Graphs II - Shortest paths
 Single Source Shortest Paths
 All Sources Shortest Paths

some drawings and notes from prof. Tom Cormen

Single Source SP

- Context: directed graph $G=(V, E, w)$, weighted edges
- The shortest path (SP) between vertices u and v is the path that has minimum total weight
- total weight is obtained by summing up path's edges weights

$$
\delta(u, v)= \begin{cases}\min \{w(p): u \stackrel{p}{\sim} v\} & \text { if there is a path from } u \text { to } v \\ \infty & \text { otherwise } .\end{cases}
$$

- Note: SP cannot contain cycles
- positive cycles: a shortest path obtained by taking out the cycle
- negative cycles: a shortest path obtained by iterating through the cycle few more times, minimum weight is $-\infty$.

Negative edges and cycles

- negative weights possible
- negative cycles make some shortest paths $-\infty$
- Exercise: explain the following :
- $\operatorname{SP}(\mathrm{s}, \mathrm{a})=3$
- $S P(s, b)=-1$
- $\operatorname{SP}(\mathrm{s}, \mathrm{g})=3$
- $S P(s, e)=-\infty$

Single Source SP

(a)

(b)

(c)

- Task: Given a source vertex $s \in \mathrm{~V}$, find the shortest path from s to all other vertices
- will write inside each vertex v the shortest path estimate ESP(s,v) weight from the source
- these estimates change as the algorithm progresses
- highlight edges that give the SP-s
- highlighted edges form a tree with source as root
- tree not unique as (b) and (c) are both valid

Relaxation
Estimated shortest path (s or)
if current (estimate) $\operatorname{ESP}(\mathrm{s}, \mathrm{u})$ is 5 and edge (u, v) has weight $w(u, v)=2$, we can reach v with a path of $5+2=7$

- if current estimate $\operatorname{ESP}(s, v)$ is more than 7 , we "relax edge $(u, v)^{\prime \prime}$ by replacing the estimate $\operatorname{ESP}(\mathrm{s}, \mathrm{v})=7$.
- if not $(\operatorname{ESP}(s, v) \leqslant 7)$, we do nothing

$\stackrel{2}{u} \xrightarrow{v} \xrightarrow{v}$

neither
(a) \quad (b) path $s \rightarrow \infty$
${ }^{\text {(a) }}$ path $s \leadsto v$
necesanly final.
(Th) A pheprest $(S) \rightarrow(a.) \rightarrow$ (a)
is discovered (ESP $(v)=$ final (min value)
if the edges of the path $\begin{aligned} & s \rightarrow u_{1} \\ & a_{1} \rightarrow u_{2}\end{aligned}$ are

$$
\bar{u}_{k} \rightarrow v
$$

relaxed in this order
ifESP (s, u_{t}) is already the ss (descriered) wen relaxing the ext edge in the truesp to $u_{t y}$ $\Rightarrow \operatorname{ESP}\left(u_{t+1}\right)$ is final

Bellman Ford

(4)

- BF algorithm progresses in "waves', similar to BFS
- takes a maximum of $|V|-1$ waves to find SP
- since there cannot be cycles

Bellman-Ford SSSP algorithm

- idea : relax all edges once (in any order) and we've got CORRECT all SP-s of one edge
- relax again all edges (any order) and we obtained all SP-s of two edges
- relax again, and get all SP-s of three edges
- no SP can have more than IVI-1 edges, so repeat the relax-alledges step $|V|-1$ times, to get all SP-s

BELLMAN-FORD

- init all SP : SP(s,v)= ∞ for all $v, S P(s, s)=0$
f for $\mathrm{k}=1:|\mathrm{V}|-1$
relax all edges
check for negative cycles

SSSP exercise

- Discover SP by hand (start from source)

Bellman Ford

- discover SP(s,v) means having the current estimate equal with the actual (unknown) SP
- discover SP: ESP(s,v) = SP(s,v)
- ESP written "inside" each node, it may further decrease
- once SP discovered, the ESP never decreases

Bellman Ford

- discover SP(s,v) means having the current estimate equal with the actual (unknown) SP
- discover SP: ESP(s,v) = SP(s,v)
- ESP written "inside" each node, it may further decrease
- once SP discovered, the ESP never decreases

