Graphs II - Shortest paths

Single Source Shortest Paths All Sources Shortest Paths

some drawings and notes from prof. Tom Cormen

Single Source SP

- Context: directed graph G=(V,E,w), weighted edges
- The shortest path (SP) between vertices u and v is the path that has minimum total weight
 - total weight is obtained by summing up path's edges weights

$$\delta(u, v) = \begin{cases} \min\{w(p) : u \stackrel{p}{\rightsquigarrow} v\} & \text{if there is a path from } u \text{ to } v \\ \infty & \text{otherwise} \end{cases}$$

- Note: SP cannot contain cycles
 - positive cycles: a shortest path obtained by taking out the cycle
 - negative cycles: a shortest path obtained by iterating through the cycle few more times, minimum weight is $-\infty$.

Negative edges and cycles

- negative weights possible
- negative cycles make some shortest paths -∞

- Exercise: explain the following :
- SP(s,a)=3
- SP(s,b)= -1
- SP(s,g)=3
- $SP(s,e)=-\infty$

Single Source SP

- Task: Given a source vertex s∈V, find the shortest path from s to all other vertices
 - will write inside each vertex v the shortest path estimate ESP(s,v) weight from the source
 - these estimates change as the algorithm progresses
 - highlight edges that give the SP-s
 - highlighted edges form a tree with source as root
 - tree not unique as (b) and (c) are both valid

Relaxation

- if current (estimate) ESP(s,u) is 5 and edge (u,v) has weight w(u,v)=2, we can reach v with a path of 5+2=7
 - if current estimate ESP(s,v) is more than 7, we "relax edge (u,v)" by replacing the estimate ESP(s,v) =7.
 - if not (ESP(s,v) \leq 7), we do nothing

- source is the SP tree root
- BF algorithm progresses in "waves", similar to BFS
- takes a maximum of |V|-1 waves to find SP
 - since there cannot be cycles

Bellman-Ford SSSP algorithm

- idea : relax all edges once (in any order) and we've got CORRECT all SP-s of one edge
 - relax again all edges (any order) and we obtained all SP-s of two edges
 - relax again, and get all SP-s of three edges
 - no SP can have more than |V|-1 edges, so repeat the relax-alledges step |V|-1 times, to get all SP-s
 - BELLMAN-FORD
 - init all SP : $SP(s,v) = \infty$ for all v, SP(s,s) = 0
 - for k=1: |V|-1
 - relax all edges
 - check for negative cycles

SSSP exercise

Discover SP by hand (start from source)

- discover SP(s,v) means having the current estimate equal with the actual (unknown) SP
 - discover SP : ESP(s,v) = SP(s,v)
 - ESP written "inside" each node, it may further decrease
 - once SP discovered, the ESP never decreases

- discover SP(s,v) means having the current estimate equal with the actual (unknown) SP
 - discover SP : ESP(s,v) = SP(s,v)
 - ESP written "inside" each node, it may further decrease
 - once SP discovered, the ESP never decreases

● init all ESP = ∞

- discover SP(s,v) means having the current estimate equal with the actual (unknown) SP
 - discover SP : ESP(s,v) = SP(s,v)
 - ESP written "inside" each node, it may further decrease
 - once SP discovered, the ESP never decreases

● init all ESP = ∞

relax all edges (first time): discover all SP-s of one edge

- discover SP(s,v) means having the current estimate equal with the actual (unknown) SP
 - discover SP : ESP(s,v) = SP(s,v)
 - ESP written "inside" each node, it may further decrease
 - once SP discovered, the ESP never decreases

● init all ESP = ∞

- relax all edges (first time): discover all SP-s of one edge
- relax all edges (second time): discover all SP-s of two edges

- discover SP(s,v) means having the current estimate equal with the actual (unknown) SP
 - discover SP : ESP(s,v) = SP(s,v)
 - ESP written "inside" each node, it may further decrease
 - once SP discovered, the ESP never decreases

● init all ESP = ∞

- relax all edges (first time): discover all SP-s of one edge
- relax all edges (second time): discover all SP-s of two edges
 - ... repeat
 - how many times?

