
Graphs III - Network Flow



Flow network setup

• graph G=(V,E)

• edge capacity w(u,v)≥0
- if edge does not exist, then w(u,v)=0

• special vertices: source vertex s; sink vertex t
- no edges into s and no edges out of t

• Assume every vertex v is on a path from source to 
sink (s→v→t)

- vertices v that are not on such path can be ignored (deleted) along 
with all connecting edges



Flow network

• flow is a function f:VxV->R such that
- flow from u to v: f(u,v) ≤ w(u,v)

- symmetry f(u,v) = -f(v,u)

- flow is conserved on all nodes except source s and sink t 

• total flow (from the sorce)

X

v2V

f(u, v) = 0



Maximum Flow Problem

• determine the flow f that realizes the maximum 
total flow 



More on Flows

• f(u,u)=0

• total net flow into/out-to a vertex is 0 

- except for source s and sink t

• if edge (u,v) is missing in G, there can be no net flow 
from u to v

X

v2V

f(v, u) = 0



More on Flows

• positive net flow entering v

• positive net flow leaving v

• these two are equal

X

u2V ;f(v,u)>0

f(v, u)

X

u2V ;f(u,v)>0

f(u, v)



Cancellation

• positive flow on (u,v) cancels positive flow on (v,u) 
until only one is positive (the other becomes 0)
- both flows decrease, so they still satisfy capacity constraints

- flow conservation satisfied since both flow reduced by the same 
amount



Ford-Fulkerson
• want the max flow for source s to sink t
- a class of algorithms, not a single one

‣ initialize flow with O;

‣ repeat
‣ find an augmenting path from s to t (that admits 

more flow)

‣ send more flow on that path

‣ until no augmenting path exists

• have to prove that this termination condition implies 
the flow is max.
- if an augmenting path exists, sending more flow to it increases the 

value of the existing flow



Residual network

• after sending some flow on a path from s to t, the 
graph essentially changes
- existing flow edges will have a different capacity in the residual 

network (because the flow uses some)

- new edges can appear (in red) : the possibilities of reversing the 
existing flow 



Residual network
• residual capacity of edge (u,v) : r(u,v) = w(u,v)-f(u,v)

• residual network “R” induced by f is given by the set of 
edges also called “R” with positive residual capacity
- edges  set R = { (u,v) : r(u,v)>0 }

• note that some new edges appear !
- example  (u,v)∈E; w(u,v)=3, f(u,v)=1

- then r(u,v) = 3-1 = 2

- edge (v,u) not in the original graph

- but r(v,u) = 0 - f(v,u) = 0- (-1)=1; therefore edge (v,u) is now part of the 
residual network.

• edge (v,u) can be part of the residual newtwork only if 
either (u,v) or (v,u) are edges in the original graph
- thus |R| ⩽ 2|E|

u v3

u v
2

1



Augmenting paths

•  any  path p= s->t in the residual network R

• the residual capacity of the path p is the minimum 
(“bottleneck”) edge residual capacity
- r(p) = min { r(u,v) : (u,v)∈ p }

• add the path p as additional flow fp of size r(p) 
- to the existing flow f that created R 

- new flow f’ = f + fp

- increases the flow total by r(p). Proof in the book.



Cuts in flow network
• Cut C = (S,T) is a partition of 

vertices
- S∪T=V ; S∩T=∅ ; S=V∖T

- S contains the source and T contains 
the sink s∈S; t∈T

• Net flow across cut is f(S,T), 
the sum of all flows on edges 
from S to T

• capacity of a cut is the sum 
of edges capacity from S to T

f(S,T)=3 ; w(S,T)=5



Max Flow - Min Cut theorem 

• (S,T) is a cut, f a flow with total value |f|. Then 
- f(S,T) = |f| (the total flow value)

- consequently |f|≤w(S,T) : flow value is smaller than the capacity of 
any cut

• MAX-FLOW MIN-CUT theorem . The following are 
equivalent:
- (a) f is a max flow

- (b) residual network R=Rf has no augmenting paths

- (c) there is a cut (S,T) such that |f| = w(S,T)



Max Flow - Min Cut proof intuition
• (a)=>(b) already discussed

• (b)=>(c): consider S = { v |  ∃ path s⤳v in residual R}

• (c)=>(a): no flow can be bigger than capacity of a cut, 
so f must be a maximum flow (since it saturates the 
cut described above)

s

v

v

v

v

u

u

u

t

impossible- s∈S

- T =V∖S; t∈T. If t∈S, then there 
would be a augmenting path in R

- R cant have an edge (v∈S, u∈T) 
because that would mean u∈S

- thus existing flow saturates the cut 
(S,T)



