
Graphs II - Shortest paths
Single Source Shortest Paths
All Sources Shortest Paths

some drawings and notes from prof.  Tom Cormen



Single Source SP

• Context: directed graph G=(V,E,w), weighted edges

• The shortest path (SP) between vertices u and v is 
the path that has minimum total weight 
- total weight is  obtained by summing up path’s edges weights

• Note: SP cannot contain cycles
- positive cycles: a shortest path obtained by taking out the cycle

- negative cycles: a shortest path obtained by iterating through 
the cycle few more times, minimum weight is -∞. 



Negative edges and cycles

• Exercise: explain the 
following : 

• SP(s,a)=3

• SP(s,b)= -1

• SP(s,g)=3

• SP(s,e)=-∞• negative weights possible

• negative cycles make 
some shortest paths -∞



Single Source SP

• Task: Given a source vertex s∈V, find the shortest 
path from s to all other vertices
- will write inside each vertex v the shortest path estimate ESP(s,v) 

weight from the source

- these estimates change as the algorithm progresses

- highlight edges that give the SP-s

- highlighted edges form a tree with source as root

- tree not unique as (b) and (c) are both valid



Relaxation

• if current (estimate) ESP(s,u) is 5 and edge (u,v) has 
weight w(u,v)=2, we can reach v with a path of 
5+2=7
- if current estimate ESP(s,v) is more than 7, we “relax edge (u,v)”  

by replacing the estimate ESP(s,v) =7.

- if not (ESP(s,v)⩽7), we do nothing



Bellman Ford

• source is the SP tree root

• BF algorithm progresses in "waves", similar to BFS

• takes a maximum of |V|-1 waves to find SP 
- since there cannot be cycles



Bellman-Ford SSSP algorithm

• idea : relax all edges once (in any order) and we’ve 
got CORRECT all SP-s of one edge
- relax again all edges (any order) and we obtained all SP-s of two 

edges

- relax .... again, and get all SP-s of three edges

- no SP can have more than |V|-1 edges, so repeat the relax-all-
edges step |V|-1 times, to get all SP-s

‣ BELLMAN-FORD

‣ init all SP : SP(s,v)= ∞ for all v, SP(s,s)=0

‣ for k=1:|V|-1

‣ relax all edges 

‣ check for negative cycles



SSSP exercise
• Discover SP by hand (start from 

source)



Bellman Ford
• discover SP(s,v) means having the current 

estimate equal with the actual (unknown) SP
- discover SP : ESP(s,v) = SP(s,v)

- ESP written "inside" each node, it may further decrease

- once SP discovered, the ESP never decreases 
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Bellman Ford
• discover SP(s,v) means having the current 

estimate equal with the actual (unknown) SP
- discover SP : ESP(s,v) = SP(s,v)

- ESP written "inside" each node, it may further decrease

- once SP discovered, the ESP never decreases 
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• init all ESP = ∞



Bellman Ford
• discover SP(s,v) means having the current 

estimate equal with the actual (unknown) SP
- discover SP : ESP(s,v) = SP(s,v)

- ESP written "inside" each node, it may further decrease

- once SP discovered, the ESP never decreases 
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• init all ESP = ∞

• relax all edges (first time): 
discover all SP-s of one edge



Bellman Ford
• discover SP(s,v) means having the current 

estimate equal with the actual (unknown) SP
- discover SP : ESP(s,v) = SP(s,v)

- ESP written "inside" each node, it may further decrease

- once SP discovered, the ESP never decreases 
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• init all ESP = ∞

• relax all edges (first time): 
discover all SP-s of one edge

• relax all edges (second time): 
discover all SP-s of two edges



Bellman Ford
• discover SP(s,v) means having the current 

estimate equal with the actual (unknown) SP
- discover SP : ESP(s,v) = SP(s,v)

- ESP written "inside" each node, it may further decrease

- once SP discovered, the ESP never decreases 
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• init all ESP = ∞

• relax all edges (first time): 
discover all SP-s of one edge

• relax all edges (second time): 
discover all SP-s of two edges

• . . . repeat
- how many times?



