
Linear Programming Notes X:

Integer Programming

1 Introduction

By now you are familiar with the standard linear programming problem. The
assumption that choice variables are infinitely divisible (can be any real number)
is unrealistic in many settings. When we asked how many chairs and tables
should the profit-maximizing carpenter make, it did not make sense to come up
with an answer like “three and one half chairs.” Maybe the carpenter is talented
enough to make half a chair (using half the resources needed to make the entire
chair), but probably she wouldn’t be able to sell half a chair for half the price of
a whole chair. So, sometimes it makes sense to add to a problem the additional
constraint that some (or all) of the variables must take on integer values.

This leads to the basic formulation. Given c = (c1, . . . , cn), b = (b1, . . . , bm),
A a matrix with m rows and n columns (and entry aij in row i and column j),
and I a subset of {1, . . . , n}, find x = (x1, . . . , xn)

max c · x subject to Ax  b, x � 0, xj is an integer whenever j 2 I. (1)

What is new? The set I and the constraint that xj is an integer when j 2 I.
Everything else is like a standard linear programming problem. I is the set of
components of x that must take on integer values. If I is empty, then the integer
programming problem is a linear programming problem. If I is not empty but
does not include all of {1, . . . , n}, then sometimes the problem is called a mixed

integer programming problem. From now on, I will concentrate on problems in
which I = {1, . . . , n}.

Notice that aside from the integer constraints, the constraints in the problem
are linear. For this reason, sometimes problem (1) is called a linear integer
programming problem. I won’t use this term because we won’t talk about non-
linear integer programming problems.

Adding constraints lowers your value. That is, the bigger is the set I (the
more xj that must take on integer values), the smaller the maximum value of
(1). This follows because each additional integer constraint makes the feasible
set smaller. Of course, it may be that case that adding integer constraints
does not change the value. If we solve the carpenter’s problem (without integer
constraints) and come up with a solution that involves whole number values,
then adding the integer constraints changes nothing.

We have developed a beautiful theory for linear programs. It would be great
if we still use the theory for linear programs. In general, this is not possible.
Integer programming problems are typically much harder to solve than linear
programming problems and there are no fundamental theoretical results like
duality or computational algorithms like the simplex algorithm to help you un-
derstand and solve the problems. After this sad realization, the study of integer
programming problems goes in two directions. First, people study specialized
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model. These problems can be solved as linear programming problems (that
is, adding the integer constraints does not change the solution). In many cases
they can be solved more e�ciently than general linear programming problems
using new algorithms. Second, people introduce general algorithms. These al-
gorithms are not as computationally e�cient as the simplex algorithm, but can
be formulated generally.

The theory of linear programming tells you what you should look for to find
an easy integer programming problem. For a linear programming problem, we
know that if a solution exists, it exists at a corner of the feasible set. Suppose
that we knew that the corners of the feasible set were always at points that had
each component equal to an integer. In that case we could solve the integer
programming problem as a linear programming problem (ignoring the integer
constraints) and be confident that the solution would automatically satisfy the
integer constraints.

Elsewhere in the notes, when I talk about the transportation problem, the
assignment problem, and some network models, I will describe several types of
problem that have this nice feature.

At this point, I want to briefly describe some problems that can be formu-
lated as integer programming problems.

1. The Transportation Problem Given a finite number of suppliers, each with
fixed capacity, a finite number of demand centers, each with a given de-
mand, and costs of transporting a unit from a supplier to a demand center,
find the minimum cost method of meeting all of the demands without ex-
ceeding supplies.

2. Assignment Problem Given equal numbers of people and jobs and the value
of assigning any given person to any given job, find the job assignment
(each person is assigned to a di↵erent job) that maximizes the total value.

3. Shortest Route Problem Given a collection of locations the distance be-
tween each pair of locations, find the cheapest way to get from one location
to another.

4. Maximum Flow Problem Given a series of locations connected by pipelines
of fixed capacity and two special locations (an initial location or source
and a final location or sink), find the way to send the maximum amount
from source to sink without violating capacity constraints.

5. Knapsack Problem Given a knapsack with fixed capacity and a collection
of items, each with a weight and value, find the items to put in the knap-
sack that maximizes the total value carried subject to the requirement
that that weight limitation not be exceed.

2 The Knapsack Problem

At this point, I will formulate the knapsack problem. Doing so involves intro-
ducing a trick that is useful in the formulation of many integer programming
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problems. The data of the knapsack problem are the number of items, N , the
capacity of the knapsack, C, and, for each j = 1, . . . , N , the value vj and weight
wj of item j. N is a positive integer, C, vj , wj > 0. Given this data, formulation
(as usual) requires that you name the variables and then express the objective
function and constraints in terms of the variables. Here is the trick. You need
a variable that describes whether you are putting item j in the knapsack. So I
will invent it. Let xj be a variable that is equal to 1 if you place item j in the
knapsack and equal to 0 if you do not. Notice that this is an integer-valued vari-
able (it takes on the values 0 and 1, but not anything in between). The reason
that this is an inspired choice of variable, is that it permits you to express the
constraints and the objective function. Suppose that you know x = (x1, . . . , xN )
and all of the xj take on the value 0 or 1.

