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Abstract 
We have developed some efficient algorithms for 

computing the transitive closure of a directed graph. 
This paper presents the algorithms for the problem of 
reachability. The algorithms, however, can be adapted 
to deal with path computations and a signitkantJy 
broader class of queries based on onesided recursions. 
We analyze these algorithms and compare them to 
algorithms in the literature. The resulti indicate that 
these algorithms, in addition to their ability to deal with 
queries that am generakations of transitive closure, 
also perform very efficiently, in particular, in the con- 
text of a dish-based database environment. 

1. Introduction 
Several transitive closure algoritluus have been 

presented in the literature. These include the Warshall 
and Warren algorithms, which use a bit-matrix 
representation of the graph, the Schmitz algorithm, 
which uses Tatjan’s algorithm to identify strongly con- 
nected components in reverse topological order, and the 
Seminaive and Smart/Logarithmic algorithms, which 
view the graph as a bii relation and compute the 
transitive closure by a series of relational joins. 

While all of the above algorithms can compute 
transitive closure, not all can be used to solve some 
related problems. Schmitx’s algorithm camrot be used 
to answer queries about the set of paths in the transitive 
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closure (e.g. to find the shortest paths between pairs of 
nodes) since it loses path information by merging all 
nodes in a strongly connected component. Only the 
Seminaive algorithm computes selection queries 
efficiently. Thus, if we wish to find all nodes reachable 
from a given node, or to find the longest path from a 
given node, with the exception of the Seminaive algo- 
ritbm, we must essentially compute the entire transitive 
closure (or find the longest path from every node in the 
graph) first and then perform a selection. 

We present new algorithms based on depth-first 
search and a scheme of marking nodes (to record ear- 
lier computation implicitly) that computes transitive 
closure efficiently. They can also be adapted to deal 
with selection queries ‘and path computations 
efficiently. Jn particular, in the context of databases an 
important consideration is J/O cost, since it is expected 
that relations will not fit in main memory. A recent 
study [Agrawal and Jagadish 871 has emphasized the 
significant cost of J/O for duplicate elimination. The 
algorithms presented here will incur no J/O costs for 
duplicate elimination, and we therefore expect that they 
will be particularly suited to database applications. (We 
present an analysis of the algorithms that reinforces this 
PW 

The paper is organized as follows. We introduce 
some notation in Section 2. Section 3 presents the algo- 
rithms, starting with some simple versions and subse- 
quently refining them. We present an analysis of these 
algorithms in Section 4 and discuss selection queries in 
Section 5. Section 6 contains a comparison of the algo- 
rithms to related work. We briefly discuss these algo- 
ritbms in the context of path computations, one-sided 
recursion, and parallel execution in Section 7. Finally, 
our conclusions are presented in Section 8. 

2. Notation and Basic Definitions 
We assume that the graph G is specitied as fol- 

lows: For each node i in tbe graph, there is a set of suc- 
CeSSOlS Ei = (j I(i, j)isanarcofG ). 
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We denote the transitive closure of a graph G by 
G’. The strongly connected component of node i is 
dehed as vi = (i ) u (j l(i,j)e G’and(j,i)E 
G’)).Thecomp~net~Vi is~ntivialifVi f (i ). 
The condensation graph of G has the strongly con- 
nected components of G as its nodes. There is an am 
from Vi to Vj in the condensation graph if and only if 
thereisapathfromi toj inG. 

The algorithms we present construct a set of suc- 
cessors in the transitive closure for each node in G . The 
set of successom in the transitive closure for a node i is 
Si~(jI(i,j)isan~ofG’). AsuccessorsetSiis 
partitioned into hV0 sets Ml and Ti, and these may be 
thought of as the “marked” and “tagged” subsets of 
Si. h&llyMi =Ti =Oforalli.+ 

3. The Transitive Closure Algorithms 

3.1. A Marking Algorithm 
In this section, we present a simple version of the 

algorithm. We do not suggest using this algorithm in 
general; we present better algorithms, which are 
derived by refining this algorithm. (In this algorithm 
alone, Si is partitioned into two sets Mj and Vi - not Tj 
- that can be thought of as “marked’* and 
“unmarked”.) 

proc Basic-TC ( C ) 

Iq~:AdigraphG witbsuccessorsetsEi,i=lton. 

Olctput:Si=UIvMi,i=lton.denotingG’. 

(U, :=Ei;M, :=4 
lori=ltondo 

wldletbereisanodej E (I, 
doMi:;=MiUM,V(j); U~:=U,VU,-Miod 

od 
1 
Proposition 3.1: Algorithm Basic-TC cmrectly com- 
putes the transitive closure of a directed graph G . 

3.2. A Depth-First Transitive CIosure Algorithm 
Suppose that the graph G is acyclic. Let us 

number the nodes using a depth-first search such that 
all descendants of a node numbered n have a lower 
number than n. If we now run algorithm Basic-TC 
using this ordering, every time we add a successor set 
S) toaset&,Sj =Mi,andUj =d. Werefertosuch 

t?bCretSim~bethouehtOfaScoa~g~~~~~~ue either 
mabd or tagged. Agrawal and Jqadi.sh [Agmwal and Jagati 88) 
pinted ant thst this would lead to O(n2) storage cve&ead for the 
marks and tags. ‘lkey dxerved that implementing &is by paxtiticning 
St into sepamte sets hors almost no additional cvehead. (llbe space 
for storing the graph in O(n2) in any case.) 

additions as closed additions. (The successor set Sj is 
closed. that is, it contains all successors of j in the tran- 
sitive closure.) 

To deal correctly with cycles, we must make 
some modifications. The idea is to ignore back arcs 
(arcs into nodes previously visited by the depth-first 
search lxocedure) during the numbering phase. ‘Ihe 
algorithm Basic-TC is run using this numbering. In the 
presence of cycles, not all additions are closed. (For 
example, the addition of Sj to Si when the arc (i , j) is a 
back ate is not a closed addition.) 

While numbering the nodes in a preprocessing 
phase for algorithm Basic-TC exposes the underlying 
ideas clearly, we might improve performance by doing 
the transitive closure work as we proceed in the 
numbering algorithm. The following simple algorithm 
ilhrstrates the idea, although it only works for dags. 

proc DagDFTC ( G ) 
Input: A graph G repmsented by successor sets El. 
Output: Si, i = 1 to n, &noting G’. 

