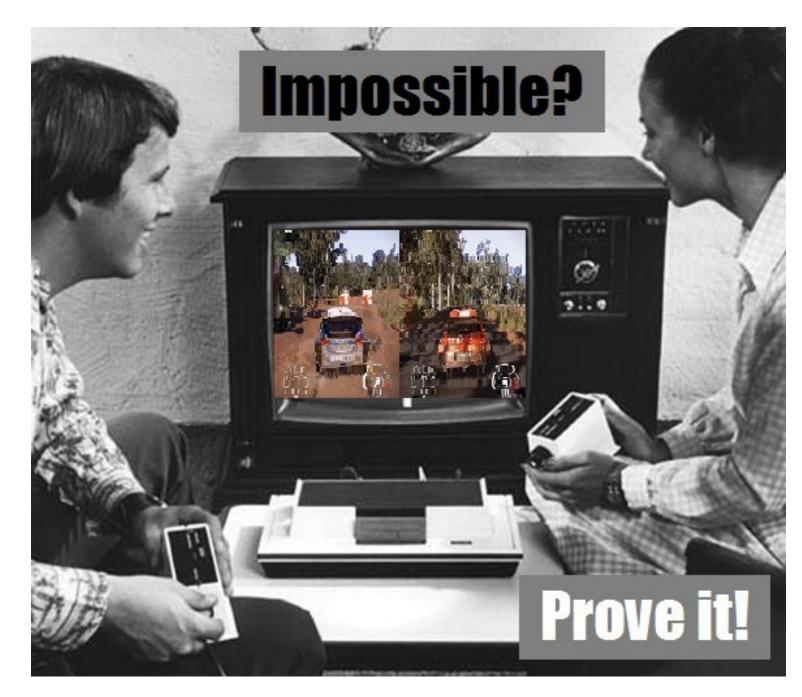
Correlation bounds and all that

Emanuele Viola

Northeastern University

2022 09



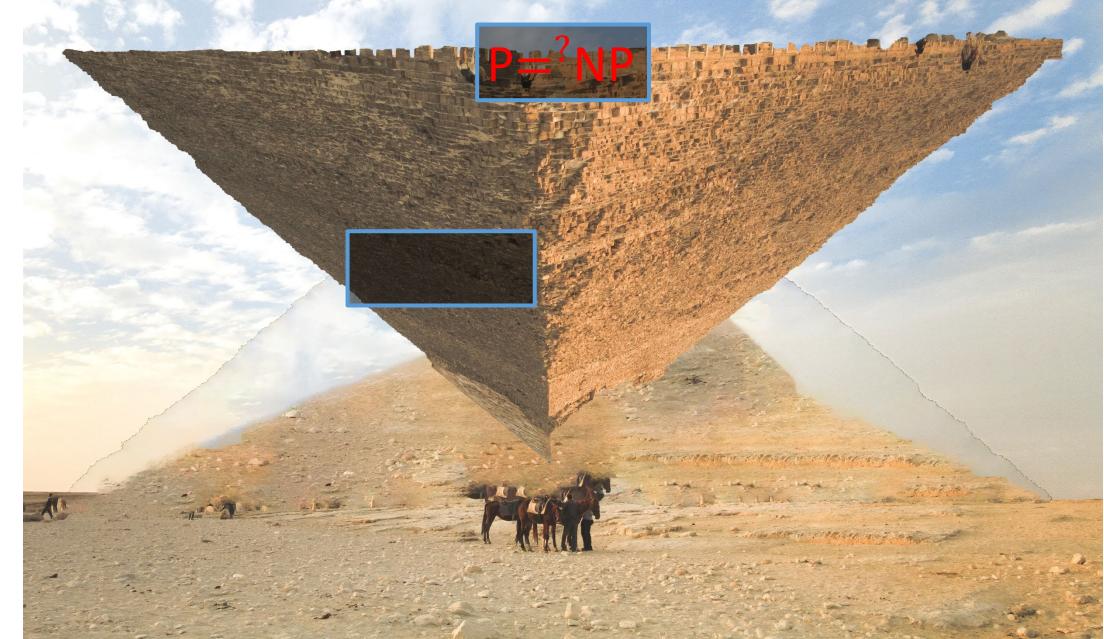


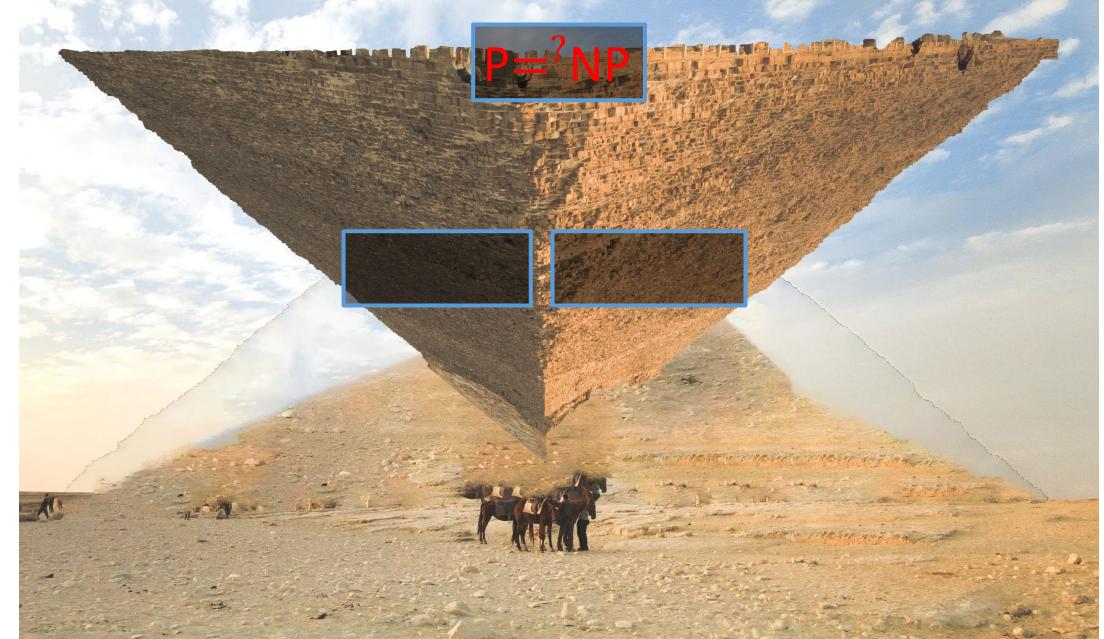
ALL DILLE MALDER

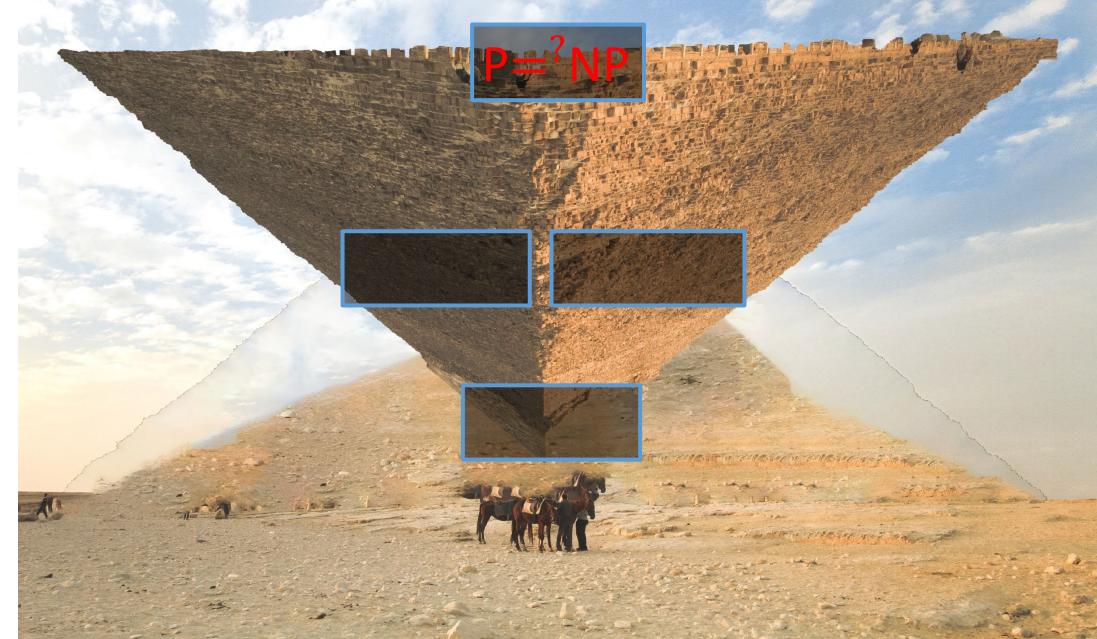
BICI

