Linear Programming

Linear Programs - example 1

- Optimization problem
- $x_{1}, x_{2}=$ variables
$\operatorname{maximize} \quad x_{1}+x_{2}$
subject to

$$
\begin{array}{cl}
4 x_{1}-x_{2} & \leq 8 \\
2 x_{1}+x_{2} & \leq 10 \\
5 x_{1}-2 x_{2} & \geq-2 \\
x_{1}, x_{2} & \geq 0
\end{array}
$$

- $z=x_{1}+x_{2}=$ objective
- linear in \times variables
- "subject to" constraints
- $4 x_{1}-x_{2} \leqslant 8$
- $2 x_{1}+x_{2} \leqslant 10$
- $5 x_{1}-2 x_{2} \geqslant-2$
- $x_{1}, x_{2} \geqslant 0$
- also linear in x variables

Linear programs - feasible region

- Each linear constraint "splits" the space into two halves
- "satisfied" half (constraint holds)
- "unsatisfied" half (constraint doesnt hold)
- separation is a line given by the constraint

Linear programs - feasible region

- Feasible region = intersection of "satisfied" halfs for all constraints
- clearly solution(s) $(\times 1, \times 2)$ must be in this feasible region
- any other $(\times 1, \times 2)$ outside this region violates some constraint(s)

Linear Programs - Objective

- $z=x 1+x 2$ is objective, to be maximized (want the max z)
- other times want the min, "minimized"

Linear Programs - Objective

- $z=x 1+x 2$ is objective, to be maximized (want the max z)
- other times want the min, "minimized"
- for a fixed $z, z=x 1+x 2$ is a line
- "z line" or "objective line"
- $3 z$ lines drawn for $z=0, z=4, z=8$
- on each such line, any ($\times 1, \times 2$) gives in the same objective

Linear Programs - Objective

- $z=x 1+x 2$ is objective, to be maximized (want the max z)
- other times want the min, "minimized"
- for a fixed $z, z=x 1+x 2$ is a line
- "z line" or "objective line"
- $3 z$ lines drawn for $z=0, z=4, z=8$
- on each such line, any ($\times 1, \times 2$) gives in the same objective
- only interested in y objective lines that intersect the feasible region
- out of these we want the "last" line that intersects $F R$, in the direction of max objective (dotted red direction)
- the last intersection objective line is $y=8$

Linear Programs - example 2

maximize

$$
z=3 x_{1}+5 x_{2}
$$

subject to

$$
\begin{aligned}
& x_{1} \leq 4 \\
& 2 x_{2} \leq 12 \\
& 3 x_{1}+2 x_{2} \leq 18 \\
& x_{1}, x_{2} \geq 0
\end{aligned}
$$

Linear Programs - example 2

maximize

$$
z=3 x_{1}+5 x_{2}
$$

subject to

$$
\begin{aligned}
& x_{1} \leq 4 \\
& 2 x_{2} \leq 12 \\
& 3 x_{1}+2 x_{2} \leq 18 \\
& x_{1}, x_{2} \geq 0
\end{aligned}
$$

Linear Programs - example 2

maximize

$$
z=3 x_{1}+5 x_{2}
$$

subject to

$$
\begin{aligned}
& x_{1} \leq 4 \\
& 2 x_{2} \leq 12 \\
& 3 x_{1}+2 x_{2} \leq 18 \\
& x_{1}, x_{2} \geq 0
\end{aligned}
$$

Linear Programs - example 2

maximize

$$
z=3 x_{1}+5 x_{2}
$$

subject to

$$
\begin{aligned}
& x_{1} \leq 4 \\
& 2 x_{2} \leq 12 \\
& 3 x_{1}+2 x_{2} \leq 18 \\
& x_{1}, x_{2} \geq 0
\end{aligned}
$$

Linear Programs - example 2

maximize

$$
z=3 x_{1}+5 x_{2}
$$

subject to

$$
\begin{aligned}
& x_{1} \leq 4 \\
& 2 x_{2} \leq 12 \\
& 3 x_{1}+2 x_{2} \leq 18 \\
& x_{1}, x_{2} \geq 0
\end{aligned}
$$

