
Graphs II - Shortest paths
Single Source Shortest Paths
All Sources Shortest Paths

some drawings and notes from prof. Tom Cormen

Single Source SP

• Context: directed graph G=(V,E,w), weighted edges

• The shortest path (SP) between vertices u and v is
the path that has minimum total weight
- total weight is obtained by summing up path’s edges weights

• Note: SP cannot contain cycles
- positive cycles: a shortest path obtained by taking out the cycle

- negative cycles: a shortest path obtained by iterating through
the cycle few more times, minimum weight is -∞.

Negative edges and cycles

• Exercise: explain the
following :

• SP(s,a)=3

• SP(s,b)= -1

• SP(s,g)=3

• SP(s,e)=-∞• negative weights possible

• negative cycles make
some shortest paths -∞

Single Source SP

• Task: Given a source vertex s∈V, find the shortest
path from s to all other vertices
- will write inside each vertex v the shortest path estimate ESP(s,v)

weight from the source

- these estimates change as the algorithm progresses

- highlight edges that give the SP-s

- highlighted edges form a tree with source as root

- tree not unique as (b) and (c) are both valid

Relaxation

• if current (estimate) ESP(s,u) is 5 and edge (u,v) has
weight w(u,v)=2, we can reach v with a path of
5+2=7
- if current estimate ESP(s,v) is more than 7, we “relax edge (u,v)”

by replacing the estimate ESP(s,v) =7.

- if not (ESP(s,v)⩽7), we do nothing

Bellman Ford

• source is the SP tree root

• BF algorithm progresses in "waves", similar to BFS

• takes a maximum of |V|-1 waves to find SP
- since there cannot be cycles

Bellman-Ford SSSP algorithm

• idea : relax all edges once (in any order) and we’ve
got CORRECT all SP-s of one edge
- relax again all edges (any order) and we obtained all SP-s of two

edges

- relax again, and get all SP-s of three edges

- no SP can have more than |V|-1 edges, so repeat the relax-all-
edges step |V|-1 times, to get all SP-s

‣ BELLMAN-FORD

‣ init all SP : SP(s,v)= ∞ for all v, SP(s,s)=0

‣ for k=1:|V|-1

‣ relax all edges

‣ check for negative cycles

SSSP exercise
• Discover SP by hand (start from

source)

Bellman Ford
• discover SP(s,v) means having the current

estimate equal with the actual (unknown) SP
- discover SP : ESP(s,v) = SP(s,v)

- ESP written "inside" each node, it may further decrease

- once SP discovered, the ESP never decreases

0 5

7

5

5
6

6

6

6

6

7
7

7

8

8

8

1
2

3 1

8

1

2

3

2

3

3

2
4

4

1

2

Bellman Ford
• discover SP(s,v) means having the current

estimate equal with the actual (unknown) SP
- discover SP : ESP(s,v) = SP(s,v)

- ESP written "inside" each node, it may further decrease

- once SP discovered, the ESP never decreases

0 5

7

5

5
6

6

6

6

6

7
7

7

8

8

8

1
2

3 1

8

1

2

3

2

3

3

2
4

4

1

2

∞
∞

∞ ∞

∞

∞

∞∞

∞

∞

∞

∞∞
∞

∞

• init all ESP = ∞

Bellman Ford
• discover SP(s,v) means having the current

estimate equal with the actual (unknown) SP
- discover SP : ESP(s,v) = SP(s,v)

- ESP written "inside" each node, it may further decrease

- once SP discovered, the ESP never decreases

0 5

7

5

5
6

6

6

6

6

7
7

7

8

8

82

1

1

3

1
2

3 1

8

1

2

3

2

7

3

3

2
4

4

1

2

∞

∞∞

∞

∞

∞

∞∞
∞

∞

• init all ESP = ∞

• relax all edges (first time):
discover all SP-s of one edge

Bellman Ford
• discover SP(s,v) means having the current

estimate equal with the actual (unknown) SP
- discover SP : ESP(s,v) = SP(s,v)

- ESP written "inside" each node, it may further decrease

- once SP discovered, the ESP never decreases

0 5

7

5

5
6

6

6

6

6

7
7

7

8

8

82

1

1

3

1
2

3 1

8

6

4

4

5

5

37

1

2

3

2

7

8

9

3

3

2
4

4

1

2

∞

• init all ESP = ∞

• relax all edges (first time):
discover all SP-s of one edge

• relax all edges (second time):
discover all SP-s of two edges

Bellman Ford
• discover SP(s,v) means having the current

estimate equal with the actual (unknown) SP
- discover SP : ESP(s,v) = SP(s,v)

- ESP written "inside" each node, it may further decrease

- once SP discovered, the ESP never decreases

0 5

7

5

5
6

6

6

6

6

7
7

7

8

8

82

1

1

3

1
2

3 1

8

6

4

4

5

5

37

6

7
6

6 1

2

3

2

3

3

2
4

4

1

2

• init all ESP = ∞

• relax all edges (first time):
discover all SP-s of one edge

• relax all edges (second time):
discover all SP-s of two edges

• . . . repeat
- how many times?

