Physics 116C Fall 2012

The Inclusion-Exclusion Principle

1. The probability that at least one of two events happens

Consider a discrete sample space). We define an event A to be any subset of €,
which in set notation is written as A C Q. Then, Boas asserts in eq. (3.6) on p. 732 that!

P(AuB)=P(A)+ P(B)— P(ANnB), (1)
for any two events A, B C €). This is equivalent to the set theory result,
|[AU B| = |A] + |B| - [AN B, (2)

where the notation |A| means the number of elements contained in the set A, etc. In
writing eq. (2), we have assumed that A and B are two finite discrete sets, so the number
of elements in A and B are finite.

A B

ANB

The proof of eq. (2) is immediate after considering the Venn diagram shown above. In
particular, adding the number of elements of A and B overcounts the number of elements
in AU B, since the events in A N B have been double counted. Thus, we correct this
double counting by subtracting the number of elements in A N B, which yields eq. (2).
The corresponding result in probability theory is given by eq. (1).

!Boas uses a nonstandard notation by writing A + B for AU B. The latter is standard in set theory
and we shall use it in these notes. A U B means the union of the sets A and B and is equivalent to the
“inclusive or,” i.e. "either A or B or both.” Likewise, Boas uses a nonstandard notation by writing AB
for AN B. Again, the latter is standard in set theory and we shall use it in these notes. A N B means
the intersection of the sets A and B, or equivalently “both A and B.”

= ¥ spole ok all eQons Co@&jo&b—(f
?‘D:&f\ -Wbe A eqdn elowe Yz
’U'Qéf? me 6o Vobedcno (S\AH@&

B =
b towt % o (it ndede TTE
2 ‘0ot = Wi) =
,‘(\”goj’g() —[Aﬂ/ll ~[renel ~(hODI
—®»1g Bn d(— (ol

for any three events A, B, C C 2. This is equivalent to the set theory result,

5eefS
|AuBuC|—M|—|AmC|—|Brﬂ+@ (4)
| UNoN Ok | T s o A [l - (e
rtls 5 £ Oofz_LAORL Doansl A - A Ay
USSR (5 hotra) . | hnea O At O\

G I ENQISLUAEN I N hvez 0 Anz b OAWK
MORD AR -« ~

? (~\YMZ Si2e of’\ e{l (1“ (w) (M’\’Q’M’D’ - D [)A“\

Once again, the proof of eq. (4) is immediate after considering the Venn diagram
shown above.® In particular, adding the number of elements of A, B and C counts
elements in AN BN C three times, and counts elements of AN B, ANC and BN C not
contained in ANBNC twice. Thus, |[AUBUC| = |A|+|B|+|C|—|ANB|—-|ANC|—|BNC]|
will include all events in A, B and C' once except for the events in AN BNC, which were
all subtracted off. Thus, to include all events in A U B U C' exactly once, we must add
back the number of events in AN BN C. Thus, eq. (4) is established. The corresponding
result in probability theory is given by eq. (3).

3. The Inclusion-Exclusion principle

The inclusion-exclusion principle is the generalization of egs. (1) and (2) to n sets.
Let Aq, Ay, ..., A, be a sequence of n events. Then,

P(AJUAU---UA)EDY P(A) =D PANA)+ Y P(AiNA;NA)
=1 i<J i<j<k

= Y PANANANA)+.. .+ (1) P(A N A 0---NA), (5)

i<j<k<t

where Ay, As, ... A, C €. This is equivalent to the set theory result,

(AT UAs U U A =D A =D JAn Al + >0 [A N AN Ay
i=1

i<j i<j<k

— > JANANAN AL+ 4 (D) A N AN N AL (6)

i<j<k<t

The proof of eq. (6) is an exercise in counting. Suppose a point is contained in exactly
m of the sets, A1, Ay, ... A,, where m is a number between 1 and n. Then, the point is
counted m times in) ;" [A;], it is counted C'(m, 2) times in), _; [A4; N Ay, it is counted
C(m,3) times in >, ., |[A;NA;NAgl, etc., where C'(m, k) is the number of combinations
of m objects taken k at a time. After reaching 7, _, _ . [Ay NA,N---NA; |, where
the point is counted once [since C'(m,m) = 1], one finds that the point is not counted
at all in any of the terms that involve the intersection of more than m sets. The net
result is that a point that is contained in exactly m of the sets will be counted S times
in |[A;UAyU---UA,| given by eq. (6), where

