Graphs II - Shortest paths

Single Source Shortest Paths All Sources Shortest Paths

some drawings and notes from prof. Tom Cormen

Single Source SP

- Context: directed graph G=(V,E,w), weighted edges
- The shortest path (SP) between vertices u and v is the path that has minimum total weight
 - total weight is obtained by summing up path's edges weights

$$\delta(u, v) = \begin{cases} \min\{w(p) : u \stackrel{p}{\leadsto} v\} & \text{if there is a path from } u \text{ to } v \\ \infty & \text{otherwise} \end{cases}$$

- Note: SP cannot contain cycles
 - positive cycles: a shortest path obtained by taking out the cycle
 - negative cycles: a shortest path obtained by iterating through the cycle few more times, minimum weight is $-\infty$.

Negative edges and cycles

- negative weights possible
- negative cycles make some shortest paths -∞

- Exercise: explain the following:
- \bullet SP(s,a)=3
- SP(s,b) = -1
- \bullet SP(s,g)=3
- \bullet SP(s,e)=- ∞

Single Source SP

- Task: Given a source vertex s∈V, find the shortest path from s to all other vertices
 - will write inside each vertex v the shortest path estimate ESP(s,v) weight from the source
 - these estimates change as the algorithm progresses
 - highlight edges that give the SP-s
 - highlighted edges form a tree with source as root
 - tree not unique as (b) and (c) are both valid

Relaxation

Estimated shortest path (so far)

- if current (estimate) ESP(s,u) is 5 and edge (u,v) has weight w(u,v)=2, we can reach v with a path of 5+2=7
 - if current estimate ESP(s,v) is more than 7, we "relax edge (u,v)" by replacing the estimate ESP(s,v) =7.
 - if not (ESP(s,v) \leq 7), we do nothing

- takes a maximum of |V|-1 waves to find SP
 - since there cannot be cycles

Bellman-Ford SSSP algorithm

- idea: relax all edges once (in any order) and we've got CORRECT all SP-s of one edge
 - relax again all edges (any order) and we obtained all SP-s of two edges
 - relax ... again, and get all SP-s of three edges
 - no SP can have more than |V|-1 edges, so repeat the relax-alledges step |V|-1 times, to get all SP-s
 - BELLMAN-FORD
 - init all SP: $SP(s,v) = \infty$ for all v, SP(s,s) = 0
 - for k=1: |V|-1
 - relax all edges
 - check for negative cycles

SSSP exercise

Discover SP by hand (start from source)

- discover SP(s,v) means having the current estimate equal with the actual (unknown) SP
 - discover SP : ESP(s,v) = SP(s,v)
 - ESP written "inside" each node, it may further decrease
 - once SP discovered, the ESP never decreases

- discover SP(s,v) means having the current estimate equal with the actual (unknown) SP
 - discover SP : ESP(s,v) = SP(s,v)
 - ESP written "inside" each node, it may further decrease
 - once SP discovered, the ESP never decreases
 - init all ESP = ∞

- discover SP(s,v) means having the current estimate equal with the actual (unknown) SP
 - discover SP : ESP(s,v) = SP(s,v)
 - ESP written "inside" each node, it may further decrease
 - once SP discovered, the ESP never decreases
 - init all ESP = ∞

relax all edges (first time): discover all SP-s of one edge

- discover SP(s,v) means having the current estimate equal with the actual (unknown) SP
 - discover SP : ESP(s,v) = SP(s,v)
 - ESP written "inside" each node, it may further decrease
 - once SP discovered, the ESP never decreases
 - init all ESP = ∞
 - relax all edges (first time): discover all SP-s of one edge
 - relax all edges (second time): discover all SP-s of two edges

- discover SP(s,v) means having the current estimate equal with the actual (unknown) SP
 - discover SP : ESP(s,v) = SP(s,v)
 - ESP written "inside" each node, it may further decrease
 - once SP discovered, the ESP never decreases
 - init all ESP = ∞
 - relax all edges (first time): discover all SP-s of one edge
 - relax all edges (second time): discover all SP-s of two edges
 - ... repeat
 - how many times?