Bellman Ford
• Essential mechanism (BF proof):
- SP(s,v) = [a1, a2, a3, a4]

- Relaxing a1, then a2, then a3, then a4 - you can do them over any
amount of time, but it has to be in the right order

- SP(s,v) discovered

- for every SP=(edges a1,a2,a3,...) there was a relaxation sequence of
these edges, in this precise order: a1 in the first round, a2 in the
second round, etc.

- overall quite a few more relaxations than necessary, in order to enforce
correctness in all possible cases

• Running time: |V|-1 iterations for the outer loop

• inner loop: relax all edges O(E)

• Total V*O(E) = O(VE)

SSSP in a DAG
• Essential mechanism:
- for every SP=(edges a1,a2,a3,...) there was a relaxation sequence of

these edges, in this precise order: a1 in the first round, a2 in the second
round, etc.

• in a DAG we have a way to relax all edges in path-
order, without doing |V|-1 rounds of relax-all-edges

• use topological sort, relax edges in topological order.
- topological sort is given by finishing DFS times (on picture)

• Running time O(E) (if E>V)
- formally O(E+V) VS Bellman Ford O(VE)

SSSP in a DAG
• Essential mechanism:
- for every SP=(edges a1,a2,a3,...) there was a relaxation sequence of

these edges, in this precise order: a1 in the first round, a2 in the second
round, etc.

• in a DAG we have a way to relax all edges in path-
order, without doing |V|-1 rounds of relax-all-edges

• use topological sort, relax edges in topological order.
- topological sort is given by finishing DFS times (on picture)

• Running time O(E) (if E>V)
- formally O(E+V) VS Bellman Ford O(VE)

SSSP in a DAG
• Essential mechanism:
- for every SP=(edges a1,a2,a3,...) there was a relaxation sequence of

these edges, in this precise order: a1 in the first round, a2 in the second
round, etc.

• in a DAG we have a way to relax all edges in path-
order, without doing |V|-1 rounds of relax-all-edges

• use topological sort, relax edges in topological order.
- topological sort is given by finishing DFS times (on picture)

• Running time O(E) (if E>V)
- formally O(E+V) VS Bellman Ford O(VE)

SSSP in a DAG
• Essential mechanism:
- for every SP=(edges a1,a2,a3,...) there was a relaxation sequence of

these edges, in this precise order: a1 in the first round, a2 in the second
round, etc.

• in a DAG we have a way to relax all edges in path-
order, without doing |V|-1 rounds of relax-all-edges

• use topological sort, relax edges in topological order.
- topological sort is given by finishing DFS times (on picture)

• Running time O(E) (if E>V)
- formally O(E+V) VS Bellman Ford O(VE)

SSSP in a DAG
• Essential mechanism:
- for every SP=(edges a1,a2,a3,...) there was a relaxation sequence of

these edges, in this precise order: a1 in the first round, a2 in the second
round, etc.

• in a DAG we have a way to relax all edges in path-
order, without doing |V|-1 rounds of relax-all-edges

• use topological sort, relax edges in topological order.
- topological sort is given by finishing DFS times (on picture)

• Running time O(E) (if E>V)
- formally O(E+V) VS Bellman Ford O(VE)

SSSP in a DAG
• Essential mechanism:
- for every SP=(edges a1,a2,a3,...) there was a relaxation sequence of

these edges, in this precise order: a1 in the first round, a2 in the second
round, etc.

• in a DAG we have a way to relax all edges in path-
order, without doing |V|-1 rounds of relax-all-edges

• use topological sort, relax edges in topological order.
- topological sort is given by finishing DFS times (on picture)

• Running time O(E) (if E>V)
- formally O(E+V) VS Bellman Ford O(VE)

SSSP in a DAG
• Essential mechanism:
- for every SP=(edges a1,a2,a3,...) there was a relaxation sequence of

these edges, in this precise order: a1 in the first round, a2 in the second
round, etc.

• in a DAG we have a way to relax all edges in path-
order, without doing |V|-1 rounds of relax-all-edges

• use topological sort, relax edges in topological order.
- topological sort is given by finishing DFS times (on picture)

• Running time O(E) (if E>V)
- formally O(E+V) VS Bellman Ford O(VE)

SSSP in a DAG
• Essential mechanism:
- for every SP=(edges a1,a2,a3,...) there was a relaxation sequence of

these edges, in this precise order: a1 in the first round, a2 in the second
round, etc.

