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● 2-player addition

Player P1 gets integer x1  [-2∈ n , 2n ]

           P2                     x2

How many communication bits to decide if  x1 + x2  > 0

with error 1%?

Public-coin: A random string is shared



  

● 2-player addition   (x1 + x2  > 0?,  xi  [-2∈ n , 2n ])

[Nisan Safra '93] O(log n)

Idea:    ?



  

● 2-player addition   (x1 + x2  > 0?,  xi  [-2∈ n , 2n ])

[Nisan Safra '93] O(log n)

Idea:    Compute max i : (x1 )i  ≠  (x2 )i

               Binary search on bits, run equality at each step.

Implementation:
   Equality with O(1) communication, error 1%

            Binary search with noise; O(log n) steps still suffice



  

● 2-player addition   (x1 + x2  > 0?,  xi  [-2∈ n , 2n ])

[Smirnoff '88]      Ω(√ log n)

[Nisan Safra '93] O(log n)

This work: Ω(log n)

Corollary: Θ(log n)



  

● 2-player addition   (x1 + x2  > 0?,  xi  [-2∈ n , 2n ])

Proof of Ω(log n) lower bound:

Hard distributions:     I  [n] uniform        Y  {0,1}∈ ∈ n uniform

G = (G1 , G2 ) = (Y1 Y2 … Yn , Y1 Y2 …   YI     0 0 … 0)

B = (B1 , B2 ) =  (Y1 Y2 … Yn ,  Y1 Y2 … (1-YI ) 0 0 … 0)

G1 ≥ G2 always;  B1 ≥ B2  with probability ½

Claim: For every rectangle R = R1 x R2  s. t. Pr[G  R] ≥ 1/n ∈
We have Pr[B  R] ≥ Pr[G  R] – 1/n∈ ∈ 0.3

Proof: Conditioned on G1  R∈ 1 , H(Y) ≥ n – log n,

So YI has entropy ≥ 1 – log(n)/n, so YI ≈ uniform ≈ 1-YI    



  

● 2-player addition   (x1 + x2  > 0?,  xi  [-2∈ n , 2n ])

● [Nisan Safra '93] O(log n)  +   [Newman '91]
     

  O(log n) communication, private-coin, not explicit

● This work: O(log n) communication, private-coin, explicit

     Proof: Use small-bias generator for equality
                 
                Use space-bounded generator for binary search
      
                                                                                               



  

Detour application I [Dutta Pandurangan Rajaraman Sun V.]

Problem: Two players, each holding a subset xi of [n].

Want ε-uniform element from symmetric difference x1  x⊕ 2 

Part of [DPRSV] proposal for spreading on dynamic networks

Claim: Explicit, private-coin protocol with ~O(log n/ ε) comm.

Proof:

                  ?????



  

Detour application I [Dutta Pandurangan Rajaraman Sun V.]

Problem: Two players, each holding a subset xi of [n].

Want ε-uniform element from symmetric difference x1  x⊕ 2 

Part of [DPRSV] proposal for spreading on dynamic networks

Claim: Explicit, private-coin protocol with ~O(log n/ ε) comm.

Proof:
Players agree on uniform permutation π.
Run Nisan-Safra protocol on π ( x1 )  π ( x⊕ 2 )

π: pseudorandom generators for combinatorial rectangles
[Gopalan Meka Reingold Trevisan Vadhan]

                                                                                              



  

Detour application II

Is multiplication 
harder than addition?
                     
                                                                       Cobham 1964



  

● 2-player multiplication

Player P1 gets integer x1  [-2∈ n , 2n ]

           P2                     x2

How many communication bits to decide if  x1 •  x2  > 2n/2

with error 1%?

Do you know how to solve this?



  

● 2-player multiplication

Player P1 gets integer x1  [-2∈ n , 2n ]

           P2                     x2

How many communication bits to decide if  x1 •  x2  > 2n/2

with error 1%?

Corollary [V]: O(log n) communication
Proof:
  Take logs
  Results on logarithmic forms by Baker et al. imply that you 
can truncate after poly(n) digits.
  Run protocol for addition.                                              



  

Outline

● Results for 2 players

● Results for k players

● Proof of O(log n) bound for k-player addition



  

● k-player addition

Player Pi gets xi  [ -2∈ n, 2n ], i=1, ..., k;  (number-in-hand)

How much communication to decide ∑i≤k xi >0 with error 1%?

