
Physics 116C Fall 2012

The Inclusion-Exclusion Principle

1. The probability that at least one of two events happens

Consider a discrete sample space Ω. We define an event A to be any subset of Ω,
which in set notation is written as A ⊂ Ω. Then, Boas asserts in eq. (3.6) on p. 732 that1

P (A ∪B) = P (A) + P (B)− P (A ∩B) , (1)

for any two events A,B ⊂ Ω. This is equivalent to the set theory result,

|A ∪B| = |A|+ |B|− |A ∩ B| , (2)

where the notation |A| means the number of elements contained in the set A, etc. In
writing eq. (2), we have assumed that A and B are two finite discrete sets, so the number
of elements in A and B are finite.

The proof of eq. (2) is immediate after considering the Venn diagram shown above. In
particular, adding the number of elements of A and B overcounts the number of elements
in A ∪ B, since the events in A ∩ B have been double counted. Thus, we correct this
double counting by subtracting the number of elements in A ∩ B, which yields eq. (2).
The corresponding result in probability theory is given by eq. (1).

1Boas uses a nonstandard notation by writing A+B for A ∪B. The latter is standard in set theory
and we shall use it in these notes. A ∪B means the union of the sets A and B and is equivalent to the
“inclusive or,” i.e. ”either A or B or both.” Likewise, Boas uses a nonstandard notation by writing AB

for A ∩ B. Again, the latter is standard in set theory and we shall use it in these notes. A ∩ B means
the intersection of the sets A and B, or equivalently “both A and B.”

1

2. The probability that at least one of three events happens

It is straightforward to generalize the result of eq. (1) to the case of three events.2

P (A∪B∪C) = P (A)+P (B)+P (C)−P (A∩B)−P (A∩C)−P (B∩C)+P (A∩B∩C) , (3)

for any three events A,B,C ⊂ Ω. This is equivalent to the set theory result,

|A ∪ B ∪ C| = |A|+ |B|+ |C|− |A ∩B|− |A ∩ C|− |B ∩ C|+ |A ∩ B ∩ C| . (4)

Once again, the proof of eq. (4) is immediate after considering the Venn diagram
shown above.3 In particular, adding the number of elements of A, B and C counts
elements in A∩B ∩C three times, and counts elements of A∩B, A∩C and B ∩C not
contained in A∩B∩C twice. Thus, |A∪B∪C| = |A|+|B|+|C|−|A∩B|−|A∩C|−|B∩C|
will include all events in A, B and C once except for the events in A∩B ∩C, which were
all subtracted off. Thus, to include all events in A ∪ B ∪ C exactly once, we must add
back the number of events in A∩B ∩C. Thus, eq. (4) is established. The corresponding
result in probability theory is given by eq. (3).

3. The Inclusion-Exclusion principle

The inclusion-exclusion principle is the generalization of eqs. (1) and (2) to n sets.
Let A1, A2, . . . , An be a sequence of n events. Then,

P (A1 ∪ A2 ∪ · · · ∪ An) =
n

∑

i=1

P (Ai)−
∑

i<j

P (Ai ∩ Aj) +
∑

i<j<k

P (Ai ∩Aj ∩ Ak)

−
∑

i<j<k<!

P (Ai ∩ Aj ∩Ak ∩ A!) + . . .+ (−1)n+1P (A1 ∩A2 ∩ · · · ∩ An) , (5)

2This is problem 15–3.8 on p. 734 of Boas.
3The Venn diagram above is taken from the Wikipedia webpage on the inclusion-exclusion principle.

Check it out at http://en.wikipedia.org/wiki/Inclusion%E2%80%93exclusion principle.

2

O pookai:÷E¥÷÷÷i÷÷÷¥:*:+ - t- t -
- =L

z count a- on rightsideofcoEEFI.se#y*qTfZohofI4=1AlttBlHQ#
Egan of za g :(AAH - land -HADI -z O*H#t¥¥I*.mu#EisiIEh'hhin7I.tTo*oe⇒i¥:%¥yama#L
-1-1 -

tu tu

Jsaty
l Union off = 2- sizes of a-set Imtiaz . -

-that
L

" sets
•z size of nofz Ittihad KznAzl Nenad -

r -IAu.ch An

* UN -
- - Ant

E sizeof lambdas) Hertha) . . . Ian-zhan- inAnl

woregeftghau3-faofglkbknbhkdlttnnznasht.by .
-

-Hu-39 An-2 DAN- i haul

1- Ease of###¥aeBnxan¥ . - -

- IE #
t

. I
-

over -_
ntl :

