1+x_2 \leq 10$
 - $5x_1-2x_2 \ge -2$
 - $x_1, x_2 \ge 0$
 - also linear in x variables

Linear programs - feasible region

- Each linear constraint "splits" the space into two halves
 - "satisfied" half (constraint holds)
 - "unsatisfied" half (constraint doesnt hold)
 - separation is a line given by the constraint

Linear programs - feasible region

- Feasible region = intersection of "satisfied" halfs for all constraints
- clearly solution(s) (x1,x2) must be in this feasible region
 - any other (x1,x2) outside this region violates some constraint(s)

Linear Programs – Objective

- z = x1+x2 is objective, to be maximized (want the max z)
 - other times want the min, "minimized"

Linear Programs – Objective

- z = x1+x2 is objective, to be maximized (want the max z)
 - other times want the min, "minimized"
- for a fixed z, z=x1+x2 is a line
 - "z line" or "objective line"
 - 3 z lines drawn for z=0, z=4, z=8
 - on each such line, any (x1,x2) gives in the same objective

Linear Programs – Objective

- z = x1+x2 is objective, to be maximized (want the max z)
 - other times want the min, "minimized"
- for a fixed z, z=x1+x2 is a line
 - "z line" or "objective line"
 - 3 z lines drawn for z=0, z=4, z=8
 - on each such line, any (x1,x2) gives in the same objective
- only interested in y objective lines that intersect the feasible region
 - out of these we want the "last" line that intersects FR, in the direction of max objective (dotted red direction)
 - the last intersection objective line is y=8

Linear Programs – example 2

maximize

Linear Programs - example 2

Linear Programs – example 2

Linear Programs - example 2

Linear Programs - example 2

Linear Programs – example 2

- objective
 z=3x₁+5x₂
 - 4 objective lines drawn: z=0,15,25,36
- last z line intersecting feasible reagion: z=36
 - intersection point is $x_1=2, x_2=6$

Linear Programs – example 2

- objective
 z=3x₁+5x₂
 - 4 objective lines drawn: z=0,15,25,36
- last z line intersecting feasible reagion: z=36
 - intersection point is $x_1=2, x_2=6$

Linear Programs – solution

- last y line intersecting feasible reagion: z=36
 - intersection point is $x_1=2, x_2=6$

Linear Programs - solution

- last y line intersecting feasible reagion: z=36
 - intersection point is $x_1=2, x_2=6$

- OBSERVATION 2: feasible region is a convex polygon multidimensional
 - think of a ball in 3 dimensions, only not round but with triangle sides

- OBSERVATION 2: feasible region is a convex polygon multidimensional
 - think of a ball in 3 dimensions, only not round but with triangle sides
- write objective for each corner

- OBSERVATION 2: feasible region is a convex polygon multidimensional
 - think of a ball in 3 dimensions, only not round but with triangle sides
- write objective for each corner
- convexity means that each vertex has :

- OBSERVATION 2: feasible region is a convex polygon multidimensional
 - think of a ball in 3 dimensions, only not round but with triangle sides
- write objective for each corner
- convexity means that each vertex has :
 - higher obj neighbors in the max-obj direction (red)

- OBSERVATION 2: feasible region is a convex polygon multidimensional
 - think of a ball in 3 dimensions, only not round but with triangle sides
- write objective for each corner
- convexity means that each vertex has :
 - higher obj neighbors in the max-obj direction (red)
 - lower obj neighbors in opposite direction (blue)

- feasible region (FR) convexity means that each vertex has :
 - higher obj neighbors in the max-obj direction (red)
 - lower obj neighbors in opposite direction (blue)

- feasible region (FR) convexity means that each vertex has :
 - higher obj neighbors in the max-obj direction (red)
 - lower obj neighbors in opposite direction (blue)
- idea: start in any corner of FR

- feasible region (FR) convexity means that each vertex has :
 - higher obj neighbors in the max-obj direction (red)
 - lower obj neighbors in opposite direction (blue)
- idea: start in any corner of FR
 - "walk" to any adjacent corner with higher objective

- feasible region (FR) convexity means that each vertex has :
 - higher obj neighbors in the max-obj direction (red)
 - lower obj neighbors in opposite direction (blue)
- idea: start in any corner of FR
 - "walk" to any adjacent corner with higher objective

- feasible region (FR) convexity means that each vertex has :
 - higher obj neighbors in the max-obj direction (red)
 - lower obj neighbors in opposite direction (blue)
- idea: start in any corner of FR
- "walk" to any adjacent corner with higher objective
- 🕨 repeat