- Essential mechanism (BF proof):
 - SP(s,v) = [a1, a2, a3, a4]
 - Relaxing a1, then a2, then a3, then a4 you can do them over any amount of time, but it has to be in the right order
 - SP(s,v) discovered
 - for every SP=(edges a1,a2,a3,...) there was a relaxation sequence of these edges, in this precise order: a1 in the first round, a2 in the second round, etc.
 - overall quite a few more relaxations than necessary, in order to enforce correctness in all possible cases
- Running time: |V|-1 iterations for the outer loop
- inner loop: relax all edges O(E)
- Total V*O(E) = O(VE)

- Essential mechanism:
 - for every SP=(edges a1,a2,a3,...) there was a relaxation sequence of these edges, in this precise order: a1 in the first round, a2 in the second round, etc.
- in a DAG we have a way to relax all edges in pathorder, without doing |V|-1 rounds of relax-all-edges
- use topological sort, relax edges in topological order.
 - topological sort is given by finishing DFS times (on picture)
- Running time O(E) (if E>V)
 - formally O(E+V) VS Bellman Ford O(VE)

- Essential mechanism:
 - for every SP=(edges a1,a2,a3,...) there was a relaxation sequence of these edges, in this precise order: a1 in the first round, a2 in the second round, etc.
- in a DAG we have a way to relax all edges in pathorder, without doing |V|-1 rounds of relax-all-edges
- use topological sort, relax edges in topological order.
 - topological sort is given by finishing DFS times (on picture)
- Running time O(E) (if E>V)
 - formally O(E+V) VS Bellman Ford O(VE)

- Essential mechanism:
 - for every SP=(edges a1,a2,a3,...) there was a relaxation sequence of these edges, in this precise order: a1 in the first round, a2 in the second round, etc.
- in a DAG we have a way to relax all edges in pathorder, without doing |V|-1 rounds of relax-all-edges
- use topological sort, relax edges in topological order.
 - topological sort is given by finishing DFS times (on picture)
- Running time O(E) (if E>V)
 - formally O(E+V) VS Bellman Ford O(VE)

- Essential mechanism:
 - for every SP=(edges a1,a2,a3,...) there was a relaxation sequence of these edges, in this precise order: a1 in the first round, a2 in the second round, etc.
- in a DAG we have a way to relax all edges in pathorder, without doing |V|-1 rounds of relax-all-edges
- use topological sort, relax edges in topological order.
 - topological sort is given by finishing DFS times (on picture)
- Running time O(E) (if E>V)
 - formally O(E+V) VS Bellman Ford O(VE)

- Essential mechanism:
 - for every SP=(edges a1,a2,a3,...) there was a relaxation sequence of these edges, in this precise order: a1 in the first round, a2 in the second round, etc.
- in a DAG we have a way to relax all edges in pathorder, without doing |V|-1 rounds of relax-all-edges
- use topological sort, relax edges in topological order.
 - topological sort is given by finishing DFS times (on picture)
- Running time O(E) (if E>V)
 - formally O(E+V) VS Bellman Ford O(VE)

- Essential mechanism:
 - for every SP=(edges a1,a2,a3,...) there was a relaxation sequence of these edges, in this precise order: a1 in the first round, a2 in the second round, etc.
- in a DAG we have a way to relax all edges in pathorder, without doing |V|-1 rounds of relax-all-edges
- use topological sort, relax edges in topological order.
 - topological sort is given by finishing DFS times (on picture)
- Running time O(E) (if E>V)
 - formally O(E+V) VS Bellman Ford O(VE)

- Essential mechanism:
 - for every SP=(edges a1,a2,a3,...) there was a relaxation sequence of these edges, in this precise order: a1 in the first round, a2 in the second round, etc.
- in a DAG we have a way to relax all edges in pathorder, without doing |V|-1 rounds of relax-all-edges
- use topological sort, relax edges in topological order.
 - topological sort is given by finishing DFS times (on picture)
- Running time O(E) (if E>V)
 - formally O(E+V) VS Bellman Ford O(VE)

