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Read M&M §5.1, but ignore two starred parts at the end. Read M&M §5.2.
Skip M&M §5.3. Sampling distributions of counts, proportions and averages.
Binomial distribution. Normal approximations.

1. Means and variances

Let X be a random variable, defined on a sample spaceS, taking valuesx1, x2, . . . , xk

with probabilitiesp1, p2, . . . , pk. Definitions:

mean ofX = EX = µX = p1x1+ p2x2+ . . .+ pkxk =
∑

i

X(si )P{si }

variance ofX = var(X) = σ 2
X =

∑
j

pj (xj − µX)
2 =

∑
i

(X(si )− µX)
2P{si }

where the last sum in each line runs over all outcomes inS. The standard deviationσX

is the square root of the variance.

Facts

For constantsα andβ and random variablesX andY:

µX+Y = µX + µY,

µα+βX = α + βµX,

σ 2
α+βX = β2σ 2

X.

Particular case var(−X) = var(X). Variances cannot be negative.

2. Independent random variables

Two random variablesX and Y are said to beindependent if “knowledge of the
value of X takes does not help us to predict the valueY takes”, and vice versa. More
formally, for each possible pair of valuesxi and yj ,

P{Y = yj | X = xi } = P{Y = yj },
that is,

P{Y = yj and X = xi } = P{Y = yj } × P{X = xi } for all xi and yj ,

and in general, events involving onlyX are independent of events involving onlyY:

P{something aboutX and something else aboutY}
= P{something aboutX} × P{something else aboutY}

This factorization leads to other factorizations for independent random variables:

E(XY) = (EX)(EY) if X andY are independent

or in M&M notation:

µXY = µXµY if X andY are independent

3. Variances of sums of independent random variables

Standard errors provide one measure of spread for the disribution of a random variable.
If we add together several random variables the spread in the distribution increases, in
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general. For independent summands the increase is not as large as you might imagine:
it is not just a matter of adding together standard deviations. The key result is:

σ 2
X+Y = σ 2

X + σ 2
Y if X andY are independent random variables

If Y = −Z, for another random variableZ, then we get

σ 2
X−Z = σ 2

X + σ 2
−Z = σ 2

X + σ 2
Z if X and Z are independent

Notice the plus sign on the right-hand side: subtracting an independent quantity fromX
cannot decrease the spread in its distribution.

A simlar result holds for sums of more than two random variables:

σ 2
X1+X2+...+Xn

= σ 2
X1
+ σ 2

X2
+ . . .+ σ 2

Xn
for independentX1, X2,. . .

In particular, if eachXi has the same variance,σ 2 then the variance of the sum increases
asnσ 2, and the standard deviation increases as

√
nσ . It is this

√
n rate of growth in the

spread that makes a lot of statistical theory work.

4. Concentration of sample means around population means

Suppose a random variableX has a distribution with (population) meanµX and
(population) varianceσ 2

X.
To say that random variablesX1, . . . , Xn are asample from the distribution

of X means that theXi are independent of each other and each has the same distribution
as X.

The sample mean X = (X1 + . . . + Xn) is also a random variable. It has
expectation (that is, the mean of the mean sample mean)

EX = 1

n
E(X1+ . . .+ Xn) = 1

n
(µX + . . .+ µX) = µX

and variance

var(X) =
(

1

n

)2

var(X1+ . . .+ Xn)

=
(

1

n

)2 (
σ 2

X + . . .+ σ 2
X

)
by independence of theXi

= σ 2
X

n

That is, X is centered at the population mean, with spread—as measured by its standard
deviation—decreasing like 1/

√
sample size. The sample mean gets more and more

concentrated aroundµX as the sample size increases. Compare with thelaw of large
nmbers (M&M pages 328–332).

The Minitab commandrandom with subcommanddiscrete will generate ob-
servations from a discrete distribution that you specify. (Menus: Calc→Random
Data→Discrete) As an illustration, I repeatedly generated samples of size 1000 from the
discrete population distribution shown on the left of the next picture. For each sample,
I calculated the sample mean. The histogram (for 800 repetitions of the sampling
experiment) gives a good idea of the distribution of the sample mean.

