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Abstract. We consider the issue of query performance, and we propose
a novel method for automatically predicting the difficulty of a query.
Unlike a number of existing techniques which are based on examining
the ranked lists returned in response to perturbed versions of the query
with respect to the given collection or perturbed versions of the collec-
tion with respect to the given query, our technique is based on exam-
ining the ranked lists returned by multiple scoring functions (retrieval
engines) with respect to the given query and collection. In essence, we
propose that the results returned by multiple retrieval engines will be rel-
atively similar for “easy” queries but more diverse for “difficult” queries.
By appropriately employing Jensen-Shannon divergence to measure the
“diversity” of the returned results, we demonstrate a methodology for
predicting query difficulty whose performance exceeds existing state-of-
the-art techniques on TREC collections, often remarkably so.

1 Introduction

The problem of query hardness estimation is to accurately and automatically
predict the difficulty of a query, i.e., the likely quality of a ranked list of docu-
ments returned in response to that query by a retrieval engine, and to perform
such predictions in the absence of relevance judgments and without user feed-
back. Much recent research has been devoted to the problem of query hardness
estimation, and its importance has been recognized by the IR community [1–7].
An accurate procedure for estimating query hardness could potentially be used
in many ways, including the following:

– Users, alerted to the likelihood of poor results, could be prompted to refor-
mulate their query.

– Systems, alerted to the difficult query, could automatically employ enhanced
or alternate search strategies tailored to such difficult queries.

– Distributed retrieval systems could more accurately combine their input re-
sults if alerted to the difficulty of the query for each underlying (system,
collection) pair [2].
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In this work, we propose a new method for automatically predicting the
difficulty of a given query. Our method is based on the premise that different
retrieval engines or scoring functions will retrieve relatively similar ranked lists
in response to “easy” queries but more diverse ranked lists in response to “hard”
queries. As such, one could automatically predict the difficulty of a given query
by simultaneously submitting the query to multiple retrieval engines and ap-
propriately measuring the “diversity” of the ranked list responses obtained. In
order to measure the diversity of set of ranked lists of documents, we map these
rankings to distributions over the document collection, where documents ranked
nearer the top of a returned list are naturally associated with higher distribution
weights (befitting their importance in the list) and vice versa. Given a set of dis-
tributions thus obtained, we employ the well known Jensen-Shannon divergence
[8] to measure the diversity of the distributions corresponding to these ranked
lists.

We extensively tested our methodology using the benchmark TREC collec-
tions [9–15]. To simulate the ranked lists returned by multiple retrieval strategies
in response to a given (TREC) query, we chose subsets of the retrieval runs sub-
mitted in response to that query in a given TREC. We then predicted query
difficulty using the methodology described and compared our estimated query
difficulty to the difficulty of that query in that TREC, as measured in a number
of standard and new ways. Finally, we compared the quality of our query diffi-
culty estimates to state-of-the-art techniques [1, 6, 7], demonstrating significant,
often remarkable, improvements.

The remainder of this paper is organized as follows. We begin by more exten-
sively discussing relevant related work, followed by a presentation of our method-
ology in detail. We then discuss the results of extensive experiments using the
TREC collections. Finally, we conclude with a summary and discussion of future
work.

2 Background and Related Work

Existing work on query hardness estimation can be categorized along at least
three axes: (1) How is query hardness defined?, (2) How is query hardness pre-
dicted?, and (3) How is the quality of the prediction evaluated? In what follows,
we describe our work and related work along these dimensions.

2.1 Defining query hardness

One can define query hardness in many ways; for example, queries can be inher-
ently difficult (e.g., ambiguous queries), difficult for a particular collection, or
difficult for a particular retrieval engine run over a particular collection. Other
notions of query difficulty exist as well. In what follows, we discuss two notions
of query harness, which we shall refer to as system query hardness and collection
query hardness.



System query hardness captures the difficulty of a query for a given retrieval
system run over a given collection. Here the notion of query hardness is system-
specific; it is meant to capture the difficulty of the query for a particular system,
run over a given collection. System query hardness is typically measured by the
average precision of the ranked list of documents returned by the retrieval system
when run over the collection using the query in question.

Examples of work considering system query hardness include (1) Carmel
et al. [3] and Yom-Tov et al. [1] who investigate methods for predicting query
hardness, testing against the Juru retrieval system, (2) Cronen-Townsend et al. [6]
and Zhou and Croft [7] who investigate methods for predicting query hardness,
testing against various language modeling systems, and (3) the Robust track at
TREC [13] wherein each system attempted to predict its own performance on
each given query.