- feasible region (FR) convexity means that each vertex has :
 - higher obj neighbors in the max-obj direction (red)
 - lower obj neighbors in opposite direction (blue)
- idea: start in any corner of FR
- "walk" to any adjacent corner with higher objective
- 🕨 repeat

- feasible region (FR) convexity means that each vertex has :
 - higher obj neighbors in the max-obj direction (red)
 - lower obj neighbors in opposite direction (blue)
- idea: start in any corner of FR
- "walk" to any adjacent corner with higher objective
- 🕨 repeat

- feasible region (FR) convexity means that each vertex has :
 - higher obj neighbors in the max-obj direction (red)
 - lower obj neighbors in opposite direction (blue)
- idea: start in any corner of FR
- "walk" to any adjacent corner with higher objective
- 🕨 repeat

- feasible region (FR) convexity means that each vertex has :
 - higher obj neighbors in the max-obj direction (red)
 - lower obj neighbors in opposite direction (blue)
- idea: start in any corner of FR
- "walk" to any adjacent corner with higher objective
- 🕨 repeat
- stop when there is no higherobj neighbor: we found the solution

LP examples: Shortest Path as LP

maximize
$$d_t$$

subject to
 $d_v \leq d_u + w(u, v)$ for each edge $(u, v) \in E$
 $d_s = 0$.

- Graph G=(V,E) with weighted edges given by w
- s=source; t= sink
- distance d_t from s to t is maximized (objective) but each d_v restricted to not more than d_u + edge-w(u,v)
- exercise: explain why this linear program finds the shortest path from s to t

LP examples: Maximum Flow as LP

maximize
$$\sum_{\nu \in V} f_{s\nu} - \sum_{\nu \in V}$$

subject to

$$f_{uv} \leq c(u, v) \quad \text{for each } u, v \in V ,$$

$$\sum_{e \in V} f_{vu} = \sum_{v \in V} f_{uv} \quad \text{for each } u \in V - \{s, t\}$$

$$f_{uv} \geq 0 \quad \text{for each } u, v \in V .$$

Graph G(V,E), c(u,v) = capacity of edge (u,v)

fus

- s= source, t=sink
- f_{uv} is the flow on edge u,v
- constraints are given by symmetry, and edge capacities
- objective is the flow from the source

Standard Form

maximize $2x_1 - 3x_2 + 3x_3$ subject to

x_1	+	x_2	_	x_3	\leq	1
$-x_1$	_	x_2	+	x_3	<	-7
x_1	_	$2x_2$	+	$2x_3$	<	4
x_1, x_2, x_3					\geq	0

- objective is always "maximize" (not "minimize")
- all variables are constrained to be positive
- all constraints (other than positive variables) are "≤", none is "≥"
- book discusses simple steps/arithmetic to get any linear problem into standard form

Standard Form

- book discusses simple steps/arithmetic to get any linear problem into standard form
 - if objective is "minimize", reverse the objective sign
 - if a constraint is "equal to", replace it with 2 constraints " \leq " and " \geq "
 - if a constraint is " \geq ", reverse the signs to make it " \leq "
 - if a variable does not have the nonnegativity constraint, replace it with a difference of two new variables, and add constraints that these two variables are nonnegative.

Slack Form

maximize $2x_1 - 3x_2 + 3x_3$ subject to $x_4 = 7 - x_1 - x_2 + x_3$ $x_5 = -7 + x_1 + x_2 - x_3$ $x_6 = 4 - x_1 + 2x_2 - 2x_3$ $x_1, x_2, x_3, x_4, x_5, x_6 \ge 0$.

- same as standard form, plus...
- ... all constraints (other than $x \ge 0$) are equalities
 - book discusses the easy steps to get the system in slack form
- basic variables : right side of constraints, typically present in objective
- nonbasic variables: left side of constraints, not part of the objective

Slack Form with matrices

$$z = 28 - \frac{x_3}{6} - \frac{x_5}{6} - \frac{2x_6}{3}$$

$$x_1 = 8 + \frac{x_3}{6} + \frac{x_5}{6} - \frac{x_6}{3}$$

$$x_2 = 4 - \frac{8x_3}{3} - \frac{2x_5}{3} + \frac{x_6}{3}$$

$$x_4 = 18 - \frac{x_3}{2} + \frac{x_5}{2},$$

- x≥0 implicit, no need to write it
- z is the objective to be maximized
- no need for "subject to", just list the constraints
- B = basic variables set = {3,5,6}
- N = nonbasic variables set = {4,2,4}
- Constraints in matrix form Ax≤b
 - A= constraints coefficients (matrix); b= constraints value (array)
- objective in matrix form cx
 - c = objective coefficients (array); v= free constant in objective