- Essential mechanism:
 - for every SP=(edges a1,a2,a3,...) there was a relaxation sequence of these edges, in this precise order: a1 in the first round, a2 in the second round, etc.
- in a DAG we have a way to relax all edges in pathorder, without doing |V|-1 rounds of relax-all-edges
- use topological sort, relax edges in topological order.
 - topological sort is given by finishing DFS times (on picture)
- Running time O(E) (if E>V)
 - formally O(E+V) VS Bellman Ford O(VE)

- Essential mechanism:
 - for every SP=(edges a1,a2,a3,...) there was a relaxation sequence of these edges, in this precise order: a1 in the first round, a2 in the second round, etc.
- in a DAG we have a way to relax all edges in pathorder, without doing |V|-1 rounds of relax-all-edges
- use topological sort, relax edges in topological order.
 - topological sort is given by finishing DFS times (on picture)
- Running time O(E) (if E>V)
 - formally O(E+V) VS Bellman Ford O(VE)

- Essential mechanism:
 - for every SP=(edges a1,a2,a3,...) there was a relaxation sequence of these edges, in this precise order: a1 in the first round, a2 in the second round, etc.
- in a DAG we have a way to relax all edges in pathorder, without doing |V|-1 rounds of relax-all-edges
- use topological sort, relax edges in topological order.
 - topological sort is given by finishing DFS times (on picture)
- Running time O(E) (if E>V)
 - formally O(E+V) VS Bellman Ford O(VE)

Dijkstra SSSP algorithm

- No negative weight edges allowed
- Instead of relaxing all edges (like Bellman Ford), keep track of a current "closest" vertex to the SP tree
 - "closest" = minimum ESP(s,v) of nodes not already part of SP tree
 - add the current-closest to the partial SP tree, v
 - relax the outing edges of v (all edges v->x)
- repeat

 similar to Prim's algorithm (conceptually)

 similar to Prim's algorithm (conceptually)

We want to find the shortest path from s to every node

INITIALIZE -SINGLE -SOURCE(G,s)

$$S = \Phi$$

 $Q = G.V$

After initialization, we have $v.\pi=NIL$ for all $v\in V, s.d=0$, and $v.d=\infty$ for $v\in V-\{s\}$

$$s=\text{EXTRACT-MIN}(Q)$$

 $S = \{s\}$
 $Q = \{t, x, y, z\}$

We are at node s

RELAX
$$(s, t, w)$$

 $S = \{s\}$
 $Q = \{t, x, y, z\}$

Test whether we can improve the shortest path to t found so far by going through s

RELAX
$$(s, t, w)$$

 $S = \{s\}$
 $Q = \{t, x, y, z\}$

 ${\rm Update}\, t.d=10 \ {\rm and} \quad t.\pi=s$

RELAX
$$(s, y, w)$$

 $S = \{s\}$
 $Q = \{t, x, y, z\}$

Test whether we can improve the shortest path to y found so far by going through s

RELAX
$$(s, y, w)$$

 $S = \{s\}$
 $Q = \{t, x, y, z\}$

Update y.d=5 and $y.\pi=s$

$$S = \{s\}$$
$$Q = \{t, x, y, z\}$$

All edges leaving s have been tested

$$y=\text{EXTRACT-MIN}(Q)$$

 $S = \{s, y\}$
 $Q = \{t, x, z\}$

We are at node y

RELAX
$$(y, t, w)$$

 $S = \{s, y\}$
 $Q = \{t, x, z\}$

Test whether we can improve the shortest path to t found so far by going through y

RELAX
$$(y, t, w)$$

 $S = \{s, y\}$
 $Q = \{t, x, z\}$

Update
$$t.d=8$$
 and $t.\pi=y$

RELAX
$$(y, x, w)$$

 $S = \{s, y\}$
 $Q = \{t, x, z\}$

Test whether we can improve the shortest path to x found so far by going through y