Collection query hardness captures the difficulty of a query with respect to a
given collection. Here the notion of query hardness is meant to be largely in-
dependent of any specific retrieval system, capturing the inherent difficulty of
the query (for the collection) and perhaps applicable to a wide variety of typi-
cal systems. Collection query hardness can be measured by some statistic taken
over the performance of a wide variety of retrieval systems run over the given
collection using the query in question. For example, Carmel et al. [3] consider
collection query hardness by comparing the query difficulty predicted by their
method to the median average precision taken over all runs submitted in the
Terabtye tracks at TREC for a given query.

Our work: We consider both system query hardness and collection query hard-
ness and demonstrate that our proposed methodology is useful in predicting
either. In order to test the quality of our methodology for predicting a given
system’s performance (system query harness), one must fix a retrieval system.
In this work, we simply choose the system (retrieval run) whose mean average
precision was the median among all those submitted to a particular TREC; thus,
we consider a “typical” system, one whose performance was neither extremely
high or low. We refer to this measure as the median system AP (med-sys AP).

In order to test the quality of our methodology for predicting collection query
hardness, one must fix a measure for assessing the hardness of a query for a given
collection. In this work, we consider two statistics taken over all runs submitted
to a particular TREC with respect to a given query: (1) the average of the
average precisions for all runs submitted in response to a given query and (2)
the median of the average precisions for all runs submitted in response to a given
query. We refer to the former as query average AP (avgAP) and the latter as
query median AP (medAP).

2.2 Predicting query hardness

Cronen-Townsend et al. [6] introduced the clarity score which effectively mea-
sures the ambiguity of the query with respect to a collection, and they show



that clarity scores are correlated with query difficulty. Clarity scores are com-
puted by assessing the information-theoretic distance between a language model
associated with the query and a language model associated with the collection.
Subsequently, Zhou and Croft [7] introduced ranking robustness as a measure of
query hardness, where ranking robustness effectively measures the stability in
ranked results with respect to perturbations in the collection.

Carmel et al. [3] proposed the use of pairwise information-theoretic distances
between distributions associated with the collection, the set of relevant doc-
uments, and the query as predictors for query hardness. Yom-Tov et al. [1]
proposed a method for predicting query hardness by assessing the stability of
ranked results with respect to perturbations in the query; subsequently, they
showed how to apply these results to the problem of metasearch [2].

In other related work, Amati et al. [4] studied query hardness and robustness
in the context of query expansion, Kwok [5] proposed a strategy for selecting the
scoring function based on certain properties of a query, and Macdonald et al. [16]
investigated query hardness prediction in an intranet environment.

Our work: While fundamentally different from existing techniques, our work
is related to the methodologies described above in a number of ways. A num-
ber of existing techniques predict query hardness by measuring the stability of
ranked results in the presence of perturbations of the query [1] or perturba-
tions of the collection [7]. In a similar spirit, our proposed technique is based on
measuring the stability of ranked results in the presence of perturbations of the
scoring function, i.e., the retrieval engine itself. We measure the “stability” of the
ranked results by mapping each ranked list of documents returned by a different
scoring function to a probability distribution and then measuring the diver-
sity among these distributions using the information-theoretic Jensen-Shannon
divergence [8]. In a similar spirit, Cronen-Townsend et al. [6] use the related
Kullback-Leibler divergence [17] to compute clarity scores, and Carmel et al. [3]
use the Jensen-Shannon divergence to compute their query hardness predictor.

2.3 Evaluating the quality of query hardness predictions

In order to evaluate the quality of a query hardness prediction methodology, test
collections such as the TREC collections are typically used. The system and/or
collection hardnesses of a set of queries are measured, and they are compared
to predicted values of query hardness. These actual and predicted values are
real-valued, and they are typically compared using various parametric and non-
parametric statistics. Zhou and Croft [7] and Carmel et al. [3] compute the
linear correlation coefficient ρ between the actual and predicted hardness values;
ρ is a parametric statistic which measures how well the actual and predicted
hardness values fit to a straight line. If the queries are ranked according to the
actual and predicted hardness values, then various non-parametric statistics can
be computed with respect to these rankings. Cronen-Townsend et al. [6] and
Carmel et al. [3] compute the Spearman rank correlation coefficient. Zhou and



Croft [7], Yom-Tov et. al [1], and the TREC Robust track [13] all compute and
report the Kendall’s τ statistic.

Our work: In the results that follow, we assess the quality of our query hardness
predictions using both the linear correlation coefficient ρ and Kendall’s τ .

