
Geometric progression. For x real number and n � 1 integer we have

(x0
+ x1

+ x2
+ ...+ xn�1

)(x� 1) = xn � 1

Exercise: prove this formula

This is relevant to numeration bases in the following way: in base 2, we

make x = 2, thus x � 1 = 1; suppose we use representation on n = 8 bits,

then

2
0
+ 2

1
+ 2

2
+ ...+ 2

7
= 2

8 � 1

or in binary

2
0
: 00000001 +

2
1
: 00000010 +

2
2
: 00000100 +

2
3
: 00001000 +

2
4
: 00010000 +

2
5
: 00100000 +

2
6
: 01000000 +

2
7
: 10000000

———————-

2
8 � 1 : 11111111

1+

———————-

2
8
: 100000000

Same works in decimal with x = 10 and say n = 4 digits. x � 1 = 9 so we

have

9 ⇤ 100 : 0009 +

9 ⇤ 101 : 0090 +

9 ⇤ 102 : 0900 +

9 ⇤ 103 : 9000

———————-

10
4 � 1 : 9999

1+

———————-

10
4
: 10000

1

- iv.

'II,'
cement ssiih
-

Range :[32 :3D

'
'

task te teet
-

e:÷←n¥: this: i:i:,-
-=-4l?1Rea4mIYYimamp6ment#sits
-4 ' tympanists
E
-
e
-

it -1

-41=-64 t 23 (complement)£!m¥¥②¥
tugging-026 * complement -215

¥¥miiE÷-O
-41=-256+7%7 tzft2.IT?tEtpo

The maximum unsigned integer value in base x on n digits is when all digits

are set to value x � 1, that value is xn � 1. Adding 1 to it causes the need

for another digit, the n+1 one, for the representation 10000..000 (1 followed

by n zeros). If that n + 1 digit is not available, we have an overflow prob-

lem: only the right-n digits are considered and the value is read as 0000..000

instead of xn
.

Exercise(geometric progression). Two players A and B play this game:

- A pays B $1000 everyday for B-s lifetime

- B pays A for 30 days starting with 1 penny ($0.01) the first day, doubling

each day for the next 29 days; so that is 2 pennies the second day, 4 pennies

in the third, 8 in the forth day etc.

Which player would you rather be?

2

I l

+4k o l o l 00 I

-41=10101110= O O O O O o O

a) = v

I2 ↳o l o o l l

¥ o o O l l l 62110100-4
qyoerw

O O O l l l

-1 I l l l l -

Binary Search : look for value
in range .

6 Sits Range Unsigned I fo : 63]

ceaetvdne-45qbssabsbkioe.pqa.in#htsBinary search (ral -- 45, Rouge G ? 639)@
in binary

① Range Co :63) m - 32
Bs . Q rods32 Aim i offer⇒÷÷i÷÷¥÷:Bs .
Q : val <48 Ai. Yes

⑤z:*¥¥auseb.sk#seBBS.Q:r&4oYAiN0TQ:bz--o? AA : No
-

④ Range [40 : 47) m -- 44 Rouse = tobzs, so
BS-Q :ra④4ANo⑤#i⇒¥* ."
I

Bitwise Operations

Shift left “<<”. For integers, same as multiply by 2 for each bit

shifted. Move all bits left by k positions, add k zeros to the right. Signif-

icant bits can be lost on the left size, still on same n bits. In the example

below we represent an integer a=79 on n = 32 bits

79 = 0000 0000 0100 1111

79 << 1 = 0000 0000 1001 1110

= 158

79 << 2 = 0000 0001 0011 1100

= 316

Shift right “>>”. For integers, same as division by 2 for each bit

shifted. Move all bits right by k positions, add k zeros to the left. Non-

significant bits will be lost on the right size, as result is still on same n bits.

79 = 0000 0000 0100 1111

79 >> 1 = 0000 0000 0010 0111

= 39

79 >> 2 = 0000 0000 0001 0011

= 19

Bitwise AND “&”. Given an integer mask m on 32 bits, the operation

y = m&x performs a bitwise AND: all 0 bits in m produce 0 bits in y, while
all 1-bits in m simply leave the corresponding bit in x to pass to y. For

1

Math
← shift to left by L / X2

Pos

shift to left by 21×4
Pos

Math
→ shift to right

, / ÷ 2
shift to the right,by 2ps ¥4

example x=78, m = 5 gives y as:

x = 78 = 0000 0000 0100 1110

m = 5 = 0000 0000 0000 0101 &

�������������������
y = 0000 0000 0000 0100

= 4

This is particularly useful when m = 2
k
(a power of two), in order to check

if the k-bit in x is one or zero:

if 2
k
&x==0 then k-th bit in x is 0; otherwise the x k-th bit is one.

Bitwise OR “|”. Given an integer mask m on 32 bits, the operation

y = m|x performs a bitwise OR: all 1-bits in m produce 1-bits in y, while all
0-bits in m simply leave the corresponding bit in x to pass to y. For example

x=78, m = 21 gives y as:

x = 78 = 0000 0000 0100 1110

m = 21 = 0000 0000 0001 0101 |
�������������������

y = 0000 0000 0101 1111

= 95

This is particularly useful when m = 2
k
(a power of two), in order to make

the k-bit in x one:

if y = 2
k|x makes the k-th bit in y one, but leaves all other bits as in x.

2

Exercise. Play with the attached C code “bitwise.cpp”. You dont have

to look into declarations of variables, but rather change the integer values

and see what happens. Being C++ code, you will have to compile and run

it; you can do so with the attached Makefile, on a UNIX-based system, by

simple typing in the terminal window

make FILE=bitwise

which will both compile and run the code. Every edit of the source code have

to be saved and followed by the same make command.