• in a DAG we have a way to relax all edges in path-
order, without doing |V|-1 rounds of relax-all-edges

• use topological sort, relax edges in topological order.
- topological sort is given by finishing DFS times (on picture)

• Running time O(E) (if E>V)
- formally O(E+V) VS Bellman Ford O(VE)

SSSP in a DAG
• Essential mechanism:
- for every SP=(edges a1,a2,a3,...) there was a relaxation sequence of

these edges, in this precise order: a1 in the first round, a2 in the second
round, etc.

• in a DAG we have a way to relax all edges in path-
order, without doing |V|-1 rounds of relax-all-edges

• use topological sort, relax edges in topological order.
- topological sort is given by finishing DFS times (on picture)

• Running time O(E) (if E>V)
- formally O(E+V) VS Bellman Ford O(VE)

SSSP in a DAG
• Essential mechanism:
- for every SP=(edges a1,a2,a3,...) there was a relaxation sequence of

these edges, in this precise order: a1 in the first round, a2 in the second
round, etc.

• in a DAG we have a way to relax all edges in path-
order, without doing |V|-1 rounds of relax-all-edges

• use topological sort, relax edges in topological order.
- topological sort is given by finishing DFS times (on picture)

• Running time O(E) (if E>V)
- formally O(E+V) VS Bellman Ford O(VE)

Dijkstra SSSP algorithm

• No negative weight edges allowed

• instead of relaxing all edges (like Bellman Ford), keep
track of a current "closest" vertex to the SP tree
- "closest" = minimum ESP(s,v) of nodes not already part of SP tree

- add the current-closest to the partial SP tree, v

- relax the outing edges of v (all edges v->x)

• repeat

• similar to Prim's algorithm (conceptually)

We	 want	 to	 find	 the	 shortest	 path	 from	 s	 to	 every	 node

A4er	 ini6aliza6on,	 we	 have	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 for	 all	 	 	 	 	 	 	 	 	 	 	 	 	 	 ,	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 ,	 and	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 for	 	
	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	

We	 are	 at	 node	 s

Test	 whether	 we	 can	 improve	 the	 shortest	 path	 to	 t	 found	 so	 far	 by	 going	 through	 s

Update	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 and	

Test	 whether	 we	 can	 improve	 the	 shortest	 path	 to	 y	 found	 so	 far	 by	 going	 through	 s

Update	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 and	

All	 edges	 leaving	 s	 have	 been	 tested

We	 are	 at	 node	 y

Test	 whether	 we	 can	 improve	 the	 shortest	 path	 to	 t	 found	 so	 far	 by	 going	 through	 y

Update	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 and	

Test	 whether	 we	 can	 improve	 the	 shortest	 path	 to	 x	 found	 so	 far	 by	 going	 through	 y

Update	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 and	

Test	 whether	 we	 can	 improve	 the	 shortest	 path	 to	 z	 found	 so	 far	 by	 going	 through	 y

Update	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 and	

All	 edges	 leaving	 y	 have	 been	 tested

We	 are	 at	 node	 z

Test	 whether	 we	 can	 improve	 the	 shortest	 path	 to	 s	 found	 so	 far	 by	 going	 through	 z

Test	 whether	 we	 can	 improve	 the	 shortest	 path	 to	 x	 found	 so	 far	 by	 going	 through	 z

Update	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 and	

All	 edges	 leaving	 z	 have	 been	 tested

We	 are	 at	 node	 t

Test	 whether	 we	 can	 improve	 the	 shortest	 path	 to	 y	 found	 so	 far	 by	 going	 through	 t

Test	 whether	 we	 can	 improve	 the	 shortest	 path	 to	 x	 found	 so	 far	 by	 going	 through	 t

Update	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 and	

All	 edges	 leaving	 t	 have	 been	 tested

We	 are	 at	 node	 x

Test	 whether	 we	 can	 improve	 the	 shortest	 path	 to	 z	 found	 so	 far	 by	 going	 through	 x

All	 edges	 leaving	 x	 have	 been	 tested.
Every	 vertex’s	 shortest	 path	 from	 s	 has	 been	 determined.	 We	 are	 done.