RELAX
$$(y, x, w)$$

 $S = \{s, y\}$
 $Q = \{t, x, z\}$

Update x.d=14 and $x.\pi=y$

RELAX
$$(y, z, w)$$

 $S = \{s, y\}$
 $Q = \{t, x, z\}$

Test whether we can improve the shortest path to z found so far by going through y

RELAX
$$(y, z, w)$$

 $S = \{s, y\}$
 $Q = \{t, x, z\}$

Update
$$z.d=7$$
 and $z.\pi=y$

$$S = \{s, y\}$$
$$Q = \{t, x, z\}$$

All edges leaving y have been tested

$$z$$
=EXTRACT-MIN(Q)
 $S = \{s, y, z\}$
 $Q = \{t, x\}$

We are at node z

RELAX
$$(z, s, w)$$

 $S = \{s, y, z\}$
 $Q = \{t, x\}$

Test whether we can improve the shortest path to s found so far by going through z

RELAX
$$(z, x, w)$$

 $S = \{s, y, z\}$
 $Q = \{t, x\}$

Test whether we can improve the shortest path to x found so far by going through z

RELAX
$$(z, x, w)$$

 $S = \{s, y, z\}$
 $Q = \{t, x\}$

$$\operatorname{Update} x.d = 13 \operatorname{and} \quad x.\pi = z$$

$$S = \{s, y, z\}$$
$$Q = \{t, x\}$$

All edges leaving z have been tested

$$t$$
=EXTRACT-MIN(Q)
 $S = \{s, y, z, t\}$
 $Q = \{x\}$

We are at node t

RELAX
$$(t, y, w)$$

 $S = \{s, y, z, t\}$
 $Q = \{x\}$

Test whether we can improve the shortest path to y found so far by going through t

RELAX
$$(t, x, w)$$

 $S = \{s, y, z, t\}$
 $Q = \{x\}$

Test whether we can improve the shortest path to x found so far by going through t

RELAX
$$(t, x, w)$$

 $S = \{s, y, z, t\}$
 $Q = \{x\}$

Update x.d = 9 and $x.\pi = t$

$$S = \{s, y, z, t\}$$
$$Q = \{x\}$$

All edges leaving t have been tested

$$x=\text{EXTRACT-MIN}(Q)$$

 $S=G.V$
 $Q=\Phi$

We are at node x

RELAX
$$(x, z, w)$$

 $S = G.V$
 $Q = \Phi$

Test whether we can improve the shortest path to z found so far by going through x

$$S = G.V$$

 $Q = \Phi$
Done!

All edges leaving x have been tested.

Every vertex's shortest path from s has been determined. We are done.

Dijkstra's Algorithm

correctness proof in the book

with Fibonacci heaps: extract-min is O(logV) and decrease-key is O(1);

idea: proof that for each SP, there is a relaxation sequence of its edges in DIJKSTRA(G, w, s)path-order INITIALIZE-SINGLE-SOURCE (G, s) $S = \emptyset$ Running Time depends on implementation of queue Q = G.Vwhile $Q \neq \emptyset$ operations = EXTRACT-MIN(Q)SU{u} dijkstra current SP-tree V * extract-min 6 **for** each vertex $v \in G.Adj[u]$ 8 RELAX(u, v, w)|E| * decrease key (at relaxation) Total all edges from u O(V*Textract-min+E*Tdecrease-key)

Graphs II - Shortest paths

Lesson 2: All Sources Shortest Paths

ASSP

- Task: find all shortest paths, between any two vertices (no fixed source)
- Slow: run Bellman Ford separately from each vertex as source.
 - running time |V| * BF-time = $V*O(VE) = O(V^2E)$
 - that is O(V⁴) if graph dense E≈V²

- Instead, we will use dynamic programming
- optimal solution structure:
 - if path P(i->j) from i to j in optimal and passes vertex k, then the subpaths P(i->k) and P(k->j) must be also optimal
 - optimal = shortest

