Graphs III – Network Flow

Flow network setup

- graph G=(V,E)
- edge capacity w(u,v)≥0
 - if edge does not exist, then w(u,v)=0
- special vertices: source vertex s; sink vertex t
 - no edges into s and no edges out of t
- Assume every vertex v is on a path from source to sink (s \rightarrow v \rightarrow t)
 - vertices v that are not on such path can be ignored (deleted) along with all connecting edges

Flow network

flow is a function f:VxV->R such that

- flow from u to v: $f(u,v) \leq w(u,v)$
- symmetry f(u,v) = -f(v,u)
- flow is conserved on all nodes except source s and sink t

$$\sum_{v \in V} f(u, v) = 0$$

• total flow (from the sorce)

$$|f| = \sum_{v \in V} f(s, v)$$

Maximum Flow Problem

determine the flow f that realizes the maximum total flow

More on Flows

• f(u,u)=0

total net flow into/out-to a vertex is 0

$$\sum_{v \in V} f(v, u) = 0$$

- except for source s and sink t

 if edge (u,v) is missing in G, there can be no net flow from u to v

More on Flows

positive net flow entering v

$$\sum_{u \in V; f(u,v) > 0} f(u,v)$$

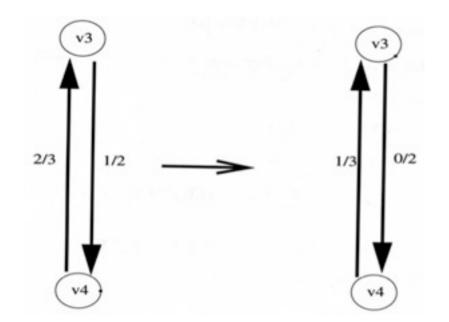
• positive net flow leaving v

$$\sum_{u \in V; f(v,u) > 0} f(v,u)$$

these two are equal

Cancellation

- positive flow on (u,v) cancels positive flow on (v,u) until only one is positive (the other becomes 0)
 - both flows decrease, so they still satisfy capacity constraints
 - flow conservation satisfied since both flow reduced by the same amount

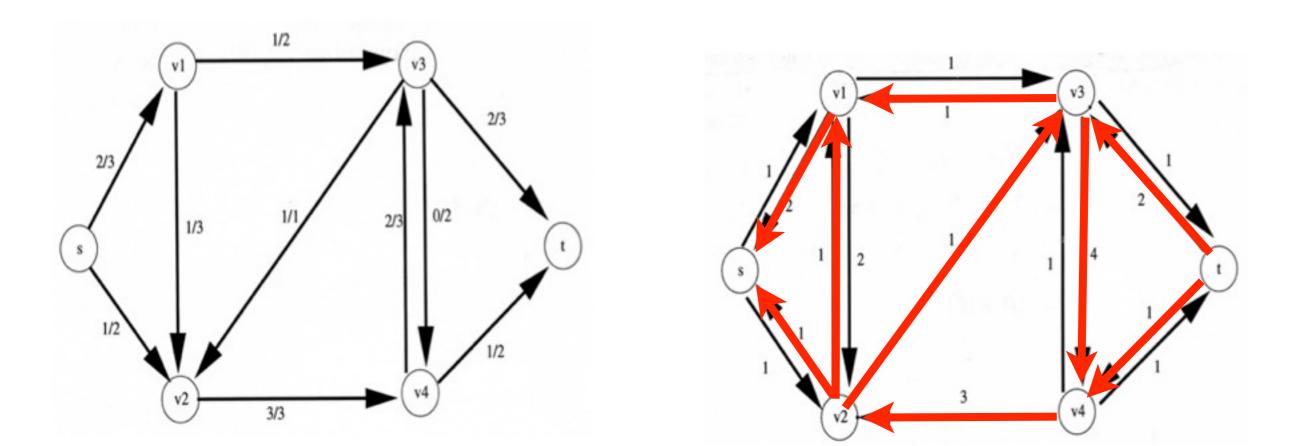


want the max flow for source s to sink t

- a class of algorithms, not a single one
- initialize flow with 0;
- repeat
 - find an augmenting path from s to t (that admits more flow)
 - send more flow on that path
- until no augmenting path exists
- have to prove that this termination condition implies the flow is max.
 - if an augmenting path exists, sending more flow to it increases the value of the existing flow