Bellman Ford
• Essential mechanism (BF proof): 
- SP(s,v) = [a1, a2, a3, a4]

- Relaxing a1, then a2, then a3, then a4 - you can do them over any 
amount of time, but it has to be in the right order

- SP(s,v) discovered

- for every SP=(edges a1,a2,a3,...) there was a relaxation sequence of 
these edges, in this precise order: a1 in the first round, a2 in the 
second round, etc.

- overall quite a few more relaxations than necessary, in order to enforce 
correctness in all possible cases 

• Running time: |V|-1 iterations for the outer loop

• inner loop: relax all edges O(E)

• Total V*O(E) = O(VE)



SSSP in a DAG
• Essential mechanism: 
- for every SP=(edges a1,a2,a3,...) there was a relaxation sequence of 

these edges, in this precise order: a1 in the first round, a2 in the second 
round, etc.

• in a DAG we have a way to relax all edges in path-
order, without doing |V|-1 rounds of relax-all-edges

• use topological sort, relax edges in topological order.
- topological sort is given by finishing DFS times (on picture)

• Running time O(E) (if E>V)
- formally O(E+V) VS Bellman Ford O(VE)
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Dijkstra SSSP algorithm

• No negative weight edges allowed

• instead of relaxing all edges (like Bellman Ford), keep 
track of a current "closest" vertex to the SP tree
- "closest" = minimum ESP(s,v) of nodes not already part of SP tree

- add the current-closest to the partial SP tree, v

- relax the outing edges of v (all edges v->x) 

• repeat

• similar to Prim's algorithm (conceptually)



We	  want	  to	  find	  the	  shortest	  path	  from	  s	  to	  every	  node



A4er	  ini6aliza6on,	  we	  have	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  for	  all	  	  	  	  	  	  	  	  	  	  	  	  	  	  ,	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  ,	  and	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  for	  	  
	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  
	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  



We	  are	  at	  node	  s



Test	  whether	  we	  can	  improve	  the	  shortest	  path	  to	  t	  found	  so	  far	  by	  going	  through	  s



Update	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  and	  
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All	  edges	  leaving	  t	  have	  been	  tested



We	  are	  at	  node	  x



Test	  whether	  we	  can	  improve	  the	  shortest	  path	  to	  z	  found	  so	  far	  by	  going	  through	  x



All	  edges	  leaving	  x	  have	  been	  tested.
Every	  vertex’s	  shortest	  path	  from	  s	  has	  been	  determined.	  We	  are	  done.



Dijkstra's Algorithm
• correctness proof in the book
- idea: proof that for each SP, there is 

a relaxation sequence of its edges in 
path-order

• Running Time depends on 
implementation of queue 
operations
- |V| * extract-min

- |E| * decrease key (at relaxation)

•  Total 
- O(V*Textract-min+E*Tdecrease-key)

- with Fibonacci heaps: extract-min is 
O(logV) and decrease-key is O(1) ; 
total O(E+VlogV) 

all edges 
from u



Graphs II - Shortest paths
Lesson 2: All Sources Shortest Paths 



ASSP

• Task: find all shortest paths, between any two 
vertices (no fixed source)

• Slow: run Bellman Ford separately from each vertex 
as source.
- running time |V| * BF-time = V*O(VE) = O(V2E)  

- that is O(V4) if graph dense E≈V2



• Instead, we will use dynamic programming

• Cij = min SP weight (objective) between vertices i,j 

• optimal solution structure:
- if path P(i->j) from i to j in optimal and passes vertex k, then the 

subpaths P(i->k) and P(k->j) must be also optimal 

- optimal = shortest 



ASSP dynamic programming 
• two options for dynamic programming

• A. go by the number of edges used in a path
- Cij(m)= minimum path weight between i and j using at most m edges

- Cij(1)= weight of edge i->j, if exists (one edge)

- Cij(2)= min weight of any path i->k->j (max 2 edges)