3 Methodology

Our hypothesis is that disparate retrieval engines will return “similar” results
with respect to “easy” queries and “dissimilar” results with respect to “hard”
queries. As such, for a given query, our methodology essentially consists of three
steps: (1) submit the query to multiple scoring functions (retrieval engines), each
returning a ranked list of documents, (2) map each ranked list to a distribution
over the document collection, where higher weights are naturally associated with
top ranked documents and vice versa, and (3) assess the “disparity” (collective
distance) among these distributions. We discuss (2) and (3) in the sections that
follow, reserving our discussion of (1) for a later section.

3.1 From ranked lists to distributions

Many measures exist for assessing the “distance” between two ranked lists, such
as the Kendall’s τ and Spearman rank correlation coefficients mentioned earlier.
However, these measures do not distinguish between differences in the “top” of
the lists from equivalent differences in the “bottom” of the lists; however, in the
context of information retrieval, two ranked lists would be considered much more
dissimilar if their differences occurred at the “top” rather than the “bottom” of
the lists.

To capture this notion, one can focus on the top retrieved documents only.
For example, Yom-Tov et al. [1] compute the overlap (size of intersection) among
the top N documents in each of two lists. Effectively, the overlap statistic places
a uniform 1/N “importance” to each of the top N documents and a zero impor-
tance to all other documents. More natural still, in the context of information
retrieval, would be weights which are higher at top ranks and smoothly lower
at lesser ranks. Recently, we proposed such weights [18, 19] which correspond to
the implicit weights which the average precision measure places on each rank,
and we use these distribution weights in our present work as well. Over the
top c documents of a list, the distribution weight associated with any rank r,
1 ≤ r ≤ c, is given below; all other ranks have distribution weight zero.

weight(r) =
1
2c

(
1 +

1
r

+
1

r + 1
+ · · · + 1

c

)
. (1)

3.2 The Jensen-Shannon divergence among distributions

Using the above distribution weight function, one can map ranked lists to distri-
butions over documents. In order to measure the “disparity” among these lists,



we measure the disparity or divergence among the distributions associated with
these lists. For two distributions a = (a1, . . . , an) and b = (b1, . . . , bn), a natural
and well studied “distance” between these distributions is the Kullback-Leibler
divergence [17]:

KL(p||q) =
∑

i

pi log
pi

qi

However, the KL-divergence suffers two drawbacks: (1) it is not symmetric in
its arguments and (2) it does not naturally generalize to measuring the diver-
gence among more than two distributions. We instead employ the related Jensen-
Shannon divergence [8]. Given a set of distributions {p1, . . . ,pm}, let p be the
average (centroid) of these distributions. The Jensen-Shannon divergence among
these distributions is then defined as the average of the KL-divergences of each
distribution to this average distribution:

JS (p1, . . . ,pm) =
1
m

∑
j

KL(pj ||p)

An equivalent and somewhat simpler formulation defined in terms of entropies
also exists [8]. In this work, we employ the Jensen-Shannon divergence among the
distributions associated with the ranked lists of documents returned by multiple
retrieval engines in response to a give query as an estimate of query hardness.

4 Experimental Setup and Results

We tested our methodology extensively on multiple TREC datasets: TREC5,
TREC6, TREC7, TREC8, Robust04, Terabyte04, and Terabyte05. The perfor-
mance of our proposed Jensen-Shannon query hardness estimator is measured
against three benchmark query hardness statistics: query average AP (avgAP)
and query median AP (medAP), both measures of collection query hardness, and
median-system AP (med-sys AP), a measure of system query hardness. When
predicting the difficulties of multiple queries in any given TREC, the strength of
correlation of our predicted difficulties with actual query difficulties is measured
by both Kendall’s τ and linear correlation coefficient ρ. We conclude that even
when using few input systems, our method consistently outperforms existing
approaches [1, 6, 7], sometimes remarkably so.

The ad hoc tracks in TRECs 5–8 and the Robust track in 2004 each employ
a standard 1,000 documents retrieved per system per query on collections of
size in the range of hundreds of thousand of documents. For these collections,
the weight cutoff was fixed at c = 20 in Equation 1; in other words, only the
top 20 documents retrieved by each system received a non-zero weight in the
distribution corresponding to the retrieved list, as used in the Jensen-Shannon
divergence computation. The Terabyte tracks use the GOV2 collection of about
25 million documents, and ranked result lists consist of 10,000 documents each;
for this larger collection and these longer lists, the weight cutoff was set at



c = 100 in Equation 1. This work leaves open the question of how to optimally
set the weight cutoff per system, query, and/or collection.

