
Linear Programming

Linear Programs - example 1
• Optimization problem

• x1,x2 = variables

• z=x1+x2 = objective
- linear in x variables

• “subject to” constraints
• 4x1-x2 ⩽ 8

• 2x1+x2 ⩽ 10

• 5x1-2x2 ⩾ -2

• x1,x2 ⩾ 0

- also linear in x variables

Linear programs - feasible region

• Each linear
constraint “splits”
the space into two
halves
- “satisfied” half

(constraint holds)

- “unsatisfied” half
(constraint doesnt hold)

- separation is a line
given by the constraint

x1

x2

2x1+x2⩽10

satisfied

unsatisfied

Linear programs - feasible region

• Feasible region = intersection
of “satisfied” halfs for all
constraints

• clearly solution(s) (x1,x2) must
be in this feasible region
- any other (x1,x2) outside this region

violates some constraint(s)

Linear Programs - Objective
• z = x1+x2 is objective, to be

maximized (want the max z)
- other times want the min, “minimized”

Linear Programs - Objective
• z = x1+x2 is objective, to be

maximized (want the max z)
- other times want the min, “minimized”

• for a fixed z, z=x1+x2 is a line
- “z line” or “objective line”
- 3 z lines drawn for z=0, z=4, z=8
- on each such line, any (x1,x2) gives in the

same objective

Linear Programs - Objective
• z = x1+x2 is objective, to be

maximized (want the max z)
- other times want the min, “minimized”

• for a fixed z, z=x1+x2 is a line
- “z line” or “objective line”
- 3 z lines drawn for z=0, z=4, z=8
- on each such line, any (x1,x2) gives in the

same objective

• only interested in y objective lines
that intersect the feasible region
- out of these we want the “last” line that

intersects FR, in the direction of max
objective (dotted red direction)

- the last intersection objective line is y=8

Linear Programs - example 2

Linear Programs - example 2

x1

x2

Linear Programs - example 2

x1

x2
x1 ⩽4

Linear Programs - example 2

x1

x2
x1 ⩽4

x2⩾0

x1 ⩾0

2x2⩽12

Linear Programs - example 2

x1

x2
x1 ⩽4

x2⩾0

x1 ⩾0

2x2⩽12

3x1+2x2⩽18

Linear Programs - example 2

• objective
z=3x1+5x2

- 4 objective lines
drawn: z=0,15,25,36

• last z line intersecting
feasible reagion: z=36

- intersection point is
x1=2,x2=6

x1

x2

z=3x1+5x2=15z=3x1+5x2=0

z=3x1+5x2=36
z=3x1+5x2=25

max objective
direction

Linear Programs - example 2

• objective
z=3x1+5x2

- 4 objective lines
drawn: z=0,15,25,36

• last z line intersecting
feasible reagion: z=36

- intersection point is
x1=2,x2=6

x1

x2

z=3x1+5x2=15z=3x1+5x2=0

z=3x1+5x2=36
z=3x1+5x2=25

max objective
direction

Linear Programs - solution

• last y line intersecting
feasible reagion: z=36

- intersection point is
x1=2,x2=6 x1

x2

z=3x1+5x2=36

objective line

max objective
directionsolution z=36

x1=2;x2=6

Linear Programs - solution

• last y line intersecting
feasible reagion: z=36

- intersection point is
x1=2,x2=6 x1

x2

z=3x1+5x2=36

objective line

max objective
directionsolution z=36

x1=2;x2=6

LP - solution critical observations

• OBSERVATION 1: the
solution is in a corner(vertex)
of the feasible region

• precisely the corner that is
furtest in the direction of
max objective

x1

x2

z=3x1+5x2=36

objective line

max objective
directionsolution z=36

x1=2;x2=6

LP - solution critical observations
• OBSERVATION 2: feasible

region is a convex polygon
multidimensional

- think of a ball in 3
dimensions, only not round
but with triangle sides

max objective
direction

solution

LP - solution critical observations
• OBSERVATION 2: feasible

region is a convex polygon
multidimensional

- think of a ball in 3
dimensions, only not round
but with triangle sides

• write objective for each
corner

max objective
direction

solution
z=36

z=30
z=28

z=24z=23
z=20

z=19 z=18
z=16

z=14
z=13

z=10
z=7 z=7

z=3
z=1

LP - solution critical observations
• OBSERVATION 2: feasible

region is a convex polygon
multidimensional

- think of a ball in 3
dimensions, only not round
but with triangle sides

• write objective for each
corner

• convexity means that each
vertex has :