(fori=ltondovbited[i]:=O;Si:=Ood 
while there is some node i s.t. visited [i] = 0 do visit(i) od 

I 

pr0C visit ( i ) 

( visited [i] := 1; 
whilethereissomej E Ei -Si do 

il visited [i] = 0 then visit(j); 

Si := Si v Sj v ( j ) 
od 

1 

The above algorithm can be mod&xl to deal with 
cyclic graphs as follows. We need to distinguish nodes 
that a~ mhed via back TICS, and we now partition Si 
into hV0 subsets Mi, and Ti . Tj denotes nodes reached 
via back arcs. 

pror:Dm(G 1 
Inprrt: A graph G represented by successor sets Ei . 

Outprct:Si=MivTI,i=lton.denotingG’. 
( p visited [i ] 1 ifviPitl(i)bssbeencalled. *I 

I* vi&d2[i] 1 if visit2(i) has bean called. */ 
P popped Ii I 1ifcalltovisifl(i)hasrettxned. +I 
r Global The succ. set of the mot of a stz camp. */ 

r Initialized before calling visit 2 for mot. */ 

fori=ltondo 
visited[i] := visited2[i] :=popped[i] := 0; 
Mi := Ti := Global := 0 
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od 
while there is some node i s.t. vkired [i] = 0 do vi&l(i) al 

1 

proc visit1 ( i ) 

( visited [i] := 1; 
whilethereisj E El -Ml -TJ do 

if vi&d [i] = 0 then vi&l(j); 
Upoppedfj]>O P(i,j)ismtabackarc.*/ 

then(Mf:=MIuMIu(j);Tr:P~~uTI)-MI) 
else Ti := Ti u ( j ) 

od 
iliETithenribelongstoastrong~~.*/ 

ifTi=(i) Piisthemot.*/ 
then(Mi:=Miu(i);Ti=4 

Global :=Mi; virir2(i) ) 
else(Ti:=Z-(i);M~:=M~u(i)) 

poppfzd[i] := 1 
1 

P Assigns Global to sly%. sets of all nodes in str. camp. +/ 

prec vi&( i ) 
( visited 2[i] := 1; 
while there is j E Ef s.t. visited2~]10 and TJ # B do 

visit2(j) od 
h4i :=Global;Ti :=d 

1 
Theorem 3.2: Algorithm DFTC correctly computes 
the transitive closure of G . 

Notice that vi&! is called immediately after a 
strong co~cctcd component is identified and fully 
updates the successor lists of all nodes in the com- 
ponent. An alternative would be to make the calls to 
visit2 afta visit1 is called for all the nodes in the graph. 
This second alternative has strictly it&rim pafor- 
mance to DFTC, because nodes in a Strong co~ecti 
component might be visited from nodes outside the 
component while still having their successor lists 
incomplete. A variant of this alternative was suggested 
by Agrawal and Jagadish [Agrawal and Jagadish 831. 

f 
Fll: 3.1: A graph w#b cycles. 

The example of Figure 3.1 illustrates the basic 
difference between the DFTC algorithm and 

Dug-DFTC, which is the need for a second phase to 
take care of nontrivial strongly connected components. 
The graph of Figure 3.1 contains two such components, 
namely (a ,b ,d) and (e J ). Concentrating on the 
former, when a is visited via the arc (d p), the succes- 
sor list of a has not been computed yet, and so the suc- 
cessor set of d cannot be updated properly. Bark-TC 
solves the problem by continuing to visit the successors 
of a again, but this may lead to serious inefficiencies. 
DFTC solves the problem in the second pass, where a 
is identified as the root of the component and its succes- 
sor list is distributed to all the nodes in the component. 
This is done by the calls to visir2. Similar comments 
hold for the other component also. 

3.3. Optimized Processing of Nontrivial Strong 
Components 

l&m is a major potential inefficiency in DFTC 
in that the second pass over a strong component re- 
infers several arcs of the transitive closure that have 
been inferred during the lirst pass also. This can be 
seen in the component (a ,b ,d) of Figure 3.1. Assume 
thatfromd wefirstvisite andf andthenvisita. As 
soonas(dp)isdiscoveredasabackarc,DFTCputsa 
inthetaggedsetofd,anditthenpopsbacktob adding 
into its successor list d,e f , and a, with a being 
tagged. Finally, the successor list of a is updated to 
contain all the nodes in the graph without any tags. 
During the second phase of going over the component 
(a,b,d), nodes d&f, and a (as well as c) will be 
reinferred as successors of b. In this section we 
develop an algorithm that avoids this duplication of 
effort by essentially generating the successors of only 
one of the nodes in a nontrivial strong component dur- 
ingthefirstpass. Inthesecondpass,thelistsofallthe 
other nodes are updated, thus avoiding any unnecessary 
duplication of work. 

In this version of the algorithm, we do not need 
to distinguish tagged elements by partitioning successor 
lists, since a stack mechanism that is used to construct 
the successcx set for (the root of) a strongly connected 
component allows us to make this distinction. During 
the process of the algorithm, the elements of the stack 
are lists of successors of nodes in some nontrivial 
strongly connected component. If we discover that 
sane of these (potentially distinct) “components” are 
in fact part of the same component, then elements of 
the stack are merged to reflect this. + ‘Ihe array visited 
contains integer elements in this algorithm. The nota- 

+ -l-he me OIhef tranritive cloaufe 8lgaithma lhat we mcka (e.g.. 
[S&nits 83. Agmwal and Jagadisb 881). Our use of the at& how- 
ever,iruniqucin~itit~~of~lorlirtrofnoderinnoa- 
trivhlatKmgcomponalta.~aopporedto~Ndrdwdea. 
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tionL~:=L~oL~isusedtoindicatethatlistL~iscon- 
catenated to list L 1 by switching a pointer, at O(l) cost. 
For the special case when LI is d (that is, when list L2 
is to be assigned to the empty lit Ll) we use the ma- 
tion L1 := l Lz. In contrast, the notation LI := LI u L2 
isusedtodenotethatacopyofL2isinsertedintoL~. 

proc Global-DFTC ( G ) 
Input: A graph G represented by successor sets Ei . 

Output: Sl , i = 1 to n, denoting G’. 