ASSP dynamic programming

- two options for dynamic programming of sol (
 A. go by the number of edges used in a path
 - $C_{ij}^{(m)}$ = minimum path weight between i and j using at most m edges
 - $C_{ij}^{(1)}$ = weight of edge i->j, if exists (one edge)
 - $C_{ij}^{(2)}$ = min weight of any path i->k->j (max 2 edges)
 - $C_{ij}^{(0)}$ we 0 if $i \neq j$, ∞ otherwise (no edge)
- B. by the intermediary nodes in a certain fixed order
 - fix order of all vertices 1,2,3,..., V
 - $C_{ij}^{(m)}$ = minimum path weight between i and j using only intermediary vertices {1,2,...m}
 - similar to discrete knapsack idea, see module 6

- the Cij using m edges is either
 - the same as Cij using m-1 edges, OR
 - C_{ik} using m-1 edges to intermediary k, plus an edge from k to j w_{kj}
 - all nodes k are eligible as possible "last" intermediary

- ullet Compute the $C^{(m)}$ matrix from $C^{(m-1)}$ matrix using edges matrix W
- Extend-SP $(C^{(m-1)}, W)$

```
for i=1:n

for j=1:n

a=\infty;

for k=1:n

a=\min\{a\}

c_{ij}^{(m)}=a

c_{ij}^{(m)}=a
```

ASSP-slow(W)

```
C^{(1)} = W
for m=2:n-1
C^{(m)}=Extend-SP(C(m-1),W) \frac{\partial}{\partial v}
return C^{(n-1)}
```

- Extend-SP looks like matrix multiplication!
 - Extend-SP running time O(n³)
- ASSP-slow is $n*O(n^3) \neq O(n^4)$, same as running Bellman Ford separately from each vertex
- Extend-SP $(C^{(m-1)}, W)$
 - D=multiply(C,W)

```
a=\infty;
for k=1:n
                  C_{ik}^{(m-1)} + W_{kj}
C_{ij}^{(m)}=a
```

a=0;D_{ij}=a

Think of Extending-SP as of matrix multiplication

-
$$C^{(1)} = C^{(0)*}W = W$$
; the "*" means "a=min{a, $C_{ik}^{(m-1)} + w_{kj}$ }" inner operation

$$- C^{(2)} = C^{(1)*}W = W2$$

$$-C^{(3)} = C^{(2)*}W = W3$$

-

lacktriangle Only need $C^{(n-1)}$, not the intermediary ones

$$- C^{(1)} = W$$

$$C^{(2)} = W^2 = (W^1)^2$$

$$- C^{(4)} = W^{4} = (W^{2})^{2}$$

$$- C^{(8)} = W^{8} = (W^{4})^{2}$$
, etc

- After [Ig(n)] iterations we have computed C^(m) with m≥n-1. Its ok to "overshoot" as C doesnt change after finding the SP.
- Running time $\Theta(V^3 \log V)$ $V^3 \cdot V$

ASSP dynamic programming by vertices

- "Floyd-Warshall" algorithm
- Fix a vertex order: 1, 2, 3, ..., n Knapsak trick.
 - S_m = set first k of vertices = $\{v_1, v_2, ..., v_m\}$
- $C_{ij}^{(m)}$ = the weight of SP(i,j) going only through intermediary vertices in set S_m

- m=0 : no intermediary allowed; $C_{ij}^{(0)}=w_{ij}$
- m=1: only k=v1 intermediary allowed
 - $C_{ij}^{(1)} = \min \{ w_{ij}, w_{ik+} w_{kj} \}$