PN
j=1 vjxj is equal to the value of

what you put in the knapsack.
PN

j=1 wjxj is equal to the weight of what you
put in the knapsack. These assertions require just a bit of thought. When xj

is either zero or one and its value is interpreted as whether you carry item j or
not, then

PN
j=1 vjxj is the same as adding up the vj for which xj is equal to

one (when xj = 1, vjxj = vj and when xj = 0, vjxj = 0). Similarly,
PN

j=1 wjxj

is just the weight placed in the knapsack. It follows that the problem is:

max
NX

j=1

vjxj

subject to
NX

j=1

wjxj  C,

0  xj  1,

and xj integer.
In this formulation, except for the restriction that xj takes an integer values,

the constraints are linear. Notice that by requiring that xj both be between 0
and 1 and be an integer, we are requiring that xj be either zero or 1.

There is a sense in which the knapsack problem (and all integer program-
ming problems) are conceptually easier than linear programming problems. For
an integer programming problem in which all variables are constrained to be
integers and the feasible set in bounded, there are only finitely many feasible
vectors. In the knapsack problem, for example, the things that are conceivably
feasible are all subsets of the given items. If you have a total of N items, that
means that there are only 2N possible ways to pack the knapsack. (If N = 2
the possible ways are: take nothing, take everything, take only the first item,
take only the second item.) Of course, some of these possible ways may be too
heavy. In any event, you can imagine “solving” a particular knapsack problem
(knowing the capacity, values, and weights) by looking at each possible subcol-
lection of items, and selecting the one that has the most value as long as the
value in no greater than C. This is conceptually simple. At first glance, you
cannot do something like this for a linear programming problem because the
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set of feasible vectors is infinite. Once you know that the solution of a linear
programming problem must occur at a corner and that feasible sets have at
most finitely many corners, this no longer is a problem.

The trouble with this approach (“enumeration”) is that the number of things
that you need to check grows rapidly. (220 is over one million.) It would be nice
to be able to get to the solution without checking so many possibilities. You can
imagine a lot of simple rules of thumb: Always carry the most valuable thing if
it fits. Always carry the lightest thing if it fits. Or, slightly more subtle, order
the items in terms of e�ciency (vj/wj), start with the most e�cient item, and
keep taking items as long as they fit. These rules are simple to carry out. That
is, they will give you an easy way to pack the knapsack. Unfortunately, there
is no guarantee that they will provide a solution to the problem. That is, there
may be a di↵erent way to pack the knapsack that gives you a higher value.

3 The Branch and Bound Method

At this point I will describe a standard procedure for solving integer program-
ming problems called the branch and bound method. The idea is that you can
always break an integer programming problem into several smaller problems. I
will illustrate the method with the following linear programming problem:

max 2x1 + 4x2 + 3x3 + x4 (0)
subject to 3x1 + x2 + 4x3 + x4  3 (1)

x1 � 3x2 + 2x3 + 3x4  3 (2)
2x1 + x2 + 3x3 � x4  6 (3)

with the additional constraint that each variable be 0 or 1.
Now we find an upper bound for the problem (this is the “bound” part of

“branch and bound”). There are many ways to do this, but the standard method
is to solve the problem ignoring the integer constraint. This is called “relaxing”
the problem. When you do this the solution is: x = (x1, . . . , x4) = (0, 1, 1/4, 1)
with value 23/4. (You can check this using excel or complementary slackness.)
This means that the value to the integer programming problem is no more than
23/4. (Again, the theory behind this assertion is that relaxing a constraint
cannot make the value of a maximum problem go down.) Actually, you can
say more. In the integer programming problem, none of the variables can take
on a fractional value. If all of the variables are integers, then the value will be
an integer too. So the value cannot be 23/4. At most it can be 5, the largest
integer less than on equal to 23/4.

At this point, therefore, we know that the value of the problem cannot be
greater than 5. If we could figure out a way to make the value equal to 5 we
would be done. It does not take a genius to figure out how to do this: Set x3 = 0
(instead of 1/4). If x2 = x4 = 1 and x1 = 0 (as before), then we have something
that is feasible for the original integer program and gives value 5. Since 5 is the
upper bound for the value, we must have a solution. In practice, you can stop
right now. To illustrate the entire branch and bound method, I will continue.
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Suppose that you were not clever enough to realize that there was a feasible
way to attain the upper bound of 5. In that case, you would need to continue
with the analysis. The goal would be to either identify a way to get value 5
or to reduce the upper bound. The method involves “branching.” The original
problem has four variables. Intuitively, it would be easier to solve it if had three
variables. You can do this by looking at two related subproblems involving
three variables. Here is a trivial observation: When you solve the problem,
either x1 = 0 or x1 = 1. So if I can solve two subproblems (one with x1 = 0
and the other with x1 = 1), then I can solve the original problem.

I obtain subproblem I by setting x1 = 0. This leads to

max 4x2 + 3x3 + x4 (0)
subject to x2 + 4x3 + x4  3 (1)

� 3x2 + 2x3 + 3x4  3 (2)
x2 + 3x3 � x4  6 (3)

I obtained this problem from the original problem by setting x1 = 0. The second
problem, subproblem II, comes from setting x1 = 1 (I simplify the expression by
(a) ignoring the constant 2 in the objective function and moving the constants
to the right-hand sides of the constraints.)

max 4x2 + 3x3 + x4 (0)
subject to x2 + 4x3 + x4  0 (1)

� 3x2 + 2x3 + 3x4  2 (2)
x2 + 3x3 � x4  4 (3)

This constitutes the “branching” part of the branch and bound method. Now
comes to the bounding part again. The solution to the relaxed version of sub-
problem I is the same as the solution to the relaxed version of the original
problem. (I know this without additional computation because subproblem I’s
solution can be no higher than this, but x is feasible for subproblem I). Sub-
problem II has the solution (1, 0, 0, 0). You can check this using excel or you can
simply notice that the only way to satisfy the first constraint (provided that
x � 0) is to set each of the variables equal to zero.