1 
r r~r,fl root of the str. camp. of stack frame f . */ 

P li.dIfl amessow of nodes in the str. camp. of *I 

r stack frame f . +I 
Pn0desI.U nodes in the str. camp. of stack frame f . */ 

Pptrtil pointer to the stack frame of the strong */ 

r component where i belongs. *I 
r top pointer to the top of the stack. +/ 
r vLiZed[i] order in which visit (i ) is called. +I 
rbor temporary variable used when collapsing */ 

r multiple potfmtial str. camp. into one. ‘V 

vis := 1; top := 0, 
fori :=ltondo 

visited[i] :=popped[i] := root [i] := 0; 
ph.[i]:=n+l;Zti[i]:=nodes[i]:=S~ :=nil 

od 
while there is some i s.t. visited[i]=O do visit(i) od 

1 

proc visit ( i ) 

( visited [i] :=vis;vis :=vis +l; 
while there is j E &-Si-( i ) do 

if visited fj ] = 0 then visit(j); 
lfpopped~]>Oandptr~]=n+l 

/* i j in different strong component. */ 
thenSi:=SiuS,u(j); 

Upoppedfj]>Oandptr~]#n+l 
rij insamestr.comp.but(ij)notabackarc.*/ 

tllen ( 
bot := min (top gtr [i]ptr b]); 
r merge multiple potential str. camp. into one. +/ 
while top > bot do 

ht[&?p-1] := list [top-l] l fist[top]; 
?d?s[top-l] := ndes[top-l] l odes[top]; 
if visited [root [top ]] c visited [rout [top -111 

then root[top-l] := root[top]; 
top :=top - 1; 

od 
Yp~[i]=n+lI+(ij)isabackarc. *I 

p New stack frame is created. */ 
then Zi~t[t~p] := lkt[top] l Si; 

ptl [i] := top ; Si :=: 0 list [COP ] 

1; 

if popped fj] = 0 
then(top:=tq+l;rout[top]:=j; 

list[top] :=*si; 

od 
nodes[top] := nil;ptr[i] := top ) 

if i = root [top I r Propagate successors of root to the rest */ 
r of the nodes in a strong component. */ 

then(foreachjEnodes[top]u(i) 
do S, := Zist[top] u ( i );ptrb] :=n+l od; 

toP :=top - 1 ) 
ek4fptr [i] # n+l /* Insert i into the strong component */ 

P where it belongs. *I 
then ( list@f[i]] :=list[ptf[i]] U ( i ); 

no&Iptf[i]J :=no&s(ptf[i]J u ( i ) ); 
popped [i] := 1 

I 

Theorem 33: Algorithm Gbbal_DFTC correctly 
computes the transitive closure of G . 

The key point in the algorithm is the following 
invariant: If ptr[i] = n , and m = min (n , rap), then 
every node in the set list [ml u nodes [ml is reachable 
from i, and node i is reachable from every node in the 
set nodes [ml. The node root [m] is the earliest visited 
node which can be reached from some node in the set 
nodes [top]. This underlies the collapsing of multiple 
potential strong components into one. 

Duplication of effort is avoided by distributing 
the work associated with a nontrivial strong component 
between the iirst and the second pass. In component 
(u ,b ,d ) of Figure 3.1, as successors are generated, 
they are put into the appropriate list of the global stack. 
When the root a has been processed, that list contains 
the successom of u, which have been generated once 
for every independent path of some node in the com- 
ponent. Nodes e and f may have been generated as 
successors of d originally, but when the algorithm 
recognizes that d belongs‘ to a nontrivial strong com- 
ponent, these successors are movtxl to the appropriate. 
list of the global stack in O(1) time (by list concatena- 
tion). Hence, all of these inferences can be attributed to 
u , so that when in the second phase we make the list of 
u list of b and d also, this effort has not been 
accounted before. 

We want to illustrate two points about the opera- 
tion of the global stack of lists. ‘Ibe first is concerned 
with sepamte strong components. In Figure 3.1, 
assume that (dp) is traversed before (dp). When 
(d da) is traversed, an empty list is pushed on the stack. 
Later, when (f .e) is traversed and the second com- 
ponent is discovered, another empty list is pushed on 
the stack. When we pop up to e again, the list of the 
top of the stack contains e and f , the fact that the visit 
to the top strong component is completed is recognized 
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and after the second pass, the top of the stack is 
removed. Thus, when we continue popping up from d, 
the lower strong component does not appear as such in 
the stack, and so no undesirable interference occurs. 

The second point we want to illustrate is con- 
cerned with a single strong component which is 
discovered in a piecemeal fashion. Figure 3.2 will 
serve as the working example. 

. b E p f 

Figure i.2: A strongly corm&ted graph. 

The whole graph is one strong component. Assume 
thatthenodesarevisitedintheordeta,b,c,h,d,e, 
g, and f. Thus the back am (hb) and (84) are 
discovered before (fp) is. Ibis results in two poten- 
tially independent components to be pushed on the 
stack, namely, (b,c,h) and (d,e,g) After (fp) is 
discovered, a third level is added to the stack, because 
there is no way of knowing that all of the nodes belong 
to the same component. This is discovered when we 
pop up back to e again, the second if-statement in the 
algorithm case is triggered, and the two lists at the top 
(corresponding to u and d respectively) are merged 
into one in O(1) time by simply changing some 
pointers. When c is reached, similar actions are taken, 
so that when a, the root, is reached, all its successors 
ate correctly found in the top list. 

4. Analysis of the Algorithms 

We now present an analysis of the complexity of 
all the above algorithms. For each algorithm, we Grst 
analyze its time complexity assuming that everything 
fits in main memory. We then analyxe its I/O complex- 
ity assuming that data has to be moved back and forth 
between main memory and disk. For the second case, 
the 6rst analysis represents the expected CPU time. In 
addition, in Section 6, we will present an analysis of the 
Seminaive algorithm [Bancilhon 853, Warren’s algo- 
rithm warren 751, and an algorithm by Sclunitz 
[Schmitz 831, and we will compare their performance 
with that of our algorithms. 

The forthcoming analysis assumes that all algo- 
rithms use the appropriate structures (combination of 
list representation and bit representation of a graph) so 
that duplicate elimination can be done in constant time. 
This can be achieved as follows: Whenever an arc (i j) 
is to be added to a list we check the ij bit of the adja- 
cency matrix. If it is 1, we don’t dn anything. If it is 0, 
wemakeitlandaddtbeaminthesuccessorlist. All 
this is of cost O(1). We could have duplicate elimina- 

tion done in O(1) time even if we used the adjacency 
matrix representation alone, but then we would not be 
able to search only existing arcs; we would have to scan 
the O’s of the matrix as well. This would increase the 
time complexities of all the algorithms. 