Linear Programs - example 2

- objective $z=3 x_{1}+5 x_{2}$
- 4 objective lines drawn: $z=0,15,25,36$
- last z line intersecting feasible reagion: $z=36$
- intersection point is $x_{1}=2, x_{2}=6$

Linear Programs - example 2

- objective $z=3 x_{1}+5 x_{2}$
- 4 objective lines drawn: $z=0,15,25,36$
- last z line intersecting feasible reagion: $z=36$
- intersection point is $x_{1}=2, x_{2}=6$

Linear Programs - solution

maximize

$$
z=3 x_{1}+5 x_{2}
$$

subject to

$$
\begin{aligned}
& x_{1} \leq 4 \\
& 2 x_{2} \leq 12 \\
& 3 x_{1}+2 x_{2} \leq 18 \\
& x_{1}, x_{2} \geq 0
\end{aligned}
$$

- last y line intersecting feasible reagion: $z=36$
- intersection point is $x_{1}=2, x_{2}=6$
max objective direction

Linear Programs - solution

maximize

$$
z=3 x_{1}+5 x_{2}
$$

subject to

$$
\begin{aligned}
& x_{1} \leq 4 \\
& 2 x_{2} \leq 12 \\
& 3 x_{1}+2 x_{2} \leq 18 \\
& x_{1}, x_{2} \geq 0
\end{aligned}
$$

- last y line intersecting feasible reagion: $z=36$
- intersection point is $x_{1}=2, x_{2}=6$
max objective direction

LP - solution critical observations

- OBSERVATION 1: the solution is in a corner(vertex) of the feasible region
- precisely the corner that is furtest in the direction of max objective

LP - solution critical observations

OBSERVATION 2: feasible region is a convex polygon multidimensional

- think of a ball in 3 dimensions, only not round but with triangle sides

LP - solution critical observations

- OBSERVATION 2: feasible region is a convex polygon multidimensional
- think of a ball in 3 dimensions, only not round but with triangle sides
write objective for each corner

LP - solution critical observations

- OBSERVATION 2: feasible region is a convex polygon multidimensional
- think of a ball in 3 dimensions, only not round but with triangle sides
write objective for each corner
convexity means that each vertex has:

LP - solution critical observations

- OBSERVATION 2: feasible region is a convex polygon multidimensional
- think of a ball in 3 dimensions, only not round but with triangle sides
write objective for each corner
convexity means that each vertex has :
- higher obj neighbors in the max-obj direction (red)

LP - solution critical observations

- OBSERVATION 2: feasible region is a convex polygon multidimensional
- think of a ball in 3 dimensions, only not round but with triangle sides
write objective for each corner
convexity means that each vertex has:
- higher obj neighbors in the max-obj direction (red)
- lower obj neighbors in opposite direction (blue)

LP - simplex algorithm idea

feasible region (FR) convexity means that each vertex has:

- higher obj neighbors in the max-obj direction (red)
- lower obj neighbors in opposite direction (blue)

LP - simplex algorithm idea

feasible region (FR) convexity means that each vertex has:

- higher obj neighbors in the max-obj direction (red)
- lower obj neighbors in opposite direction (blue)
- idea: start in any corner of FR

LP - simplex algorithm idea

feasible region (FR) convexity means that each vertex has:

- higher obj neighbors in the max-obj direction (red)
- lower obj neighbors in opposite direction (blue)
- idea: start in any corner of FR
"walk" to any adjacent corner with higher objective

LP - simplex algorithm idea

feasible region (FR) convexity means that each vertex has:

- higher obj neighbors in the max-obj direction (red)
- lower obj neighbors in opposite direction (blue)
- idea: start in any corner of FR
"walk" to any adjacent corner with higher objective

LP - simplex algorithm idea

feasible region (FR) convexity means that each vertex has:

- higher obj neighbors in the max-obj direction (red)
- lower obj neighbors in opposite direction (blue)
- idea: start in any corner of FR
"walk" to any adjacent corner with higher objective
repeat

LP - simplex algorithm idea

feasible region (FR) convexity means that each vertex has:

- higher obj neighbors in the max-obj direction (red)
- lower obj neighbors in opposite direction (blue)
- idea: start in any corner of FR
"walk" to any adjacent corner with higher objective
repeat

LP - simplex algorithm idea

feasible region (FR) convexity means that each vertex has:

- higher obj neighbors in the max-obj direction (red)
- lower obj neighbors in opposite direction (blue)
- idea: start in any corner of FR
"walk" to any adjacent corner with higher objective
repeat

LP - simplex algorithm idea

feasible region (FR) convexity means that each vertex has:

- higher obj neighbors in the max-obj direction (red)
- lower obj neighbors in opposite direction (blue)
- idea: start in any corner of FR
"walk" to any adjacent corner with higher objective
repeat

LP - simplex algorithm idea

feasible region (FR) convexity means that each vertex has:

- higher obj neighbors in the max-obj direction (red)
- lower obj neighbors in opposite direction (blue)
- idea: start in any corner of FR
"walk" to any adjacent corner with higher objective
repeat
stop when there is no higherobj neighbor: we found fhe solution

LP examples: Shortest Path as LP

$\operatorname{maximize} \quad d_{t}$
subject to

$$
\begin{aligned}
d_{v} & \leq d_{u}+w(u, v) \quad \text { for each edge }(u, v) \in E \\
d_{s} & =0
\end{aligned}
$$

- Graph $G=(V, E)$ with weighted edges given by w
- $s=$ source; $\dagger=$ sink
- distance d_{t} from s to t is maximized (objective) but each d_{v} restricted to not more than $d_{u}+$ edge-w (u, v)
- exercise: explain why this linear program finds the shortest path from s to \dagger

LP examples: Maximum Flow as LP

maximice $\sum_{k=1}^{f_{n}}-\sum_{k=1} f_{n}$
subject to

$$
\begin{aligned}
f_{u v} & \leq c(u, v) & & \text { for each } u, v \in V \\
\sum_{v \in V} f_{v u} & =\sum_{v \in V} f_{u v} & & \text { for each } u \in V-\{s, t\} \\
f_{u v} & \geq 0 & & \text { for each } u, v \in V .
\end{aligned}
$$

- Graph $G(V, E), c(u, v)=$ capacity of edge (u, v)
- $s=$ source, $t=s i n k$
- fuv is the flow on edge u, v
- constraints are given by symmetry, and edge capacities
- objective is the flow from the source

Standard Form

maximize $2 x_{1}-3 x_{2}+3 x_{3}$
subject to

$$
\begin{aligned}
& x_{1}+x_{2}-x_{3} \leq 7 \\
&-x_{1}-x_{2}+x_{3} \leq-7 \\
& x_{1}-2 x_{2}+2 x_{3} \leq 4 \\
& x_{1}, x_{2}, x_{3} \\
& \geq 0
\end{aligned}
$$

- objective is always "maximize" (not "minimize")
- all variables are constrained to be positive
- all constraints (other than positive variables) are " \leq ", none is " \geqslant "
- book discusses simple steps/arithmetic to get any linear problem into standard form

Standard Form

- book discusses simple steps/arithmetic to get any linear problem into standard form
- if objective is "minimize", reverse the objective sign
- if a constraint is "equal to", replace it with 2 constraints " \leq " and " \geq "
- if a constraint is " \geq ", reverse the signs to make it " \leq "
- if a variable does not have the nonnegativity constraint, replace it with a difference of two new variables, and add constraints that these two variables are nonnegative.