ASSP dynamic programming by vertices

• dynamic recursion stage

$$C_{ij}^{(m)} = \min \{ C_{ij}^{(m-1)}, C_{im}^{(m-1)} + C_{mj}^{(m-1)} \}$$

$$- C_{ij}^{(m)} = \min \{ C_{ij}^{(m-1)}, C_{im}^{(m-1)} + C_{mj}^{(m-1)} \}$$

$$- C_{ij}^{(m)} = \min \{ C_{ij}^{(m-1)}, C_{im}^{(m-1)} + C_{mj}^{(m-1)} \}$$

$$- C_{ij}^{(m)} = \min \{ C_{ij}^{(m-1)}, C_{im}^{(m-1)} + C_{mj}^{(m-1)} \}$$

$$- C_{ij}^{(m)} = \min \{ C_{ij}^{(m-1)}, C_{im}^{(m-1)} + C_{mj}^{(m-1)} \}$$

$$- C_{ij}^{(m)} = \min \{ C_{ij}^{(m-1)}, C_{im}^{(m-1)} + C_{mj}^{(m-1)} \}$$

$$- C_{ij}^{(m)} = \min \{ C_{ij}^{(m-1)}, C_{im}^{(m-1)} + C_{mj}^{(m-1)} \}$$

$$- C_{ij}^{(m)} = \min \{ C_{ij}^{(m-1)}, C_{im}^{(m-1)} + C_{mj}^{(m-1)} \}$$

$$- C_{ij}^{(m)} = \min \{ C_{ij}^{(m-1)}, C_{im}^{(m-1)} + C_{mj}^{(m-1)} \}$$

$$- C_{ij}^{(m)} = \min \{ C_{ij}^{(m)}, C_{im}^{(m-1)} + C_{mj}^{(m-1)} \}$$

$$- C_{ij}^{(m)} = \min \{ C_{ij}^{(m)}, C_{im}^{(m-1)} + C_{mj}^{(m-1)} \}$$

$$- C_{ij}^{(m)} = \min \{ C_{ij}^{(m)}, C_{im}^{(m-1)} + C_{mj}^{(m-1)} \}$$

$$- C_{ij}^{(m)} = \min \{ C_{ij}^{(m)}, C_{im}^{(m-1)} + C_{mj}^{(m)} \}$$

$$- C_{ij}^{(m)} = \min \{ C_{ij}^{(m)}, C_{im}^{(m)}, C_{im}^{(m)} \}$$

$$- C_{ij}^{(m)} = \min \{ C_{ij}^{(m)}, C_{im}^{(m)}, C_{im}^{(m)} \}$$

$$- C_{ij}^{(m)} = \min \{ C_{ij}^{(m)}, C_{im}^{(m)}, C_{im}^{(m)} \}$$

$$- C_{ij}^{(m)} = \min \{ C_{ij}^{(m)}, C_{im}^{(m)}, C_{im}^{(m)} \}$$

$$- C_{ij}^{(m)} = \min \{ C_{ij}^{(m)}, C_{im}^{(m)}, C_{im}^{(m)} \}$$

$$- C_{ij}^{(m)} = \min \{ C_{ij}^{(m)}, C_{im}^{(m)}, C_{im}^{(m)} \}$$

$$- C_{ij}^{(m)} = \min \{ C_{ij}^{(m)}, C_{im}^{(m)}, C_{im}^{(m)} \}$$

$$- C_{ij}^{(m)} = \min \{ C_{ij}^{(m)}, C_{im}^{(m)}, C_{im}^{(m)} \}$$

$$- C_{ij}^{(m)} = \min \{ C_{ij}^{(m)}, C_{im}^{(m)}, C_{im}^{(m)} \}$$

$$- C_{ij}^{(m)} = \min \{ C_{ij}^{(m)}, C_{im}^{(m)}, C_{im}^{(m)} \}$$

$$- C_{ij}^{(m)} = \sum_{i=1}^{m} C_{im}^{(m)}, C_{im}^{(m)} \}$$

$$- C_{ij}^{(m)} = \sum_{i=1}^{m}$$

ASSP dynamic programming by vertices

- bottom up computation
- Floyd-Warshall-ASSP(W)

- Running time $\Theta(V^3)$
 - for dense graphs E≈V², Floyd-Warshall-ASSP same cost as Bellman-Ford-SSSP

Transfue llosure

radjunetne Tig Lif path i~rj

TM = 1 cf Frath ingi ad most un edges

TG of unt

Til = adj matix