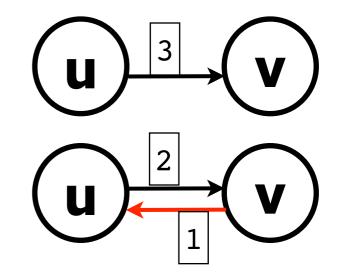
Residual network

- after sending some flow on a path from s to t, the graph essentially changes
 - existing flow edges will have a different capacity in the residual network (because the flow uses some)
 - new edges can appear (in red) : the possibilities of reversing the existing flow



Residual network

- residual capacity of edge (u,v) : r(u,v) = w(u,v)-f(u,v)
- residual network "R" induced by f is given by the set of edges also called "R" with positive residual capacity
 - edges set $R = \{ (u,v) : r(u,v) > 0 \}$
- note that some new edges appear !
 - example (u,v)∈E; w(u,v)=3, f(u,v)=1
 - then r(u,v) = 3-1 = 2
 - edge (v,u) not in the original graph



- but r(v,u) = 0 f(v,u) = 0 (-1)=1; therefore edge (v,u) is now part of the residual network.
- edge (v,u) can be part of the residual newtwork only if either (u,v) or (v,u) are edges in the original graph
 - thus |R| ≤ 2|E|

Augmenting paths

- any path p= s->t in the residual network R
- the residual capacity of the path p is the minimum ("bottleneck") edge residual capacity
 - $r(p) = min \{ r(u,v) : (u,v) \in p \}$
- add the path p as additional flow f_p of size r(p)
 - to the existing flow f that created R
 - new flow $f' = f + f_p$
 - increases the flow total by r(p). Proof in the book.

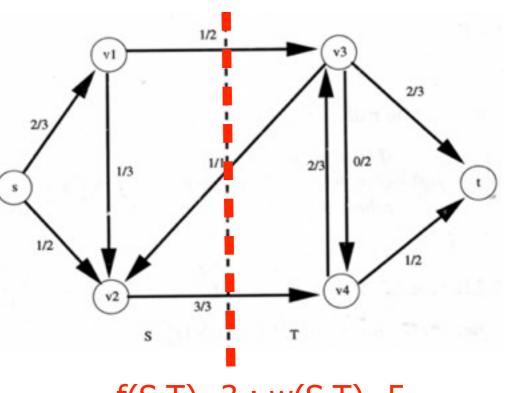
Cuts in flow network

- Cut C = (S,T) is a partition of vertices
 - S∪T=V ; S∩T=Ø ; S=V∖T
 - S contains the source and T contains the sink ses; teT
- Net flow across cut is f(S,T), the sum of all flows on edges from S to T

$$f(S,T) = \sum_{u \in S; v \in T} f(u,v)$$

capacity of a cut is the sum of edges capacity from S to T

$$w(S,T) = \sum_{u \in S; v \in T} w(u,v)$$



f(S,T)=3 ; w(S,T)=5

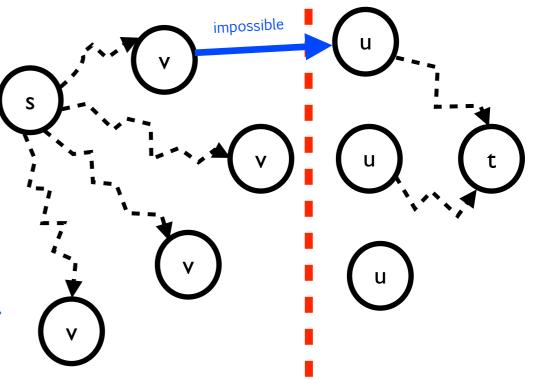
Max Flow – Min Cut theorem

• (S,T) is a cut, f a flow with total value |f|. Then

- f(S,T) = |f| (the total flow value)
- consequently |f|≤w(S,T) : flow value is smaller than the capacity of any cut
- MAX-FLOW MIN-CUT theorem . The following are equivalent:
 - (a) f is a max flow
 - (b) residual network R=R_f has no augmenting paths
 - (c) there is a cut (S,T) such that |f| = w(S,T)

