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Correlation bounds for polynomials
[background: survey on V’'s homepage]

e Challenge: Find explicit f: {0,1}"* — {0,1} and distribution X such that
for every polynomial p of degree d

Correlation(f,p):=Pr[f(X) =p(X)]|<1/2+¢€

* Razborov, Smolenky, 80’s: f = Majority, X = uniform, e = 0 (\/—ﬁ)

* Babai Nisan Szegedy 90’s: f = GIP/Mod, € = Z_Q(z_d)

+ Open: € = 1/Vnford = log(n);
required to solve any problem on previous slide



Overview

e Introduction

* A couple of recent results on correlation bounds

* Pseudorandom generators, and more recent results



[Chattopadhyay, Hatami, Hosseini, Lovett, and Zuckerman |
STOC 2020

2
* Def: Local correlation: Ag(F) == E,_ [ E, [F(x)] - E[F]]

* Thm:Vdegree—d F 3§ :|S| < 2P : AL(F) small
= new correlation bounds for small degrees

* Conjecture : |S| < poly(d) suffices



[lvanov Pavlovic V]

* Counterexample to CHHLZ conjecture

* Rules out even weak form, shows what they prove is best possible

* Proof sketch:
Start with TRIBES DNF
For any S of size aboutn/logn : E,_s [TRIBES=1] = Q(1)
2
N [ E. [F(x)] — E[F]] large
Approximate TRIBES by log(n)-degree polynomial F

Qed



[lvanov Pavlovic V]

* Conjecture: Symmetric polynomials maximize correlation with mod 3;
would imply dream correlation bounds

* Prove the conjecture for d =2
by “slowly opening directions”

* Prove the conjecture for special classes of d = 3



Overview

e Introduction

* A couple of recent results on correlation bounds

* Pseudorandom generators, and more recent results



Pseudorandom generators

e Explicit, low-entropy distributions that “look random” to polynomials
e Equivalent to correlation bounds for small error
e Case of large error remains unclear

e State-of-the-art [Bogdanov V 2007, Lovett, V]:
To fool degree-d polynomials sum d independent generators for degree 1

e Can analyze up to d < 0.01 log n. Beyond that is unknown (more later)



Fourier conjectures

e Polarizing random walks: Pseudorandom generators from Fourier bounds
[2018 Chattopadhyay Hatami Hosseini Lovett, ...]

 To improve generators for polynomials [2007 Bogdanov V, Lovett, V]
Fourier Conjectures:

25;|S|:z ps| < 0(d?) 'Chattopadhyay Hatami Lovett Tal]

ZS:|S|=k Ds| < 0(dk) 'Chattopadhyay Gaitonde Lee Lovett Shetty]

 Theorem[V]: (Even weaker) conjectures
= correlation bounds beating Razborov-Smolensky,
for functions related to majority (e.g., ZKJ- xixj >0)



New correlation bounds

e \We prove new correlation bounds which aim to, but don’t, resolve conjectures

e Note: Correlation with Majority still open!
e Claim: Smolensky 0(\%) bound for Majority tight under uniform distribution

2
e Claim: Can do Q (d—) for Majority under every distribution

n
e Conjecture: This is tight

e Claim: Conjecture holds (thus improving Smolensky) ford = 1



New pseudorandom generators

e Recall Bogdanov-V paradigm: To fool degree d, sum d generators for degree 1
Works for d < 0.01 log n, unknown beyond that

e Thm[Derksen V 2022]:
(Algebraic analogue of) Bogdanov-V works for large degree over large fields
= Optimal seed length O(d log n + log q) over large fields.
e Improves on Bogdanov 2005 seminal work which has seed > d°

e New analysis of Bogdanov-V using invariant theory

e Question: Does this work over small fields?



Thanks!
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