max objective
direction

solution
z=36

z=30
z=28

z=24z=23
z=20

z=19 z=18
z=16

z=14
z=13

z=10
z=7 z=7

z=3
z=1

LP - solution critical observations
• OBSERVATION 2: feasible

region is a convex polygon
multidimensional

- think of a ball in 3
dimensions, only not round
but with triangle sides

• write objective for each
corner

• convexity means that each
vertex has :

- higher obj neighbors in
the max-obj direction
(red)

max objective
direction

solution
z=36

z=30
z=28

z=24z=23
z=20

z=19 z=18
z=16

z=14
z=13

z=10
z=7 z=7

z=3
z=1

LP - solution critical observations
• OBSERVATION 2: feasible

region is a convex polygon
multidimensional

- think of a ball in 3
dimensions, only not round
but with triangle sides

• write objective for each
corner

• convexity means that each
vertex has :

- higher obj neighbors in
the max-obj direction
(red)

- lower obj neighbors in
opposite direction (blue)

max objective
direction

solution
z=36

z=30
z=28

z=24z=23
z=20

z=19 z=18
z=16

z=14
z=13

z=10
z=7 z=7

z=3
z=1

LP - simplex algorithm idea
• feasible region (FR) convexity

means that each vertex has :

- higher obj neighbors in the
max-obj direction (red)

- lower obj neighbors in
opposite direction (blue)

max objective
direction

solution
z=36

z=30
z=28

z=24z=23
z=20

z=19 z=18
z=16

y=14
z=13

z=10
z=7 z=7

z=3
z=1

LP - simplex algorithm idea
• feasible region (FR) convexity

means that each vertex has :

- higher obj neighbors in the
max-obj direction (red)

- lower obj neighbors in
opposite direction (blue)

• idea: start in any corner of FR

max objective
direction

solution
z=36

z=30
z=28

z=24z=23
z=20

z=19 z=18
z=16

y=14
z=13

z=10
z=7 z=7

z=3
z=1

LP - simplex algorithm idea
• feasible region (FR) convexity

means that each vertex has :

- higher obj neighbors in the
max-obj direction (red)

- lower obj neighbors in
opposite direction (blue)

• idea: start in any corner of FR

• “walk” to any adjacent corner
with higher objective

max objective
direction

solution
z=36

z=30
z=28

z=24z=23
z=20

z=19 z=18
z=16

y=14
z=13

z=10
z=7 z=7

z=3
z=1

LP - simplex algorithm idea
• feasible region (FR) convexity

means that each vertex has :

- higher obj neighbors in the
max-obj direction (red)

- lower obj neighbors in
opposite direction (blue)

• idea: start in any corner of FR

• “walk” to any adjacent corner
with higher objective

max objective
direction

solution
z=36

z=30
z=28

z=24z=23
z=20

z=19 z=18
z=16

y=14
z=13

z=10
z=7 z=7

z=3
z=1

LP - simplex algorithm idea
• feasible region (FR) convexity

means that each vertex has :

- higher obj neighbors in the
max-obj direction (red)

- lower obj neighbors in
opposite direction (blue)

• idea: start in any corner of FR

• “walk” to any adjacent corner
with higher objective

• repeat

max objective
direction

solution
z=36

z=30
z=28

z=24z=23
z=20

z=19 z=18
z=16

y=14
z=13

z=10
z=7 z=7

z=3
z=1

LP - simplex algorithm idea
• feasible region (FR) convexity

means that each vertex has :

- higher obj neighbors in the
max-obj direction (red)

- lower obj neighbors in
opposite direction (blue)

• idea: start in any corner of FR

• “walk” to any adjacent corner
with higher objective

• repeat

max objective
direction

solution
z=36

z=30
z=28

z=24z=23
z=20

z=19 z=18
z=16

y=14
z=13

z=10
z=7 z=7

z=3
z=1

LP - simplex algorithm idea
• feasible region (FR) convexity

means that each vertex has :