Notice that the distribution forX looks quite different from the population
distribution. If I were to repeat the experiment another 800 times, the corresponding
histogram would be slightly different. As the number of repetitions increases, for fixed
sample size, the histogram settles down to a fixed form.
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sample size 1000
number of repetitions 800
population mean 0.295766
population standard deviation 0.616357
sample mean 0.295770
sample standard deviation 0.600818/

√
1000

5. The central limit theorem

Not only does the distribution of the sample mean tend to concentrate about the
population meanµX, with a decreasing standard deviationσX/

√
n, but also the shape

of its distribution settles down, to become more closely normal. Under very general
conditions, the distribution ofX is well approximatedN(µX, σX/

√
n). The distribution

of the recentered and rescaled sample mean,
√

n(X − µX)/σX, becomes more closely
approximated by the standard normal.

6. The Binomial distribution

Suppose a coin has probabilityp of landing heads on any particular toss. LetX denote
the number of heads obtained fromn independent tosses. The random variableX can
take values 0, 1, 2 . . . ,n. It is possible (see M&M pages 387–389) to show that

P{X = k} = n× (n− 1)× . . .× (n− k+ 1)

k× (k− 1)× . . .× 1
pk(1− p)n−k for k = 0, 1, 2 . . . ,n

Such a random variable is said to have aBinomial distribution, with parametersn
and p, or Bin(n, p) for short.M&M use the abbrevia-

tion B(n, p).

Mean and variance of the Binomial distribution

We can writeX as a sumX1+ X2+ . . .+ Xn, whereXi =
{

1 if i th toss lands heads
0 if i th toss lands tails

EachXi takes the value 1 with probabilityp and 0 with probability 1− p, giving a mean
of 1× p+0× (1− p) = p. ThusµX = µX1+µX2+ . . .+µXn = np. Sound reasonable?
EachXi has variancep× (1− p)2+ (1− p)× (0− p)2 = p(1− p). By independence
of the Xi , the sum of theXi has variance var(X1)+ . . .+ var(Xn) = np(1− p). Notice
that the independence between theXi is not used for the calculation of the mean, but it
is used for the calculation of the variance.
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The proportion of heads inn tosses equals sample mean,(X1+ . . .+ Xn)/n, which,
by the central limit theorem, has an approximateN(p,

√
p(1− p)/n) distribution.

7. Monte Carlo

Using a computer and the Binomial distribution, one can determine areas.
The quarter circle shown in the picture occupies a fractionp = π/4 ≈ 0.785397

(0,0)

(1,1) of the unit square. I pretended I did not know that fact. I repeatedly
generated a large number of points in the unit square using Minitab, and
calculated the proportion that landed within the circle. The coordinates of
each point came from the Minitab command Random, with subcommand
Uniform. I saved a bunch of instructions in a file that I called monte.mac.
(You can retrieve a copy of this file from a link on the Syllabus page at
the Statistics 101–106 web site.) I was running Minitab from a directory

D:\stat100\Lecture5on my computer. The file monte.mac was sitting in the directory
D:\stat100\macros. I had to tell Minitab how to find themacro file (.. means go up
one level). When I typed in a percent sign, followed by the path to my monte.mac file,
Minitab excuted the commands in the file.

You might find macro
files useful if you want
to carry out simulations. [output slightly edited]

MTB > %..\macros\monte
Executing from file: ..\macros\monte.MAC
Data Display

sample size 1000
number of repetitions 2000
true p 0.785397
true std.dev 0.0129826
sample proportion 0.785152 ## mean of all 2000 proportions
sample std. dev. 0.0126428 ## from the 2000 proportions
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Left: Histogram of ‘standardized’ proportions, standard normal density superimposed.
Right: normal plot.

The pictures and the output from monte.mac show how the distribution of
proportions in 2000 samples, each of size 1000, is concentrated around the truep with
an approximately normal shape. For the pictures I subtracted the truep from each
sample proportion, then divided by the theoretical standard deviation,

√
p(1− p)/n.

The central limit theorem says that the resulting ‘standardized’ proportions should have
approximately a standard normal distribution. What do you think?

In practice, one would take a single large sample to estimate an unknown
proportion p, then invoke the normal approximation to derive a measure of precision.