The story so far: You have looked at the original problem and decided that
the value of the relaxed version of the problem is 23/4. You deduced that the
value of the original problem is no more than 5. You broke the original problem
into two subproblems. In the first, x1 = 0 and the value is no more than 5. In
the second, x1 = 1 and the value is no more than 2. In fact, you have solved
the second subproblem because the solution to the relaxed problem does not
violate the integer constraints.

At this point, in general, you would continue to break up the two subprob-
lems into smaller problems until you could attain the upper bound. In the
example, you have already solved subproblem II, so you need only continue
with subproblem I.

How to you solve Subproblem I? You branch. You create Subproblem I.I in
which x2 = 0 and Subproblem I.II in which x2 = 1. At this point the remaining
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problems are probably easy enough to solve by observation: x3 = 0 and x4 = 1
for Subproblem I.I. (This means that the possible solution identified by solving
subproblem I.I is (0, 0, 0, 1) with value 1.) For Subprogram I.II the solution is
also x3 = 0 and x4 = 1, but to get to this subproblem we set x2 = 1, so the
possible solution identified from this computation is (0, 1, 0, 1) with value 5. (If
you do not see how I obtained the values for x3 and x4, then carry out the
branching step one more time.)

At this point, we have the following information:

1. The value of the problem is no more than 5.

2. There are three relevant subproblems.

3. The value of Subproblem II is 2.

4. The value of Subproblem I.I is 2.

5. The value of Subproblem I.II is 5.

Consequently, Subproblem I.II really does provide the solution to the original
problem.

This exercise illustrate the branch-and-bound technique, but it does not
describe all of the complexity that may arise. Next I will describe the technique
in general terms. Finally, I will illustrate it again.

I will assume that you are given an integer programming maximization prob-
lem with n variables in which all variables can take on the values 0 or 1. I will
comment later on how to modify the technique if some variables are less re-
stricted (either because they can take on the values of other integers or because
they can take on all values).

1. Set v = �1.

2. Bound the original problem. To do this, you solve the problem ignoring
the integer constraints and round the value down to the nearest integer.

3. If the solution to the relaxed problem in Step II satisfies the integer con-
straints, stop. You have a solution to the original problem. Otherwise,
call the original problem a “remaining subproblem” and go to Step IV.

4. Among all remaining subproblems, select the one created most recently.
If more than one has been created most recently, pick the one with the
larger bound. If they have the same bound, pick randomly. Branch from
this subproblem to create two new subproblems by fixing the value of the
next available variable1 to either 0 or 1.

5. For each new subproblem, obtain its bound z by solving a relaxed version
and rounding the value down to the nearest integer (if the relaxed solution
is not an integer).

1
You start by fixing the value of x1. At each point, if you have assigned values to the

variables x1, . . . , xk, but not xk+1, then xk+1 is the next variable.
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6. Attempt to fathom each new subproblem. You can do this in three ways.

(a) A problem is fathomed if its relaxation is not feasible.
(b) A problem is fathomed if its value is less than or equal to v.
(c) A problem is fathomed if its relaxation has an integer solution.

All subproblems than are not fathomed are remaining subproblems.

7. If one of the subproblems is fathomed because its relaxation has an integer
solution, update v by setting it equal to the largest of the old value of v

and the value of the largest relaxation with an integer solution. Call a
subproblem that attains v the candidate solution.

8. If there are no remaining subproblems, stop. The candidate solution is
the true solution. (If you stop and there are no candidate solutions, then
the original problem is not feasible.) If v is equal to the highest upper
bound of all remaining subproblems, stop. The candidate solution is the
true solution. Otherwise, return to Step IV.

Steps I, II, and III initialize the algorithm. You start by “guessing” that the
value of the problem is �1. In general, v is your current best feasible value.
Next you get an upper bound by ignoring integer constraints. If it turns out
that ignoring integer constraints does not lead to non-integer solutions, you are
done. Otherwise, you move to Step IV and try to solve smaller problems. In
Step IV you first figure out how to branch. This involves taking a subproblem
that has yet to be solved or discarded and simplifying it by assigning a value
to one of the variables. When variables can take on only the values 0 or 1, this
creates two new problems. In Step V you find an upper bound to the value
of these new problems by ignoring integer constraints. In Step VI you try to
“fathom” some of the new problems. You can fathom a new problem for three
reasons. First, you can fathom a problem if its relaxation is not feasible. If
the relaxation is not feasible, then the problem itself is not feasible. Hence it
cannot contain the solution to the original problem. Second, you can fathom
the problem if its upper bound is no higher than the current value of v. In
this case, the problem cannot do better than your current candidate solution.
Finally, you fathom a problem if the relaxation has an integer solution. This
case is di↵erent from the first two. In the first two cases, when you fathom a
problem you discard it. In the third case, when you fathom a problem you put
it aside, but it is possible that it becomes the new candidate solution. In Step
VII you update your current best feasible value, taking into account information
you have learned from problems you recently fathomed because you found their
solutions (third option in Step VI). In Step VIII you check for optimality. If you
have fathomed all of the problems, then you have looked at all possible solutions.
It is not possible to do better than your current candidate. (If you do not have
a current candidate it is because you never managed to solve a subproblem. If
you can eliminate all remaining subproblems without finding a solution, then

7



the feasible set of the original problem must have been empty.) If you have
not fathomed all of the problems, then you return to Step IV and try to do so.
Since eventually you will assign values to all variables, the process must stop
in a finite number of steps with a solution (or a proof that the problem is not
feasible).