- Essential mechanism (BF proof):
 - SP(s,v) = [a1, a2, a3, a4]
 - Relaxing a1, then a2, then a3, then a4 you can do them over any amount of time, but it has to be in the right order
 - SP(s,v) discovered
 - for every SP=(edges a1,a2,a3,...) there was a relaxation sequence of these edges, in this precise order: a1 in the first round, a2 in the second round, etc.
 - overall quite a few more relaxations than necessary, in order to enforce correctness in all possible cases
- Running time: |V|-1 iterations for the outer loop
- inner loop: relax all edges O(E)
- Total $V^*O(E) = O(VE)$

Essential mechanism:

- for every SP=(edges a1,a2,a3,...) there was a relaxation sequence of these edges, in this precise order: a1 in the first round, a2 in the second round, etc.
- in a DAG we have a way to relax all edges in pathorder, without doing |V|-1 rounds of relax-all-edges
- use topological sort, relax edges in topological order.
 - topological sort is given by finishing DFS times (on picture)
- Running time O(E) (if E>V)

Essential mechanism:

- for every SP=(edges a1,a2,a3,...) there was a relaxation sequence of these edges, in this precise order: a1 in the first round, a2 in the second round, etc.
- in a DAG we have a way to relax all edges in pathorder, without doing |V|-1 rounds of relax-all-edges
- use topological sort, relax edges in topological order.
 - topological sort is given by finishing DFS times (on picture)
- Running time O(E) (if E>V)

Essential mechanism:

- for every SP=(edges a1,a2,a3,...) there was a relaxation sequence of these edges, in this precise order: a1 in the first round, a2 in the second round, etc.
- in a DAG we have a way to relax all edges in pathorder, without doing |V|-1 rounds of relax-all-edges
- use topological sort, relax edges in topological order.
 - topological sort is given by finishing DFS times (on picture)
- Running time O(E) (if E>V)

Essential mechanism:

- for every SP=(edges a1,a2,a3,...) there was a relaxation sequence of these edges, in this precise order: a1 in the first round, a2 in the second round, etc.
- in a DAG we have a way to relax all edges in pathorder, without doing |V|-1 rounds of relax-all-edges
- use topological sort, relax edges in topological order.
 - topological sort is given by finishing DFS times (on picture)
- Running time O(E) (if E>V)

Essential mechanism:

- for every SP=(edges a1,a2,a3,...) there was a relaxation sequence of these edges, in this precise order: a1 in the first round, a2 in the second round, etc.
- in a DAG we have a way to relax all edges in pathorder, without doing |V|-1 rounds of relax-all-edges
- use topological sort, relax edges in topological order.
 - topological sort is given by finishing DFS times (on picture)
- Running time O(E) (if E>V)

Essential mechanism:

- for every SP=(edges a1,a2,a3,...) there was a relaxation sequence of these edges, in this precise order: a1 in the first round, a2 in the second round, etc.
- in a DAG we have a way to relax all edges in pathorder, without doing |V|-1 rounds of relax-all-edges
- use topological sort, relax edges in topological order.
 - topological sort is given by finishing DFS times (on picture)
- Running time O(E) (if E>V)

Essential mechanism:

- for every SP=(edges a1,a2,a3,...) there was a relaxation sequence of these edges, in this precise order: a1 in the first round, a2 in the second round, etc.
- in a DAG we have a way to relax all edges in pathorder, without doing |V|-1 rounds of relax-all-edges
- use topological sort, relax edges in topological order.
 - topological sort is given by finishing DFS times (on picture)
- Running time O(E) (if E>V)

Essential mechanism:

- for every SP=(edges a1,a2,a3,...) there was a relaxation sequence of these edges, in this precise order: a1 in the first round, a2 in the second round, etc.
- in a DAG we have a way to relax all edges in pathorder, without doing |V|-1 rounds of relax-all-edges
- use topological sort, relax edges in topological order.
 - topological sort is given by finishing DFS times (on picture)
- Running time O(E) (if E>V)

Essential mechanism:

- for every SP=(edges a1,a2,a3,...) there was a relaxation sequence of these edges, in this precise order: a1 in the first round, a2 in the second round, etc.
- in a DAG we have a way to relax all edges in pathorder, without doing |V|-1 rounds of relax-all-edges
- use topological sort, relax edges in topological order.
 - topological sort is given by finishing DFS times (on picture)
- Running time O(E) (if E>V)

Essential mechanism:

- for every SP=(edges a1,a2,a3,...) there was a relaxation sequence of these edges, in this precise order: a1 in the first round, a2 in the second round, etc.
- in a DAG we have a way to relax all edges in pathorder, without doing |V|-1 rounds of relax-all-edges
- use topological sort, relax edges in topological order.
 - topological sort is given by finishing DFS times (on picture)
- Running time O(E) (if E>V)

Dijkstra SSSP algorithm

- No negative weight edges allowed
- instead of relaxing all edges (like Bellman Ford), keep track of a current "closest" vertex to the SP tree
 - "closest" = minimum ESP(s,v) of nodes not already part of SP tree
 - add the current-closest to the partial SP tree, v
 - relax the outing edges of v (all edges v->x)
- repeat
- similar to Prim's algorithm (conceptually)

We want to find the shortest path from s to every node

INITIALIZE -SINGLE -SOURCE(G,s) $S = \Phi$ Q = G.V

After initialization, we have $v.\pi = NIL$ for all $v \in V, s.d = 0$, and $v.d = \infty$ for $v \in V - \{s\}$

$$s=\text{EXTRACT-MIN}(Q)$$
$$S = \{s\}$$
$$Q = \{t, x, y, z\}$$

We are at node s

$$RELAX(s, t, w)$$
$$S = \{s\}$$
$$Q = \{t, x, y, z\}$$

Test whether we can improve the shortest path to t found so far by going through s

$$RELAX(s, t, w)$$
$$S = \{s\}$$
$$Q = \{t, x, y, z\}$$

Update t.d = 10 and $t.\pi = s$

$$RELAX(s, y, w)$$
$$S = \{s\}$$
$$Q = \{t, x, y, z\}$$

Test whether we can improve the shortest path to y found so far by going through s

$$RELAX(s, y, w)$$
$$S = \{s\}$$
$$Q = \{t, x, y, z\}$$

Update y.d=5 and $y.\pi=s$

$$S = \{s\}$$
$$Q = \{t, x, y, z\}$$

All edges leaving s have been tested

$$y=\text{EXTRACT-MIN}(Q)$$

$$S = \{s, y\}$$

$$Q = \{t, x, z\}$$

We are at node y

$$RELAX(y, t, w)$$
$$S = \{s, y\}$$
$$Q = \{t, x, z\}$$

Test whether we can improve the shortest path to t found so far by going through y

$$RELAX(y, t, w)$$
$$S = \{s, y\}$$
$$Q = \{t, x, z\}$$

Update t.d=8 and $t.\pi=y$

$$RELAX(y, x, w)$$
$$S = \{s, y\}$$
$$Q = \{t, x, z\}$$

Test whether we can improve the shortest path to x found so far by going through y

$$RELAX(y, x, w)$$
$$S = \{s, y\}$$
$$Q = \{t, x, z\}$$

Update x.d = 14 and $x.\pi = y$

$$RELAX(y, z, w)$$
$$S = \{s, y\}$$
$$Q = \{t, x, z\}$$

Test whether we can improve the shortest path to z found so far by going through y

$$RELAX(y, z, w)$$
$$S = \{s, y\}$$
$$Q = \{t, x, z\}$$

Update z.d = 7 and $z.\pi = y$

$$S = \{s, y\}$$
$$Q = \{t, x, z\}$$

All edges leaving y have been tested

$$z=\text{EXTRACT-MIN}(Q)$$
$$S = \{s, y, z\}$$
$$Q = \{t, x\}$$

We are at node z

$$RELAX(z, s, w)$$
$$S = \{s, y, z\}$$
$$Q = \{t, x\}$$

Test whether we can improve the shortest path to s found so far by going through z

$$RELAX(z, x, w)$$
$$S = \{s, y, z\}$$
$$Q = \{t, x\}$$

Test whether we can improve the shortest path to x found so far by going through z