Ford-Fulkerson

‣for each edge (u,v)
‣ init: f(u,v)=0; f(v,u)=0

‣R = G

‣while exists path p(s⤳t)in residual R
‣ c(p) = min { r(u,v); (u,v) ∈ p }//path capacity, used as new flow

‣ for each (u,v)∈p

‣   f(u,v) = f(u,v) + c(p) ; f(v,u)= - f(u,v)

‣ recompute residual network R=Rf 



Ford-Fulkerson
• Running time with integer capacities

- fing a path in R is O(E) (say with DFS)

- |f|=total flow value

- at most |f| iterations; every iteration increases the flow by 1 or more

- total O(E*|f|) 

• problem: |f| can be very large, thus the algorithm very slow
- for real-value edge cacpacities, Ford-Fulkerson can be arbitrary slow

s t
100

0

100
0

1000

1000
1



Ford-Fulkerson
• Running time with integer capacities

- fing a path in R is O(E) (say with DFS)

- |f|=total flow value

- at most |f| iterations; every iteration increases the flow by 1 or more

- total O(E*|f|) 

• problem: |f| can be very large, thus the algorithm very slow
- for real-value edge cacpacities, Ford-Fulkerson can be arbitrary slow

s t
100

0

100
0

1000

1000
1



Ford-Fulkerson
• Running time with integer capacities

- fing a path in R is O(E) (say with DFS)

- |f|=total flow value

- at most |f| iterations; every iteration increases the flow by 1 or more

- total O(E*|f|) 

• problem: |f| can be very large, thus the algorithm very slow
- for real-value edge cacpacities, Ford-Fulkerson can be arbitrary slow

s t
100

0

100
0

1000

1000
1 s t

999

999

1000

1000
1

1

1



Ford-Fulkerson
• Running time with integer capacities

- fing a path in R is O(E) (say with DFS)

- |f|=total flow value

- at most |f| iterations; every iteration increases the flow by 1 or more

- total O(E*|f|) 

• problem: |f| can be very large, thus the algorithm very slow
- for real-value edge cacpacities, Ford-Fulkerson can be arbitrary slow

s t
100

0

100
0

1000

1000
1 s t

999

999

1000

1000
1

1

1



Ford-Fulkerson
• Running time with integer capacities

- fing a path in R is O(E) (say with DFS)

- |f|=total flow value

- at most |f| iterations; every iteration increases the flow by 1 or more

- total O(E*|f|) 

• problem: |f| can be very large, thus the algorithm very slow
- for real-value edge cacpacities, Ford-Fulkerson can be arbitrary slow

s t
100

0

100
0

1000

1000
1 s t

999

999

1000

1000
1

1

1
s t

999

999

999

999
1

1

1

1

1



Ford-Fulkerson
• Running time with integer capacities

- fing a path in R is O(E) (say with DFS)

- |f|=total flow value

- at most |f| iterations; every iteration increases the flow by 1 or more

- total O(E*|f|) 

• problem: |f| can be very large, thus the algorithm very slow
- for real-value edge cacpacities, Ford-Fulkerson can be arbitrary slow

s t
100

0

100
0

1000

1000
1 s t

999

999

1000

1000
1

1

1
s t

999

999

999

999
1

1

1

1

1



Ford-Fulkerson
• Running time with integer capacities

- fing a path in R is O(E) (say with DFS)

- |f|=total flow value

- at most |f| iterations; every iteration increases the flow by 1 or more

- total O(E*|f|) 

• problem: |f| can be very large, thus the algorithm very slow
- for real-value edge cacpacities, Ford-Fulkerson can be arbitrary slow

s t
100

0

100
0

1000

1000
1 s t

999

999

1000

1000
1

1

1
s t

999

999

999

999
1

1

1

1

1

s t

998

998

999

999
1

2

2

1

1



Ford-Fulkerson
• Running time with integer capacities

- fing a path in R is O(E) (say with DFS)

- |f|=total flow value

- at most |f| iterations; every iteration increases the flow by 1 or more

- total O(E*|f|) 

• problem: |f| can be very large, thus the algorithm very slow
- for real-value edge cacpacities, Ford-Fulkerson can be arbitrary slow

s t
100

0

100
0

1000

1000
1 s t

999

999

1000

1000
1

1

1
s t

999

999

999

999
1

1

1

1

1

s t

998

998

999

999
1

2

2

1

1



Ford-Fulkerson
• Running time with integer capacities

- fing a path in R is O(E) (say with DFS)

- |f|=total flow value

- at most |f| iterations; every iteration increases the flow by 1 or more

- total O(E*|f|) 