- init all ESP $=\infty$

Bellman Ford

- discover SP(s,v) means having the current estimate equal with the actual (unknown) SP
- discover SP: ESP(s,v) = SP(s,v)
- ESP written "inside" each node, it may further decrease
- once SP discovered, the ESP never decreases

- init all ESP $=\infty$
- relax all edges (first time): discover all SP-s of one edge

Bellman Ford

- discover SP(s,v) means having the current estimate equal with the actual (unknown) SP
- discover SP: ESP(s,v) = SP(s,v)
- ESP written "inside" each node, it may further decrease
- once SP discovered, the ESP never decreases

- init all ESP $=\infty$
- relax all edges (first time): discover all SP-s of one edge
- relax all edges (second time): discover all SP-s of two edges

Bellman Ford

- discover SP(s,v) means having the current estimate equal with the actual (unknown) SP
- discover SP: ESP (s,v) = SP (s,v)
- ESP written "inside" each node, it may further decrease
- once SP discovered, the ESP never decreases

- init all ESP $=\infty$
- relax all edges (first time): discover all SP-s of one edge
(5) relax all edges (second time): discover all SP-s of two edges
(7) - . . repeat
- how many times?

Bellman Ford

Essential mechanism (BF proof):

- $S P(s, v)=[a 1, a 2, a 3, a 4]$
- Relaxing a1, then a2, then a3, then a4-you can do them over any amount of time, but it has to be in the right order
- SP(s,v) discovered
- for every $S P=($ edges $a 1, a 2, a 3, \ldots$.$) there was a relaxation sequence of$ these edges, in this precise order: al in the first round, a2 in the second round, etc.
- overall quite a few more relaxations than necessary, in order to enforce correctness in all possible cases
- Running time: $|\mathrm{V}|-1$ iterations for the outer loop
- inner loop: relax all edges $O(E)$
- Total $V^{*} O(E)=O(V E)$

SSSP in a DAG

Essential mechanism:

- for every $S P=(e d g e s ~ a 1, a 2, a 3, \ldots$) there was a relaxation sequence of these edges, in this precise order: al in the first round, a2 in the second round, etc.
- in a DAG we have a way to relax all edges in pathorder, without doing $|V|-1$ rounds of relax-all-edges
- use topological sort, relax edges in topological order.
- topological sort is given by finishing DFS times (on picture)
- Running time $O(E)$ (if $E>V$)
- formally $O(E+V) V S$ Bellman Ford $O(V E)$

SSSP in a DAG

Essential mechanism:

- for every $S P=(e d g e s ~ a 1, a 2, a 3, \ldots$) there was a relaxation sequence of these edges, in this precise order: al in the first round, a2 in the second round, etc.
- in a DAG we have a way to relax all edges in pathorder, without doing $|V|-1$ rounds of relax-all-edges
- use topological sort, relax edges in topological order.
- topological sort is given by finishing DFS times (on picture)
- Running time $O(E)$ (if $E>V$)
- formally $O(E+V) V S$ Bellman Ford $O(V E)$

SSSP in a DAG

Essential mechanism:

- for every $S P=(e d g e s ~ a 1, a 2, a 3, \ldots$) there was a relaxation sequence of these edges, in this precise order: al in the first round, a2 in the second round, etc.
- in a DAG we have a way to relax all edges in pathorder, without doing $|V|-1$ rounds of relax-all-edges
- use topological sort, relax edges in topological order.
- topological sort is given by finishing DFS times (on picture)
- Running time $O(E)$ (if $E>V$)
- formally $O(E+V) V S$ Bellman Ford $O(V E)$

SSSP in a DAG

Essential mechanism:

- for every $S P=(e d g e s ~ a 1, a 2, a 3, \ldots$) there was a relaxation sequence of these edges, in this precise order: al in the first round, a2 in the second round, etc.
- in a DAG we have a way to relax all edges in pathorder, without doing $|V|-1$ rounds of relax-all-edges
- use topological sort, relax edges in topological order.
- topological sort is given by finishing DFS times (on picture)
- Running time $O(E)$ (if $E>V$)
- formally $O(E+V)$ VS Bellman Ford $O(V E)$

SSSP in a DAG

Essential mechanism:

- for every $S P=(e d g e s ~ a 1, a 2, a 3, \ldots$) there was a relaxation sequence of these edges, in this precise order: al in the first round, a2 in the second round, etc.
- in a DAG we have a way to relax all edges in pathorder, without doing $|V|-1$ rounds of relax-all-edges
- use topological sort, relax edges in topological order.
- topological sort is given by finishing DFS times (on picture)
- Running time $O(E)$ (if $E>V$)
- formally $O(E+V)$ VS Bellman Ford $O(V E)$

SSSP in a DAG

Essential mechanism:

- for every $S P=(e d g e s ~ a 1, a 2, a 3, \ldots$) there was a relaxation sequence of these edges, in this precise order: al in the first round, a2 in the second round, etc.
- in a DAG we have a way to relax all edges in pathorder, without doing $|V|-1$ rounds of relax-all-edges
- use topological sort, relax edges in topological order.
- topological sort is given by finishing DFS times (on picture)
- Running time $O(E)$ (if $E>V$)
- formally $O(E+V) V S$ Bellman Ford $O(V E)$

SSSP in a DAG

Essential mechanism:

- for every $S P=(e d g e s ~ a 1, a 2, a 3, \ldots$) there was a relaxation sequence of these edges, in this precise order: al in the first round, a2 in the second round, etc.
- in a DAG we have a way to relax all edges in pathorder, without doing $|V|-1$ rounds of relax-all-edges
- use topological sort, relax edges in topological order.
- topological sort is given by finishing DFS times (on picture)
- Running time $O(E)$ (if $E>V$)
- formally $O(E+V) V S$ Bellman Ford $O(V E)$

SSSP in a DAG

Essential mechanism:

- for every $S P=(e d g e s ~ a 1, a 2, a 3, \ldots$) there was a relaxation sequence of these edges, in this precise order: al in the first round, a2 in the second round, etc.
- in a DAG we have a way to relax all edges in pathorder, without doing $|V|-1$ rounds of relax-all-edges
- use topological sort, relax edges in topological order.
- topological sort is given by finishing DFS times (on picture)
- Running time $O(E)$ (if $E>V$)
- formally $O(E+V) V S$ Bellman Ford $O(V E)$

SSSP in a DAG

Essential mechanism:

- for every $S P=(e d g e s ~ a 1, a 2, a 3, \ldots$) there was a relaxation sequence of these edges, in this precise order: al in the first round, a2 in the second round, etc.
- in a DAG we have a way to relax all edges in pathorder, without doing $|V|-1$ rounds of relax-all-edges
- use topological sort, relax edges in topological order.
- topological sort is given by finishing DFS times (on picture)
- Running time $O(E)$ (if $E>V$)
- formally $O(E+V) V S$ Bellman Ford $O(V E)$

SSSP in a DAG

Essential mechanism:

- for every $S P=(e d g e s ~ a 1, a 2, a 3, \ldots$) there was a relaxation sequence of these edges, in this precise order: al in the first round, a2 in the second round, etc.
- in a DAG we have a way to relax all edges in pathorder, without doing $|V|-1$ rounds of relax-all-edges
- use topological sort, relax edges in topological order.
- topological sort is given by finishing DFS times (on picture)
- Running time $O(E)$ (if $E>V$)
- formally $O(E+V) V S$ Bellman Ford $O(V E)$

Dijkstra SSSP algorithm

- No negative weight edges allowed
- instead of relaxing all edges (like Bellman Ford), keep track of a current "closest" vertex to the SP tree
- "closest" = minimum ESP (s,v) of nodes not already part of SP tree
- add the current-closest to the partial SP tree, v
- relax the outing edges of v (all edges $v->x$)
- repeat
similar to Prim's algorithm (conceptually)

uefrcec

We want to find the shortest path from s to every node

INITIALIZE -SINGLE -SOURCE(G,s)
 $S=\Phi$
 $Q=G . V$

After initialization, we have $v . \pi=N I L$ for all $v \in V, s . d=0$, and $v . d=\infty$ for $v \in V-\{s\}$

$$
\begin{aligned}
& s=\operatorname{EXTRACT}-\operatorname{MIN}(Q) \\
& S=\{s\} \\
& Q=\{t, x, y, z\}
\end{aligned}
$$

We are at node s

$$
\begin{aligned}
& \operatorname{ReLax}(s, t, w) \\
& S=\{s\} \\
& Q=\{t, x, y, z\}
\end{aligned}
$$