Max Flow – Min Cut proof intuition

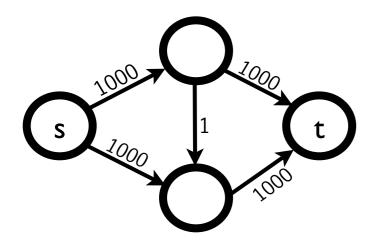
- (a)=>(b) already discussed
- (b)=>(c): consider $S = \{v \mid \exists path s_v in residual R\}$
 - **-** s∈S
 - T =VS; t \in T. If t \in S, then there would be a augmenting path in R
 - R cant have an edge (v \in S, u \in T) because that would mean u \in S
 - thus existing flow saturates the cut (S,T)



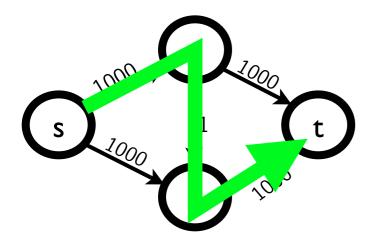
 (c)=>(a): no flow can be bigger than capacity of a cut, so f must be a maximum flow (since it saturates the cut described above)

- for each edge (u,v)
 init: f(u,v)=0; f(v,u)=0
- R = G
 - while exists path p(s_vt)in residual R
 - $c(p) = min \{ r(u,v); (u,v) \in p \} // path capacity, used as new flow$
 - for each $(u,v) \in p$
 - For each (-, -) f(u,v) = f(u,v) + c(p) ; f(v,u) = f(u,v)
 - recompute residual network R=Rf

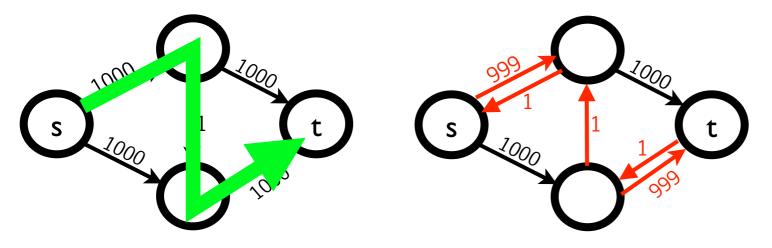
- Running time with integer capacities
 - fing a path in R is O(E) (say with DFS)
 - |f|=total flow value
 - at most |f| iterations; every iteration increases the flow by 1 or more
 - total O(E*|f|)
- problem: If I can be very large, thus the algorithm very slow
 - for real-value edge cacpacities, Ford-Fulkerson can be arbitrary slow



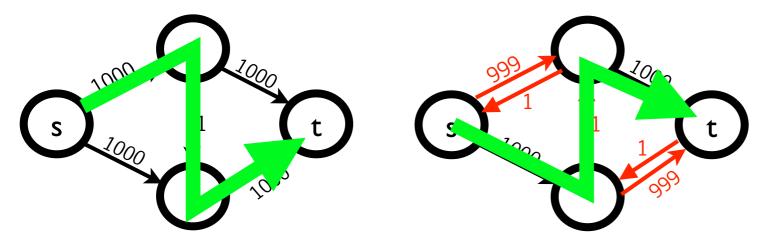
- Running time with integer capacities
 - fing a path in R is O(E) (say with DFS)
 - |f|=total flow value
 - at most |f| iterations; every iteration increases the flow by 1 or more
 - total O(E*|f|)
- problem: If I can be very large, thus the algorithm very slow
 - for real-value edge cacpacities, Ford-Fulkerson can be arbitrary slow



