Lecture Notes for CS105 Algorithms

 $Network\ Flow-Edmonds\text{-}Karp$

Thomas C. O'Connell

November 7, 2001

Edmonds-Karp Algorithm

So Ford-Fulkerson just says we should find repeatedly find augmenting paths and push flow along that path.

- So depending on how you go about finding augmenting paths, you'll get algorithms with potentially different running times (and may never terminate).
- The Edmonds-Karp algorithms says find the shortest augmenting path from s to t in the residual network using BFS.

Same algorithm just make sure you take a shortest path in G_f when edge weights are all 1:

Algorithm 0.0: Edmonds-Karp(G, s, t).

```
for each (u, v) \in E
       do f[u,v] \leftarrow 0
2.
                                      fewest # edges
          f[v,u] \leftarrow 0
3.
      while BFS finds a shortest path p from s to t in G_f
4.
      \operatorname{do} c_f(p) = \min\{\overline{c_f(u,v)} : (u,v) \in p\}
5.
           for each (u, v) \in p
6.
           do f[u,v] \leftarrow f[u,v] + c_f(p)
7.
               f[v,u] \leftarrow -f[u,v]
8.
9.
      return f.
```

Definition 0.1 Let $\delta_f(s,v)$ be the number of edges on the shortest path from s to v in G_f .

Lemma 0.2 (CLR 27.8) Using Edmonds-Karp, $\delta_f(s, v)$ in G_f is nondecreasing with each flow augmentation.

Proof.

- ullet Suppose there is a flow augmentation that caused the shortest path from s to at least one vertex to decrease.
- Let f be the flow before this augmentation
- Let f' be the flow after this augmentation
- Let $X = \{x : \delta_{f'}(s, x) < \delta_f(s, x)\}.$
- Let v be a vertex in X such that $\delta_{f'}(s, v) \leq \delta_{f'}(s, x)$ for all $x \in X$. (i.e. v is the vertex in X with the shortest path from s after the augmentation)

$$G_{f}$$

$$s \rightarrow \cdots \rightarrow \cdots \rightarrow v$$

$$s \rightarrow \cdots \rightarrow \cdots \rightarrow x$$

$$G_{f'}$$

$$s \rightarrow \cdots \rightarrow v$$

$$s \rightarrow \cdots \rightarrow x$$

- Consider a shortest path from s to v in $G_{f'}$.
- Let u be the vertex preceding v on this path. $G_{f'}$:

$$s \to \cdots \to u \to v$$

- $u \notin X$, since u is closer to s than v in $G_{f'}$.
- So $\delta_f(s, u)x \leq \delta_{f'}(s, u)$ since otherwise $u \in X$.

2 cases to consider:

- 1. $(u, v) \in E_f$
- 2. $(u,v) \notin E_f$

Case 1: $(u, v) \in E_f$

- \bullet v got closer to s but u didn't
- ullet yet u now precedes v on the shortest path from s to v.

$$G_f$$
 $s \rightarrow \cdots \rightarrow \cdots \rightarrow u \rightarrow v$

The last line follows since u preceeds v on the shortest path from s to v in $G_{f'}$. So we must have $(u, v) \notin E_f$. Case 2: $(u, v) \notin E_f$

- Let p be the augmenting path that produces $G_{f'}$.
- p is a shortest path from s to t.
- p must contain (v, u) (in the direction from v to u) since $(u, v) \in E_{f'}$ and $(u, v) \notin E_f$.

$$p: s \to \cdots \to v \to u \to \cdots \to t$$

• So we have:

$$G_f$$
 $s \to \cdots \to \cdots \to v \to u$ if u is even reachable $G_{f'}$
 $s \to \cdots \to \cdots \to u \to v$ is now a shortest path

this doesn't make sense.

Formally:

$$\begin{array}{lcl} \delta_f(s,v) & \leq & \delta_f(s,u) + 1 \\ & \leq & \delta_{f'}(s,u) + 1 \\ & = & \delta_{f'}(s,v) & \text{contradiction} \end{array}$$

The last line follows since u preceeds v on the shortest path from s to v in $G_{f'}$. So we must have $(u, v) \notin E_f$.

Case 2: $(u, v) \notin E_f$

- Let p be the augmenting path that produces $G_{f'}$.
- ullet p is a shortest path from s to t.
- p must contain (v, u) (in the direction from v to u) since $(u, v) \in E_{f'}$ and $(u, v) \notin E_f$.

$$p: s \to \cdots \to v \to u \to \cdots \to t$$

• So we have:

$$G_f$$
 $s \to \cdots \to \cdots \to v \to u$ is a shortest path $\operatorname{in} G_f$
 $G_{f'}$
 $s \to \cdots \to u \to v$ is now a shortest path

- \bullet So v has moved closer, u has not, yet u moved in front of v on a shortest path.
- This is impossible:

Formally:

$$\begin{array}{lll} \delta_f(s,v) & = & \delta_f(s,u)-1 & (v,u) \text{ is on a shortest path in } G_f \\ & \leq & \delta_{f'}(s,u)+1 \\ & = & \delta_{f'}(s,v)-2 & (u,v) \text{ is on a shortest path in } G_{f'} \\ & < & \delta_{f'}(s,v) & \text{contradiction} \end{array}$$

Since we have contradictions in either case, no flow augmentation using Edmonds-Karp can cause the shortest path from s to any vertex to decrease.

Definition 0.3 An edge (u, v) on an augmenting path p in G_f is called **critical** if $c_f(p) = c_f(u, v)$.

Example: (y, z) is critical on this augmenting path:

$$s \xrightarrow{2} x \xrightarrow{3} y \xrightarrow{1} z \xrightarrow{2} t$$

How many times can an edge (u, v) be critical in the execution of Edmonds-Karp.

• Since augmenting paths are SP's:

$$\delta_f(s, v) = \delta_f(s, u) + 1$$

when (u, v) is critical for the first time.

- After the flow is augmented, (u, v) disappears.
- It cannot reappear until the net flow from u to v decreases.
- This happens only when (v, u) appears on an augmenting path.
- Let f' be the flow when this occurs, then:

$$\delta_{f'}(s, u) = \delta_{f'}(s, v) + 1$$

• By the lemma, the distance from s is nondecreasing with each flow augmentation so:

$$\delta_f(s,v) \le \delta_{f'}(s,v)$$

• But then we have:

$$G_f$$
 $s \to \cdots \to u \to v$ is a shortest path in G_f
 $G_{f'}$
 $s \to \cdots \to ... \to v \to u$ is a shortest path in $G_{f'}$

So u has moved a distance of at least 2 futher away from s.

Formally:

$$\delta_{f'}(s, u) = \delta_{f'}(s, v) + 1$$

$$\geq \delta_{f}(s, v) + 1$$

$$= \delta_{f}(s, u) + 2$$

• So from the time that (u, v) becomes critical to the next time it becomes critical the distance from s to u increases by at least 2.

- This distance starts at 1 and once it gets to |V|-2, u becomes unreachable.
- Thus (u, v) can be critical at most O(V) times.
- Since there are O(E) pairs of vertices that can have an edge betwen them in a residual network, the total number of critical edges during the entire execution is O(VE).
- Each augmenting path has at least one critical edge so there can be at most O(VE) augmenting paths during the entire execution of the algorithm.

Running Time: $O(VE^2)$.

- Each BFS takes O(V+E)=O(E) time since the graph is assumed to be connected.
- Inner loop take O(E) time.
- We just proved that there are O(VE) iterations of outer loop.