HW3: Sets

HW instructions

Problem 1 Computer Set Representation

Consider the bit string representation of sets A and B:

$$A = \{ paul, george \}$$

 $B = \{ ringo, george \}$

U	john	paul	ringo	george
A	0	1	0	1
B	0	0	1	1
$A \cup B$				
$A \cap B$				
A^C				

For each of sets below:

- complete the empty row to the table which gives the bit string representation of the set
- tell which logical operator (AND, NOT, XOR, OR) of the bit string representations of A, B yield the same bit string representation of the set

i $A \cup B$

ii $A \cap B$

iii A^C

Problem 2 Set Builder

i Express the set:

$$S = \{n \in \mathbb{Z} | n \in \mathbb{N} \text{ and } (-11 \le n) \text{ and } (n < 10)\}$$

by explicitly listing each item in a set (e.g. $\{1,2,3\}$). We assume that $0 \in \mathbb{N}$ above.

- ii Express the set B of all integers whose square is either 25 or 36 using set builder notation.
- iii Express the set B immediately above by listing.

Problem 3 Set Algebra

Simplify each of the following expressions by writing a sequence of equalities. Each equality should be labelled with the justifying algebraic law (see $\underline{\text{logic_set_identities.pdf}}$). Please do not use multiple laws in a single step or use the set difference operator at all. U indicates the universal set which contains all elements.

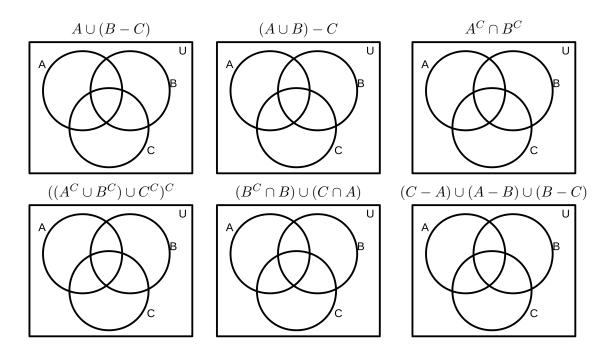
i
$$((A^C \cap B) \cup (A^C \cap B^C))^C$$

ii
$$(A^C \cap B^C)^C \cap U$$

iii
$$(A \cup A) \cap (B \cup A^C)$$

Problem 4 Venn Diagrams

Shade the indicated regions of the following Venn diagrams.



Problem 5 Set Operations

Consider the subsets $A = \{1, 2, 3, 6, 9\}$ and $B = \{3, 5\}$ of the universal set $U = \{1, 2, 3, 4, 5, 6, 7, 8, 9\}$. Express each of the following sets as an explicit list (e.g. $\{3, 5, 6\}$).

```
i \{2x + 1 \in U \mid x \in A\}
```

ii
$$\{x \in A \mid x \text{ is odd}\}$$

iii
$$\{x \in B \mid 2x \in U\}$$

iv
$$A \cap B$$

v
$$A \cup B$$

vi
$$A - B$$

vii
$$\overline{A \cap \overline{B}}$$

viii
$$A \triangle B$$

Problem 6 Set PIE, Indexing

A multiple of a number is the product of that number with a natural number (excluding zero). So, the multiples of 5 are $\{5, 10, 15, 20, 25, \ldots\}$.

- i How many integers from 1 to 1000 are multiples of 7?
- ii How many integers from 1 to 1000 are multiples of 11?
- iii How many integers from 1 to 1000 are multiples of 7 and 11?¹
- iv How many integers from 1 to 1000 are multiples of 7 or 11?
- v How many integers from 1 to 1000 are multiples of 7 but not 11?
- vi How many integers from 1 to 1000 are multiples of neither 7 nor 11?

Problem 7 ★ Set PIE, Indexing 2 [optional, no credit]

How many integers from 1 to 1000 are multiples of 6 or 15, but not of 10?

¹Hint: the smallest positive value which is a multiple of both 7 and 11 is 77