Graphs II - Shortest paths

Single Source Shortest Paths
All Sources Shortest Paths

some drawings and notes from prof. Tom Cormen



Single Source SP

@® Context: directed graph G=(V,E,w), weighted edges

@ The shortest path (SP) between vertices u and v is
the path(that has minimum tfotal weight

— total weight is obtained by summing up paths edges weights

: ; 4 . :
§(u,v) = min{w(p) : u ~ v} if there is a path from u to v

otherwise .

@ Note: SP cannot contain cycles

— positive cycles: a shortest path obtained by taking out the cycle

— negative czcles: a shortest path obtained by iterating through
the cycle rew more times, minimum weight is -co.



Negative edges and cycles

@ Exercise: explain the
following :

® SP(s,a)=3
@ SP(s,b)= -1
® SP(s,g)=3
@ negative weights possible ® SP(se)=-c0

@ negative cycles make
some shortest paths -co



Single Source SP

(b)

® Task: Given a source vertex seV, find the shortest
path from s fo all other vertices

— will write inside each vertex v the shortest path estimate ESP(s,v)
weight from the source

— these estimates change as the algorithm progresses
— highlight edges that give the SP-s
— highlighted edges form a tree with source as root

— tree not unique as (b) and (c) are both valid



Relaxation
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@ if current (estimate) ESP(s,u) is 5 and edge (u,v) has
\éveizgg’r w(u,v)=2, we can reach v with a path of
4=

— if current estimate Espgrs,v) is more than 7, we “relax edge (u,v)”
by replacing the estimate ESP(s,v) =7.

— if not (ESP(s,v)<7), we do nothing
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@®E algorl’rhm progresses in waves sum Q%Q%%S

® takes a maximum of |V|-1 waves to find SP

— since there cannot be cycles



Bellman-Ford SSSP algorithm

® idea : relax all edges once (in any order) and weve
got CORRECT all SP-s of one edge

r%lax again all edges (any order) and we obtained all SP-s of two
edges

relax ... again, and get all SP-s of three edges

no SP can have more than |VI-1 edges, so repeat the relax-all-
edges step |V|-1 times, to get all SP-s

p BELLMAN-FORD

|

4

P init all SP : SP(s,v)= » for all v, SP(s,s)=0

for k=1:|V|-1

relax all edges

>
check for negative cycles)




SSSP exercise

@® Discover SP by hand (start from
source)




Bellman Ford

@ discover SP(s,v) means having the current
estimate equal with the actual (unknown) SP

— discover SP : ESP(s,v) = SP(s,v)
— ESP written "inside" each node, it may further decrease

— once SP discovered, the ESP never decreases
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Bellman Ford

@ discover SP(s,v) means having the current
estimate equal with the actual (unknown) SP

— discover SP : ESP(s,v) = SP(s,v)
— ESP written "inside" each node, it may further decrease
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discover all SP-s of one edge




Bellman Ford

@ discover SP(s,v) means having the current
estimate equal with the actual (unknown) SP

— discover SP : ESP(s,v) = SP(s,v)
— ESP written "inside" each node, it may further decrease

— once SP discovered, the ESP never decreases

® init all ESP = o0

® relax all edges (first time):
discover all SP-s of one edge

® relax all edges (second time):

discover all SP-s of two edges




Bellman Ford

@ discover SP(s,v) means having the current
estimate equal with the actual (unknown) SP

— discover SP : ESP(s,v) = SP(s,v)
— ESP written "inside" each node, it may further decrease

— once SP discovered, the ESP never decreases

® init all ESP = o0

® relax all edges (first time):
discover all SP-s of one edge

\ o) @ relax all edges (second time):
discover all SP-s of two edges

% ® ... repeat

— how many times?




Bellman Ford

@® Essential mechanism (BF proof):
- SP(s,v) = [al, a2, a3, a4]

— Relaxing al, then a2, then a3, then a4 - you can do them over any
amount of time, but it has to be in the right order

— SP(s,v) discovered

- for ever SP;(edEes al,a2,a3,..) there was a relaxation sequence of
these edges, in this precise order: al in the first round, a2 in the
second round, etc.

— overall quite a few more relaxations than necessary, in order to enforce
correctness in all possible cases

@® Running time: |V|-1 iterations for the outer loop

@ inner loop: relax all edges O(E)
® Total V*O(E) = O(VE)



SSSP in a DAG

® Essential mechanism:

— for ever SP=(edEes al,a2,a3,..) there was a relaxation sequence of
’rhescej e Jrges, in this precise order: al in the first round, a2 in the second
round, efc.

@® in a DAG we have a way to relax all edges in path-
order, without doing [V|-1 rounds of relax-all-edges

@® use topological sort, relax edges in topological order.