Slack Form

$$
\begin{array}{llllllll}
\begin{array}{lllllll}
\operatorname{maximize} \\
\text { subject to }
\end{array} & & & 2 x_{1} & - & 3 x_{2} & + & 3 x_{3} \\
& x_{4} & = & 7 & - & x_{1} & - & x_{2}
\end{array}+x_{3} .
$$

- same as standard form, plus...
- ... all constraints (other than $x \geqslant 0$) are equalities
- book discusses the easy steps to get the system in slack form
- basic variables : right side of constraints, typically present in objective
- nonbasic variables: left side of constraints, not part of the objective

Slack Form with matrices

- $x \geqslant 0$ implicit, no need to write it

$$
\begin{aligned}
& z=28-\frac{x_{3}}{6}-\frac{x_{5}}{6}-\frac{2 x_{6}}{3} \\
& x_{1}=8+\frac{x_{3}}{6}+\frac{x_{5}}{6}-\frac{x_{6}}{3} \\
& x_{2}=4-\frac{8 x_{3}}{3}-\frac{2 x_{5}}{3}+\frac{x_{6}}{3} \\
& x_{4}=18-\frac{x_{3}}{2}+\frac{x_{5}}{2},
\end{aligned}
$$

- z is the objective to be maximized
- no need for "subject to", just list the constraints
- $B=$ basic variables set $=\{3,5,6\}$
- $\mathrm{N}=$ nonbasic variables set $=\{4,2,4\}$
- constraints in matrix form $A x \leq b$
- $A=$ constraints coefficients (matrix); $b=$ constraints value (array)
- objective in matrix form cx
- $c=$ objective coefficients (array); $v=$ free constant in objective

Simplex Algorithm

- $N=\{$ nonbasic variables indices $\}$;
- $B=\{$ basic variables indices\};
- $N \cup B=\{1,2, \ldots, n+m\}$
- $A=$ constraints coefficients
- $c=$ objective coefficients
- $b=$ constraints value
- $v=$ constant term in the objective (if any)

Simplex Algorithm

$$
\begin{aligned}
z & =3 x_{1}+x_{2}+2 x_{3} \\
x_{4} & =30-x_{1}-x_{2}-3 x_{3} \\
x_{5} & =24-2 x_{1}-2 x_{2}-5 x_{3} \\
x_{6} & =36-4 x_{1}-x_{2}-2 x_{3}
\end{aligned}
$$

- start with a basic feasible solution, for example $X=0$;

Simplex Algorithm

z	$=$			$3 x_{1}$	+	x_{2}	$+$	$2 x_{3}$
x_{4}	$=$	30	-	x_{1}	-	x_{2}	-	$3 x_{3}$
x_{5}	$=$	24	-	$2 x_{1}$	-	$2 x_{2}$	-	$5 x_{3}$
x_{6}	$=$	36	-	$4 x_{1}$	-	x_{2}	-	$2 x_{3}$

- start with a basic feàsible solution, for example $X=0$;
- pick a basic variable with positive coefficient in objective, say $\times 1$
- increase that basic var until one of the nonbasic x becomes 0
- in our example X6 becomes 0 first, when $\times 1=9 ; \times 6$ equation called "tight"

Simplex Algorithm

z	$=$			$3 x_{1}$	+	x_{2}	+	$2 x_{3}$
x_{4}	$=$	30	-	x_{1}	-	x_{2}	-	$3 x_{3}$
x_{5}	$=$	24	-	$2 x_{1}$	-	$2 x_{2}$	-	$5 x_{3}$
x_{6}	$=$	36	-	$4 x_{1}$	-	x_{2}	-	$2 x_{3}$

- start with a basic feàsible solution, for example $X=0$;
- pick a basic variable with positive coefficient in objective, say $x 1$
- increase that basic var until one of the nonbasic x becomes 0
- in our example $\times 6$ becomes 0 first, whien $\times 1=9$; $\times 6$ equation called "tight"
- exchange/pivot $x 1$ and $\times 6$
- rewrite $\times 1$ from $\times 6$ tight equation

$$
x_{1}=9-\frac{x_{2}}{4}-\frac{x_{3}}{2}-\frac{x_{6}}{4}
$$

Simplex Algorithm

z		$3 x_{1}$	$+x_{2}+2 x_{3}$
z	$=30-x_{1}$	$-x_{2}-3 x_{3}$	
x_{4}			
x_{5}	$=24-2 x_{1}-2 x_{2}-5 x_{3}$		
x_{6}	$=36-4 x_{1}$	$-x_{2}-2 x_{3}$	
	\ddots		
	\ddots		