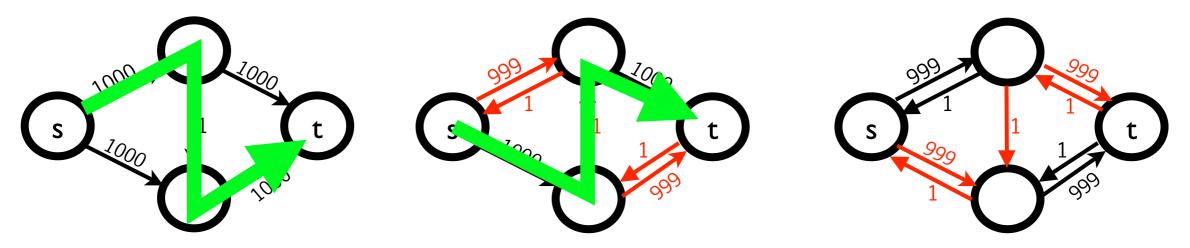
- Running time with integer capacities
 - fing a path in R is O(E) (say with DFS)
 - |f|=total flow value
 - at most |f| iterations; every iteration increases the flow by 1 or more
 - total O(E*|f|)
- problem: If I can be very large, thus the algorithm very slow
 - for real-value edge cacpacities, Ford-Fulkerson can be arbitrary slow



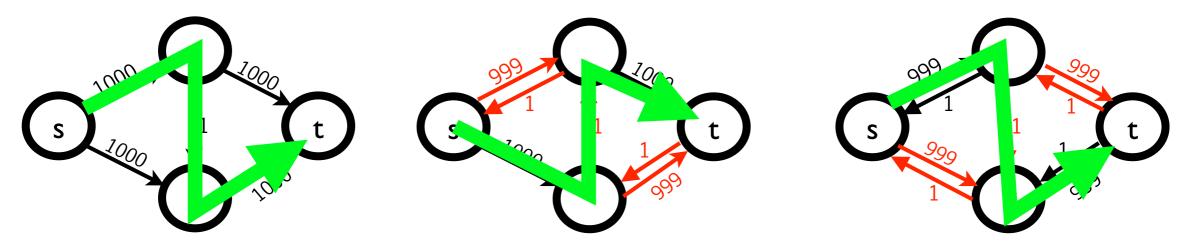
- Running time with integer capacities
 - fing a path in R is O(E) (say with DFS)
 - |f|=total flow value
 - at most |f| iterations; every iteration increases the flow by 1 or more
 - total O(E*|f|)
- problem: If I can be very large, thus the algorithm very slow
 - for real-value edge cacpacities, Ford-Fulkerson can be arbitrary slow



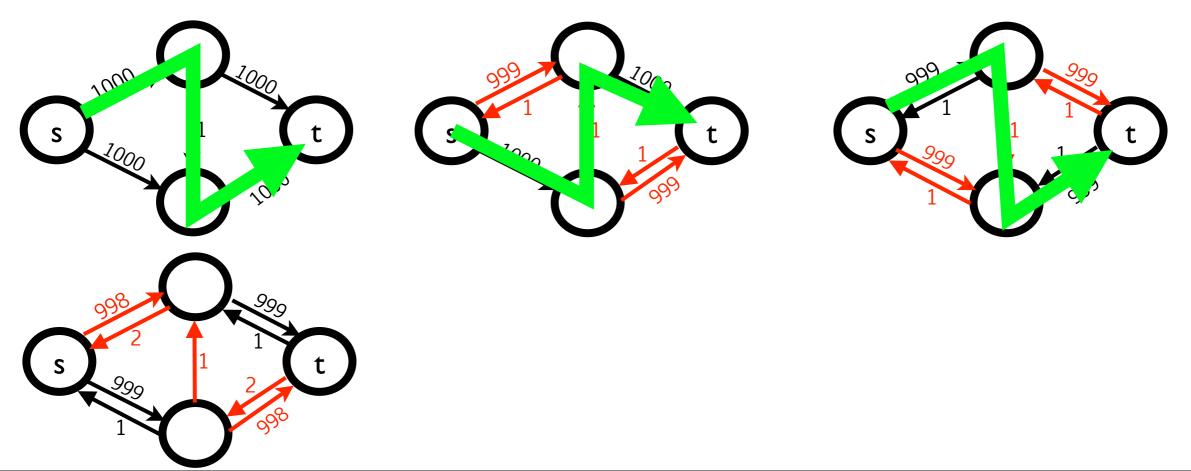
- fing a path in R is O(E) (say with DFS)
- |f|=total flow value
- at most |f| iterations; every iteration increases the flow by 1 or more
- total O(E*|f|)
- problem: If I can be very large, thus the algorithm very slow
 - for real-value edge cacpacities, Ford-Fulkerson can be arbitrary slow