- Cij(0)= we 0 if i≠j, ∞ otherwise (no edge)

• B. by the intermediary nodes in a certain fixed order
- fix order of all vertices 1,2,3,...,|V|

- Cij(m)= minimum path weight between i and j using only intermediary 
vertices {1,2,...m}

- similar to discrete knapsack idea, see module 6



ASSP dynamic programming by edges

• Cij(m) = mink { Cij(m-1),  Cik(m-1)+wkj} //bottom up computation

• the Cij using m edges is either 
- the same as Cij using m-1 edges, OR

- Cik using m-1 edges to intermediary k, plus an edge from k to j wkj

- all nodes k are eligible as possible “last” intermediary



ASSP dynamic programming by edges
• Compute the C(m) matrix from C(m-1) matrix using edges 

matrix W

• Extend-SP (C(m-1),W)
‣ for i=1:n

‣ for j=1:n

‣ a=∞; 

‣ for k=1:n

‣ a=min{a, Cik(m-1) + wkj};

‣ Cij(m)=a

• ASSP-slow(W)
‣ C(1) = W

‣ for m=2:n-1

‣ C(m)=Extend-SP(C(m-1),W)

‣ return C(n-1)



ASSP dynamic programming by edges

•  Extend-SP looks like matrix multiplication!
- Extend-SP running time O(n3)

• ASSP-slow is n*O(n3) = O(n4), same as running 
Bellman Ford separately from each vertex

‣Extend-SP (C(m-1),W)
‣ for i=1:n

‣ for j=1:n

‣ a=∞; 

‣ for k=1:n

‣ a=min{a, Cik(m-1) + wkj};

‣ Cij(m)=a

‣D=multiply(C,W)
‣ for i=1:n

‣ for j=1:n

‣ a=0; 

‣ for k=1:n

‣ a=a+ Cik * wkj;

‣ Dij=a



ASSP dynamic programming by edges
• Think of Extending-SP as of matrix multiplication
- C(1) = C(0)*W = W; the “*”  means “a=min{a, Cik(m-1) + wkj}“ inner 

operation

- C(2) = C(1)*W = W2

- C(3) = C(2)*W = W3

- . . . . . .

• Only need C(n-1), not the intermediary ones
- C(1) = W

- C(2) = W2 = (W1)2

- C(4) = W4 = (W2)2

- C(8) = W8 = (W4)2, etc



ASSP dynamic programming by edges

•ASSP-fast(W)
‣ C(1) = W;

‣ while m<n-1

‣ C(m)=Extend-SP(C(m-1), C(m-1), W);

‣ m=2*m;

‣ return C(m)

• After ⎡lg(n)⎤ iterations we have computed C(m) 
with m⩾n-1. Its ok to “overshoot” as C doesnt 
change after finding the SP. 

• Running time Θ(V3logV)



ASSP dynamic programming by vertices

• “Floyd-Warshall” algorithm

• Fix a vertex order : 1, 2, 3, ... ,n
- Sm= set first k of vertices = {v1, v2, ... , vm)

• Cij(m) = the weight of SP(i,j) going only through 
intermediary vertices in set Sm

• m=0 : no intermediary allowed; Cij(0)=wij

• m=1 : only k=v1 intermediary allowed
- Cij(1)= min {wij , wik+wkj }



ASSP dynamic programming by vertices

• dynamic recursion

• Cij(m) = min{ cij(m-1), cim(m-1) + cmj(m-1) }
- Cij(m) = minimum between  Cij(m-1) and the SP including vertex vm and 

only other intermediaries <m.



ASSP dynamic programming by vertices

• bottom up computation
‣ Floyd-Warshall-ASSP(W)

‣ for m=1:n

‣ for i=1:n

‣ for j=1:n

‣ Cij(m) = min{ cij(m-1), cim(m-1) + cmj(m-1) }

‣ return C(n)

• Running time Θ(V3)

- for dense graphs E≈V2, Floyd-Warshall-ASSP same cost as Bellman-
Ford-SSSP