- start with a basic feàsible solution, for example $X=0$;
- pick a basic variable with positive coefficient in objective, say $\times 1$
- increase that basic var until one ò the nonbasic x becomes 0
- in our example $\times 6$ becomes 0 first, whien $\times 1=9$; $\times 6$ equation called "tight"
- exchange/pivot $x 1$ and $\times 6$
- rewrite $\times 1$ from $\times 6$ tight equation

$$
x_{1}=9-\frac{x_{2}}{4}-\frac{x_{3}}{2}-\frac{x_{6}}{4}
$$

- recompute nonbasic var $\times 4, x 5$ ana tne objective z using the $x 1$ new formula
- update N, B, A, C, b, v : new basic/nonbasic variables, different coefficients, etc

Simplex Algorithm

- start with a basic feàsible solution, for example $X=0$;
- pick a basic variable with positive coefficient in objective, say $\times 1$
- increase that basic var until one of the nonbasic x becomes 0
- in our example $\times 6$ becomes 0 first, whien $\times 1=9$; $\times 6$ equation called "tight"
- exchange/pivot $x 1$ and $\times 6$
- rewrite $\times 1$ from $\times 6$ tight equation

$$
x_{1}=9-\frac{x_{2}}{4}-\frac{x_{3}}{2}-\frac{x_{6}}{4}
$$

- recompute nonbasic var $\times 4, x 5$ ana tne objective z using the $x 1$ new formula
- update N, B, A, C, b, v : new basic/nonbasic variables, different coefficients, etc

Simplex Algorithm

$$
\begin{aligned}
& z=27+\frac{x_{2}}{4}+\frac{x_{3}}{2}-\frac{3 x_{6}}{4} \\
& x_{1}=9-\frac{x_{2}}{4}-\frac{x_{3}}{2}-\frac{x_{6}}{4} \\
& x_{4}=21-\frac{3 x_{2}}{4}-\frac{5 x_{3}}{2}+\frac{x_{6}}{4} \\
& x_{5}=6-\frac{3 x_{2}}{2}-4 x_{3}+\frac{x_{6}}{2}
\end{aligned}
$$

- repeat: pick a basic variable with positive coeficient in objective, say x3
- increase that basic var until one of the nonbasic \times becomes $0: X 5$ becomes 0 first; $\times 5$ equation is "tight"
- exchange/pivot $x 3$ and $\times 5$
- rewrite $\times 3$ from $\times 5$ tight equation $x_{3}=3 / 2-3 x_{2} / 8-x_{5} / 4+x_{6} / 8$:
- recompute nonbasic var $x 1, x 4$ and the objective z using the $x 3$ new formula
- update N, B, A, C, b, v : new basic/nonbasic variables, different coefficients, etc

Simplex Algorithm

$$
\begin{aligned}
& z=27+\frac{x_{2}}{4}+\frac{x_{3}}{2}-\frac{3 x_{6}}{4} \left\lvert\, \quad z=\frac{111}{4}+\frac{x_{2}}{16}-\frac{x_{5}}{8}-\frac{11 x_{6}}{16}\right. \\
& x_{1}=9-\frac{x_{2}}{4}-\frac{x_{3}}{2}-\frac{x_{6}}{4} x_{1}=\frac{33}{4}-\frac{x_{2}}{16}+\frac{x_{5}}{8}-\frac{5 x_{6}}{16} \\
& x_{4}=21-\frac{3 x_{2}}{4}-\frac{5 x_{3}}{2}+\frac{x_{6}}{4} \quad x_{3}=\frac{3}{2}-\frac{3 x_{2}}{8}-\frac{x_{5}}{4}+\frac{x_{6}}{8} \\
& x_{5}=6-\frac{3 x_{2}}{2}-4 x_{3}+\frac{x_{6}}{2} \left\lvert\, x_{4}=\frac{69}{4}+\frac{3 x_{2}}{16}+\frac{5 x_{5}}{8}-\frac{x_{6}}{16}\right.
\end{aligned}
$$