ALL DELLA DEL MALTINE DE DE DE TATI

ALL DELLE MELSER







Circuit lower bounds

Circuit lower bounds Matrix rigidity

Circuit lower bounds

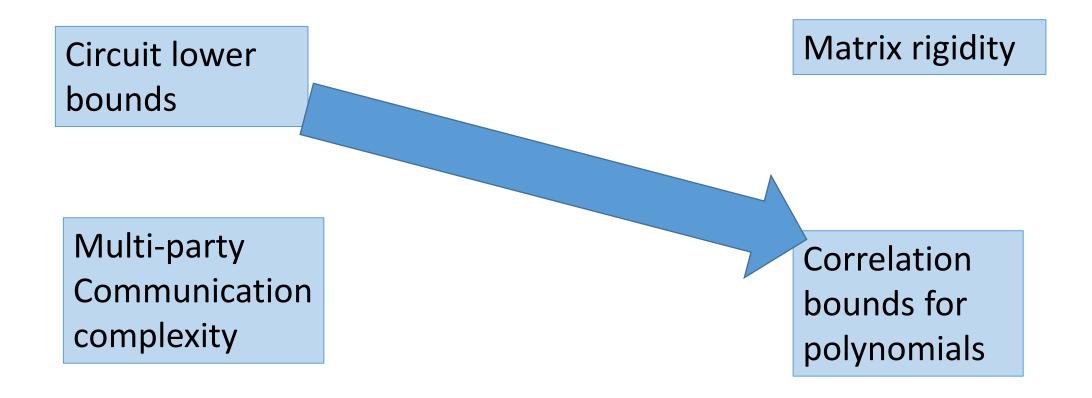
Matrix rigidity

Correlation bounds for polynomials

Circuit lower bounds