Analyzing the ID performance of tbe algorithms 
is very hard when taking into account the effect of 
buffering. For several of the algorithms concerned, the 
appropriate buffering strategy is not obvious. We felt 
that unless the algorithms are implemented and tested, 
the comparison may be unfair if we uniformly assume 
the same buffering strategy. Hence, in the forthcoming 
analysis we assumed minimal amount of buffering, i.e., 
we assume that the size of main memory is O(n). 
Also, to simplify the analysis, we used a successor set 
as the unit of transfer between main memory and disk. 
Although successor sets may be very different in size 
anddataisreadEromandwrittenbacktodisLonepage 
at a time, we believe that the number of successor set 
reads and writes gives an excellent indication of the 
actual I/O cost. For our analysis we will use the fol- 
lowing parameters. (In the sequel, “strong component” 
refers to a nontrivial one.) 

number of no&s in the graph 
number of arcs in the graph 
mmber of arcs in the condensation graph 
of a given graph 
mm~ber of nodes in a stnmg component c 
number of arcs in a strong component c 
number of an23 emfmating !knn nodes in a strong 
mponentc (= 

F 
4) 

Y 6 
mm&x of arcs in the tfsnsitive closure 
numberofmxlesmachablefromnodev 
number of nodes reachable from (any node of) a stmng 

compormt c 
oiArdegree of v 

We will also use the following notation for various necessary 

V 
E 
&am 
EC 
T 
see 

set of nodes in the graph 
setofarcsinthegnph 
set of arcs in the condensation graph of a given graph 
set of arcs in a stmng component c 
set of ams in the transitive closure 
setofrtrongcomponentsinthegraph 

Notice that E=Eco,u 
sdc 

EC and that 

e =e,, + 
?k 

e, . Finally, wywil: use the O(.) nota- 

tion for G$ cp”u and I/O cost. We will retain, how- 
ever, several of the constants of the various terms in the 
cost so the comparison between the various algorithms 

386 



can be more accurate. Also, the cost will always be 
broken into two parts, the search part and the inference 
part. In our notation, the inference part will be put 
within square brackets [ . . . 1. For example, a cost of 
O(x+[y]) indicates O(x) search time and O(y) infer- 
ence time. 

4.1. Basic-TC 
The outer for-loop of Basic-TC is executed n 

times. For every node v, the while-loop may be exe- 
cuted tv times in the worst case (i.e., when all nodes are 
reachable from v and they are all unmahedastheyare 
discovered). The list manipulation inside the loop 
represents the number of arcs inserted in T (these may 
include duplicates). Put differently, it represents the 
number of inferences performed by the algorithm. 
Inserting the successors of w to the successors of v 
involves & additions. In addition, the initialixation of 
S, costs d, additions. We conclude that the cpu cost of 
the algorithm is 

cpu (Basic-TC) = 0 (n + t + [e + 
(v &e P). (l) . 

One can verify that in the worst case tbis is an 0 (n3) 
algorithm. 

We now turn to analyzing the I/O cost of 
Basic TC. A node’s original successor set is brought 
once into memory and t?om that point on stays there 
until it is processed completely. So, the outer loop 
represents n reads. The initialixation step and the list 
manipulation steps require one read for each arc in T. 
So the total I/O cost of the algorithm is 

i-o (Basic-TC) = 0 (n + It]). (2) 

4.2. Dag-DFTC 
Dag-DFTC is a straightforward adaptation of the 

depth-first algorithm, with an additional list manipula- 
tion every time we pop up from a node. The search 
part of the algorithm costs 0 (n+e ) time [Aho et al. 
741. This includes the calls to visit and the execution 
of the for-loop inside visit. In the inference part of the 
algorithm, every arc (v ,w) in T - E is inferred once for 
every successor of v that can reach w. Equivalently, 
this can be seen from the fact that every time we pop up 
fromanarc(v,w)inE,w anditssuccessorsareadded 
to the successors of v. Hence, the total complexity of 
Dag-DFTC becomes 

cpu (Dag-DFTC!) = 0 (n + e + [e + (” &ELI). (3) 

In the worst case this can again be an 0 (n3) algorithm. 
Notice, however, the improvement over Basic-TC . On 
the search part, Basic-TC searches t arcs as opposed to 

e arcs. On the inference part, the two terms cannot be 
directly compared, but we can show that their average 
over all graphs is the same. 

For the I/O cost, recall that we assume only 
minimal buffering (at least two successor sets, though). 
In the worst case, the successor set of a node is brought 
in from disk once for every call to the node and once 
for every pop-up to the node from one of its successors. 
The former corresponds to the search part and can 
involve up to n+e calls (one for each incoming arc and 
one for a possible visit to the node from the outer level 
of the algorithm). The latter corresponds to the infer- 
ence part and can involve up to e popups. The worst 
case assumes that visits to a node from its predecessors 
and pop-ups to the node from its successors are far 
enough in time that the successor set of the node has 
been paged out. Hence, the I/O cost of Dag-DFTC is 

i-o(Dag-DFTC) = 0 (n + e + [e]). 

Notice again the improvement over Basic-TC . 
(4) 

4.3. DFTC 
The general DFTC algorithm, which can handle 

cyclic graphs as well, is much more complex to analyze 
in comparison to the special algorithm for dags. This is 
due to the partitioning of the nodes reachable from 
another node into tagged and marked so that cycles can 
be identified, and due to the overhead of a second visit 
to the nodes in all nontrivial strongly connected com- 
ponents to adjust their sets of reachable nodes. For 
nodes that do not belong to a nontrivial strongly con- 
nected component, the algorithm performs exactly as 
Dag-DFTC. For nodes in nontrivial strongly con- 
nected components the following differences can be 
identified between the two algorithms with respect to 
their cost: 

Bach strongly connected component is traversed 
in depth-first order a second time by calls to 
visit2. For a strongly connected component c, 
the cost of that is ec”“. (There is no n, factor 
here, because we always start from the root of the 
c and all the interesting nodes are known to be 
reachable from the root.) 
In the first pass, some of the transitive arcs from 
nodes in a strongly connected component are not 
$&red. Nevertheless, in the worst case, all 
those arcs will be inferred in the iirst pass too, 
and the inference cost of the first pass would be 
like the one for the acyclic graphs. 
The nodes reachable from nodes in a strongly 
connected component (except the root) are 
inferred once in the second pass. Some of them 
have already been inferred in the first phase, so 
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thismaympresent unnecessary work. 
Incorporating all the above observations we may con- 
clude that the cpu cost of DFTC is 

cpu(DFTC)=O(n +e + 
T!c 

eew+ 
cc c (5) 

Notice that if SCC is empty, the formula reduces to (3). 
Also notice that most of the time the inferences in the 
first pass will be fewer than what is implied by the tirst 
summation in the inference part of the cost. 