The first example did not illustrate fathoming. Here is another example.
Consider a knapsack problem with 6 items. The corresponding values are

v = (v1, v2, . . . , v6) = (1, 4, 9, 16, 25, 36) and weights are w = (w1, w2, . . . , w6) =
(1, 2, 3, 7, 11, 15) and the capacity is 27. If you solve the original problem without
integer constraints you obtain: (0, 0, 1, 1, 2/11, 1) with value 65 6/11. 65 (which
is an integer) becomes your new upper bound. Since the relaxed solution is
not a solution, you must continue to the branching step. The branching step
generates two problems, one in which x1 = 0 and the other in which x1 = 1. In
the first case, the upper bound is 65 as before. In the second case, the solution
to the relaxed problem is (1, 0, 1, 1, 1/11, 1) with value 64 3/11, which rounds
down to 64. Unfortunately, you cannot fathom anything.

You return to the branching step with two remaining subproblems. The one
with the higher upper bound has x1 = 0. So you branch on this problem by
setting x2 = 0 and x2 = 1. In the first case the solution to the problem is
(0, 0, 1, 1, 2/11, 1) with value 65. In the second case, the solution to the problem
is (0, 1, 1, 1, 0, 1) and has value 65. Notice that this problem is fathomed (because
the solution to the relaxed problem is in integers). I can update v. I have a
solution to the original problem because I attained the upper bound with a
feasible vector. Further work is unnecessary.

4 Shortest Route Problem

In the Shortest Route Problem you are told a series of locations, 0, 1, 2, . . . T .
Location 0 is the “source” or starting point. Location T is the “sink” or target.
You are also told the cost of going from location i to location j. This cost is
denoted c(i, j). I will assume that c(i, j) � 0, but the cost maybe infinite if it is
impossible to go directly from i to j. I do not assume that there is a direction
or order to the locations. It may be possible to go from 1 to 3 and also from 3
to 1 (and the costs may be di↵erent: c(1, 3) need not be equal to c(3, 1)).

This problem is interesting mathematically because it has an easy to under-
stand algorithmic solution. Here it is.

Step I Assign a permanent laber of 0 to the source.

Step II Assign a temporary label of c(0, i) to location i.

Step III Make the minimum temporary label a permanent laber (if the minimum
occurs at more than one location, then all relevant labels may become
permanent). Denote by P the set of locations with permanent labels;
denote the label of location i by l(i) (this label may be temporary or
permanent). If all locations have permanent labels, then stop.
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Step IV Let each location that does not have a permanent label get a new tempo-
rary label according to the formula:

l(j) = min
i2P

(l(i) + c(i, j)) .

To compute l(j) you need to compare only two things: the old temporary
label and the cost of getting to j directly from the most recently labeled
nodes.

Step V If the target has a permanent label, stop. This label is equal to the
minimum cost. Otherwise, return to Step III.

The intuition for the algorithm is that a node’s label is an upper bound for
the minimum cost of getting from the source to that node. A permanent label
is guaranteed to be the true minimum cost of the shortest route (I prove this
below).

Here is an example. The following figure represents a railroad network. The
numbers beside each arc represent the time that it takes to move across the arc.
Three locomotives are needed at point 6. There are two locomotives at point 2
and one at point 1. We can use the shortest route algorithm to find the routes
that minimize the total time needed to move these locomotives to point 6.⌫� �⇣⌘ ✓◆2

1

✏✏

1

��>
>>

>>
>>⌫� �⇣⌘ ✓◆1

10

@@������� 3 //

5

��>
>>

>>
>>

⌫� �⇣⌘ ✓◆3 3 //

2

✏✏

⌫� �⇣⌘ ✓◆4

1

✏✏⌫� �⇣⌘ ✓◆5 4 //⌫� �⇣⌘ ✓◆6

We must solve two shortest route problems. The shortest route from (1) to
(6) and the shortest route from (2) to (6). To use the algorithm, write temporary
labels is the table below.

Iteration 1 2 3 4 5 6
1 0⇤ 10 3⇤⇤ 1 5 1
2 0⇤ 10 3⇤ 6 5⇤⇤ 1
3 0⇤ 10 3⇤ 6⇤⇤ 5⇤ 9
4 0⇤ 10 3⇤ 6⇤ 5⇤ 7⇤⇤
5 0⇤ 10⇤⇤ 3⇤ 6⇤ 5⇤ 7⇤

The above is a table of labels. Permanent labels are starred and the newest
permanent label in each iteration has two stars. All other labels are temporary.

In the first iteration, the labels are just c(0, j). In the second iteration, the
minimum cost temporary label becomes permanent. The new temporary labels
are computed using an extra possible route, namely the direct route from the
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new permanent label. For example, the label of location (6) decreases from 9 to
7 in Iteration 4 because at that point in the algorithm the possibility of getting
from (6) from (4) becomes available.