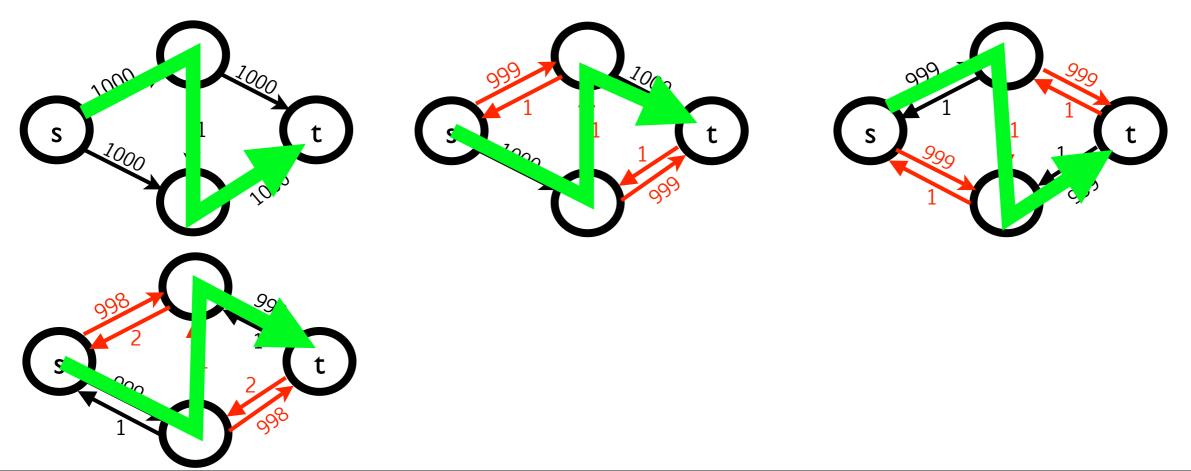
- fing a path in R is O(E) (say with DFS)
- |f|=total flow value
- at most |f| iterations; every iteration increases the flow by 1 or more
- total O(E*|f|)
- problem: If I can be very large, thus the algorithm very slow
 - for real-value edge cacpacities, Ford-Fulkerson can be arbitrary slow



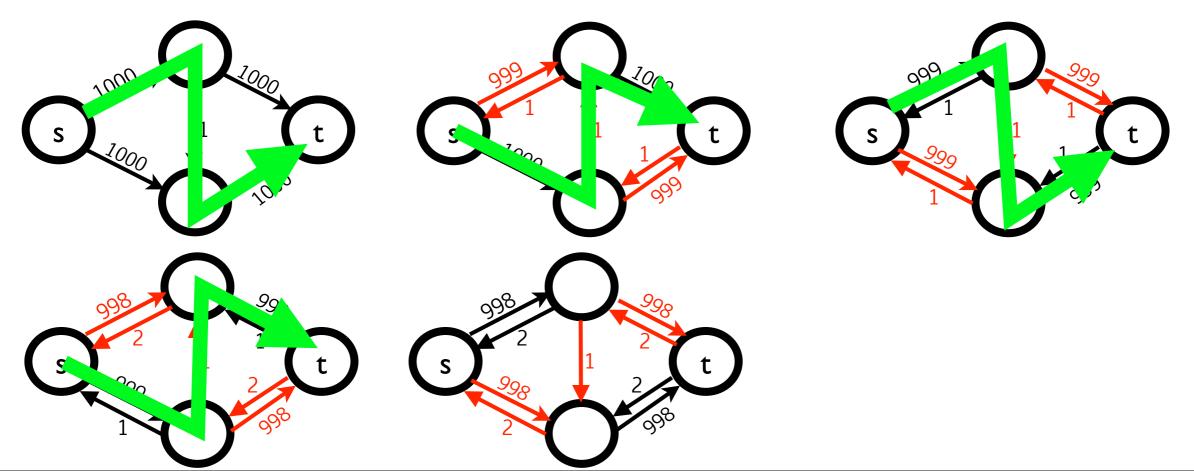
- fing a path in R is O(E) (say with DFS)
- |f|=total flow value
- at most |f| iterations; every iteration increases the flow by 1 or more
- total O(E*|f|)
- problem: If I can be very large, thus the algorithm very slow
 - for real-value edge cacpacities, Ford-Fulkerson can be arbitrary slow