Multi-party Communication complexity Matrix rigidity

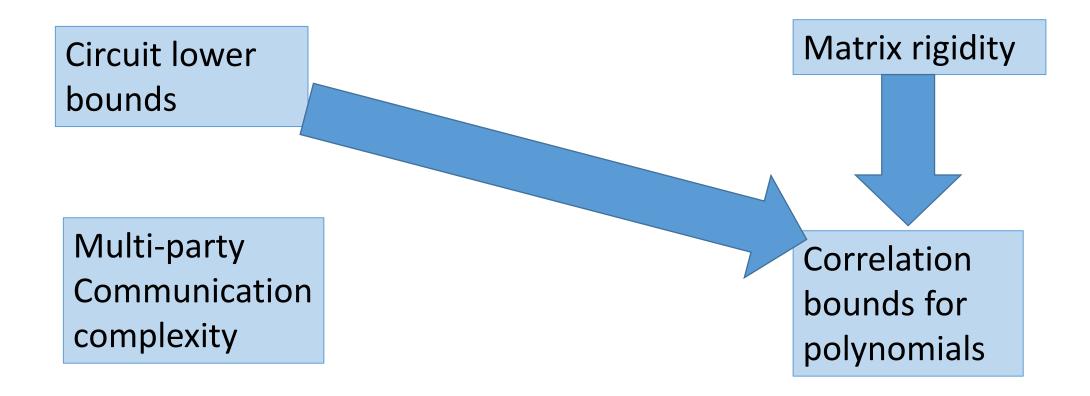
Correlation bounds for polynomials



means progress on A requires progress on B

A

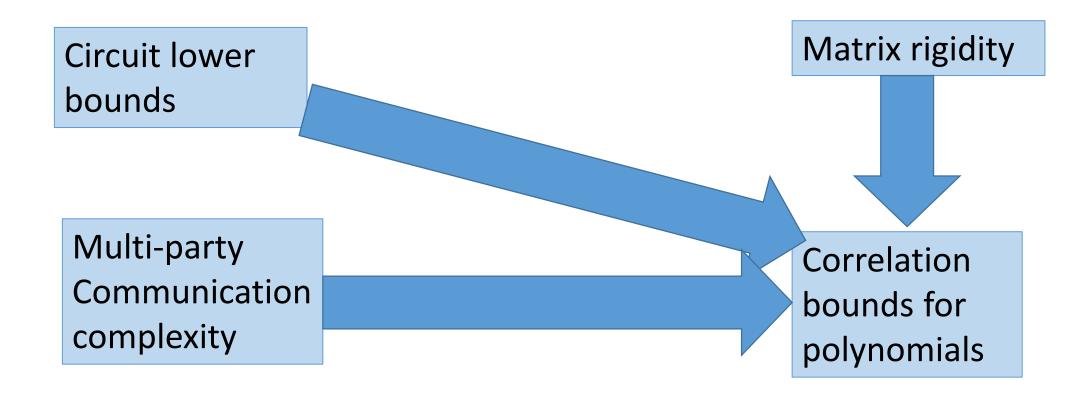
В



means progress on A requires progress on B

A

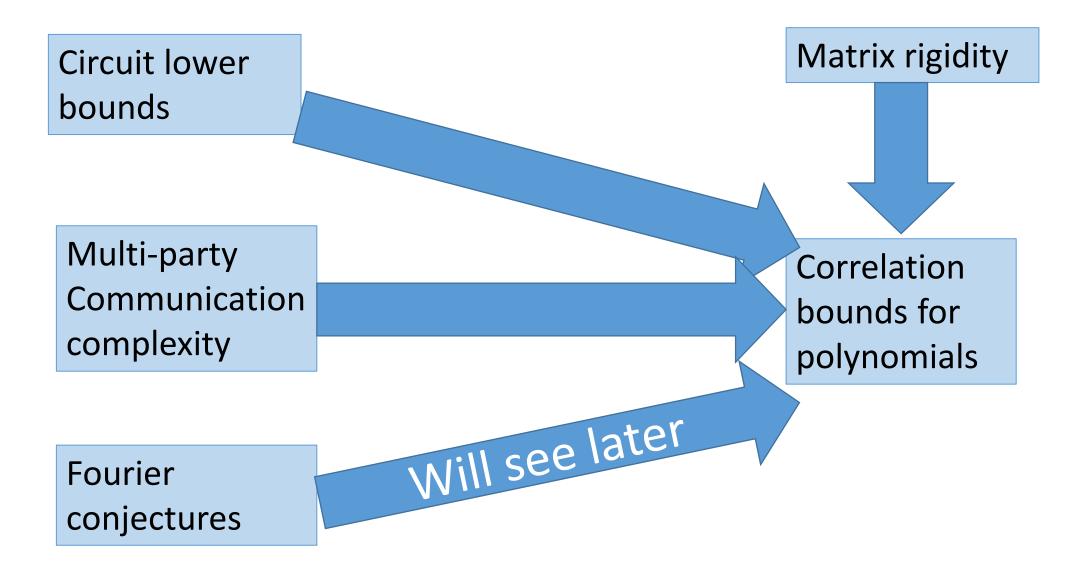