• problem: |f| can be very large, thus the algorithm very slow
- for real-value edge cacpacities, Ford-Fulkerson can be arbitrary slow

s t
100

0

100
0

1000

1000
1 s t

999

999

1000

1000
1

1

1
s t

999

999

999

999
1

1

1

1

1

s t

998

998

999

999
1

2

2

1

1
s t

998

998

998

998
1

2

2

2

2



Ford-Fulkerson
• Running time with integer capacities

- fing a path in R is O(E) (say with DFS)

- |f|=total flow value

- at most |f| iterations; every iteration increases the flow by 1 or more

- total O(E*|f|) 

• problem: |f| can be very large, thus the algorithm very slow
- for real-value edge cacpacities, Ford-Fulkerson can be arbitrary slow

s t
100

0

100
0

1000

1000
1 s t

999

999

1000

1000
1

1

1
s t

999

999

999

999
1

1

1

1

1

s t

998

998

999

999
1

2

2

1

1
s t

998

998

998

998
1

2

2

2

2



Ford-Fulkerson
• Running time with integer capacities

- fing a path in R is O(E) (say with DFS)

- |f|=total flow value

- at most |f| iterations; every iteration increases the flow by 1 or more

- total O(E*|f|) 

• problem: |f| can be very large, thus the algorithm very slow
- for real-value edge cacpacities, Ford-Fulkerson can be arbitrary slow

s t
100

0

100
0

1000

1000
1 s t

999

999

1000

1000
1

1

1
s t

999

999

999

999
1

1

1

1

1

s t

998

998

999

999
1

2

2

1

1
s t

998

998

998

998
1

2

2

2

2
s t

997

997

998

998
1

3

3

2

2



Ford-Fulkerson
• Running time with integer capacities

- fing a path in R is O(E) (say with DFS)

- |f|=total flow value

- at most |f| iterations; every iteration increases the flow by 1 or more

- total O(E*|f|) 

• problem: |f| can be very large, thus the algorithm very slow
- for real-value edge cacpacities, Ford-Fulkerson can be arbitrary slow

s t
100

0

100
0

1000

1000
1 s t

999

999

1000

1000
1

1

1
s t

999

999

999

999
1

1

1

1

1

s t

998

998

999

999
1

2

2

1

1
s t

998

998

998

998
1

2

2

2

2
s t

997

997

998

998
1

3

3

2

2



Edmonds-Karp

• same as FF, but find the augmenting path with BFS

‣for each edge (u,v)
‣ init: f(u,v)=0; f(v,u)=0

‣R = G

‣while BFS finds path p(s⤳t)in residual R
‣ c(p) = min { r(u,v); (u,v) ∈ p }//path capacity, used as new flow

‣ for each (u,v)∈p

‣   f(u,v) = f(u,v) + c(p) ; f(v,u)= - f(u,v)

‣ recompute residual network R=Rf 



Analysis of Edmonds-Karp

• BFS will find the augmenting path with fewest 
number of edges

• note that previus toy bad example would find max 
flow after two iterations

s t
100

0

100
0

1000

1000
1



Analysis of Edmonds-Karp

• BFS will find the augmenting path with fewest 
number of edges

• note that previus toy bad example would find max 
flow after two iterations

s t
100

0

100
0

1000

1000
1



Analysis of Edmonds-Karp

• BFS will find the augmenting path with fewest 
number of edges

• note that previus toy bad example would find max 
flow after two iterations

s t
100

0

100
0

1000

1000
1

s t1000

1000

1

1000

100
0



Analysis of Edmonds-Karp

• BFS will find the augmenting path with fewest 
number of edges

• note that previus toy bad example would find max 
flow after two iterations

s t
100

0

100
0

1000

1000
1

s t1000

1000

1

1000

100
0



Analysis of Edmonds-Karp

• BFS will find the augmenting path with fewest 
number of edges

• note that previus toy bad example would find max 
flow after two iterations

s t
100

0

100
0

1000

1000
1 s t1000

1000

1

1000

100
0

s t1000

1000

1

1000

100
0



Analysis of Edmonds-Karp

• How many augmenting paths can EK find?
- augmenting path p has critical edge (u,v), if (u,v) is the minimum 

residual capacity edge on the path

- any edge can be critical at most |V| times during EK. Proof in the 
book

- there are E edges, so at most |V|*|E| critical edges for the entire 
execution

- thus at most O(VE) augmenting paths (each path has at least one 
critical edge)

• BFS takes O(E) to find each augmenting path

• total O(VE2)



Push-Relabel (Optional reading)

• Advanced material not covered
- optional reading from book

• intuition : flood the network, using vertex heights
- nodes can accumulate flow

- the more flow they accumulate, the “higher” they go

- flow goes downhill

• practical / fast implementation: O(V3) running time.