Solution: The shortest distance from (1) to (6) is 7. The route is found by
working backwards. Look in the column corresponding to Node (6). Start at the
bottom and move until the first time the cost changes. In this example, the cost
changes from 7 to 9 between Iterations 3 and 4. Find the node that obtained
its permanent label in Iteration 3 (or, generally, when the cost changes). In
the example, this is Node (4). This means that the “last stop” before getting
to Node (6) is Node (4). Continue to find where the route was immediately
before Node (4). Do this by looking in the column corresponding to Node (4)
and seeing the last time that the cost changed. In this case that last time the
cost changed was between Iteration 1 and Iteration 2. It follows that the route
stopped at Node (3) (which was permanently labeled in Iteration 1). Hence the
shortest route must be: (1) ! (3) ! (4) ! (6).

We also need to find the shortest route from (2) to (6). In this case it is not
possible to pass through (1).

Iteration 2 3 4 5 6
1 0⇤ 1⇤⇤ 1⇤⇤ 1 1
2 0⇤ 1⇤ 1⇤ 3 2⇤⇤
3 0⇤ 1⇤ 1⇤ 3⇤⇤ 2⇤

In the first iteration, we can put a permanent label on both Node (3) and
Node (4) since both are minimum cost temporary labels.

From the table we see that the shortest distance from (2) to (6) is 2. The
shortest route is (2) ! (4) ! (6). Since we have two locomotives at Node (2)
and one at Node (1), the total distance is 7 + 4 = 11.

In general, why does the algorithm work? First, it stops in a finite number of
iterations. (Since at least one more position receives a permanent label at every
iteration of the algorithm and there are a finite number of nodes in the network,
after a finite number of steps each node has a permanent label.) Second, and
more important, you can show by induction that a permanent label is the cost
of a shortest route. At Iteration 1 this is obvious. For all future iterations, it is
true. To see this, notice that the newest permanent label (say at Location (N))
gives a cost that is lower than any other route through an existing temporary
label. If this label does not represent the cost of a shortest route, then the true
shortest route to Location (N) must pass through a node that does not yet have
a permanent label – at a cost greater than that of the minimum temporary label
– before reaching Location (N). Since all cost are nonnegative, this route must
cost at least as much as the temporary label at Location (N).

You might ask: What is this problem doing in a discussion of integer pro-
gramming problems?

Given a shortest route problem with costs c(i, j), Node (0) is the source and
Node (N) is the sink. Let x(i, j) = 1 if the path goes from i directly to j and 0
otherwise. The following problem describes the shortest route problem:
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Find x(i, j) to solve:

min
NX

i=0

NX

j=0

c(i.j)x(i, j)

subject to:
NX

i=0

x(i, j) =
NX

k=0

x(j, k)

for j = 1, . . . N � 1,

NX

k=1

x(0, k) = 1,

N�1X

i=0

x(i,N) = 1,

and x(i, j) either zero or one. The first constraint says that the number of
paths leading to any Node (j) is equal to the number of paths leading out of the
node. The second constraint says that at exactly one of the edges in the path
must come from the source. The third constraint says that exactly one of the
edges in the path must go to the sink. The objective function sums up the cost
associated with all of the edges in the path. This formulation requires that all
of the costs be non negative.

5 Minimal Spanning Tree Problem

In the minimal spanning tree problem, each edge from Node (i) to Node (j)
has a cost (c(i, j)) associated with it and the edge (i, j) represents a way of
connecting Node (i) to Node (j). An arc could represent an underground cable
that connects a pair of computers. We want to find out a way to connect all of
the nodes in a network in a way that minimizes total cost (the sum of the costs
of all of the edges used). These definitions explain the name of the problem:
A tree is just a collection of edges that is connected and contains no cycles.
[This definition has two undefined terms: connected and cycles. The names of
these terms are suggestive. Here are definitions, for the pedants: A collection
of nodes is connected if you can go from any node to any other node using
edges in the collection. A cycle is a collection of edges that starts and ends at
the same node.] A spanning tree is a tree that contains all of the nodes in a
network. A minimal spanning tree is a spanning tree that has the smallest
cost among all spanning trees.

There is a simple algorithm for finding minimal spanning trees.

Step I Start at any node. Join that node to its closest (least cost) neighbor. Put
the connecting node into the minimal spanningc tree. Call the connected
nodes C.
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Step II Pick a node j

⇤ that is not in C that is closest to C (that is, Node (j⇤)
solves: min{c(i, j) : i 2 C, j /2 C}). Put Node (j⇤) into C and put the
cheapest edge that connects C to j⇤ into the minimal spanning tree.

Step III Repeat this process until a spanning tree is found. If there are N nodes
in the network, then the minimal spanning tree with have N � 1 edges.

If ties arise in this algorithm, then they may be broken arbitrarily. The
algorithm is called greedy because it operates by doing the cheapest thing at
each step. This myopic strategy does not work to solve all problems. I will show
that it does work (to find the minimum cost spanning tree) for this particular
problem.