19:13>> make FILE=bitwise

g++ -Wall -pedantic -o bitwise bitwise.cpp

./bitwise

size of int=4

a11=150000 a12=150000 OVERFLOW (32 bits)?

a11*a12=1025163520

a14=79

a15=a14>>1=39

a16=a14<<1=316

a1=79

11110010 00000000 00000000 00000000

a1=39

11100100 00000000 00000000 00000000

a1=316

00111100 10000000 00000000 00000000

a2=316

d1=10234.9

00011101 01111000 10100001 11010111 10001110 10111111 11000011 00000010

result=0001110101111000101000011101011110001110101111111100001100000010

d2=10234.9

3

Representation range on integers on 8 bits
Like before x = 2, n = 8 means 256 possibilities.

* unsigned (positives only) range is 0:255

0: 00000000 (min)

1: 00000001

2: 00000010

.

255: 11111111 (max)

* signed (positives and negatives) range is -128:+127.

Two-complement. To represent negative integers we need one bit for the

sign, so the magnitude of numbers is cut in half because now we represent

both negative and positives. Positives have the first bit 0 and the regular

binary representation; negatives �v are represented on 8 bits as 2
8�v; which

is at least 2
8 � 128 = 128 on 8 bits, so all of the negatives have the first bit

1:

-128: 10000000 (min)

-127: 10000001

-126: 10000010

-125: 10000011

.

-2: 11111110

-3: 11111101

-1: 11111111

0: 00000000

1: 00000001

2: 00000010

3: 00000011

.

125: 01111101

126: 01111110

127: 01111111 (max)

Exercise: Verify that for any value v in range, in binary representation

above v + �v = 2
8
, or 10000000 which of course is 00000000 if we consider

only 8 bits.

3

Exercise: Verify that the following procedure is equivalent for obtaining

negative representation of value �v in range:

* 1) get representation of positive v
* 2) flip all bits

* 3) add 1

Exercise. Verify that addition and subtraction works correctly with

negative integers (two complement) on 8 bits. The result first bit might be

incorrect (invalid) if there is an overflow. For example, verify that

6 - 7 = -1

-4 + -5 =-9

101 - 117 = -16

etc

4

Number of independent possibilities. If one has three jackets, 2

pants, and 4 hats, and any combination is valid, then how many combina-

tions we have?

Answer: 3 x 2 x 4 = 24 possibilities

If number are represented in base 5 (thus digit values 0:4) on 8 digits, and

any combination is allowed (like starting with 0), how many possible repre-

sentations are there?

Answer: 5 (first digit) x 5(second digit) x ... x 5(eighth digit) = 5
8
possibil-

ities

If numbers are represented in base 2 on 8 bits, and the first bit is for sign,

what is the range of absolute values represented?

Answer: since we only have 7 bits for the actual value representation, there

are 2
7
= 128 possibilities. Centering a range at 0, positives will be 0:127 and

negatives -128:-1.

If a set has 6 elements S = {e1, e2, ..., e6} how many di↵erent subsets are

there? A subset is any set of made of elements in S, for example {e2, e3, e5};
the empty set ; counts as one subset. The order of elements doesnt matter

in a set, so {e2, e3, e5} = {e5, e2, e3}
Answer: there are 2 possibilities for each element in a subset: to be in, or to

be out. So there are 2 possibilites for e1, 2 for e2, ... , 2 for e6. Total is 26

Exercise. What if we count the ordered sets as di↵erent, i.e. {e2, e3, e5} 6=
{e5, e2, e3}. How many possibilities we have now? Hint: many more than 2

6

The card trick presented at first lecture asked you to pick a number in range

0:63 and return precisely the subset of cards that contain it. To determine

the number every time without error, the number of possible feedbacks (the

possible subsets of cards returned) has to be at least 64, which is the number

of possibilites for the number. If thats not true, simply there wouldn’t be

enough ways to distinguish 64 numbers. Where there at least 64 feedback

responses?

Answer: yes. There were 6 cards, so 2
6
possibilities to create a subset of

cards returned.

How many bits are necessary to represent all the positive range 0:1200?

Answer: 1201 possibilities, ignoring the sign, cant be represented on 10 bits

5

because that gives only 2
10

= 1024 possibilities; but 11 bits is enough since

that gives 2
11

= 2048 possibilities.

Exercise. The explanation for the card trick (pdf linked form the web-

site) is described with 24 cards in base 10 covering numbers in range 0:350.

Lets say range 0:350 is fixed, but you can pick any numeration base b (for

example if you pick b = 16 you’ll have to write the numbers in hex with

digits 0:F). What base minimizes the number of cards needed?Hint: in base

b the number of cards will be about #bits ⇥ #cards-per-bit

If there are 10 adjacent houses in a row to be painted either Red, Blue,

Green, Yellow and any coloring is possible, how many total colorings are

there?

Answer: 4 for first house x 4 for second x etc, so 4
10

total.

Exercise. What if we require that any two adjacent houses have di↵erent

colors?

Exercise(di�culty F). What if we require that any sequence of three

consecutive houses must have have di↵erent colors (cannot have same color

for any 2 houses within three consecutive)?

Exercise (di�culty FF) What if have specific requirements: In a given

order (say close to far) Red color can be followed by any other color; Blue

can be followed only by Green and Yellow; Green can be followed by any

color except Red. How many total colorings now?

6