Comments similar to (a), (b), and (c) hold for the 
disk-based version of the algorithm. Assuming no 
buffering again, the cost of the first pass is exactly the 
same as it was before (in terms of successor set 
retrieval). In the second pass over a strongly connected 
component the successor sets of all the nodes in it am 
brought from disk once to be updated. For this we 
assume that the tagged successors of a node can be 
brought in separately (so that when a node has an 
empty tagged successor list nothing is brought in 
memory). They may need to be brought as many times 
as their out-degree, however, when vi&2 pops-up to the 
node. So, the extra I/O involved with the second visit 
of strongly connected components is n,+e, for each 
component c. The successor set of each node (except 
the root) is then updated (actually, assigned a value) 
once as well. This can be done, however, after we pop 
uptothenodefromitslastchildandwearereadyto 
pop up to the parent of the node. Hence this cost has 
been already accounted as part of the search cost of the 
second pass. For uniformity, however, we will remove 
it from them and account it as inference cost. Given 
the above, the total number of extra I/G needed for that 
is n, -1 for each component c . This brings the total ID 
upto 

i-o(DFTC)=O(n +e + 
% ec + ce c (6) 

[e + Tb (wl)l). CI c 

Again, if XC is empty, (6) reduces to (4). 

4.4. Global_DFTC 
The last algorithm that was presented for reacha- 

bility (Section 3.3) was Globul_DFTC, which instead 
of popping up the list of nodes reachable from a 
strongly connected component to its root, it makes use 
of a global “stack” of successors. Thus, the number of 
inferences in the first pass over a component is minim- 
ized. Specifically, we observe the following: 
(a) Search time for the first pass is O(n+e). The 

total cost of manipulating the stack while the 

algorithm operates in a strongly connected com- 
ponent c is no more than 0 (nc). This is because, 
in the worst case, a new level is introduced to the 
“stack” for every back arc in the graph, there can 
be at most n, back arcs in a strongly connected 
component, and because merging of two con- 
secutive levels is of cost 0 (1). 
Search time for the second pass over a strongly 
connected component c is O(n,). This is 
because, all the nodes of c have been collected in 
asepamtelist. 
In comparison to DFTC, the second pass costs 
the same in terms of inferences. There is a big 
win, however, over the first pass. Each node 
reachable from a strongly connected component 
is generated only once, unless it is outside the 
component and it is reachable from nodes in the 
component by two completely independent paths. 
This means that the set of arcs of the condensa- 
tion graph EcO,, will be used as the basis of the 
inference, instead of the complete set of the arcs. 
That is, the number of inferences in the first pass 
will be 0 (ecor + 

& 
c,). In addition, each 

(v.w E, 
node of a strongly connected component c is 
infared once during the first pass over the com- 
ponent. 

Adding up all the costs involved we conclude that the 
cpu cost of the algorithm is 

cpu (Globa_DFTC) = (7) 

O(n +e + 
c&nc +cePc + 

[e, + 
F 

tw + T 
nc + 

(v.w EE, CE cc T CE cc Ok-lbl). 

For the sake of marginally additional search time, the 
inference time of Global-DFTC is signi6cantly smaller 
than that of DFTC . 

Since the stuck is assumed to be in main 
memory, the search part of the second pass over the 
strongly comrected components costs no I/O. >Fiom 
the fust pass over the whole graph we have O(n+e). 
In analogy to the cpu time, e, successor sets are 
infd during the first pass and n, -1 during the second 
pass for every strong component c. Hence, the total 
I/O cost becomes 

i-o (Global-DFTC) = 0 (n + e + (8) 

k, + sic Ok-W. CE c 

The improvement over DFTC is again noticeable. 
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5. Selections 
When a selection of the form “column1 = c” is 

specified, the algorithm deals with it effectively. (That 
is, we want to compute all tuples of the form (c ,?) in 
the transitive closure.) In fact, the algorithm becomes 
much simpler. We need not do any numbering of 
nodes, and so we can directly run algorithm Basic_TC. 
Further, the first loop is no longer necessary. We can 
simply consider the selected node c and execute the 
inner loop. 

On the other hand, a selection of the form 
“column2 = c ” (i.e. compute all tuples of the form 
(?,c )) requires us to tint generate a new representation 
for the relation p , which is the set of predecessor sets. 
The algorithm can then be used exactly as for the other 
selection. 

Finally, consider a selection of the form 
“column1 = c 1 and column2 = ~2”. That is, we simply 
wish to see if (c 1.c 2) is in the transitive closure. To do 
this, we proceed as in the case of selection “column1 = 
~1”,withthediffe~nethatwecanstopifc2isadded 
to SL,l. 

6. Related Work 
A large body of literature exists for main- 

memory based algorithms for transitive closure. 
Recently, with the realization of the importance of 
recursion in new database applications, transitive clo- 
sure has been revisited and reexamined in a data inten- 
sive environment. In this section, we will review a 
significant subset of the existing algorithms comparing 
them with ours. In particular, we compare 
Globul_DFTC with the traditional Warshall and War- 
ren algorithms [warshall 621, warren 751, [Agrawal 
and Jagadish 87J, an algorithm by Schmitx [Schmitz 
831, and the Seminaive algorithm [Bancilhon 851. We 
also discuss some other related work on transitive clo 
sure. 

6.1. Schmitz 
In all the relevant litemture; the algorithm by 

Schmitz [Schmitx 831 is the one closest to our best 
algorithm for reachability, i.e., Global DFTC. ‘It is 
based on Tatjan’s algorithm for identif<ig the strong 
connected components of a graph [Tarjan 721. Schmitz 
showed that his algorithm had better performance than 
an algorithm by Eve and Kurki-Suonio IEve and 
Kurki-Suonio 771, which we wifl not discuss further, as 
well as Warshall’s algorithm lW%rshall62]. The com- 
mon characteristics of Schmitz’s algorithm and 
Global-DFTC are that (a) they are based on a depth- 
first traversal of the graph, (b) they identify the strong 
connected components of the graph, and (c) they take 

advantage of the fact that nodes in the same component 
have exactly the same descendants and that they are 
descendants of each other. On the other hand, the two 
algorithms differ in that (a) Schmitz is using a stack of 
nodes in the graph, whereas we use a “stack” of succes- 
sor lists and (b) Schmitx is waiting for a whole strong 
connected component to be identified before it starts 
forming the descendant list of the nodes in the com- 
ponent, whereas we do that dynamically by associating 
partial descendant lists with the elements of the stack. 
Due to space limitations we do not present Schmitz’s 
algorithm here. We will only give the formulas for its 
cost and compare them with the corresponding formu- 
las of GlobuZ_DFTC. The basic idea of the algorithm 
is that when Tatjan’s algorithm identifies a strong com- 
ponent, its nodes are at the top of the stack. Thus, 
Schmitx’s algorithm scans the successor sets of all the 
elements of the component in the stack, and adds their 
descendants to the descendant list of the component, 

Schmitz’s algorithm (in its original form) finds 
the transitive closure of the condensation graph only. 
That is, it generates only one descendant list per strong 
component. To compare it with Global-DFTC uni- 
formly, we assume that after the descendant list of the 
representative node of the component is found, it is 
copied to all other members of the component as well. 
With this modification the cost of Schmitz’s algorithm 
is 

cpu(Schmitz)=O(2n +2e +n + (11) 

km, + 
F 

tw + n, + 
(VW CE, G CE c (nc-l)tcl>. 