Test whether we can improve the shortest path to t found so far by going through s

$$
\begin{aligned}
& \operatorname{ReLax}(s, t, w) \\
& S=\{s\} \\
& Q=\{t, x, y, z\}
\end{aligned}
$$

Update $t . d=10$ and $t . \pi=s$

$$
\begin{aligned}
& \operatorname{ReLax}(s, y, w) \\
& S=\{s\} \\
& Q=\{t, x, y, z\}
\end{aligned}
$$

Test whether we can improve the shortest path to y found so far by going through s

$$
\begin{aligned}
& \operatorname{ReLAX}(s, y, w) \\
& S=\{s\} \\
& Q=\{t, x, y, z\}
\end{aligned}
$$

Update $y . d=5$ and $y . \pi=s$

$$
\begin{aligned}
& S=\{s\} \\
& Q=\{t, x, y, z\}
\end{aligned}
$$

All edges leaving s have been tested

$$
\begin{aligned}
& y=\operatorname{EXTRACT}-\operatorname{MIN}(Q) \\
& S=\{s, y\} \\
& Q=\{t, x, z\}
\end{aligned}
$$

We are at node y

$$
\begin{aligned}
& \operatorname{ReLax}(y, t, w) \\
& S=\{s, y\} \\
& Q=\{t, x, z\}
\end{aligned}
$$

Test whether we can improve the shortest path to t found so far by going through y

$$
\begin{aligned}
& \operatorname{ReLax}(y, t, w) \\
& S=\{s, y\} \\
& Q=\{t, x, z\}
\end{aligned}
$$

Update $t . d=8$ and $t . \pi=y$

$$
\begin{aligned}
& \operatorname{ReLax}(y, x, w) \\
& S=\{s, y\} \\
& Q=\{t, x, z\}
\end{aligned}
$$

Test whether we can improve the shortest path to x found so far by going through y

$$
\begin{aligned}
& \operatorname{ReLax}(y, x, w) \\
& S=\{s, y\} \\
& Q=\{t, x, z\}
\end{aligned}
$$

Update $x . d=14$ and $x . \pi=y$

$$
\begin{aligned}
& \operatorname{ReLAX}(y, z, w) \\
& S=\{s, y\} \\
& Q=\{t, x, z\}
\end{aligned}
$$

Test whether we can improve the shortest path to z found so far by going through y

$$
\begin{aligned}
& \operatorname{RELAX}(y, z, w) \\
& S=\{s, y\} \\
& Q=\{t, x, z\}
\end{aligned}
$$

Update $z . d=7$ and $z . \pi=y$

$$
\begin{aligned}
& S=\{s, y\} \\
& Q=\{t, x, z\}
\end{aligned}
$$

All edges leaving y have been tested

$$
\begin{aligned}
& z=\operatorname{EXTRACT}-\operatorname{MIN}(Q) \\
& S=\{s, y, z\} \\
& Q=\{t, x\}
\end{aligned}
$$

We are at node z

$$
\begin{aligned}
& \operatorname{ReLax}(z, s, w) \\
& S=\{s, y, z\} \\
& Q=\{t, x\}
\end{aligned}
$$

Test whether we can improve the shortest path to s found so far by going through z

$$
\begin{aligned}
& \operatorname{ReLax}(z, x, w) \\
& S=\{s, y, z\} \\
& Q=\{t, x\}
\end{aligned}
$$

Test whether we can improve the shortest path to x found so far by going through z

$$
\begin{aligned}
& \operatorname{ReLAX}(z, x, w) \\
& S=\{s, y, z\} \\
& Q=\{t, x\}
\end{aligned}
$$

Update $x . d=13$ and $\quad x . \pi=z$

$$
\begin{aligned}
& S=\{s, y, z\} \\
& Q=\{t, x\}
\end{aligned}
$$

All edges leaving z have been tested

$$
\begin{aligned}
& t=\operatorname{EXTRACT}-\operatorname{MIN}(Q) \\
& S=\{s, y, z, t\} \\
& Q=\{x\}
\end{aligned}
$$

We are at node t

$$
\begin{aligned}
& \operatorname{ReLax}(t, y, w) \\
& S=\{s, y, z, t\} \\
& Q=\{x\}
\end{aligned}
$$