S =C(m,1) = C(m,2) + C(m,3) — C(m,4) + - - + (=)™ C(m, m) , (7)

after noting that C(m, 1) = m.
Tq compute S, we recall the binomial theorem,

(z+y)" =) Clm k)z*y™ ", (8)
k=0
where |
m m!
C(m, k)= =
(m. k) <k> Ki(m — k)!
is the umber of combinations of m objects taken k at a time. Setting z =1 and y = —1
in eq. (8) yields,
> (=1FC(m k) =0.
k=0

Using (f(m, 0) = 1, it follows that

1-C(m,1)+C(m,2) —C(m,3)+ ...+ (—=1)"C(m,m) =0,

which implies that S = 1 [cf. eq. (7)]. Thus, we have shown ere is no multiple
counting of points in eq. (6). That is, every point contained in the union of Ay, A, ... A,
is counted exactly one time. Thus, eq. (6) is established. The corresponding result in
probability theory is given by eq. (5). We have therefore verified the inclusion-exclusion
principle.

There are numerous applications of the inclusion-exclusion principle, both in set the-
ory and in probability theory. In particular, it provides a powerful tool for certain types
of counting problems. An example is provided in the next section of these notes.

Q)((}de (QS " O(Q g“{ C)N’{Mdl\cjl‘\'ﬁ M We Wz + P_,jc —_ 7Q 71
/——L‘ \ " . v = =7 P
(FV\O V\ha{l Gy crbed CQ[VQC&_ Lﬁ,@“{*‘afe%?&

B losthee VRg @ B4 | ol ¢ chte
B qe= = =7 -=> P cawpAb T

e segutnce @l\/ gawe womlecg 1 Wot-(esndl) M(ﬁ’*ﬁ‘ﬂ“ﬂ) N onleedicts P!
\jil?L) @E@itf?gl Py - - is I\A&‘M‘-ﬁ , =70 s e
2/3/ L+ \(/ \5/ [}(4, 2% 24, %1)3%41)4%)411)__
AT = S 9q =2ust prie
wol L (/\\LWAMW\ - Asowe G«»‘Poﬁlw’c»@wclvw « 4%‘&
= ‘\/KI\Q gac\u@ua/ U§+ “Jr Q)V\M& (S {%w‘i& (Waea LIS ov\L(m SSI&QM)
‘K/\Q O'VLL(?\szs v Ri)?g) - :&Aj) P\"\ OlJ\VUl ro okm(t?h\k\io; face on

¢ Dossi /ef Q"““
= (K ol ombel U\Cﬁff tlanm Fws L ,hi,gﬁoqﬁ :{“ {fﬁiﬁj
Z= Petefzobas - 2pu-tl -

6 T phwe] L7 Bun 5 Pm I Ha blepst pive =725
—7 7 = OQLU\QMUL EATNG] O’L Yo oo =

) \@fv b@* PWNOS, R\/\(m le . Al bejr(mhem

R e WL [peg o

b @ sty i Gl

- &L\@UA& 9 J(MV\ atto s I/UUJ\(‘A()VO SAJ\

Covork yosion (& U b &7] Y)
(NT ok Va oo b e
Cgyard mAMLo/wumﬂr £«
WEAVEE W =0 wek B

\vuci‘ Wl Qm/b)

5 SR S (Pt L
k: 2 il @Bﬂ@fmﬁr&@\/
" Uyt Wb [xssune Cpaclan 18 (e
) | Loxh C 7 ot
A;W\\U t |
=) = et
) 2 20 (_ 52

A\\ﬁ =) 07, 2o @k,@t%70/

=) Q(\CLKWW\ S Jr%gg. (2 Oy

part A, Satisfiability Intro [easy]. A boolean formula is satisfiable if there
exists some variable assignment that makes the formula evaluate to true. Namely, a
boolean formula is satisfiable if there is some row of the truth table that comes out

true.