Dijkstra's Algorithm
• correctness proof in the book
- idea: proof that for each SP, there is

a relaxation sequence of its edges in
path-order

• Running Time depends on
implementation of queue
operations
- |V| * extract-min

- |E| * decrease key (at relaxation)

• Total
- O(V*Textract-min+E*Tdecrease-key)

- with Fibonacci heaps: extract-min is
O(logV) and decrease-key is O(1) ;
total O(E+VlogV)

all edges
from u

Graphs II - Shortest paths
Lesson 2: All Sources Shortest Paths

ASSP

• Task: find all shortest paths, between any two
vertices (no fixed source)

• Slow: run Bellman Ford separately from each vertex
as source.
- running time |V| * BF-time = V*O(VE) = O(V2E)

- that is O(V4) if graph dense E≈V2

• Instead, we will use dynamic programming

• Cij = min SP weight (objective) between vertices i,j

• optimal solution structure:
- if path P(i->j) from i to j in optimal and passes vertex k, then the

subpaths P(i->k) and P(k->j) must be also optimal

- optimal = shortest

ASSP dynamic programming
• two options for dynamic programming

• A. go by the number of edges used in a path
- Cij(m)= minimum path weight between i and j using at most m edges

- Cij(1)= weight of edge i->j, if exists (one edge)

- Cij(2)= min weight of any path i->k->j (max 2 edges)

- Cij(0)= we 0 if i≠j, ∞ otherwise (no edge)

• B. by the intermediary nodes in a certain fixed order
- fix order of all vertices 1,2,3,...,|V|

- Cij(m)= minimum path weight between i and j using only intermediary
vertices {1,2,...m}

- similar to discrete knapsack idea, see module 6

ASSP dynamic programming by edges

• Cij(m) = mink { Cij(m-1), Cik(m-1)+wkj} //bottom up computation

• the Cij using m edges is either
- the same as Cij using m-1 edges, OR

- Cik using m-1 edges to intermediary k, plus an edge from k to j wkj

- all nodes k are eligible as possible “last” intermediary

ASSP dynamic programming by edges
• Compute the C(m) matrix from C(m-1) matrix using edges

matrix W

• Extend-SP (C(m-1),W)
‣ for i=1:n

‣ for j=1:n

‣ a=∞;

‣ for k=1:n

‣ a=min{a, Cik(m-1) + wkj};

‣ Cij(m)=a

• ASSP-slow(W)
‣ C(1) = W

‣ for m=2:n-1

‣ C(m)=Extend-SP(C(m-1),W)

‣ return C(n-1)

ASSP dynamic programming by edges

• Extend-SP looks like matrix multiplication!
- Extend-SP running time O(n3)

• ASSP-slow is n*O(n3) = O(n4), same as running
Bellman Ford separately from each vertex

‣Extend-SP (C(m-1),W)
‣ for i=1:n

‣ for j=1:n

‣ a=∞;

‣ for k=1:n

‣ a=min{a, Cik(m-1) + wkj};

‣ Cij(m)=a

‣D=multiply(C,W)
‣ for i=1:n

‣ for j=1:n

‣ a=0;

‣ for k=1:n

‣ a=a+ Cik * wkj;

‣ Dij=a

ASSP dynamic programming by edges
• Think of Extending-SP as of matrix multiplication
- C(1) = C(0)*W = W; the “*” means “a=min{a, Cik(m-1) + wkj}“ inner

operation

- C(2) = C(1)*W = W2

- C(3) = C(2)*W = W3

-

• Only need C(n-1), not the intermediary ones
- C(1) = W

- C(2) = W2 = (W1)2

- C(4) = W4 = (W2)2

- C(8) = W8 = (W4)2, etc

ASSP dynamic programming by edges

•ASSP-fast(W)
‣ C(1) = W;

‣ while m<n-1

‣ C(m)=Extend-SP(C(m-1), C(m-1), W);

‣ m=2*m;

‣ return C(m)

• After ⎡lg(n)⎤ iterations we have computed C(m)
with m⩾n-1. Its ok to “overshoot” as C doesnt
change after finding the SP.

• Running time Θ(V3logV)

ASSP dynamic programming by vertices

• “Floyd-Warshall” algorithm

• Fix a vertex order : 1, 2, 3, ... ,n
- Sm= set first k of vertices = {v1, v2, ... , vm)

• Cij(m) = the weight of SP(i,j) going only through
intermediary vertices in set Sm

• m=0 : no intermediary allowed; Cij(0)=wij

• m=1 : only k=v1 intermediary allowed
- Cij(1)= min {wij , wik+wkj }

ASSP dynamic programming by vertices

• dynamic recursion

• Cij(m) = min{ cij(m-1), cim(m-1) + cmj(m-1) }
- Cij(m) = minimum between Cij(m-1) and the SP including vertex vm and

only other intermediaries <m.

ASSP dynamic programming by vertices

• bottom up computation
‣ Floyd-Warshall-ASSP(W)

‣ for m=1:n

‣ for i=1:n

‣ for j=1:n

‣ Cij(m) = min{ cij(m-1), cim(m-1) + cmj(m-1) }

‣ return C(n)

• Running time Θ(V3)

- for dense graphs E≈V2, Floyd-Warshall-ASSP same cost as Bellman-
Ford-SSSP