Test whether we can improve the shortest path to y found so far by going through t

$$
\begin{aligned}
& \operatorname{ReLax}(t, x, w) \\
& S=\{s, y, z, t\} \\
& Q=\{x\}
\end{aligned}
$$

Test whether we can improve the shortest path to x found so far by going through t

$$
\begin{aligned}
& \operatorname{ReLax}(t, x, w) \\
& S=\{s, y, z, t\} \\
& Q=\{x\}
\end{aligned}
$$

Update $x . d=9$ and $x . \pi=t$

$$
\begin{aligned}
& S=\{s, y, z, t\} \\
& Q=\{x\}
\end{aligned}
$$

All edges leaving thave been tested

$$
\begin{aligned}
& x=\operatorname{EXTRACT}-\operatorname{MIN}(Q) \\
& S=G \cdot V \\
& Q=\Phi
\end{aligned}
$$

We are at node x

$$
\begin{aligned}
& \operatorname{RELAX}(x, z, w) \\
& S=G \cdot V \\
& Q=\Phi
\end{aligned}
$$

Test whether we can improve the shortest path to z found so far by going through x

$$
\begin{aligned}
& S=G . V \\
& Q=\Phi \\
& \text { Done! }
\end{aligned}
$$

All edges leaving x have been tested.
Every vertex's shortest path from s has been determined. We are done.

Dijkstra's Algorithm

- correctness proof in the book

Dijkstra (G, w, s)
1 Initialize-Single-Source (G, s)
$S=\emptyset$
$Q=G . V$
while $Q \neq \emptyset$

- idea: proof that for each SP, there is a relaxation sequence of its edges in path-order

Running Time depends on implementation of queue operations
sptree $|V|$ * extract-min

- $|E|^{*}$ decrease key (at relaxation)

Total

- $O\left(V^{*} T_{\text {extract-min }}+E^{*} T_{\text {decrease-key }}\right.$
- with Fibonacci heaps: extract-min is $O(\mathrm{logV})$ and decrease-key is $O(1)$; totat O(E+ OOgV)

$\Delta=+2$ weed to add to brick log cycles add to all edges

Graphs II - Shortest paths

Lesson 2: All Sources Shortest Paths

ASSP

- Task: find all shortest paths, between any two vertices (no fixed source)
- Slow: run Bellman Ford separately from each vertex as source.
- running time $|V|^{*} B F-$ time $=V^{*} O(V E)=O\left(V^{2} E\right)$
- that is $O\left(V^{4}\right)$ if graph dense $E \approx V^{2}$
- Instead, we will use dynamic programming
- $C_{i j}=\min$ SP weight (objective) between vertices i, j
- optimal solution structure:
- if path $P(i->j)$ from i to j in optimal and passes vertex k, then the subpaths $P(i->k)$ and $P(k->j)$ must be also optimal
- optimal $=$ shortest
(1) Chart optgol

ASSP dynamic programming

- two options for dynamic programming
- A. go by the number of edges used in a path
- $C_{i j}^{(m)}=$ minimum path weight between i and $j u s i n g$ at most m edges
$-C_{i j}^{(1)}=$ weight of edge $i->j$, if exists (one edge)
$-C_{i j}{ }^{(2)}=$ min weight of any path $i->k->j$ (max 2 edges)
- $C_{i j}{ }^{(0)=}=$ we 0 if $\mathrm{i} \neq \mathrm{j}, \infty$ otherwise (no edge)
- B. by the intermediary nodes in a certain fixed order
- fix order of all vertices $1,2,3, \ldots,|\mathrm{~V}|$
- $C_{i j}(m)=$ minimum path weight between i and j using only intermediary vertices $\{1,2, . . . \mathrm{m}\}$
- similar to discrete knapsack idea, see module 6

ASSP dynamic programming by edges

- the Cij using m edges is either
- the same as Cij using m-1 edges, OR
- $C_{i k}$ using m-1 edges to intermediary k, plus an edge from k to $j w_{k j}$
- all nodes k are eligible as possible "last" intermediary