- repeat: pick a basic variable with positive coeficient in objective, say $\times 3$
- increase that basic var until one of the nonbasic \times becomes $0: X 5$ becomes 0 first; $\times 5$ equation is "tight"
- exchange/pivot $\times 3$ and $\times 5$
- rewrite $\times 3$ from $\times 5$ tight equation $x_{3}=3 / 2-3 x_{2} / 8-x_{5} / 4+x_{6} / 8$.
- recompute nonbasic var $x 1, x 4$ and the objective z using the $x 3$ new formula
- update N, B, A, C, b, v : new basic/nonbasic variables, different coefficients, etc

Simplex Termination

- four possibilities:
- 1) didnt start (a feasible initial solution was not given)
- return "infeasible"
- 2) at some iteration, all basic variable have negative coefficients
- STOP: solution is obtained by setting the basic vars to 0 , and compute the original variables
- 3) at some iteration, no constraint $x \geqslant 0$ is violated by increasing a basic var
- STOP: the system is unbounded (objective can be increased to ∞)
- 4) Cycling back and forth between variable-values with no progress on objective
- fix the algorithm, so this never happens

Simplex termination: cycling

- its possible that SIMPLEX starts cycling between some variables, without making progress
- this can occur when multiple solutions realizes the maximum objective
- how to avoid this behavior: Bland's rule
- when choosing variables, if ties exist, choose variables with the smallest index
- thats when choosing basic var to increase
- or when constraints become tight

SIMPLEX running time

- SIMPLEX terminates after at most $\binom{n+m}{m}$ iterations - Assuming a feasible initial solution
- using Bland's rule to break ties
- exponential running time (worst case), but quite efficient in practice.
- under certain probabilistic assumptions of the input, SIMPLEX runs in expected polynomial time.
- variants of SIMPLEX on GRAPH/NEWORK problems run in polynomial time
- shortest-paths, maximum-flow, minimum-cost-flow problems

Initial Feasible Solution

- initial feasible solution sometimes easy, set $X=0$
- sometimes tricky
- use a different "auxiliary" LP to determine if problem
- is infeasible (no solution)
- is feasible, obtain a slack form and initial feasible solution

Initial Feasible Solution

$$
\begin{aligned}
& \operatorname{maximize} \\
& \text { subject to }
\end{aligned}
$$

$$
\begin{aligned}
\sum_{j=1}^{n} a_{i j} x_{j}-x_{0} & \leq b_{i} \text { for } i=1,2, \ldots, m \\
x_{j} & \geq 0 \quad \text { for } j=0,1, \ldots, n
\end{aligned}
$$

- Auxiliary LP: add variable x_{0}
- constraints add $-x_{0}$ to original $L P, x_{0}>0$
- objective is $-x_{0}$
- The original LP is feasible if and only if the auxiliary LP has the optimal solution with max objective $x_{0}=0$
- optimal solution to aux LP with $x_{0}=0$ includes a feasible solution to original LP in $x_{1}, x_{2}, x_{3}, \ldots$
- the auxiliary LP has a feasible initial solution when x_{0} small enough; from there it can be solved using SIMPLEX

Fundamental Theorem of LP

- Any linear program, either:
- has an optimal solution with finite objective value. SIMPLEX returns such a solution (might be one of the many optimal solutions)
- is infeasible, or no solution satisfies the constraints. SIMPLEX returns "infeasible"
- is unbounded (objective can reach any high value). SIMPLEX returns "unbounded"