Comparing (11) to (7) we notice that the inference time 
is exactly the same: the two algorithms are identical. 
The search time, however, is different. In particular, 
0 Schmitx’s algorithm always manipulates the 

stack, paying a cost of O(n). whereas 
GZobul_DFTC manipulates the stack only when 
it operates in a nontrivial strong connected com- 
ponent, paying a cost of 0 ( 

%k 
n,). Assuming 

that each operation on the s:k c&s roughly the 
same in the two algorithms, Global_DFTC wins. 
Also, 

l S&n&x’s algorithm delays the generation of the 
descendant list of any node until a complete 
strong connected component is found Therefore, 
initssecondpassitscansallthenodesandall 
their successors again, paying an additional cost 
of 0 (n +e), whereas Global-DFTC simply scans 
the nodes in the nontrivial comlxments, paying a 
costof O( 

Gc 
nc). Global-DFTC outpedoms 

Schmitx’s Zgorithm again. 
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A linal note on the cpu performance of the two algo- 
rithms is that on acyclic graphs, the performance of 
Global-DFTC is the same as that of DFTC ; no over- 
heed is paid. In contrast, Schmitx’s algorithm pays the 
extra overhead of a second pass and of manipulating 
the stack. 

Analogous comments are appropriate for the I/o 
cost of the two algorithms. Assuming minimal buffer- 
ing, the two major overheads for Schmitz’s algorithm 
ale the following: 
0 Since additions are delayed until a component is 

found, every time the algorithm pops up to a 
node v from a node w , v ‘s successor list will be 
brought back without taking advantage of the fact 
that w’s list is in memory. This accounts to an 
additional O(e) in successor list reeds during 
search time for Schmitz’s algorithm. 

0 In the second pass over a strong connected com- 
ponent, we assume that all but one of its nodes 
have their successor lists on disk. Hence, 
O( % ) 

n, 
C 

more lists have to be brought in dur- 

ing’&s phase. 
According to the above, the I/O cost of Schmitz’s algo- 
rithmbecomes 

i~o(sctitz)=o(n +2e + 
?i nc + (12) 

co c 

Comparing (12) with (8) we see that the total overhead 
paid by Schmitz is 0 (e + 

& 
nc ) and is paid at 

CE c 
search time. Regarding the inference part, the two 
algorithms are again identical. In the best case (which 
happens to be when the graph is one strong com- 
ponent), Gfobul_DFTC wins by almost a factor of 2 in 
successor list I/O over Schmitx’s algorithm. In the 
worst case (which happens when the graph is acyclic), 
and assuming that e& , Global-DFTC outperforms 
Schmitz’s algorithm by at least l/3. 

6.2. Seminaive 
The Seminaive algorithm was developed as an 

algorithm to answer queries on general recursively 
defined relations [Ban&on 851. We present the algo 
rithm in a way that resembles the algoritlnns we have 
developed in order to compare its time complexity with 
theirs. In particular, the descendants of every node are 
found first, before finding the descendants of any other 
node. In contrast, Seminaive works in stages, and at 
each stage k 6nds the descendants of all the nodes that 
am R arcs away from the node. This does not affect the 
cpu cost of the algorithm, whereas it should improve its 

I/O cost, since the descendant list of each node is not 
moved back and forth between main-memory and disk. 
Considering the main memory version of Seminaive, 
one realizes that it is equivalent to Busic-TC without 
taking marking into account. The algorithm is shown 
below. 

proc Setninaive ( G ) ( 

Ittplct: A Grqh G specified using successor sets E<, i =l to n. 
Output:S~,i=lton,denotingG’. 

Vi :=Ei;Mi :=O 
for i :=ltondo 

wltllethereisj E U,-(i) 
do Mi :=Mi U (j); CJi :=Ui UEi-iUi od 

od 

Seminaive will always perform like Basic-TC if the 
latter is provided with the worst of ordering of nodes 
(so that no advantage can be taken from marking). 
Hence, its performance is given by the same formulas 
like Basic_TC; since they represent worst-case 
behavior. We would like to emphasize, however, that 
on the average, even Basic-TC will do much better 
than Seminaive, due to the effect of marking. 1 + 

Seminaive imposes an order on how Vi is pro- 
cessed. In particular, nodes are processed on a first- 
come-first-served basis, which corresponds to a 
breadth-first traversal of the nodes in the graph rooted 
in i . Since no marking is in effect, however, the order 
of processing does not affect the cpu time analysis in 
any way. The formula for the cpu cost is repeated 
below for ease of reference: 

cpu (Seminaive) = 0 (n + t + [e + 
Je rdy’)* (13) 

Comparing with GZo6uZ_DFTC, we see that the infer- 
ence parts are not directly comparable. We can show, 
however, that on cyclic subgraphs. Global-DFTC 
always wins, whereas on the acyclic part (the condensa- 
tion graph) the two formulas have the same average 
over all graphs, but one can be better than the other on 
any specitic graph. With respect to the cost of search- 
ing, the presence of t in Seminaive’s cost formula, as 
opposed to c in Globul-DFTC ‘s cost formula, makes 
Global-DFTC superior. 

t Ill faa this ir how the algolitbms WQC oligiially culceived. 
Matitiig pmvidcr a way of exploiting search o&r, aad depth-first 
sacb provides a way of finding 8 good a&r. Further. focusing on 
onenode~~timeaubluurtodo~~~~~withao~- 
ditiod yo rime the required ml-m scta UC always in manory. 
u&r the wumptia~ that u lart two seta fit into memory. 
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In terms of I/o, traditional implementations of 
Seminaive work by performing a sequence of Joins of 
relations (i.e., successor list blocks). Blocking, how- 

ever, can be applied to alI the algorithms we have 
described so far. For example, instead of getting one 
node’s successor set, one can bring a block’s worth of 
successor sets and proceed appropriately. We believe 
that blocking affects all algorithms in this paper in the 
same manner. Hence, for the sake of comparison, we 
will adopt the Busic-TC I/O cost formula for Sem- 
inaive as well. It is given below: 

i-0 (Seminaive) = 0 (n + [t]). (14) 

Comparing (14) with (8) we see that there am 
some cases where Seminaive will do better. A specific 
example is a graph that is fully connected, i.e., has n2 
nodes. In that case (14) gives 0 (n +n2) whereas (8) 
gives 0 (2n+n2). For most graphs, however, 
Global-DFTC is far superior to Seminaive. 