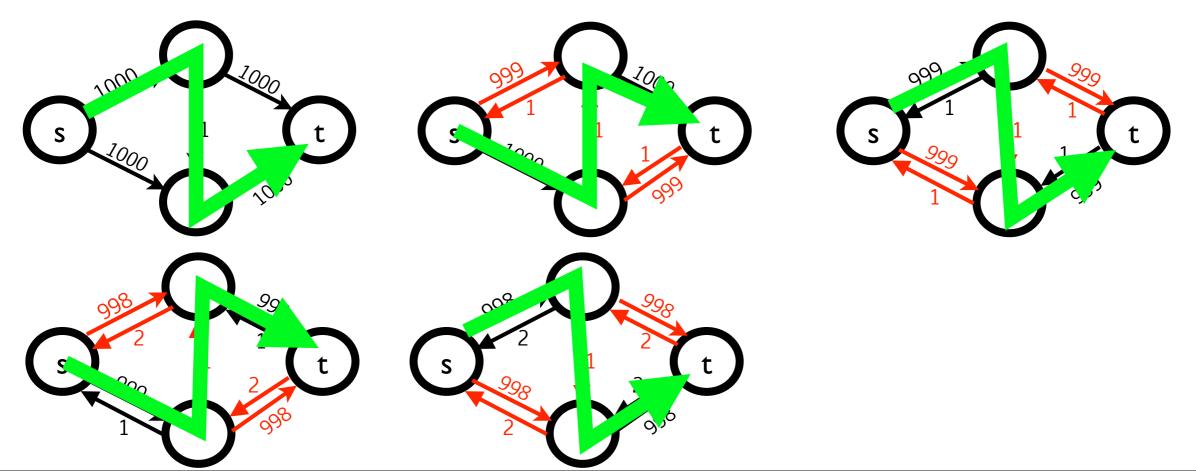
- fing a path in R is O(E) (say with DFS)
- |f|=total flow value
- at most |f| iterations; every iteration increases the flow by 1 or more
- total O(E*|f|)
- problem: If I can be very large, thus the algorithm very slow
 - for real-value edge cacpacities, Ford-Fulkerson can be arbitrary slow



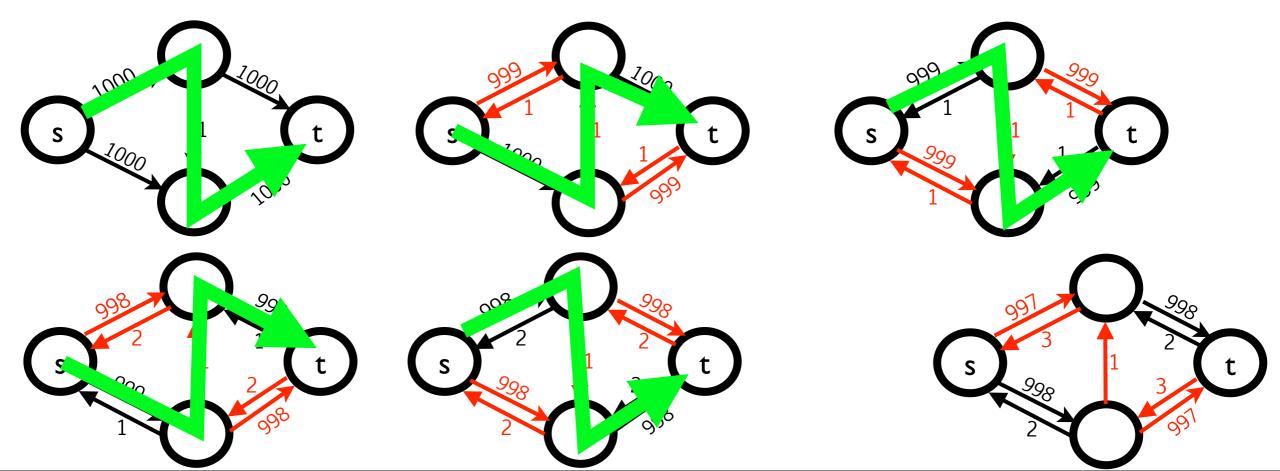
- Running time with integer capacities
 - fing a path in R is O(E) (say with DFS)
 - |f|=total flow value
 - at most |f| iterations; every iteration increases the flow by 1 or more
 - total O(E*|f|)
- problem: If can be very large, thus the algorithm very slow
 - for real-value edge cacpacities, Ford-Fulkerson can be arbitrary slow



