Exam 2 Practice D 25X

Problem 1

- A delivery driver has 10 packages (6 round, 4 rectangles) to deliver.
- i How many different orderings can they deliver the packages in?
- ii Suppose they were lazy and chose any 4 packages to deliver, how many ways can they choose only 4 packages?
- iii Suppose they were lazy and chose 6 packages to leave in the truck while they delivered the rest, how many ways can they choose 6 packages to leave in the truck? How does this relate to the previous question, does it feel eerily familiar?
- iv How many different ways can they choose to 3 round and 3 rectangular packages to deliver?
- v Every delivery, the driver enters one of three notes in his log:
 - "I delivered the package (no signature required)"
 - "I delivered the package and got a signature"
 - "I did not deliver the package, but left a note because nobody is home to sign for the package"

Assume that each of the round packages requires a signature while the rectangular packages do not. At the end of the day, the drivers log might look like this:

- "I left a note because person isn't home to sign for it"
- "I delivered the package and got a signature"
- "I delivered the package and did not get a signature"
- "I delivered the package and got a signature"
- "I delivered the package and did not get a signature"
- "I delivered the package and did not get a signature"
- "I delivered the package and did not get a signature"

- "I left a note because person isn't home to sign for it"
- "I delivered the package and got a signature"
- "I delivered the package and got a signature"

How many unique logs can the driver have at the end of the day? Note that the log does not include specific information about which package a log message refers to.

Problem 2

Given a standard 52-card deck of playing cards (half of cards are red and half are black) one draws 5 cards without replacement. What is the probability that the first three cards drawn are red, and the last two cards drawn are black? (Notice: this event does not include drawing two black cards before then three red cards).

Be sure to show and justify and clearly document your work as well as computing a final probability value.

Problem 3

A basketball player makes shots according to the following table:

	Distance to net	Points earned (if made)	Prob shot made $(\%)$
Ρ	In Paint	2	45
J	Mid Range Jump	2	40
\mathbf{T}	$3 { m pt}$	3	35

Where we use random variables P, J or T to indicate the number of points earned when a player takes each of the corresponding shots.

i Compute the expected value and variance of: ${\cal P}$

- ii Compute the expected value and variance of: J
- iii Compute the expected value and variance of: T
- iv If your team was down by 1 point with time for 1 more shot, which shot should this player prefer to maximize their chance of winning?

v In the early game, which shot should this player prefer?

Problem 4

Using Dijkstra's algorithm, find the shortest path from node A to G. Please provide a table which shows the path weight and predecessor from A to every node, labelling the visited node at each step. an example solution is given here.

Problem 5 number of trailing 0 bits

Suppose we write the number 10! (ten factorial) in binary. How many consecutive zeros will occur on its right-hand-side?

Problem 6 Recurrences, Induction, Big-O

1. Circle the recursive function that grows the fastest (consider using the back of the exam for scratch if you need it):

$$T(n) = 2T(n/2) + n$$
 $T(n) = 2T(n-1) + 1$ $T(n) = T(n/2) + 1$

- 2. Prove by induction: any amount of postage $n \ge 8$ can be achieved using 3 and 4 cent stamps.
- 3. For each pair of functions f(n) and g(n), put a check mark into each box that corresponds to a relation that holds between the functions.

f(n)	g(n)	f(n) = O(g(n))	$f(n) = \Theta(g(n))$	$f(n) = \Omega(g(n))$
5n	100n	\checkmark	\checkmark	\checkmark
$\log_2 n$	2^n	\checkmark		
n^2	n			\checkmark
$n \log_2 n$	n^2	\checkmark		
$\log_2 n$	$\log_3 n$	\checkmark	\checkmark	\checkmark