7. CIP E size efn of all cul f Ann knots. - namesAnl

-

where A1, A2, . . .An ⊂ Ω. This is equivalent to the set theory result,

|A1 ∪A2 ∪ · · · ∪ An| =
n

∑

i=1

|Ai|−
∑

i<j

|Ai ∩ Aj|+
∑

i<j<k

|Ai ∩Aj ∩Ak|

−
∑

i<j<k<!

|Ai ∩ Aj ∩Ak ∩ A!|+ . . .+ (−1)n+1|A1 ∩ A2 ∩ · · · ∩ An| . (6)

The proof of eq. (6) is an exercise in counting. Suppose a point is contained in exactly
m of the sets, A1, A2, . . .An, where m is a number between 1 and n. Then, the point is
counted m times in

∑n
i=1

|Ai|, it is counted C(m, 2) times in
∑

i<j |Ai∩Aj |, it is counted
C(m, 3) times in

∑

i<j<k |Ai∩Aj∩Ak|, etc., where C(m, k) is the number of combinations
of m objects taken k at a time. After reaching

∑

i1<i2<···im
|Ai1 ∩Ai2 ∩ · · · ∩Aim |, where

the point is counted once [since C(m,m) = 1], one finds that the point is not counted
at all in any of the terms that involve the intersection of more than m sets. The net
result is that a point that is contained in exactly m of the sets will be counted S times
in |A1 ∪ A2 ∪ · · · ∪ An| given by eq. (6), where

S ≡ C(m, 1)− C(m, 2) + C(m, 3)− C(m, 4) + · · ·+ (−1)m+1C(m,m) , (7)

after noting that C(m, 1) = m.
To compute S, we recall the binomial theorem,

(x+ y)m =
m
∑

k=0

C(m, k)xkym−k , (8)

where

C(m, k) ≡

(

m

k

)

≡
m!

k!(m− k)!

is the number of combinations of m objects taken k at a time. Setting x = 1 and y = −1
in eq. (8) yields,

m
∑

k=0

(−1)kC(m, k) = 0 .

Using C(m, 0) = 1, it follows that

1− C(m, 1) + C(m, 2)− C(m, 3) + . . .+ (−1)mC(m,m) = 0 ,

which implies that S = 1 [cf. eq. (7)]. Thus, we have shown that there is no multiple
counting of points in eq. (6). That is, every point contained in the union of A1, A2, . . . An

is counted exactly one time. Thus, eq. (6) is established. The corresponding result in
probability theory is given by eq. (5). We have therefore verified the inclusion-exclusion
principle.

There are numerous applications of the inclusion-exclusion principle, both in set the-
ory and in probability theory. In particular, it provides a powerful tool for certain types
of counting problems. An example is provided in the next section of these notes.

3

D

IExauptes : proof by contradiction 1,3714 Wfff? GEE = @£FapBeEx 1 Last time Fs& Q ,BFF Iab
,
Assume o is fake
I 7C -7 . .

-7 . .
-⇒ - -

⇒7 contradiction
not fond) not(premise)

" contradicts P "
The ,%%; T.fi#elncis1me-
2
, 3,5, 7,

11
,
13
,
17
,
19 , 231 29 ,

31
, 37741,43 , 47,

45=5-9 ⇒uotpnmepwfbymtadkhon: Assure Cksypothetvae) conclusion is false
⇒ the sequence/ list of pubes is finite . (There are only m offhand

the only pines are pi ,pay . - Pms , pm done no other prime

⇒ construct a number bigger than pmT.rs#.........*Iiiiiiii**iiteiiai:im
is 2 prime ? 19pm , pm is the biggest⇒Zuoifpnuey
⇒ z is divisible by one of the primes ps, pg . t.fm

'pITP⇒⇒pi It contradiction
→ list of primes infinite . diff between

Inusltipksofpiused@9dfsf-sklaesiIiITuLaa.etutti:&'s.
⇒ KI @tb) as then atb is multiple the"

-
-
-

General erosion , (a=b/ mode ⇒ KI Ca-b)
(NT. holes Ha audb have the

same modulohewindr Ex
with K 27=131 wed 13

(wot we add)