The baseline statistics query avgAP, query medAP, and the fixed system med-
sys AP are computed among all retrieval runs available. The Jensen-Shannon
divergence is computed among 2, 5, 10, 20, or all retrieval runs available. When
less than all of the available runs are used, the actual runs selected are chosen
at random, and the entire experiment is repeated 10 times; scatter plots show
a typical result among these 10 repetitions, and tables report the average per-
formance over all 10 repetitions. We note that in general, the quality of our
query hardness predictions increases rapidly as more system runs are used, with
improvements tailing off after the inclusion of approximately 10 systems.

We compare our Jensen-Shannon query hardness predictions with all three
baseline statistics, for all queries and all collections; in two isolated cases we
excluded queries with zero relevant documents. Figures 1 and 2 show a selection
of the results as scatter plots, separately for JS estimation using five system runs
and for JS estimation using 10 system runs.

Prediction Method TREC5 TREC6 TREC7 TREC8 Robust04 TB04 TB05

JS (2 systems) 0.334 0.353 0.436 0.443 0.393 0.339 0.288
JS (5 systems) 0.420 0.443 0.468 0.551 0.497 0.426 0.376
JS (10 systems) 0.468 0.444 0.544 0.602 0.502 0.482 0.406
JS (20 systems) 0.465 0.479 0.591 0.613 0.518 0.480 0.423
JS (all systems) 0.469 0.491 0.623 0.615 0.530 0.502 0.440

Table 1. Kendall’s τ (JS vs. query average AP) for all collections using 2, 5, 10, 20,
and all input systems. All but the last row report 10-run average performance.

Kendall’s τ measures the similarity of two rankings, in our case, the rankings
of the queries in terms of a baseline measure (query average AP, query me-
dian AP, or median-system AP) and the rankings of the queries in terms of our
Jensen-Shannon estimate. Prediction performance as measured by Kendall’s τ
is given in Tables 1, 2, and 3, and for visual purposes, we graph Tables 2 and 3
in Figure 3. Note that while our scatter plots seem to indicate negative cor-
relation (high Jensen-Shannon divergence implies low query performance), this
indicates positive correlation with the problem as defined (high Jensen-Shannon
divergence implies high query difficulty). As such, we report the corresponding
“positive” correlations in all tables, and we note the equivalent negative corre-
lations in all scatter plots.

Where we could make a direct comparison with prior results (TREC5, TREC8,
Robust04, Terabyte04, and Terabyte05), we indicate the performance reported
in prior work along with references. For past results measuring system query
hardness (i.e., correlations between predicted query hardness and the hardness
of the query for a specific system), we compare these prior results against our
correlations with the median-system AP, as that would be closest to a fair com-
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Fig. 1. Query hardness prediction results using five input systems for (top to bottom)
TREC8, Robust04 and Terabyte04. Each dot in these scatter plots corresponds to a
query. The x-axis is actual query hardness as measured by query average AP (left),
query median AP (center), and median-system AP (right). The y-axis is the Jensen-
Shannon divergence computed over the ranked results returned by five randomly chosen
systems for that query.

Prediction Method TREC5 TREC6 TREC7 TREC8 Robust04 TB04 TB05

JS (2 systems) 0.341 0.385 0.452 0.442 0.401 0.338 0.260
JS (5 systems) 0.448 0.475 0.483 0.547 0.510 0.435 0.340
JS (10 systems) 0.483 0.464 0.556 0.585 0.515 0.485 0.366
JS (20 systems) 0.488 0.503 0.610 0.599 0.533 0.496 0.382
JS (all systems) 0.510 0.530 0.634 0.597 0.544 0.520 0.391

Table 2. Kendall’s τ (JS vs. query median AP) for all collections using 2, 5, 10, 20,
and all input systems. All but the last row report 10-run average performance.
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Fig. 2. Query hardness prediction results using 10 input systems for (top to bottom)
TREC8, Robust04 and Terabyte04. Each dot in these scatter plots corresponds to a
query. The x-axis is actual query hardness as measured by query average AP (left),
query median AP (center), and median-system AP (right). The y-axis is the Jensen-
Shannon divergence computed over the ranked results returned by 10 randomly chosen
systems for that query.

parison. Using 10 input system runs for the Jensen-Shannon computation yield
improvements over best previous results of on average approximately 40% to
50%; the complete Tables 3, 5, and 6 show improvements ranging from 7% to
80%.