- higher obj neighbors in the
max-obj direction (red)

- lower obj neighbors in
opposite direction (blue)

• idea: start in any corner of FR

• “walk” to any adjacent corner
with higher objective

• repeat

max objective
direction

solution
z=36

z=30
z=28

z=24z=23
z=20

z=19 z=18
z=16

y=14
z=13

z=10
z=7 z=7

z=3
z=1

LP - simplex algorithm idea
• feasible region (FR) convexity

means that each vertex has :

- higher obj neighbors in the
max-obj direction (red)

- lower obj neighbors in
opposite direction (blue)

• idea: start in any corner of FR

• “walk” to any adjacent corner
with higher objective

• repeat

max objective
direction

solution
z=36

z=30
z=28

z=24z=23
z=20

z=19 z=18
z=16

y=14
z=13

z=10
z=7 z=7

z=3
z=1

LP - simplex algorithm idea
• feasible region (FR) convexity

means that each vertex has :

- higher obj neighbors in the
max-obj direction (red)

- lower obj neighbors in
opposite direction (blue)

• idea: start in any corner of FR

• “walk” to any adjacent corner
with higher objective

• repeat

• stop when there is no higher-
obj neighbor: we found the
solution

max objective
direction

solution
z=36

z=30
z=28

z=24z=23
z=20

z=19 z=18
z=16

y=14
z=13

z=10
z=7 z=7

z=3
z=1

LP examples: Shortest Path as LP

• Graph G=(V,E) with weighted edges given by w

• s=source; t= sink

• distance dt from s to t is maximized (objective) but
each dv restricted to not more than du + edge-w(u,v)

• exercise: explain why this linear program finds the
shortest path from s to t

LP examples: Maximum Flow as LP

• Graph G(V,E), c(u,v) = capacity of edge (u,v)

• s= source, t=sink

• fuv is the flow on edge u,v

• constraints are given by symmetry, and edge
capacities

• objective is the flow from the source

Standard Form

• objective is always “maximize” (not “minimize”)
• all variables are constrained to be positive
• all constraints (other than positive variables) are “⩽”,

none is “⩾”
• book discusses simple steps/arithmetic to get any linear

problem into standard form

Standard Form

• book discusses simple steps/arithmetic to get any
linear problem into standard form
- if objective is "minimize", reverse the objective sign

- if a constraint is "equal to", replace it with 2 constraints "≤" and "≥"
- if a constraint is "≥", reverse the signs to make it "≤"
- if a variable does not have the nonnegativity constraint, replace it

with a difference of two new variables, and add constraints that
these two variables are nonnegative.

Slack Form

• same as standard form, plus...
• ... all constraints (other than x⩾0) are equalities
- book discusses the easy steps to get the system in slack form

• basic variables : right side of constraints, typically
present in objective

• nonbasic variables: left side of constraints, not part of
the objective

Slack Form with matrices

• x⩾0 implicit, no need to write it
• z is the objective to be maximized
• no need for “subject to”, just list the constraints
• B = basic variables set = {3,5,6}
• N = nonbasic variables set = {4,2,4}
• constraints in matrix form Ax≤b

- A= constraints coefficients (matrix); b= constraints value (array)

• objective in matrix form cx
- c = objective coefficients (array); v= free constant in objective

Simplex Algorithm

• N = { nonbasic variables indices};

• B = { basic variables indices};
- N ∪ B = {1, 2, ... , n +m }

• A = constraints coefficients

• c = objective coefficients

• b = constraints value

• v = constant term in the objective (if any)

Simplex Algorithm

• start with a basic feasible solution, for example X=0;

Simplex Algorithm

• start with a basic feasible solution, for example X=0;
• pick a basic variable with positive coefficient in objective, say x1

- increase that basic var until one of the nonbasic x becomes 0
- in our example X6 becomes 0 first, when x1=9; x6 equation called “tight”

Simplex Algorithm

• start with a basic feasible solution, for example X=0;
• pick a basic variable with positive coefficient in objective, say x1

- increase that basic var until one of the nonbasic x becomes 0
- in our example X6 becomes 0 first, when x1=9; x6 equation called “tight”