— topological sort is given by finishing DFS times (on picture)

® Running time O(E) (if E>V)
— formally O(E+V) VS Bellman Ford O(VE)
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Dijkstra SSSP algorithm

@ No negative weight edges allowed

® instead of relaxun? all edges (like Bellman Ford), keep
track of a current “closest” vertex to the SP tree

— “closest" = minimum ESP(s,v) of nodes not already part of SP tree
— add the current-closest to the partial SP tree, v

— relax the outing edges of v (all edges v->x)

@® repeat %( {\40\((\/ o tree
e @@@( \u]
(&Hlar fo Prim's algorithm (CO”CQP“‘“M bEdneee
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graph G
source = s

We want to find the shortest path from s to every node



INITIALIZE -SINGL!
"SOURCE(G,s)

S=10

Q=G.V

()

After initialization, we have v.m = NIL forallv € V,s.d = 0, and v.d = oo for
veV —{s}



s=EXTRACT-MIN(Q)

S ={s} »
Q= {t,x,y,z}

We are at node s



RELAX(s, t, w)

S=15] |
Q=i b6 Vzl

Test whether we can improve the shortest path to t found so far by going through s



RELAX(s, t, w)

S ={s} A
Q= {t,x,y,z}

Updatet.d = 10 and .1 = S



RELAX(s, y, w)

9=451 |
Q= l bt vz}

Test whether we can improve the shortest path to y found so far by going through s



RELAX(s, y, w)
S= 15}
@Qe=2d b Vit

Update y.d =5 and y.m = s



S =15;
Q= L Vz;

All edges leaving s have been tested



y=EXTRACT-MIN(Q)

S= {Sf)/}
Q= X2 1

We are at node y



RELAX(y, t, w)

5={s,y}
Q=] k7

Test whether we can improve the shortest path to t found so far by going through y



RELAX(y, t, w)

5={s,y}
Ri=nd £ Xz |

Update t.d = &8 and t.m =y



RELAX(y, x, w)

5={sy}
Q= bzt

Test whether we can improve the shortest path to x found so far by going through y



RELAX(y, x, w)

S = {S,y}
Qi=id b X2}

Update x.d = 14 and =.m = y



RELAX(y, z, w)

5={sy}
Q=] k7

Test whether we can improve the shortest path to z found so far by going through y



RELAX(y, z, w)

S = {S,y}
Qi=id b X2}

Update z.d = 7and z.m =Y



5=1sY}
Q= b X2}

All edges leaving y have been tested



z=EXTRACT-MIN(Q)

S = {SfoZ}
Q= {t.x}

We are at node z



RELAX(z,s, w)

5=1{sy,z}
Q= {t.x)

Test whether we can improve the shortest path to s found so far by going through z



RELAX(z, x, w)

5=1{sy,z}
Q= {t.x)

Test whether we can improve the shortest path to x found so far by going through z



RELAX(z, x, w)

S=18 V. Z}
Q=i £ X}

Updatex.d = 13and z.m = 2



All edges leaving z have been tested




We are at node t

S



RELAX(t,y, w)
S =145V, 2, t}
Q = 1}

Test whether we can improve the shortest path to y found so far by going through t



RELAX(t, x, w)
S =145V, 2, t}
Q = 1}

Test whether we can improve the shortest path to x found so far by going through t



Update z.d =9 and z.m =1

S



All edges leaving t have been tested




x=EXTRACT-MIN(Q)
S=G.V
Q=9

We are at node x



RELAX(x, z, w)
S= GV
Q=9

Test whether we can improve the shortest path to z found so far by going through x



o=k G ¥/

Done!

All edges leaving x have been tested.
Every vertex’s shortest path from s has been determined. We are done.



Dijkstra’s Algorithm

@® correctness proof in the book

— idea: proof that for each SP, there is

DUKSTRA(G. w, ) a relaxation sequence of its edges in
| INITIALIZE-SINGLE-SOURCE(G, s) path-order

2 S =90 . .

3 0 =GV . ts@® Running Time depends on

1 whileQ 0 &¢-s? implementation of queue

5 operations

g end §0-free V| * extract-min

8 — |El * decrease key (at relaxation)

® Tofal

% %
= O(V*Textract-mint+E Tdecrease-key)

— with _Eibonacci heaps: extract-min is
- de egse—key is O(1) ;

s \;//







Graphs II - Shortest paths

Lesson 2: All Sources Shortest Paths



ASSP

@® Task: find all shortest paths, between any two
vertices (no fixed source)

@® Slow: run Bellman Ford separately from each vertex
as source.

— running time |V| * BF-time = V*O(VE) = O(VZE)
— that is O(V*) if graph dense ExV?