The linear correlation coefficient ρ effectively measures how well actual and
predicted values fit to a straight line; in our case, these actual and predicted
values are the hardness of queries in terms of a baseline measure (query average
AP, query median AP, or median-system AP) and the hardness of these same
queries in terms of our Jensen-Shannon estimate. Prediction performance as
measured by linear correlation coefficient is presented in Tables 4, 5, and 6. Note
the substantial improvements over prior results as shown in Tables 5 and 6.



Prediction Method TREC5 TREC6 TREC7 TREC8 Robust04 TB04 TB05

[7] clarity 0.311 0.412 0.134 0.171
[7] robust+clarity 0.345 0.460 0.226 0.252
[1] hist. boost. class. .439

JS (2 systems) 0.260 0.276 0.384 0.452 0.387 0.298 0.241
JS (5 systems) 0.350 0.370 0.427 0.525 0.472 0.349 0.318
JS (10 systems) 0.355 0.334 0.476 0.552 0.490 0.408 0.359
JS (20 systems) 0.339 0.365 0.516 0.577 0.498 0.403 0.380
JS (all systems) 0.363 0.355 0.509 0.561 0.512 0.427 0.381

Table 3. Kendall’s τ (JS vs. median-system AP) for all collections using 2, 5, 10, 20,
and all input systems. All but the last row report 10-run average performance.

Prediction method TREC5 TREC6 TREC7 TREC8 Robust04 TB04 TB05

JS (2 systems) 0.498 0.456 0.601 0.627 0.555 0.466 0.388
JS (5 systems) 0.586 0.611 0.637 0.736 0.673 0.576 0.516
JS (10 systems) 0.632 0.651 0.698 0.778 0.672 0.642 0.564
JS (20 systems) 0.645 0.677 0.731 0.784 0.688 0.666 0.577
JS (all systems) 0.623 0.698 0.722 0.770 0.695 0.682 0.581

Table 4. Correlation coefficient ρ (JS vs. query average AP) for all collections using
2, 5, 10, 20, and all systems. All but the last row report 10-run average performance.

Prediction method TREC5 TREC6 TREC7 TREC8 Robust04 TB04 TB05

[3] Juru(TB04+05) .476

JS (2 systems) 0.495 0.467 0.612 0.622 0.557 0.466 0.366
JS (5 systems) 0.592 0.631 0.654 0.727 0.677 0.586 0.477
JS (10 systems) 0.622 0.678 0.715 0.762 0.676 0.646 0.524
JS (20 systems) 0.630 0.703 0.752 0.769 0.694 0.674 0.541
JS (all systems) 0.600 0.727 0.743 0.755 0.701 0.687 0.543

Table 5. Correlation coefficient ρ (JS vs. query median AP) for all collections using
2, 5, 10, 20, and all systems. All but the last row report 10-run average performance.

Prediction method TREC5 TREC6 TREC7 TREC8 Robust04 TB04 TB05

[7] clarity 0.366 0.507 0.305 0.206
[7] robust+clarity 0.469 0.613 0.374 0.362

JS (2 systems) 0.425 0.294 0.553 0.595 0.542 0.435 0.338
JS (5 systems) 0.537 0.459 0.609 0.676 0.645 0.490 0.467
JS (10 systems) 0.556 0.469 0.639 0.707 0.659 0.566 0.524
JS (20 systems) 0.562 0.479 0.679 0.724 0.665 0.585 0.545
JS (all systems) 0.567 0.497 0.657 0.702 0.677 0.603 0.541

Table 6. Correlation coefficient ρ (JS vs. median-system AP) for all collections using
2, 5, 10, 20, and all systems. All but the last row report 10-run average performance.
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Fig. 3. Kendall’s τ for JS vs. query median AP (left) and Kendall’s τ for JS vs. median-
system AP (right).

5 Conclusion and Future Work

Previous work on query hardness has demonstrated that a measure of the sta-
bility of ranked results returned in response to perturbed versions of the query
with respect to the given collection or perturbed versions of the collection with
respect to the given query are both correlated with query difficulty, both in
general and for specific systems. In this work, we further demonstrate that a
measure of the stability of ranked results returned in response to perturbed ver-
sions of the scoring function is also correlated with query hardness, often at a
level significantly exceeding that of prior techniques. Zhou and Croft [7] and
Carmel et al. [3] demonstrate that combining multiple methods for predicting
query difficulty yields improvements in the predicted results, and we hypothesize
that appropriately combining our proposed method with other query difficulty
prediction methods would yield further improvements as well. Finally, this work
leaves open the question of how to optimally pick the number and type of scoring
functions (retrieval engines) to run in order to most efficiently and effectively
predict query hardness.
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