ASSP dynamic programming by edges

- Compute the $C^{(m)}$ matrix from $C^{(m-1)}$ matrix using edges matrix W
- Extend-SP ($\left.\mathrm{C}^{(\mathrm{m}-1)}, \mathrm{W}\right)$
- ASSP-slow(W)
- $\mathrm{C}^{(1)}=\mathrm{W}$
for $\mathrm{m}=2: \mathrm{n}-1$
$\Rightarrow \mathrm{C}^{(\mathrm{m})}=$ Extend-SP $(\mathrm{C}(\mathrm{m}-1), \mathrm{W}) \quad \theta\left(u^{3}\right)$
- return $\mathrm{C}^{(\mathrm{n}-1)}$

ASSP dynamic programming by edges

- Extend-SP looks like matrix multiplication!
- Extend-SP running time $O\left(n^{3}\right)$
- ASSP-slow is $n^{*} O\left(n^{3}\right)=O\left(n^{4}\right)$, same as running Bellman Ford separately from each vertex

Extend-SP ($\mathrm{C}^{(\mathrm{m}-1)}$, W)

- D=multiply (C,W)

ASSP dynamic programming by edges

- Think of Extending-SP as of matrix multiplication
$-\begin{aligned} & C^{(1)}=C^{(0) *} W=W \text {; the "*" means "a=min }\left\{a, C_{i k}(m-1)+w_{k j}\right\} \text { " inner } \\ & \text { operation }\end{aligned}$
$-C^{(2)}=C^{(1) *} W=W 2$
$-C^{(3)}=C^{(2) *} W=W 3$
- Only need $C^{(n-1)}$, not the intermediary ones
$-C^{(1)}=W$
$-C^{(2)}=W^{2}=\left(W^{1}\right)^{2}$
$-C^{(4)}=W^{4}=\left(W^{2}\right)^{2}$
- $C^{(8)}=W^{8}=\left(W^{4}\right)^{2}$, etc

ASSP dynamic programming by edges

- ASSP-fast(W)
- $\mathrm{C}^{(1)}=\mathrm{W}$;
while m<n-1
- $\mathrm{C}^{(\mathrm{m})}=$ Extend -SP($(\stackrel{(\mathrm{m}-1)}{-}, \mathrm{C}(\underline{m-1}), \mathrm{W})$;
$m=2$ *m; $^{\prime}$
- return $\mathrm{C}^{(\mathrm{m})}$

$$
\begin{aligned}
& \text { linseed we } T^{+100}=T^{64} \cdot T^{32} \cdot T^{T 4} \quad C^{128}
\end{aligned}
$$

- After $\lceil\lg (n)\rceil$ iterations we have computed $C^{(m)}$ with $m \geqslant n-1$. Its ok to "overshoot" as C doesnt change after finding the $S P$.
- Running time $\Theta\left(V^{3} \log \chi\right)$

ASSP dynamic programming by verterodicices

- "Floyd-Warshall" algorithm
- Fix a vertex order: 1, 2, 3, ... n Knapsack trick.

- $C_{i j}{ }^{(m)}=$ the weight of $S P(i, j)$ going only through intermediary vertices in set S_{m}

- m=0 : no intermediary allowed; $C_{i j}{ }^{(0)}=w_{i j}$
- $m=1$: only $k=v_{1}$ intermediary allowed
$-C_{i j}{ }^{(1)}=\min \left\{W_{i j}, W_{i k+} W_{k j}\right\}$

ASSP dynamic programming by vertices

- dynamic recursion
$C_{i j}(m)=\min \{C_{i j}^{(m-1)} \underbrace{(m-1)}_{i m}+\underbrace{c_{m j}(m-1)}_{m j}\} \quad M-1 \longrightarrow m$
- $C_{i j}(m)=$ minimum between $C_{i j}(m-1)$ and the SP including vertex v_{m} and only other intermediaries <m.

ASSP dynamic programming by vertices

- bottom up computation
- Floyd-Warshall-ASSP(W)

- Running time $\Theta\left(\mathrm{V}^{3}\right)$
- for dense graphs $\mathrm{E} \approx \mathrm{V}^{2}$, Floyd-Warshall-ASSP same cost as Bellman-Ford-SSSP

Transitre Closuse
—adjumbre
$T_{i j} \begin{cases}1 & \text { if path } i \sim j \\ D & \text { if not }\end{cases}$

$$
\begin{aligned}
& T_{i j}^{m}= \begin{cases}1 & \text { if fpath ivij at unst m } m \\
0 & \text { if not }\end{cases} \\
& T_{i i}^{1}=\text { adjes matrix }
\end{aligned}
$$