To see how the algorithm works, consider the following example. Suppose
that five social science departments on campus each have their own computer
and that the campus wishes to have these machines all connected through direct
cables. Suppose that the costs of making the connections are given in the net-
work, below. (An omitted edge means that a direct connection is not feasible.)
The minimum spanning tree will determine the minimum length of cable needed
to complete the connections. ⌫� �⇣⌘ ✓◆1 1 ⌫� �⇣⌘ ✓◆2
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To use the algorithm, start at Node (1). Add Node (2) into the set of
connected nodes (because c(1, 2) is smaller than c(1, j) for all other j. This
creates the first edge in the minimal spanning tree, which a labeled A below.
The minimum cost of connecting Node (3) or Node (4) or Node (5) to Node (1)
or Node (2) is two. This minimum is attained when Node (5) is added. Hence
we should connect Node (5) next and add either (1, 5) or (2, 5) into the tree. I
added (1.5) and called this edge B. The third step connects Node (3) and adds
the edge (3, 5) and the final step connects Node (4) and adds the edge (4.5). The
diagram below indicates the minimal spanning tree using squiggly connecting
segments to indicate the edges in the tree. The letters (in alphabetical order)
indicate the order in which new edges were added to the tree. The total cost of
the tree is nine.
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While the algorithm is intuitively appealing (I hope), it requires an argument
to show that it actually identifies a minimal spanning tree. Here is the argument.
Denote by Nt the nodes connected in the t

th of the algorithm and by N

0
t all of

the other nodes. I want to show that each edge added to the tree is part of a
minimal spanning tree. Let S be a minimal spanning tree. If the algorithm does
not generate S, then there must be a fist step at which it fails. Call this step n.
That is, the edges identified in the first n� 1 steps of the algorithm are part of
S, but the edges identified in the first n steps are not. Take the edge added at
the n

th step of the algorithm. This edge connects Nn to N

0
n. Put it into the tree

in place of the edge connecting Nn to N

0
n in S. This leads to a new spanning

tree S

0, which must also be minimal (by construction, the algorithm picks the
cheapest way to connect Nn to N

0
n). Consequently, there exists a minimal

spanning tree that contains the first n nodes added using the algorithm. As
my argument works for any n, it proves that the algorithm generates a minimal
spanning tree.

There is another algorithm that solves the Minimal Spanning Tree problem.
At each stage of the algorithm you pick the cheapest available branch (if there
is a tie, break it arbitrarily), provided that adding this branch to your existing
tree does not form a cycle. If adding the cheapest branch does create a cycle,
then do not add that branch and move on to the next cheapest.

Both algorithms presented to solve the Minimal Spanning Tree Problem are
“greedy” in the sense that they work by doing the myopically optimal thing
without looking for future implications. Problems that can be solved using such
an algorithm are combinatorially easy (in the sense that it is computationally
feasible to solve large versions of the problem). Not all problems can be solved
by a greedy algorithm and the proof that a greedy algorithm works is not always
simple. Here are some examples.

Consider the problem of making change using standard U.S. coins (penny,
nickel, dime, quarter, and if you wish fifty cent piece and dollar). Suppose you
wish to use the minimum number of coins. Is there a general procedure that will
do this? The answer is yes. One way to describe the procedure is: Continue to
use the largest available denomination until the amount that remains is smaller
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than that denomination. Move to the next lower denomination. Repeat. So, for
example, you make change for $4.98 by using 4 dollar coins first. This leaves 98
cents. Next you use a 50 cent piece. That leaves 48 cents. Next a quarter. This
leaves 23 cents. Next two dimes, no nickels, and three pennies. If you think
that this is obvious, then try to prove that the procedure that I described always
works. While you are thinking about the proof, ponder this: In a world where
the denominations are perfect squares {1, 4, 9, 16, . . .} the way to make change
for 12 cents is to use three 4 cent coins (instead of first using the nine-cent piece
and then 4 pennies).

Another example is the following scheduling problem:

Job Deadline Penalty
j dj wj

1 1 10
2 1 9
3 3 7
4 2 6
5 3 4
6 6 2

A number of jobs are to be processed by a

single machine. All jobs require the processing time of one hour. Each job j has
a deadline dj and a penalty wj that must be paid if the job is not completed by
its deadline. For example, consider the problem above, where the deadlines are
expressed in hours.

A greedy algorithm solves this problem. You can minimize the total penalty
costs by choosing the jobs one at a time in order of penalties, largest first,
rejecting a job only if its choice would mean that it, or one of the jobs already
chosen, cannot be completed on time. The greedy algorithm tells you to do job
one (highest penalty); to skip job two (if you do job one you will never finish
job two on time); and then to do jobs three and four. Notice that in order to
do job four on time you must do it second. This order in fine since after you
finish job four you can do job three and still meet job three’s deadline of three.
You must skip job five, but you can do job six. To summarize: The algorithm
tells you to do jobs 1, 4, 3, and 6 in that order.

It should be fairly easy to understand the algorithm. It is somewhat di�cult
to prove that it actually minimizes the total late penalty. Here is a proof.

The proof depends on the following fact: If A1 and A2 are two schedules
(an ordering of jobs that can be done on time), and there are more jobs in the
second schedule, then it is possible to find another schedule that contains all of
the jobs in A1 and one of the jobs in A2. That is, if it is possible to do, say, ten
jobs on time and someone gives you a list of any five jobs that can be done on
time, you can add one of the first ten jobs to the second list and still manage
to meet all of the deadlines.