6.3. Warshall and Warren 
The tmditional transitive closure algorithms are 

the one proposed by Warshall LWamhall 621 and its 
modification proposed by Warren warren 751. They 
an3 both based on an adjacency matrix representation of 
the graph, and their main difference is the order in 
which they access the elements of the matrix. Both 
algorithms have 0 (n 3) complexity, where the primitive 
operations are bit or’s and und’s. Gn the average, how- 
ever, the Warren algorithm performs better than 
Warshall’s. Moreover. this is true, for the most part, in 
disk-based implementations of the algorithms also 
[Agrawal and Jagadish 871. Thus, we decided to dis- 
cuss only the Wan-en algorithm. The Warren algorithm 
can be written in the notation we have developed as fol- 
lows. 

Input: A Graph G specified using successor setsEi, i =l ton. 
Output:&,i=lton,denotingG’. 

proc Seminaive ( G ) ( 

S :=E; 
for i := 1 to n do 

forj :=lfOi-ldoifjES~thenS~~SiuSl;od 
od 
fori :=lton do 

forj:=i+ltondoifjESifhenSi:=SIuSI;od 
od 

This is the “straightforward implementation” [Agrawal 
and Jagadish 871 of the Warren algorithm written in 
terms of successor lists. We assume that the if- 
statement is checked while scanning over the range of j 

(i.e., the successor list of i is sorted). Since the way the 
algorithm will run depends on the names of (numbers 
assigned to) the nodes, it is relatively difficult to come 
up with a precise measure of the complexity of the 
algorithm. In the worst case, the two for-loops over j 
will be executed once for every descendant of i , except 
itself, (i.e., all descendants are inserted in front of j). 
In both loops, complete descendant lists might be 
added. With this pessimistic assumption, the worst 
case cpu cost of the algorithm is given by the formula 

cpu(Wuwen)=O(n +t +[e + (” w& T1”l)’ (19 

Comparing even against (13), (15) makes the Warren 
algorithm look even worse than Seminaive. let alone 
Global-DFIC. We believe, however, that on the aver- 
age it will perform better than Seminaive. To get a 
better feeling for the Warren algorithm let us consider 
the best case. In that case, nothing happens in the 
second pass, and the first pass scans only original arcs 
(i.e., all descendants are inserted behind j). In that case 
the best case cpu cost of the algorithm is given by 

cpu(Wurren)=Q(n +e +[e + (v & jw I). (16) 

This can only happen if the graph is acyclic (this is just 
a necessary condition, not a sufficient one). Notice that 
(16) is equal to (3). which is the running time of 
Global-DFIC for the acyclic case. Although this is 
simply an indication and not a proof, it seems that 
Global-DFIC will never perform worse than the War- 
ren algorithm, and in most cases it will perform much 
better. 

Similar conclusions can be drawn in terms of the 
I/O performance of the Warren algorithm. Assuming 
no blocking, the worst and best case performance are 
given by the following formulas: 

i-0 (Warren) = 0 (2n + [r]). (17) 

i-0 (Warren) = &2(n + [e]). (18) 

In the worst case, the Warren algorithm has worse I/O 
behavior than Seminaive, whereas in the best case it 
may outperform GZoimZ-DFTC by less than a factor of 
2 (n+e vs. n +2e). We believe that on the average 
GZobul_DFTC will perform much better than the War- 
ren algorithm, but an average-case analysis and/or 
implementation is needed to establish this. There is, 
however, some empirical evidence in support of this 
conjecture. Agrawal and Jagadish have results that 
show that the IAl casts for Seminaive are 100 to 700 
times more than the I/G costs for a careful implementa- 
tion of Warren. This factor comes down to about 4 
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when the implementation of Seminaive is refined to 
reduce the cost of duplicate elimination [Agrawal and 
Jagadish 871. We remarked earlier that the behavior of 
Basic TC is similar to the performance of Seminaive 
(assu&ng no costs for duplicate elimination) when the 
ordering of nodes is such that the marking optimization 
never applies. We therefore expect that Busic-TC , and 
even more so Global-DFTC, will perform better than 
Seminaive by a sign&ant factor on the average. Since 
the average case behavior of Seminaive is seen to be 
close to that of a careful implementation of Warren, this 
indicates that our algorithms will outperform Warren 
on the average. 

We would like to emphasize here that the above 
analysis is done under the assumption of minimal 
buffering and 110 blocking of successor sets on disk. 
Agrawal and Jagadish’s implementation of the Warren 
algorithm uses blocking extensively. Since the Warren 
algorithm is quite different in nature from the algo- 
rithms presented in this paper, it is hard to say whether 
blocking will affect the Warren algorithm and 
Global DFTC in the same way. (Of course, the 
approp&e blocking and paging strategies will also 
differ significantly.) Further investigation is needed in 
this direction in or&r to compare the two algorithms 
with blocking. 

6.4. Other Work 
Besides Seminaive, another popular algorithm 

that has been proposed for general recursion is the 
Smurr or Logurifhmic algorithm [Valduriez and Boral 
86, Ioannidis 861. ‘Ihe idea behind the algorithm is to 
first compute all the pairs of nodes that are a number of 
arcs apart that is a power of 2, and then compute the 
remaining arcs performing much fewer operations than 
would otherwise be needed (i.e., if Seminaive was 
used). Regarding the transitive closure of a graph, it 
has been shown that Smart outperforms Seminaive for a 
large class of graphs and under varying assumptions 
about storage structures and join algorithms. The 
power of the algorithm relies heavily on computing sets 
of arcs, so it is hard to formulate it in a way that can be 
directly compared with the algorithms presented in this 
paper. It has been shown, however, that the straightfor- 
ward implementation of the Warren algorithm some- 
times performs better than Smart and sometimes worse, 
whereas the blocked implementation uniformly outper- 
forms Smart. We speculate that since our analysis 
showed that Globul_DFTC outpe~orms the Warren 
algorithm, it will outperform Smart as well. 

A straightforward disk-based implementation of 
Warren’s algorithm was proposed and tested against 
Smart/Logarithmic [Lu, Mikkilineni, and Richardson 
871. It used hashing as a basic storage structure and 

employed hash-based join techniques. The cost of the 
algorithm was analyzed and compared to the cost of 
two versions of Smart/Logarithmic. The analysis was 
much more detailed than the one presented in this paper 
for the Warren algorithm, since the cost of buffering 
and hashing had to be taken into account. The main 
results of the analysis were that the Warren algorithm 
works better than Logarithmic when there is ample 
main memory available and when there is a great varia- 
tion in the lengths of the various paths in the graph. As 
we mentioned above, another implementation of the 
Warren algorithm, much better suited to disk-based 
data, was developed by Agrawal and Jagadish 
[Agrawal and Jagadish 871. They used blocking to 
improve the performance and provided empirical evi- 
dence that the algorithm outperforms both Seminaive 
and Smart/Logarithmic almost uniformly. 