- N = { nonbasic variables indices};
- B = { basic variables indices};
 - $N \cup B = \{1, 2, ..., n + m\}$
- A = constraints coefficients
- c = objective coefficients
- b = constraints value
- v = constant term in the objective (if any)

 $\begin{array}{rcrcrcrcrcrc} z &=& 3x_1 &+ x_2 &+ 2x_3 \\ x_4 &=& 30 &- x_1 &- x_2 &- 3x_3 \\ x_5 &=& 24 &- 2x_1 &- 2x_2 &- 5x_3 \\ x_6 &=& 36 &- 4x_1 &- x_2 &- 2x_3 \end{array}$

start with a basic feasible solution, for example X=0;

$$z = 3x_1 + x_2 + 2x_3$$

$$x_4 = 30 - x_1 - x_2 - 3x_3$$

$$x_5 = 24 - 2x_1 - 2x_2 - 5x_3$$

$$x_6 = 36 - 4x_1 - x_2 - 2x_3$$

- start with a basic feasible solution, for example X=0;
- pick a basic variable with positive coefficient in objective, say x1
 - increase that basic var until one of the nonbasic x becomes 0
 - in our example X6 becomes 0 first, when x1=9; x6 equation called "tight"

$$z = 3x_1 + x_2 + 2x_3$$

$$x_4 = 30 - x_1 - x_2 - 3x_3$$

$$x_5 = 24 - 2x_1 - 2x_2 - 5x_3$$

$$x_6 = 36 - 4x_1 - x_2 - 2x_3$$

- start with a basic feasible solution, for example X=0;
- pick a basic variable with positive coefficient in objective, say x1
 - increase that basic var until one of the nonbasic x becomes 0
 - in our example X6 becomes 0 first, when x1=9; x6 equation called "tight"
- exchange/pivot x1 and x6
 - rewrite x1 from x6 tight equation

$$x_1 = 9 - \frac{x_2}{4} - \frac{x_3}{2} - \frac{x_6}{4}$$

$$z = 3x_1 + x_2 + 2x_3$$

$$x_4 = 30 - x_1 - x_2 - 3x_3$$

$$x_5 = 24 - 2x_1 - 2x_2 - 5x_3$$

$$x_6 = 36 - 4x_1 - x_2 - 2x_3$$

- start with a basic feasible solution, for example X=0;
- pick a basic variable with positive coefficient in objective, say x1
 - increase that basic var until one of the nonbasic x becomes 0
 - in our example X6 becomes 0 first, when x1=9; x6 equation called "tight"
- exchange/pivot x1 and x6
 - rewrite x1 from x6 tight equation

$$x_1 = 9 - \frac{x_2}{4} - \frac{x_3}{2} - \frac{x_6}{4}$$

- recompute nonbasic var x4, x5 and the objective z using the x1 new formula
 - update N,B,A,C,b,v : new basic/nonbasic variables, different coefficients, etc

 $2x_3$ $3x_1$ x_2 $3x_3$ x2 x_1 x_{4} $2x_1$ $5x_3$ $2x_2$ 24 X5 $\frac{x_6}{4}$ $\frac{x_6}{2}$ $4x_1$ $2x_3$ 36 x_6 x_2 x_5

- start with a basic feasible solution, for example X=0;
- pick a basic variable with positive coefficient in objective, say x1
 - increase that basic var until one of the nonbasic x becomes 0
 - in our example X6 becomes 0 first, when x1=9; x6 equation called "tight"
- exchange/pivot x1 and x6
 - rewrite x1 from x6 tight equation

$$x_1 = 9 - \frac{x_2}{4} - \frac{x_3}{2} - \frac{x_6}{4}$$

- recompute nonbasic var x4, x5 and the objective z using the x1 new formula
 - update N,B,A,C,b,v : new basic/nonbasic variables, different coefficients, etc

$$z = 27 + \frac{x_2}{4} + \frac{x_3}{2} - \frac{3x_6}{4}$$
$$x_1 = 9 - \frac{x_2}{4} - \frac{x_3}{2} - \frac{x_6}{4}$$
$$x_4 = 21 - \frac{3x_2}{4} - \frac{5x_3}{2} + \frac{x_6}{4}$$
$$x_5 = 6 - \frac{3x_2}{2} - 4x_3 + \frac{x_6}{2}$$