● From now on, public-coin model

   For simplicity, k = O(1)



  

● k-player addition   (∑i xi > 0?,  xi  [-2∈ n , 2n ],  k = O(1))

[Nisan '93] O(log2 n)

This work: O(log n)

Corollary: Θ(log n)



  

● Degree-d polynomial-threshold function in n variables
How much communication for number-on-forehead
protocols among k = d+1 players?

Corollaries to k-player addition:

[Nisan '93] O(log2 n)

This work: O(log n)



  

● Application to the complexity of pseudorandom functions



  



  

Claim: AC0 with 1 threshold gate is breakable in poly(n) time

Note: Previously quasi-polynomial time was known.

Proof: 
Hit AC0 with a random restriction.

It collapses to a polynomial threshold function of degree O(1)

By previous fact, it has O(log n) communication (error 1%)

This means that the Babai-Nisan-Szegedy “norm” R
(see Chung Tetali, Raz, V Wigderson) is ≥   ?



  

Claim: AC0 with 1 threshold gate is breakable in poly(n) time

Note: Previously quasi-polynomial time was known.

Proof: 
Hit AC0 with a random restriction.

It collapses to a polynomial threshold function of degree O(1)

By previous fact, it has O(log n) communication (error 1%)

This means that the Babai-Nisan-Szegedy “norm” R
(see Chung Tetali, Raz, V Wigderson) is ≥ 1/poly(n)

Whereas for a random function R is negligible

This difference can be detected in poynomial time.            



  

Outline

● Results for 2 players

● Results for k players

● Proof of O(log n) bound for k-player addition



  

● Recall k-player addition:
Pi gets integer xi  [-2∈ n , 2n ]

How much communication to decide ∑i≤k xi >0 with error 1%?

● Overview of ideas in our O(log n) protocol

●  We give O(1) protocol for k-player sum-equal,
improving on Nisan's O(log n)

● Using a recursion [Nisan] this gives
O(log n log log n) protocol for k-player addition

● We adapt [Nisan Safra] from k = 2 to k > 2 
    to obtain O(log n)



  

● k-player sum-equal

Player Pi gets integer xi  [-2∈ n , 2n ]

How much communication to decide ∑i≤k xi =0 with error 1%?



  

● k-player sum-equal (∑i ≤ k xi = 0?,  xi  [-2∈ n , 2n ])

● [Nisan] Player Pi communicates hash(xi) = xi mod p

Correctness by linearity: ∑i (xi mod p) = (∑i xi ) mod p

Need p = n Ω(1) 
  Ω(log n)-bit hashes

● This work: Use hash function analyzed by
   [Dietzfelbinger Hagerup Katajainen Penttonen]

hash(xi ) = “O(1) middle bits of R•xi,  R random odd”

Almost linear: ∑i ≤ k hash(xi) = hash(∑i ≤ k xi ) +/- k

O(1)-bit hashes



  

● [Nisan] Solving addition using sum-equal:

● At each node solve O(1) sum-equal,
to determine if sum of lower halves matters or not.

● Depth of tree = O(log n)

● Naively, for total error 1% need to solve each sum-equal
with error ≤ 1/log n  O( log n log log n) protocol

Addition
on n/2 bits

Addition
on n/2 bits

Addition
on n/2 bits

Addition
on n bits

     ...................    .....................   .........................



  

● [Nisan Safra] obtain O(log n) for k=2 players using
binary search with noise

● Exploits geometry not present for k > 2

● We show how to use binary search with noise for any k:
write sum-equal questions along a path as single question

Addition
on n/2 bits

Addition
on n/2 bits

Addition
on n/2 bits

Addition
on n bits

     ...................    .....................   .........................



  

Summary

2-player addition: Θ(log n), improves Smirnoff's '88 Ω(√log n)

k-player addition: Θ(log n), improves Nisan's '93 O(log2 n)

Useful for polynomal-threshold functions,

           complexity of pseudorandom functions,

[Dutta Pandurangan Rajaraman Sun V.]

                  multiplication



  

Open problems

● For large number k of players:

We show sum-equal mod p is Θ(k log k)

Over integers only know O(k log k), Ω(k)

● Recall for 2-player addition we gave O(log n) protocol
private-coin and explicit 

Not known for k > 2 players.

One approach would be to derandomize the hash function