Lu proposed another algorithm for reachability 
that uses hash-based join techniques to compute the 
transitive closure of a relation [Lu 871. Its basic struc- 
ture is that of Seminaive, but it employees two interest- 
ing tricks that speed up computation: (a) the original 
relation is dynamically reduced by eliminating tuples 
that are known to be useless in the further production of 
the transitive closure, and (b) as soon as a tuple is pro- 
duced, if it is inserted in the same hash bucket that is 
being processed, the tuple is processed also. Lu 
showed that for a restricted class of graphs his algo- 
rithm performs better than both Seminaive and 
smart/Logarithmic. 

In the context of the probe DBMS prototype, 
transitive closure was identi8ed as an important class of 
recursion and was generally termed traversal recursion 
[Rosenthal et al. 861. Traversal recursion was formally 
specified using path algebras [Carre 791, and it focused 
primarily on path computation problems. The algo- 
rithms proposed for traversal recursion were Seminaive 
and one-puss fmversuls, i.e., algorithms that need to 
traverse a graph only once. It was argued that one-pass 
traversals are better than Seminaive, but no formal 
argument or empirical results were provided. Under 
the assumptions made in this paper, our results con&n 
the above claim (at least for reachability). 

7. Path Computations, One-sided Recursion, Paral- 
lelism 

In this paper, we have focussed on the reachabil- 
ity problem, presenting a number of increasingly 
sophisticated algorithms and analyzing their perfor- 
mance. While this analysis shows that these algorithms 
perform efficiently, they do not bring out what we con- 
sider to be one of their most important assets, which is 
their broad applicability and versatility. They are easily 
adapted to deal with path computations, in which we 
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ask for aggregate properties such as the shortest path 
between two points, and one-sided recursions, which is 
a class of recursive programs that generalizes transitive 
closure [Naughton 871. Some of the algorithms can be 
adapted for parallel evaluation, and to take advantage 
of infrequent updates. We discuss these issues briefly in 
this section. 

An important generalization of reachability is the 
problem of path computations. Examples include 
finding the shortest path between two points, bill-of- 
materials, and other problems of practical significance. 
A number of transitive closure algorithms cannot deal 
with path computations [Schnorr78, Schmitz831. Of 
the algorithms presented in this paper, only 
Global-DFTC cannot be adapted to deal with path 
problems, since it loses path information in processing 
strongly connected components. We have adapted 
DFTC to perform path computations, proved it correct, 
and analyzed its performance [Ioannidis and Ramak- 
rishnan 881. The adaptation is straightforward. As with 
the reachability problem, selections can be dealt with 
efficiently. Thus, we can effectively find the shortest 
path from a given node to every other node in the 
graph. (In this special case, it coincides with Dijkstra’s 
algorithm for shortest paths.) 

One-sided recursions form a class of recursive 
programs that generalize transitive closure. They am 
presented as a class of programs that permit efficient 
algorithms for selection queries CNaughton 871. We 
have considered how the algorithms in this paper can 
be adapted to deal with onesided recursions [Ioannidis 
and Ramakrishnan 881. For selections, Basic-TC , suit- 
ably refined, coincides with the algorithm presented by 
Naughton [Naughton 873. For computing queries that 
do not involve selections, the adapted algorithm may 
perform better than Seminaive (which is the algorithm 
that Naughton suggests in this case). 

Finally, we remark that the simplest algorithm 
presented in this paper, Basic-TC, may often be the 
algorithm of choice. This is for two reasons. First, con- 
sider a situation in which the graph is acyclic (or close 
to acyclic) and updates am inliequent We can store the 
relation according to a reverse topological ordering, 
and re-organize it periodically to restore this property 
(which may be affected by intervening updates). If 
Busic_TC is run on such a relation, it obtains much of 
the improvement in DFTC, since the depth-first order 
of processing (which is achieved in DFTC by the order 
of calls) is achieved through the order in which the 
nodes are stored (and selected for processing by 
Basic-TC). DFTC improves on Basic-TC in this case 
only when there are cycles. In fact, Basic-TC might 
well outperfotm DFTC since it does not have the over- 
head of setting up the calls to visit 1, which involves the 

I/O of fetching in successor lists. An adaptation of 
Basic-TC for path computations is of particular interest 
since many path computations are based on the acycli- 
city of the underlying graph. 

The second reason for choosing Bark-TC has to 
do with its potential for parallel evaluation. The addi- 
tion Of successor set Sj t0 Si in the loop can be parallel- 
ized. Further, the loop can simultaneously be executed 
for more than one node. (In doing this, we might lose 
some of the benefits of the depth-first ordering, but this 
is a trade-off that can be refined.) 

Space limitations prevent us from developing the 
ideas in this section further. We refer the interested 
reader to [Ioannidis and Ramakrishnan 881. 

8. Conclusions 
We have presented several closely related algo- 

rithms for evaluating a broad range of queries related to 
transitive closure. With the exception of Seminaive, no 
other approach offers efficient performance over such a 
variety of queries, including selections, single-source 
and all-sources path problems, and even one-sided 
recursions. Our analysis indicates that this flexibility is 
not achieved at the cost of efficiency; indeed, in many 
cases, the algorithms are seen to reduce to well-known 
algorithms (e.g. Dijkstra’s algorithm) or to do better 
than less flexible algorithms (e.g. Schmitz). The algo- 
rithms are similar to the Schmitz algorithm and some 
other algorithms that identify strongly connected com- 
ponents and compute the transitive closure over the 
condensation graph in that they exploit a topological 
ordering of nodes. They differ significantly in not 
separating the identification of the components from the 
transitive closure phase, and in not merging all nodes in 
strongly connected components a-priori. The first of 
these differences offers a computational advantage, 
whereas the latter allows the adaptation of these algo- 
rithms to path problems. 

We view this work as a first step. Our analysis, 
while it indicates the promise of the algorithms 
presented here, still needs to be refined and supple- 
mented by a comprehensive performance evaluation 
based on actual implementations of the algorithms. We 
also need to explore the effect of the various heuristics 
mentioned in the paper, and to study the relationship of 
the more sophisticated algorithms to one-sided recur- 
sions. 
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