В

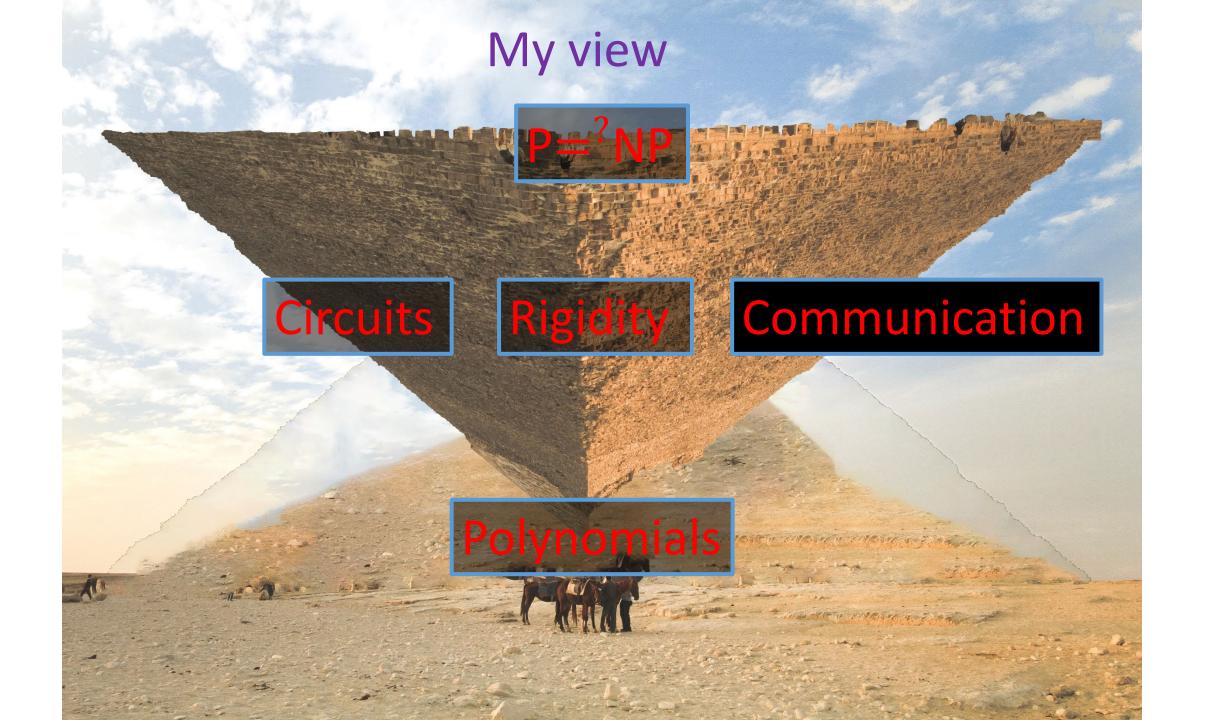


means progress on A requires progress on B

A

В





Correlation bounds for polynomials [background: survey on V's homepage]

• Challenge: Find explicit $f: \{0,1\}^n \rightarrow \{0,1\}$ and distribution X such that for every polynomial p of degree d

$$Correlation(f,p) := \Pr[f(X) = p(X)] \le 1/2 + \epsilon$$

• Razborov, Smolenky, 80's: f = Majority, X = uniform, $\epsilon = O\left(\frac{d}{\sqrt{n}}\right)$

• Babai Nisan Szegedy 90's: $f = GIP/Mod_3$, $\epsilon = 2^{-\Omega(\frac{n}{2^d})}$