$$RELAX(z, x, w)$$
$$S = \{s, y, z\}$$
$$Q = \{t, x\}$$

 ${\rm Update}\, x.d=13\,{\rm and}\quad x.\pi=z$

$$S = \{s, y, z\}$$
$$Q = \{t, x\}$$

All edges leaving z have been tested

$$t=\text{EXTRACT-MIN}(Q)$$
$$S = \{s, y, z, t\}$$
$$Q = \{x\}$$

We are at node t

$$RELAX(t, y, w)$$
$$S = \{s, y, z, t\}$$
$$Q = \{x\}$$

Test whether we can improve the shortest path to y found so far by going through t

$$RELAX(t, x, w)$$
$$S = \{s, y, z, t\}$$
$$Q = \{x\}$$

Test whether we can improve the shortest path to x found so far by going through t

$$RELAX(t, x, w)$$
$$S = \{s, y, z, t\}$$
$$Q = \{x\}$$

Update x.d = 9 and $x.\pi = t$

$$S = \{s, y, z, t\}$$
$$Q = \{x\}$$

All edges leaving t have been tested

$\begin{aligned} & x = \text{EXTRACT-MIN}(Q) \\ & S = G.V \\ & Q = \Phi \end{aligned}$

We are at node x

$$RELAX(x, z, w)$$
$$S = G.V$$
$$Q = \Phi$$

Test whether we can improve the shortest path to z found so far by going through x

$$S = G.V$$

 $Q = \Phi$
Done!

All edges leaving x have been tested.

Every vertex's shortest path from s has been determined. We are done.

Dijkstra's Algorithm

• correctness proof in the book

- idea: proof that for each SP, there is a relaxation sequence of its edges in path-order
- Running Time depends on implementation of queue operations
 - IVI * extract-min
 - |E| * decrease key (at relaxation)

Total

- O(V*T_{extract-min}+E*T_{decrease-key})
- with Fibonacci heaps: extract-min is O(logV) and decrease-key is O(1); total O(E+VlogV)

DIJKSTRA(G, w, s)

- 1 INITIALIZE-SINGLE-SOURCE(G, s)
- $2 \quad S = \emptyset$
- 3 Q = G.V
- 4 while $Q \neq \emptyset$
- 5 u = EXTRACT-MIN(Q)
- $6 \qquad S = S \cup \{u\}$
- for each vertex $v \in G.Adj[u]$

8 RELAX
$$(u, v, w)$$

all edges from u

Graphs II - Shortest paths Lesson 2: All Sources Shortest Paths

ASSP

- Task: find all shortest paths, between any two vertices (no fixed source)
- Slow: run Bellman Ford separately from each vertex as source.
 - running time |V| * BF-time = $V*O(VE) = O(V^2E)$
 - that is $O(V^4)$ if graph dense $E \approx V^2$

- Instead, we will use dynamic programming
- $C_{ij} = \min SP$ weight (objective) between vertices i,j
- optimal solution structure:
 - if path P(i->j) from i to j in optimal and passes vertex k, then the subpaths P(i->k) and P(k->j) must be also optimal
 - optimal = shortest

ASSP dynamic programming

- two options for dynamic programming
- A. go by the number of edges used in a path
 - $C_{ij}^{(m)}$ = minimum path weight between i and j using at most m edges
 - $C_{ij}^{(1)}$ = weight of edge i->j, if exists (one edge)
 - C_{ij}⁽²⁾= min weight of any path i->k->j (max 2 edges)
 - $C_{ij}^{(0)}$ we 0 if i $\neq j$, ∞ otherwise (no edge)
- B. by the intermediary nodes in a certain fixed order
 - fix order of all vertices 1,2,3,...,|V|
 - C_{ij}^(m)= minimum path weight between i and j using only intermediary vertices {1,2,...m}
 - similar to discrete knapsack idea, see module 6

• $C_{ij}^{(m)} = \min_{k} \{ C_{ij}^{(m-1)}, C_{ik}^{(m-1)} + W_{kj} \} //bottom up computation$