Here is a proof of the fact. Start with a job done in A2 but not in A1 (such
a job exists because there are more jobs in A2 than in A1). Suppose that this
job is done at time t(1) and call it j(1). If no job is done in A1 at t(1), then
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schedule j(1) at that time. You are done. If some job is done in A1 at t(1), call
it j(2). Either j(2) is not done in A2 or j(2) is done in A2 at time t(2). If j(2)
is not done in A2, then there exits another job j

0(1) that is done in A2 but not
in A1. So repeat the process above. If j(2) is done in A2 at t(2) ask whether
there is a job done in A1 at t(2). If no, then you are done: Add j(1) to A1 at
t(1) and reschedule j(2) for t(2). If yes, then repeat as above (call the job done
at t(2) j(3)). When finished you will have constructed a chain of jobs, the first
member of the chain is done only in A2, the rest of the chain is done in both
schedules. You can enlarge A1 by adding j(1), the first job in the chain and
rescheduling the remaining jobs so that no job in the chain is late.

To show that the greedy algorithm works, assume that it does not and argue
to a contradiction. Suppose that the penalty minimizing schedule, call in A2,
has N jobs in it and the first K < N jobs would be selected by the greedy
algorithm but the K + 1 job is not what the algorithm would select. Call the
schedule containing the first K + 1 jobs of the greedy algorithm A1 (convince
yourself that because K < N , the greedy algorithm can schedule at least one
more job). By the fact from the previous paragraph, it is possible to find a
schedule that contains these K +1 jobs, plus an additional N �K�1 jobs from
A2. The only di↵erence between the augmented schedule A1 and schedule A2

is that the augmented schedule contains the (K + 1)st job added by the greedy
algorithm, while A2 contains some job with a larger late penalty. Hence the
augmented schedule performs better than A2. This contradicts the optimality
of A2 and completes the proof.

The moral of the argument is that it may be easier to use an algorithm than
to be able to justify its e�cacy.

6 Maximum Network Flow

The given information for a maximum flow problem is a network that consists
of two distinguished nodes: the starting point or source and the end point, or
sink. In this section s denotes the source and n the sink. Edges are directed
and have capacities. The maximum flow problem is to specify a nonnegative
“load” to be carried on each edge that maximizes the total amount that reaches
the sink subject to the constraint that no edge carries a load greater than its
capacity.

The maximum flow problem is an integer linear programming problem with
the property that the solution to the relaxed problem (without integer con-
straints) will also solve the integer version of the problem. The special structure
of the problem allows you to solve it using a simple algorithm.

Below is a simple example that I will use to illustrate the algorithm. There
are two nodes in addition to the source and the sink. The capacity of the flow
from (s) to (1) is 7. The rest of the diagram is easy to understand.
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The algorithm works like this. You begin with no flows. At each iteration you
attempt to find an “augmenting path of labeled nodes” from (s) to (n). You use
the path to increase flow. You continue this procedure until you cannot find a
path of labeled nodes from (s) to (n). In order to describe the algorithm more
completely, I must tell you how to label a path. Here are the rules.

1. (s) is always labeled.

2. If Node (i) is labeled, then you can use it to label Node (j) if either:

(a) there exists an arc (i) ! (j) with excess capacity or
(b) there is an arc (j) ! (i) with positive flow.

Let me illustrate the algorithm using the example. I will put two numbers
on each arc. The first represents the current flow. The second represents the
arc capacity. A star (*) indicates that the node is labeled.

Start with no flow. I have written one augmenting path that goes from
(s) ! (1) ! (2) ! (n). I can put three units on this path (because three is the
minimum of the used capacities). ⌫� �⇣⌘ ✓◆1⇤
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⇤
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(0;8)
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The next diagram includes the three units shipped by the path found in Step
1. Another augmenting path is (s) ! (1) ! (n). I can put four units on this
path. (If I tried to put more than four units on the path, then I would violate
the capacity constraint on (s) ! (1).
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Now I cannot go from (s) ! (1) since that route has no excess capacity. I
can go (s) ! (2) ! (n) and I put five units on this route.⌫� �⇣⌘ ✓◆1⇤

(3;3)

✏✏

4;9

  B
BB

BB
BB

B⌫� �⇣⌘ ✓◆s

⇤

(7;7)
>>}}}}}}}}

(0;9)   A
AA

AA
AA

A
⌫� �⇣⌘ ✓◆n

⇤

⌫� �⇣⌘ ✓◆2⇤
(3;8)

>>||||||||

The next step uses the second way in which you can label a node. [The
labeled network below incorporates all of the flows constructed so far.] As in
the last step, I cannot label (1) directly because there is no excess capacity on
(s) ! (1). I can label (2). Furthermore, once (2) has a label, I can label (1)
because (1) ! (2) has positive flow. (n) can receive a label because (1) ! (n)
has excess capacity and (1) is labeled. The most I can put on the (s) ! (2) !
(1) ! (n) route is three since three is the flow from (1) ! (2).⌫� �⇣⌘ ✓◆1⇤
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When we add the three units we obtain the next diagram. This is the final step.
Notice that we can label (s) and (2) but no other nodes. Hence it is not possible
to find an augmenting path from (s) to (n). The diagram indicates the optimal
flow. The total that can reach the sink is 15 (add up the amounts shipped on
all of the nodes that reach (n) directly. In this case (1) ! (n) and (2) ! (n).
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Now that you have followed this far, let me confess that you could do this
problem in two steps. In the first step, increase the flow to seven by using
the path (s) ! (1) ! (n). In the second step, increase the flow to fifteen by
using the path (s) ! (2) ! (n). I did the problem the long way to illustrate the
possibility of labeling through “backwards” arcs as in Step 4 and to demonstrate
that the procedure will work to produce a solution no matter what order you
generate augmenting paths.

