
RSA Cryptography

basics of security/cryptography

• Bob encrypts message M into ciphertext C=P(M)
using a public key; Bob sends C to Alice

• Alice decrypts ciphertext back into M using a private
key (secret) M = S(C)

• anyone else listening gets C but cannot decrypt to M
without the private key

Modulo arithmetics
• all variables in this lecture are integers

• "x=y mod n" means x-y is a multiple of n
- for example 22=2 mod 5, since 22-2=20 is a multiple of 5

- x and y have the same reminder on division with n

• a=b mod n and c=d mod n imply
- a+c = b+d mod n

- a*c = b*d mod n

• exponentiation works too, logarithm a bit tricky
- an = a*a*a...*a mod n //product of a n times

• ax=b mod n equation solvable if all common factors of and n
are also factors of b (see 31.4 in the book)

• GCD (greatest common divisor) solution via Extended-Euclid
algorithm

RSA

• n=p*q; p,q large prime numbers

• ϕ(n) = (p-1)(q-1)

• e = small integer, relatively prime with ϕ(n)

• d = inverse of e modulo ϕ(n)
- d*e = 1 mod ϕ(n)

• encoding of message M : C = P(M)= Me mod n

• decoding of ciphertext C : M = S(C) = Cd mod n

Demo goes here.

RSA demo

• http://www.screencast.com/t/MLcTfBesFvo7

http://www.screencast.com/t/MLcTfBesFvo7
http://www.screencast.com/t/MLcTfBesFvo7

RSA is correct - prelim 1
• Fermat theorem :

- if p prime, and a≠0 mod p,

- then ap-1 = 1 mod p

• proof (idea)
- set S={1, 2, 3,...p-1} is the same as set T= {1a mod p, 2a mod p, 3a mod p, ... (p-1)a mod

p. Proof by contradiction: if fa and ga mod p are the same number in S, then
 fa = ga mod p => p| a(f-g)=> p|(f-g) => f=g

- in S every number can be paired up with its inverse mod p (also in S), so that we can
have (p-1)/2 pairs of u*v=1 mod p. That means :
1*2*3...*(p-1) mod p = (p-1)! mod p = 1 mod p

- 1= (p-1)! mod p = ∏(elem in S) mod p
= ∏(elem in T) mod p = 1a*2a*3a*...*(p-1)a mod p
= (p-1)! ap-1 mod p = ap-1 mod p

RSA is correct - prelim 2

• Chinese Reminder Theorem (simplified) :
- p,q primes; a fixed integer

- x = a mod p ; x = a mod q

- then x = a mod p*q

• proof (idea)
- x = a mod p => x = up+a; similarly x=vq+a

- x = up+a = vq+a => up=vq; since p,q primes => u=zq

- thus x = up+a = zpq+a = a mod p*q

RSA is correct - proof
• e,d inverse to each other mod (p-1) (q-1) means

ed = 1+k(p-1)(q-1)

• Alice decrypting result is
Cd mod n = (Me mod n)d mod n = Med mod n.

• From Fermat Theorem, using ed = 1+k(p-1)(q-1)
- Med = M mod p

- Med = M mod q

• From Chinese Reminder Theorem
n=p*q; p,q primes; Med = M mod p; Med = M mod q

then Med = M mod n

- thus Alice gets back the original message M

RSA easy to implement

• both Bob and Alice only have to execute a modular
exponentiation of a given power:
- given x, compute xk mod n

• such exponentiation can be implemented efficiently,
even for large numbers

Why RSA is secure

• Only known way to break RSA is to factorize n into
factors n=p*q
- p, q unknown

- there might be other ways to break RSA, but currently unknown

• Factorization is hard when p and q are large
- although primality testing is easy

- See the blog page “Factoring Again” (pdf provided) by Richard J.
Lipton

http://rjlipton.wordpress.com/2009/04/03/factoring-again-no-joking/
http://rjlipton.wordpress.com/2009/04/03/factoring-again-no-joking/

How to find large primes p
• pick a random large number (1024 bits) and test if prime

How to find large primes p
• pick a random large number (1024 bits) and test if prime

• FERMAT (p, t≠0,1 mod p)
- if tp-1 ≠ 1 (mod p) RETURN 0; // definitely p not prime due to Fermat's theorem

- if tp-1 = 1 (mod p) RETURN 1 //we dont know, but we have some belief p might be prime

How to find large primes p
• pick a random large number (1024 bits) and test if prime

• FERMAT (p, t≠0,1 mod p)
- if tp-1 ≠ 1 (mod p) RETURN 0; // definitely p not prime due to Fermat's theorem

- if tp-1 = 1 (mod p) RETURN 1 //we dont know, but we have some belief p might be prime

• this procedure can be implemented efficiently by extracting powers of 2 from
p-1 first (see book page 969)

How to find large primes p
• pick a random large number (1024 bits) and test if prime

• FERMAT (p, t≠0,1 mod p)
- if tp-1 ≠ 1 (mod p) RETURN 0; // definitely p not prime due to Fermat's theorem

- if tp-1 = 1 (mod p) RETURN 1 //we dont know, but we have some belief p might be prime

• this procedure can be implemented efficiently by extracting powers of 2 from
p-1 first (see book page 969)

• MILLER-RABIN primality testing (p, s)
- for s independent rounds

- pick t = random (2, p-1)

- if (FERMAT(t,p)==0) RETURN "not prime" // definitely correct

- return "prime" // rarely incorrect for large s

How to find large primes p
• pick a random large number (1024 bits) and test if prime

• FERMAT (p, t≠0,1 mod p)
- if tp-1 ≠ 1 (mod p) RETURN 0; // definitely p not prime due to Fermat's theorem

- if tp-1 = 1 (mod p) RETURN 1 //we dont know, but we have some belief p might be prime

• this procedure can be implemented efficiently by extracting powers of 2 from
p-1 first (see book page 969)

• MILLER-RABIN primality testing (p, s)
- for s independent rounds

- pick t = random (2, p-1)

- if (FERMAT(t,p)==0) RETURN "not prime" // definitely correct

- return "prime" // rarely incorrect for large s

• Error probability for MILLE-RABIN (return "prime" on non
prime p) is at most 2-s

How many primes are there?

• there are infinitely many primes

• π(n) = number of primes smaller or equal to n

• when n is big, π(n) ≈ n/ ln (n)
- for example n=109

- number of primes is up to 109 is about 109/ln(109) = 48,254,942