® Instead, we will use dynamic programming
® C; = min SP weight (objective) between vertices i,j

@ optimal solution structure:

— if path P(i->j) from i to j in optimal and passes vertex k, then the
subpaths P(i->k) and P(k->j) must be also optimal

— optimal = shortest @dﬂw& - olTgoL

V}

) < P2 | A
H DQ%L(S\))




ASSP dynamic programming

ol SD L,(C d efig@%\

@® two options for dynamic programming

oVT Sﬁ\, 4 ki &0(32%\

® A. go by the @mber of edges]used in a path :

— Ci™= minimum path weight between i and j using at most m edges

— CjY= weight of edge i->j, if exists (one edge)
— C;j'®= min weight of any path i->k->j (max 2 edges)

— Ci9=we O if i#], co otherwise (no edge)

® B. by the intermediary nodes in a certain fixed order
— fix order of all vertices 1,2,3,... V|

— C™= minimum path weight between i and j using only intermediary
vertices {1,2,.. 5)

— similar fo discrete knapsack idea, see module 6



ASSP dynamic programmlng by edges

X~ ) R
*f}?/

ﬁﬁﬁ@dg@S QUQ V\H KO@Q_} @
@ CU@ mlnk { CU@Z C.k(m 1)-I-W|<J} //bottom up computation

@® the Cij using m edges is either
— the same as Cij using m-1 edges, OR
— Cik using m-1 edges to intermediary K, plus an edge from Kk fo j w;

— all nodes k are eligible as possible "last” intermediary



ASSP dynamic programming by edges

® Compute the C™ matrix from C™Y matrix using edges
matrix W

® Extend-SP (C (m-1

P for i= owr call c\&
for jJj=1:n (VC’)

P a=w
@T@:m) spordn b prev wellox ey
4 a=min@ckm‘_\+/@7

P Cism=a &Y dasd e Pt lihy
\Whow =y

® ASSP-slow(W)
P Cc) = W
for m=2:n-1
r P Ccm=Extend-SP(C(m-1),W) %(vﬁ’)

P return C(n-1)



o 4
ASSP dynamic programrﬁnxg by edges

® Extend-SP looks like matrix mul’rlpllcahon'

\ AU VY t"\O\ Y (Hw('(*
— Extend-SP running time O(n3) ﬁﬁiﬁi R
= A% T
@® ASSP-slow is n*O(n®) same a running
Bellman Ford separa’rel each er’rex
P Extend-SP (C(™1),W) ) D—multlply(C W)
P for i=T:n | P fo
k for j=1:n CQ/\\ ) CQ/QA
P a=x P a=0;
T Ola ’ .
for k=1:n @a\»( 1ot for k=1:n 7:( ) e
[ a Ckm1Lij : [ 4 a%,*\wg
4 Cij 4 Dij=ak




ASSP dynamic programming by edges

@® Think of Extending-SP as of matrix multiplication

- CV = CO*W =W; the ™" means “a=min{a, ci™b + wy}" inner
operation

- C& = clP\WwW =W?2
- C® = c@*W =W3

® Only need C"Y, not the intermediary ones
- CO =W
— C® = W2= (W2
— C% = W= (W2)2
— C® =WB= (W) etc



ASSP dynamic programming by edges

P cH = W; m &
P while m<n-1 C{\Jm//ﬁ:7 (\\/\¥IK<WD
P Ccm=Extend-SP(C®l), C®1), W);

PkaZ#mA

P return C(m o -
T = "64 Tqﬂ\ Td st roaded
wekd uwe :§%< an

® After | Ig(n) | iterations we have computed C™

with m=n-1. Its ok to “overshoot” as C doesnt
change after finding the SP.

® Running time ©(V3logy) \f?'




\ w@“ﬁ"‘w
ASSP dynamic programming by \W/&é[r‘ricezs

® "Floyd-Warshall” algorithm
® Fix a verfex order: 1, 2,3, .. ,n  Kuapeadk fcke

— Sm= set first k of vertices = §vi, V2, ..., Vm)
e Gt

o o
® C;™ = the weight of SP(i,j) going only through
intermediary vertices in set Sy

SO e L)

® m=0 : no intermediary allowed; C;©=w;

® m=l : only k=v; intermediary allowed

— Cij(1)= min {Wij , WiksWkj



ASSP dynamic programming by vertices

® dynamic recursion [z«

e —
® = min{
VAV N\ rle s

— Ci'™ = minimum between Cy™Y and the SP including vertex vm and
only other infermediaries <m.

e MD) 4 ¢ (m-1) M=l —2

ij X @

Z
S ”@)&~
T~




ASSP dynamic programming by vertices

@ bottom up computation
P Floyd-Warshall-ASSP (W)

?Rfor/m—ln\54&é{@

P for i=1:n d P i AN
Pe s
for j=1: n} / fYV(\( &
Sre o
’ , = min{ @ + m](m 1) }
P return C(» DW\/ %éggw\j NW\ W) \rf/&@\

® Running time O(V?)

— for dense graphs ExV?, Floyd-Warshall-ASSP same cost as Bellman-
Ford-SSSP