When the given capacities are integers, the algorithm is guaranteed to finish
in a finite number of steps and provide an answer that is also an integer. There
is also a way to prove that your answer is correct. Define a cut to be a partition
of the nodes into two sets, once set containing (s) and the other set containing
(n). The cut capacity is the total capacity frow the part of the cut containing
the source to the part of the cut containing the sink. Convince yourself that the
capacity of any cut is greater than or equal to any feasible flow. Hence finding
any cut can give you an upper bound on the maximum flow. For example,
consider the cut {(s)}[{(1), (2), (n)}. It has capacity 16, so the maximum flow
cannot exceed 16.

Since the capacity of any cut is greater than or equal to the maximum flow,
if you can ever find a cut that has capacity equal to a feasible flow, then you
know that you have solve the problem. This is exactly what happens at the
end of the algorithm. Whenever you reach a point where you can no longer find
a flow augmenting path, you are able to generate a cut by taking as one set
the set of labeled nodes and the other set the rest. For example, for the final
diagram of the example, the cut is {(s), (2)} [ {(1), (n)} has capacity fifteen.
You should be able to convince yourself that a cut created in this fashion has
capacity equal to the maximum flow (otherwise you would have been able to
label another node).

The general fact that the minimum capacity cut is equal to the maximum
flow is a consequence of the duality theorem of linear programming.

One application of the maximum flow problem is a kind of assignment prob-
lem. Suppose that there are m jobs and n people. Each person can be assigned
to do only one job and is only able to do a particular subset of the jobs. The
question is: What is the maximum number of possible jobs that can be done.
The way to solve this problem using network flows is to set up a network in
which there is an arc with capacity one connecting the source to each of the n

nodes (one for each person), an arc with capacity one connecting each person
to each job that the person can do, and an arc with capacity one connecting
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each job to the sink. For example, the network below represents the situation
in which there are four people and five jobs. The first person can do only job A.
The second person can do either job A or job B, the third person can do either
job C or job D, and the fourth person can do either job D or job E. Plainly,
you can get four jobs done in this situation. The solution is not so obvious when
there are more people and more jobs. It is not di�cult to modify the algorithm
to accommodate the situation in which some people can be assigned to do more
than one job. (It is slightly harder to deal with the situation in which the num-
ber of jobs that a person can do depends on which jobs that person is assigned
to do.) ⌫� �⇣⌘ ✓◆A

1

⌫⌫/
//

//
//

//
//

//
/⌫� �⇣⌘ ✓◆1

1
??�������� ⌫� �⇣⌘ ✓◆B

1

��?
??

??
??

?⌫� �⇣⌘ ✓◆s
1

⌫⌫.
..

..
..

..
..

..
.

1

��=
==

==
==

=
1 //

1

@@�������� ⌫� �⇣⌘ ✓◆2

1

GG✏✏✏✏✏✏✏✏✏✏✏✏✏✏

1
??�������� ⌫� �⇣⌘ ✓◆C

1 //⌫� �⇣⌘ ✓◆n

⌫� �⇣⌘ ✓◆3

1
??�������� 1 //⌫� �⇣⌘ ✓◆D

1

??��������

⌫� �⇣⌘ ✓◆4

1
??�������� 1 //⌫� �⇣⌘ ✓◆E

1

GG✏✏✏✏✏✏✏✏✏✏✏✏✏✏

Another application of the approach is to solve a type of transshipment problem.
You are given a number of warehouses, each with a fixed supply of something.
Your are given a number of markets, each with a fixed demand for that thing.
You are given the capacity of the various shipping routes (from warehouse i

to market j). Your problem is to determine whether it is possible to meet the
given demand.

For example, the information could be:

Markets Supplies
Warehouse 1 2 3 4

1 30 10 0 40 20
2 0 0 10 50 20
3 20 10 40 5 100

Demands 20 20 60 20

The information in the table can be interpreted as follows. There are three
warehouses. Reading down the last column we see that the supply available at
each one (so warehouse one has supply 20). There are four markets. Reading
across the last row we see the demand available at each one (so the demand in
Market 3 is 60). The numbers in the table describe what can be shipped directly
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from one warehouse to a market (so you can ship as many as forty units from
the third warehouse to the third market).

As is the case in the assignment problem, we construct a network from
this information. From the sin there is an arc to a node for each warehouse.
The capacity of the arc is the supply at he warehouse. From each warehouse
node there is an arc to a node fro each market. The capacity of the arc is the
maximum feasible flow to that market. From each market node there is an arc
to the sink with capacity equal to the demand in that market. For the example,
therefore, the relevant network is:⌫� �⇣⌘ ✓◆1 30 //
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If you solve the associated maximum flow problem, then you can figure out
the most that can be shipped from the warehouses to the markets. In order to
answer the question: Can you meet the given demand? You just check to see
whether the maximum flow is equal to the total demand.

The table below illustrates a maximum capacity flow for the network. The
table only indicates the flows. The asterisks identify the associated minimum
cut (the nodes with asterisks are in the part of the cut containing the source).
Since it yields a flow of 110 while the total demand is 120, it is not possible to
meet all of the demands.
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