- the Cij using m edges is either
 - the same as Cij using m-1 edges, OR
 - C_{ik} using m-1 edges to intermediary k, plus an edge from k to j w_{kj}
 - all nodes k are eligible as possible "last" intermediary

- Compute the C^(m) matrix from C^(m-1) matrix using edges matrix W
- Extend-SP $(C^{(m-1)}, W)$

```
for i=1:n
  for j=1:n
    a=∞;
    for k=1:n
    a=min{a, C<sub>ik</sub>(m-1) + W<sub>kj</sub>};
    C<sub>ij</sub>(m)=a
```

```
• ASSP-slow(W)
```

```
\mathbf{C}^{(1)} = \mathbf{W}
```

```
for m=2:n-1
```

C(m)=Extend-SP(C(m-1),W)

```
return C<sup>(n-1)</sup>
```

Extend-SP looks like matrix multiplication!

- Extend-SP running time $O(n^3)$
- ASSP-slow is n*O(n³) = O(n⁴), same as running Bellman Ford separately from each vertex

```
Extend-SP (C<sup>(m-1)</sup>,W)
for i=1:n
    for j=1:n
        a=∞;
        for k=1:n
            a=min{a, C<sub>ik</sub><sup>(m-1)</sup> + W<sub>kj</sub>};
        C<sub>ij</sub><sup>(m)</sup>=a
```

```
D=multiply(C,W)
for i=1:n
for j=1:n
a=0;
for k=1:n
a=a+ C<sub>ik</sub> * W<sub>kj</sub>;
D<sub>ij</sub>=a
```

- Think of Extending-SP as of matrix multiplication
 - $C_{ik}^{(1)} = C_{ik}^{(0)*}W = W$; the "*" means $a=min\{a, C_{ik}^{(m-1)} + w_{kj}\}$ inner operation
 - $C^{(2)} = C^{(1)*}W = W2$
 - $C^{(3)} = C^{(2)*}W = W3$

- Only need C⁽ⁿ⁻¹⁾, not the intermediary ones
 - $C^{(1)} = W$

•••••

- $C^{(2)} = W^{2} = (W^{1})^{2}$
- $C^{(4)} = W^{4} = (W^{2})^{2}$
- $C^{(8)} = W^{8} = (W^{4})^{2}$, etc

- ASSP-fast(W)
 - $C^{(1)} = W;$
 - while m<n-1
 - C(m)=Extend-SP($C^{(m-1)}$, $C^{(m-1)}$, W);
 - ▶ m=2*m;

return C^(m)

- After [lg(n)] iterations we have computed C^(m) with m≥n-1. Its ok to "overshoot" as C doesn't change after finding the SP.
- Running time $\Theta(V^3\log V)$

ASSP dynamic programming by vertices

- "Floyd-Warshall" algorithm
- Fix a vertex order : 1, 2, 3, ... ,n
 - S_m = set first k of vertices = { $v_1, v_2, ..., v_m$ }
- C_{ij}^(m) = the weight of SP(i,j) going only through intermediary vertices in set S_m

m=0 : no intermediary allowed; C_{ij}⁽⁰⁾=w_{ij}

- m=1 : only k=v1 intermediary allowed
 - $C_{ij}^{(1)} = \min \{ w_{ij}, w_{ik+}, w_{kj} \}$

ASSP dynamic programming by vertices

dynamic recursion

- $C_{ij}^{(m)} = \min\{ C_{ij}^{(m-1)}, C_{im}^{(m-1)} + C_{mj}^{(m-1)} \}$
 - $C_{ij}^{(m)}$ = minimum between $C_{ij}^{(m-1)}$ and the SP including vertex v_m and only other intermediaries <m.

ASSP dynamic programming by vertices

bottom up computation

```
Floyd-Warshall-ASSP(W)
```

```
for m=1:n
    for i=1:n
        for j=1:n
        Cij<sup>(m)</sup> = min{ Cij<sup>(m-1)</sup>, Cim<sup>(m-1)</sup> + Cmj<sup>(m-1)</sup> }
    return C<sup>(n)</sup>
```

```
• Running time \Theta(V^3)
```

 for dense graphs E≈V², Floyd-Warshall-ASSP same cost as Bellman-Ford-SSSP