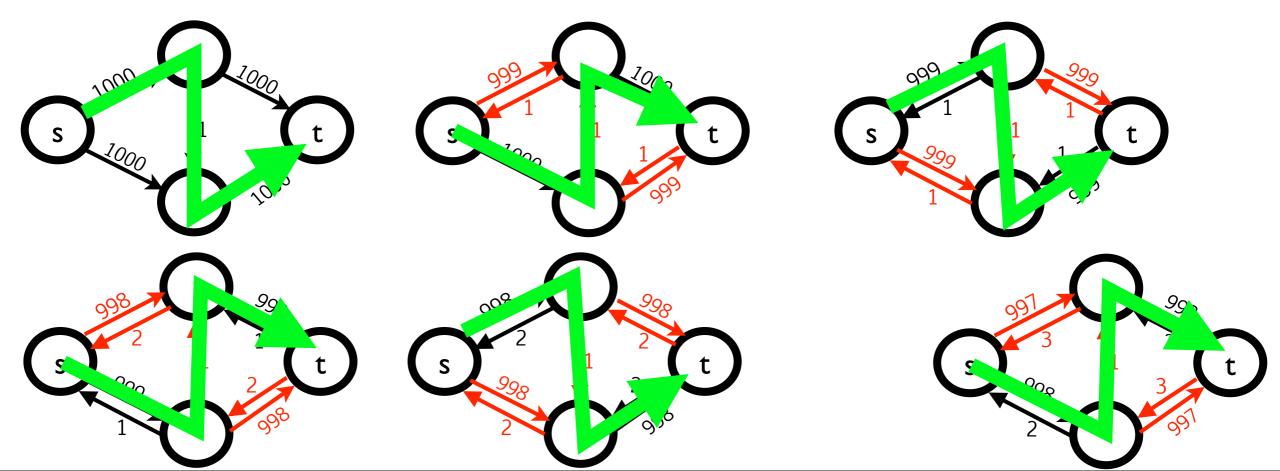
- Running time with integer capacities
 - fing a path in R is O(E) (say with DFS)
 - |f|=total flow value
 - at most |f| iterations; every iteration increases the flow by 1 or more
 - total O(E*|f|)
- problem: If can be very large, thus the algorithm very slow
 - for real-value edge cacpacities, Ford-Fulkerson can be arbitrary slow



- Running time with integer capacities
 - fing a path in R is O(E) (say with DFS)
 - |f|=total flow value
 - at most |f| iterations; every iteration increases the flow by 1 or more
 - total O(E*|f|)
- problem: If can be very large, thus the algorithm very slow
 - for real-value edge cacpacities, Ford-Fulkerson can be arbitrary slow



- Running time with integer capacities
 - fing a path in R is O(E) (say with DFS)
 - |f|=total flow value
 - at most |f| iterations; every iteration increases the flow by 1 or more
 - total O(E*|f|)
- problem: If I can be very large, thus the algorithm very slow
 - for real-value edge cacpacities, Ford-Fulkerson can be arbitrary slow

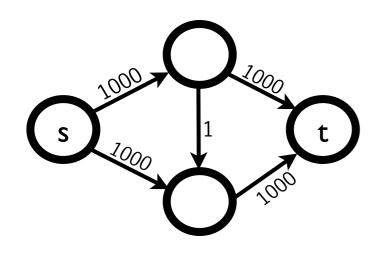


Edmonds-Karp

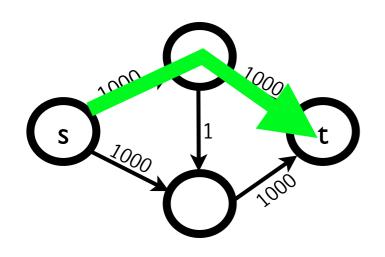
- same as FF, but find the augmenting path with BFS
 - for each edge (u,v)
 init: f(u,v)=0; f(v,u)=0
- R = G
- while BFS finds path p(s_vt)in residual R
 - $c(p) = min \{ r(u,v); (u,v) \in p \} / / path capacity, used as new flow$
 - for each $(u,v) \in p$
 - f(u,v) = f(u,v) + c(p); f(v,u) = f(u,v)