Determining whether an arbitrary boolean formula is satisfiable is called the

Satisfiability Problem. There is no known efficient solution to this problem, in fact,
an efficient solution would earn you a million dollar prize. While this is hard problem
in computer science, not all instances of the problem are hard, in fact, determining
satisfiability for some types of boolean formulae is easy.

1.

11.

111

First, let’s consider why this would be hard. If you knew nothing about a given
boolean formula other than that it had n variables, how large is the truth table
you would need to construct? Please indicate the number of columns and rows
as a function of n

Now consider the following 100 variable formula.

T A (_il'l V 372) VAN (_\CIZ'Q V ZE’3) N (_\I'g V ZL‘4) VANPIAA (_\I'gg V 1’100)

Without constructing a truth table, how many satisfying assignments does this
formula have, explain your answer.

Now consider an arbitrary 3-DNF formula with 100 variables and 200 clauses.
3-DNF means that the formula is in disjunctive normal form and each clause
has three literals. (A literal is the instantiation of the variable in the formula,
so for x, =z or z.) An example might be something like:

(_'LCl /\LC3 /\LClo) V (_|.173 /\.1715 AN _'I84) V (I17 A\ _|LC37/\J,’48) V...V (_|I'87 A X 95 /\LEloo)

What is the largest size truth table needed to solve this problem. What is the
maximum number of such truth tables needed to determine satisfiabilty.

part B: 2CNF-SAT [hard]. The 2CNF-SAT instance is a boolean CNF formula
with 2 variables in each clause, ”OR” inside clauses, ”AND” between clauses. There
are m boolean variables x1, s, ..., ;) and n clauses Ci,Cy, ...,C,,). Every variable
and its negation appears in at least one clause. Such formula is given as input in

format redundantly : ooy o flule abort o eNFE Rrwmlas
- for each variable there is a list of clauses containing it —every claure capm be wirten
- for each clause there there are 2 variables ., ,——— o quha&yw\s (reduradanit)

For example the formula :1:1 Vv —|:1:2 (:cg V @J A k—lxl Vv Q A \<_|ZC2 V ﬂ:cgj will be

given as: 1 /\L=»7ﬂ3 f=713 o =7 Trg,

-d\mw J&ues(_ \mihc«u(ww

==

—xq : O " wheseful)

Iziczc . \ .&WQMW%& Ve =T
Ty 1 O, Oy . by Y= T =2 =T DT -
I3 . 02,03 Q'SQ’Z”&(LL{ (1.9{[,55 aut ’ ’
-3 04

01 X1, X9

02 X2, T

Your task is to design a strategy that determines, for a given formula, the boolean
assignments for the variables such that all clauses are satisfied, thus the formula is
true (if more such assignments are possible, you only need to output one). If no such
assignment is possible, output ”FALSE”.

As established inpart A, there are 2™ possible assignments for the variable set.
So if one were to build the truth table and ”brute force” search all rows/assignments
until one works, it would take exponential time — not good! Instead: do trial and
error, but in a smart way that only tries at most 2 * m? boolean assignments.

Your strategy can be pseudocode, or you can informally describe a procedure with
bullets and English statements. You can write in your procedure statements like

=1 205 |
v \ A (LN D) ARV I
* foreach C' containing variable x { @Q_ —lk;) /\ (*b\/“) (Xz_ \) 2)

o 5= 12, T
} 1;977*5
* C= next clause, or C' = next clause containing x @

* loop C through all clauses that contain x or —z

* for each z € C' { @

}

* 1y = the other variable in clause C, other than z or —x