Erj Right triangle sides at , bugs
"hypotenuse

" ? c
Heat canalised
-proof Rog ht D⇒ Pythagorean a2tbEe£€\ coiffed : assume

'conclusion is false
7-

b ⇒
*71 carats)⇒ c> ath

eterne from cf⇒⇒estaIewant a> EEL"*hs I -a

$-7 ⇒ 07, Zab false ! cap >of

one sides sum of
⇒ Conclusion is tree. Gates

the other2

part A, Satisfiability Intro [easy]. A boolean formula is satisfiable if there
exists some variable assignment that makes the formula evaluate to true. Namely, a
boolean formula is satisfiable if there is some row of the truth table that comes out
true. Determining whether an arbitrary boolean formula is satisfiable is called the
Satisfiability Problem. There is no known e�cient solution to this problem, in fact,
an e�cient solution would earn you a million dollar prize. While this is hard problem
in computer science, not all instances of the problem are hard, in fact, determining
satisfiability for some types of boolean formulae is easy.

i. First, let’s consider why this would be hard. If you knew nothing about a given
boolean formula other than that it had n variables, how large is the truth table
you would need to construct? Please indicate the number of columns and rows
as a function of n

ii. Now consider the following 100 variable formula.

x1 ^ (¬x1 _ x2) ^ (¬x2 _ x3) ^ (¬x3 _ x4) ^ . . . ^ (¬x99 _ x100)

Without constructing a truth table, how many satisfying assignments does this
formula have, explain your answer.

iii Now consider an arbitrary 3-DNF formula with 100 variables and 200 clauses.
3-DNF means that the formula is in disjunctive normal form and each clause
has three literals. (A literal is the instantiation of the variable in the formula,
so for x, ¬x or x.) An example might be something like:

(¬x1^x3^x10)_(¬x3^x15^¬x84)_(x17^¬x37^x48)_ . . ._(¬x87^¬x95^x100)

What is the largest size truth table needed to solve this problem. What is the
maximum number of such truth tables needed to determine satisfiabilty.

1

part B: 2CNF-SAT [hard]. The 2CNF-SAT instance is a boolean CNF formula
with 2 variables in each clause, ”OR” inside clauses, ”AND” between clauses. There
are m boolean variables x1, x2, ..., xm) and n clauses C1, C2, ..., Cn). Every variable
and its negation appears in at least one clause. Such formula is given as input in
format redundantly :
- for each variable there is a list of clauses containing it
- for each clause there there are 2 variables
For example the formula (x1 _ ¬x2) ^ (x2 _ x3) ^ (¬x1 _ x3) ^ (¬x2 _ ¬x3) will be
given as:
m = 3, n = 4
x1 : C1

¬x1 : C3

x2 : C2

¬x2 : C1, C4

x3 : C2, C3

¬x3 : C4

C1 : x1,¬x2

C2 : x2, x2

C3 : ¬x1, x3

C4 : ¬x2,¬x3

Your task is to design a strategy that determines, for a given formula, the boolean
assignments for the variables such that all clauses are satisfied, thus the formula is
true (if more such assignments are possible, you only need to output one). If no such
assignment is possible, output ”FALSE”.

As established inpart A, there are 2m possible assignments for the variable set.
So if one were to build the truth table and ”brute force” search all rows/assignments
until one works, it would take exponential time — not good! Instead: do trial and
error, but in a smart way that only tries at most 2 ⇤m2 boolean assignments.

Your strategy can be pseudocode, or you can informally describe a procedure with
bullets and English statements. You can write in your procedure statements like
* x = x1

* foreach C containing variable x {
- - - -
}
* C= next clause, or C = next clause containing x

* loop C through all clauses that contain x or ¬x

* for each x 2 C {
- - - -
}
* y = the other variable in clause C, other than x or ¬x

2

• how etoflviuk about ZCNF Formulas
• every clause can be written
as Implications (redundant)

€¥i¥¥¥¥¥¥.↳
,

Xz -2742

'

,

i
,

- •draw these implication
'

in ④ 11 Cuotnec, butaseeful)T.i .tt#.eman:F:III:⇒⇒ . .

④K . see if it works out .↳\
.⑦

ZONE

&zV7xz) dlxz.hr/u)hHzV7x)ACx3V7xz)

i⇒÷.
-

q.ro.
④ f.

fz