• exchange/pivot x1 and x6
- rewrite x1 from x6 tight equation

Simplex Algorithm

• start with a basic feasible solution, for example X=0;
• pick a basic variable with positive coefficient in objective, say x1

- increase that basic var until one of the nonbasic x becomes 0
- in our example X6 becomes 0 first, when x1=9; x6 equation called “tight”

• exchange/pivot x1 and x6
- rewrite x1 from x6 tight equation

• recompute nonbasic var x4, x5 and the objective z using the x1 new formula
- update N,B,A,C,b,v : new basic/nonbasic variables, different coefficients, etc

Simplex Algorithm

• start with a basic feasible solution, for example X=0;
• pick a basic variable with positive coefficient in objective, say x1

- increase that basic var until one of the nonbasic x becomes 0
- in our example X6 becomes 0 first, when x1=9; x6 equation called “tight”

• exchange/pivot x1 and x6
- rewrite x1 from x6 tight equation

• recompute nonbasic var x4, x5 and the objective z using the x1 new formula
- update N,B,A,C,b,v : new basic/nonbasic variables, different coefficients, etc

Simplex Algorithm

• repeat: pick a basic variable with positive coeficient in objective,
say x3
- increase that basic var until one of the nonbasic x becomes 0: X5 becomes 0

first; x5 equation is “tight”

• exchange/pivot x3 and x5
- rewrite x3 from x5 tight equation
- recompute nonbasic var x1, x4 and the objective z using the x3 new formula
- update N,B,A,C,b,v : new basic/nonbasic variables, different coefficients, etc

Simplex Algorithm

• repeat: pick a basic variable with positive coeficient in objective,
say x3
- increase that basic var until one of the nonbasic x becomes 0: X5 becomes 0

first; x5 equation is “tight”

• exchange/pivot x3 and x5
- rewrite x3 from x5 tight equation
- recompute nonbasic var x1, x4 and the objective z using the x3 new formula
- update N,B,A,C,b,v : new basic/nonbasic variables, different coefficients, etc

Simplex Termination
• four possibilities:
• 1) didnt start (a feasible initial solution was not given)
- return "infeasible"

• 2) at some iteration, all basic variable have negative
coefficients
- STOP: solution is obtained by setting the basic vars to 0, and compute the

original variables

• 3) at some iteration, no constraint x⩾0 is violated by
increasing a basic var
- STOP: the system is unbounded (objective can be increased to ∞)

• 4) Cycling back and forth between variable-values with
no progress on objective
- fix the algorithm, so this never happens

Simplex termination: cycling

• its possible that SIMPLEX starts cycling between
some variables, without making progress
- this can occur when multiple solutions realizes the maximum

objective

• how to avoid this behavior: Bland's rule
- when choosing variables, if ties exist, choose variables with the

smallest index

- thats when choosing basic var to increase

- or when constraints become tight

SIMPLEX running time

• SIMPLEX terminates after at most iterations
- Assuming a feasible initial solution

- using Bland's rule to break ties

• exponential running time (worst case), but quite
efficient in practice.

• under certain probabilistic assumptions of the input,
SIMPLEX runs in expected polynomial time.

• variants of SIMPLEX on GRAPH/NEWORK problems
run in polynomial time
- shortest-paths, maximum-flow, minimum-cost-flow problems

Initial Feasible Solution

• initial feasible solution sometimes easy, set X=0

• sometimes tricky

• use a different "auxiliary" LP to determine if problem
- is infeasible (no solution)

- is feasible, obtain a slack form and initial feasible solution

Initial Feasible Solution

• Auxiliary LP: add variable x0

- constraints add -x0 to original LP, x0>0

- objective is -x0

• The original LP is feasible if and only if the auxiliary
LP has the optimal solution with max objective x0=0
- optimal solution to aux LP with x0=0 includes a feasible solution to

original LP in x1, x2, x3,...

- the auxiliary LP has a feasible initial solution when x0 small
enough; from there it can be solved using SIMPLEX

Fundamental Theorem of LP

• Any linear program, either:
- has an optimal solution with finite objective value. SIMPLEX returns

such a solution (might be one of the many optimal solutions)

- is infeasible, or no solution satisfies the constraints. SIMPLEX
returns "infeasible"

- is unbounded (objective can reach any high value). SIMPLEX returns
"unbounded"