- repeat: pick a basic variable with positive coeficient in objective, say x3
 - increase that basic var until one of the nonbasic x becomes 0: X5 becomes 0 first; x5 equation is "tight"
- exchange/pivot x3 and x5
 - rewrite x3 from x5 tight equation $x_3 = 3/2 3x_2/8 x_5/4 + x_6/8$
 - recompute nonbasic var x1, x4 and the objective z using the x3 new formula
 - update N,B,A,C,b,v : new basic/nonbasic variables, different coefficients, etc

- $3x_6$ $11x_{6}$ $\frac{x_2}{16}$ $\frac{x_5}{8}$ +16 $\frac{x_6}{4}$ $\frac{33}{4}$ $\frac{x_3}{2}$ $\frac{x_2}{4}$ - $5x_6$ $\frac{x_5}{8}$ $-\frac{x_2}{16}+$ x_1 x_1 16 $x_3 = \frac{3}{2} - \frac{3x_2}{8}$ $\frac{3x_2}{4} - \frac{5x_3}{2}$ $\frac{x_6}{4}$ $\frac{x_6}{8}$ $\frac{x_5}{4}$ + 21 x_4 $\frac{69}{4}$ + $\frac{3x_2}{16}$ + $\frac{x_6}{2}$ $\frac{3x_2}{2}$ $-4x_3 +$ $x_4 =$ = 6 x_5
 - repeat: pick a basic variable with positive coeficient in objective, say x3
 - increase that basic var until one of the nonbasic x becomes 0: X5 becomes 0 first; x5 equation is "tight"
 - exchange/pivot x3 and x5
 - rewrite x3 from x5 tight equation $x_3 = 3/2 3x_2/8 x_5/4 + x_6/8$
 - recompute nonbasic var x1, x4 and the objective z using the x3 new formula
 - update N,B,A,C,b,v : new basic/nonbasic variables, different coefficients, etc

Simplex Termination

- four possibilities:
- 1) didnt start (a feasible initial solution was not given)
 - return "infeasible"
- 2) at some iteration, all basic variable have negative coefficients
 - STOP: solution is obtained by setting the basic vars to 0, and compute the original variables
- 3) at some iteration, no constraint x≥0 is violated by increasing a basic var
 - STOP: the system is unbounded (objective can be increased to ∞)
- 4) Cycling back and forth between variable-values with no progress on objective
 - fix the algorithm, so this never happens

Simplex termination: cycling

- its possible that SIMPLEX starts cycling between some variables, without making progress
 - this can occur when multiple solutions realizes the maximum objective
- how to avoid this behavior: Bland's rule
 - when choosing variables, if ties exist, choose variables with the smallest index
 - thats when choosing basic var to increase
 - or when constraints become tight

SIMPLEX running time

- SIMPLEX terminates after at most $\binom{n+m}{m}$ iterations
 - Assuming a feasible initial solution
 - using Bland's rule to break ties
- exponential running time (worst case), but quite efficient in practice.
- under certain probabilistic assumptions of the input, SIMPLEX runs in expected polynomial time.
- variants of SIMPLEX on GRAPH/NEWORK problems run in polynomial time
 - shortest-paths, maximum-flow, minimum-cost-flow problems

Initial Feasible Solution

- Initial feasible solution sometimes easy, set X=0
- sometimes tricky
- use a different "auxiliary" LP to determine if problem
 - is infeasible (no solution)
 - is feasible, obtain a slack form and initial feasible solution

Initial Feasible Solution

maximize
$$-x_0$$

subject to
$$\sum_{j=1}^{n} a_{ij} x_j - x_0 \leq b_i \text{ for } i = 1, 2, \dots, m,$$
$$x_i \geq 0 \text{ for } j = 0, 1, \dots, n.$$

- Auxiliary LP: add variable x₀
 - constraints add $-x_0$ to original LP, $x_0>0$
 - objective is $-x_0$
- The original LP is feasible if and only if the auxiliary LP has the optimal solution with max objective $x_0=0$
 - optimal solution to aux LP with $x_0=0$ includes a feasible solution to original LP in x_1 , x_2 , x_3 ,...
 - the auxiliary LP has a feasible initial solution when x₀ small enough; from there it can be solved using SIMPLEX

Fundamental Theorem of LP

• Any linear program, either:

- has an optimal solution with finite objective value. SIMPLEX returns such a solution (might be one of the many optimal solutions)
- is infeasible, or no solution satisfies the constraints. SIMPLEX returns "infeasible"
- is unbounded (objective can reach any high value). SIMPLEX returns "unbounded"