• Open: $\epsilon = 1/\sqrt{n}$ for $d = \log(n)$; required to solve any problem on previous slide

Overview

Introduction

• A couple of recent results on correlation bounds

• Pseudorandom generators, and more recent results

[Chattopadhyay, Hatami, Hosseini, Lovett, and Zuckerman] STOC 2020

• **Def**: Local correlation:
$$\Delta_S(F) \coloneqq \mathbf{E}_{x-S} \left[\mathbf{E}_{x_S} \left[F(x) \right] - E[F] \right]^2$$

• Thm : $\forall degree - d F \quad \exists S : |S| \leq 2^{poly(d)} : \Delta_S(F)$ small

 \Rightarrow new correlation bounds for small degrees

• Conjecture : $|S| \le poly(d)$ suffices

[Ivanov Pavlovic V]

- Counterexample to CHHLZ conjecture
- Rules out even weak form, shows what they prove is best possible
- Proof sketch:

Start with TRIBES DNF For any S of size about $n/\log n : E_{x-S}$ [TRIBES = 1] $\geq \Omega(1)$ $\Rightarrow \left[E_{x_S} [F(x)] - E[F] \right]^2$ large Approximate TRIBES by log(n)-degree polynomial F

Oed

- Conjecture: Symmetric polynomials maximize correlation with mod 3; would imply dream correlation bounds
- Prove the conjecture for d = 2 by "slowly opening directions"
- Prove the conjecture for special classes of d = 3

Overview

Introduction

• A couple of recent results on correlation bounds

• Pseudorandom generators, and more recent results

Pseudorandom generators

- Explicit, low-entropy distributions that "look random" to polynomials
- Equivalent to correlation bounds for small error
- Case of large error remains unclear
- State-of-the-art [Bogdanov V 2007, Lovett, V]: To fool degree-d polynomials sum d independent generators for degree 1
- Can analyze up to d < 0.01 log n. Beyond that is unknown (more later)

Fourier conjectures

- Polarizing random walks: Pseudorandom generators from Fourier bounds
 [2018 Chattopadhyay Hatami Hosseini Lovett, ...]
- To improve generators for polynomials [2007 Bogdanov V, Lovett, V] Fourier Conjectures:

$$\begin{split} \sum_{S:|S|=2} |\hat{p}_{S}| &\leq O(d^{2}) & \text{[Chattopadhyay Hatami Lovett Tal]} \\ \sum_{S:|S|=k} |\hat{p}_{S}| &\leq 2^{o(dk)} & \text{[Chattopadhyay Gaitonde Lee Lovett Shetty]} \end{split}$$

Theorem[V]: (Even weaker) conjectures
 ⇒ correlation bounds beating Razborov-Smolensky,
 for functions related to majority (e.g., ∑_{i<j} x_ix_j > 0)

New correlation bounds

- We prove new correlation bounds which aim to, but don't, resolve conjectures
- Note: Correlation with Majority still open!

• Claim: Smolensky $O(\frac{d}{\sqrt{n}})$ bound for Majority tight under uniform distribution

• Claim: Can do
$$\Omega\left(\frac{d^2}{n}\right)$$
 for Majority under every distribution

- Conjecture: This is tight
- Claim: Conjecture holds (thus improving Smolensky) for d = 1

New pseudorandom generators

- Recall Bogdanov-V paradigm: To fool degree d, sum d generators for degree 1
 Works for d < 0.01 log n, unknown beyond that
- Thm[Derksen V 2022]:

(Algebraic analogue of) Bogdanov-V works for large degree over large fields \Rightarrow Optimal seed length O(d log n + log q) over large fields.

- Improves on Bogdanov 2005 seminal work which has seed > d^6
- New analysis of Bogdanov-V using invariant theory
- Question: Does this work over small fields?

Thanks!