recompute residual network R=Rf

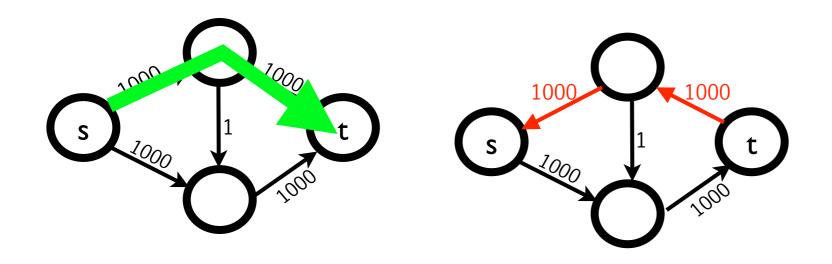
- BFS will find the augmenting path with fewest number of edges
- note that previus toy bad example would find max flow after two iterations



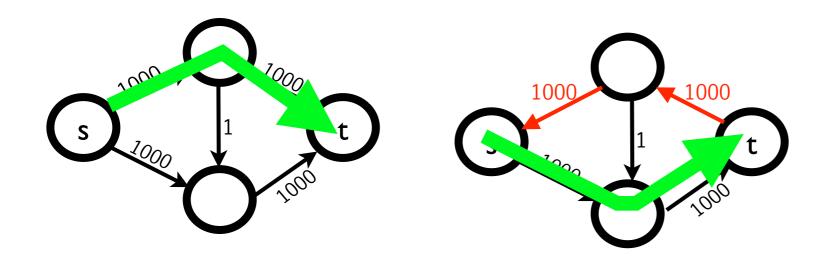
- BFS will find the augmenting path with fewest number of edges
- note that previus toy bad example would find max flow after two iterations



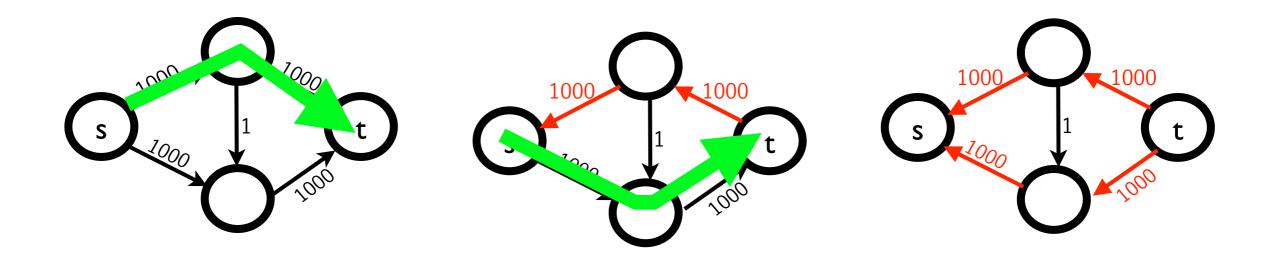
- BFS will find the augmenting path with fewest number of edges
- note that previus toy bad example would find max flow after two iterations



- BFS will find the augmenting path with fewest number of edges
- note that previus toy bad example would find max flow after two iterations



- BFS will find the augmenting path with fewest number of edges
- note that previus toy bad example would find max flow after two iterations



How many augmenting paths can EK find?

- augmenting path p has critical edge (u,v), if (u,v) is the minimum residual capacity edge on the path
- any edge can be critical at most |V| times during EK. Proof in the book
- there are E edges, so at most |V|*|E| critical edges for the entire execution
- thus at most O(VE) augmenting paths (each path has at least one critical edge)
- BFS takes O(E) to find each augmenting path
- total O(VE²)

Push-Relabel (Optional reading)

Advanced material not covered

- optional reading from book

Intuition : flood the network, using vertex heights

- nodes can accumulate flow
- the more flow they accumulate, the "higher" they go
- flow goes downhill

• practical / fast implementation: $O(V^3)$ running time.