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Finite groups provide an amazing wealth of problems of interest to complexity theory. And
complexity theory also provides a useful viewpoint of group-theoretic notions, such as what it
means for a group to be “far from abelian.” The general problem that we consider in this survey
is that of computing a group product g = x1 · x2 · · · · · xt over a finite group G. Several variants
of this problem are considered in this survey and in the literature, including in [KMR66, Mix89,
BC92, IL95, BGKL03, PRS97, Amb96, AL00, Raz00, MV13, Mil14, GV].

Some specific, natural computational problems related to g are, from hardest to easiest:
(1) Computing g,
(2) Deciding if g = 1G, where 1G is the identity element of G, and
(3) Deciding if g = 1G under the promise that either g = 1G or g = h for a fixed h 6= 1G.
Problem (3) is from [MV13]. The focus of this survey is on (2) and (3).
We work in the model of communication complexity [Yao79], with which we assume familiarity.

For background see [KN97, RY19]. Briefly, the terms xi in a product x1 ·x2 ·· · ··xt will be partitioned
among collaborating parties – in several ways – and we shall bound the number of bits that the
parties need to exchange to solve the problem.

Organization.
We begin in Section 1 with two-party communication complexity. In Section 2 we give a stream-

lined proof, except for a step that is only sketched, of a result of Gowers and the author [GV] about
interleaved group products. In particular we present an alternative proof, communicated to us
by Will Sawin, of a lemma from [GV]. We then consider two models of multi-party communica-
tion. In Sections 3 and 4 we consider number-in-hand protocols, and we relate the communication
complexity to mixing in quasirandom groups [Gow08, BNP08]. In Section 5 we consider number-
on-forehead protocols. We briefly discuss interleaved group products and the corresponding result
of Gowers and the author [GV]. Then we consider the problem of separating deterministic and
randomized communication. In Section 6 we give an exposition of a result by Austin [Aus16], and
show that it implies a separation that matches the state-of-the-art [BDPW10] but applies to a
different problem.

Some of the sections follow closely a set of lectures by the author [Vio17]; related material can
also be found in the blog posts [Vio16a, Vio16b]. One of the goals of this survey is to present this
material in a more organized matter, in addition to including new material. The text is interspersed
with open problems; some are seemingly within reach, others are major and long-standing.

∗Supported by NSF CCF award 1813930.
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1 Two parties

Let G be a group and let us start by considering the following basic communication task. Alice
gets an element x ∈ G and Bob gets an element y ∈ G and their goal is to check if x · y = 1G. How
much communication do they need? Well, x · y = 1G is equivalent to x = y−1. Because Bob can
compute y−1 without communication, this problem is just a rephrasing of the equality problem,
which has a randomized protocol with constant communication. This holds for any group.

The same is true if Alice gets two elements x1 and x2 and they need to check if x1 · y · x2 = 1G.
Indeed, it is just checking equality of y and x−1

1 · x−1
2 , and again Alice can compute the latter

without communication.
Things get more interesting if both Alice and Bob get two elements and they need to check if

the interleaved product of the elements of Alice and Bob equals 1G, that is, if

x1 · y1 · x2 · y2 = 1G.

Now the previous transformations don’t help anymore. In fact, the complexity depends on the
group. If it is abelian then the elements can be reordered and the problem is equivalent to checking
if (x1 · x2) · (y1 · y2) = 1G. Again, Alice can compute x1 · x2 without communication, and Bob can
compute y1 ·y2 without communication. So this is the same problem as before and it has a constant
communication protocol.

For non-abelian groups this reordering cannot be done, and the problem seems hard. This
can be formalized for certain groups that are “far from abelian” – or we can take this result as a
definition of being far from abelian. One of the groups that works best in this sense is the following,
first constructed by Galois in the 1830’s.

Definition 1. The special linear group SL(2, q) is the group of 2× 2 invertible matrices over the
field Fq with determinant 1.

The following result was asked in [MV13] and was proved in [GV].

Theorem 2. Let G = SL(2, q) and let h 6= 1G. Suppose Alice receives x1, x2 ∈ G and Bob receives
y1, y2 ∈ G. They are promised that x1 · y1 · x2 · y2 either equals 1G or h. Deciding which case it is
requires randomized communication Ω(log |G|).

This bound is tight as Alice can send her input, taking O(log |G|) bits. Omitting a step, we
present the proof of this theorem in the next section.

Similar results are known for any simple group, see [GV] and [Sha16]. One such group that is
“between” abelian groups and SL(2, q) is the following.

Definition 3. The alternating group An is the group of even permutations of 1, 2, . . . , n.

If we work over An instead of SL(2, q) in Theorem 2 then the communication complexity is
Ω(log log |G|) [Sha16]. The latter bound is tight [MV13]: with knowledge of h, the parties can
agree on an element a ∈ {1, 2, . . . , n} such that h(a) 6= a. Hence they only need to keep track of
the image a. This takes communication O(log n) = O(log log |An|) because |An| = n!/2. In more
detail, the protocol is as follows. First Bob sends y2(a). Then Alice sends x2y2(a). Then Bob sends
y1x2y2(a) and finally Alice can check if x1y1x2y2(a) = a.

Interestingly, to decide if g = 1G without the promise a stronger lower bound can be proved for
many groups, including An, see Corollary 7 below.
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Theorem 2 and the corresponding results for other groups also scale with the length of the
product: for example deciding if x1 · y1 · x2 · y2 · · ·xt · yt = 1G over G = SL(2, q) requires communi-
cation Ω(t log |G|) which is tight. This is stated formally for the more general setting of multiparty
communication in Theorem 18 below.

Problem 4. Understand for which groups Theorem 2 applies. In particular, is the communication
large for every quasirandom group [Gow08]?

A strength of the above lower bounds is that they hold for any choice of h in the promise.
Moreover, they in fact hold even if the parties only achieve a slight advantage over random guessing.
This makes them equivalent to certain mixing results, discussed below in Section 4.1. Next we
prove other lower bounds that do not hold for any choice of h and can be obtained by reduction
from disjointness. First we show that for any non-abelian group G there exists an element h such
that deciding if g = 1G or g = h requires communication linear in the length of the product.
Interestingly, the proof works for any non-abelian group. The choice of h is critical, as for some
non-abelian G and h the problem is easy. For example: take any group G and consider H := G×Z2

where Z2 is the group of integers with addition modulo 2. Distinguishing between 1H = (1G, 0)
and h = (1G, 1) amounts to computing the parity of (the Z2 components of) the input, which takes
constant communication.

Theorem 5. Let G be a non-abelian group. There exists h ∈ G such that the following holds.
Suppose Alice receives x1, x2, . . . , xt and receives y1, y2, . . . , yt. They are promised that x1 · y1 · x2 ·
y2 · · · · · xt · yt either equals 1G or h. Deciding which case it is requires randomized communication
Ω(t).

Proof. We reduce from unique set-disjointness, defined below. For the reduction we encode the
And of two bits s, t ∈ {0, 1} as a group product. This encoding is similar to the famous puzzle that
asks to hang a picture on a wall with two nails in such a way that the picture falls if either nail
is removed. Since G is non-abelian, there exist a, b ∈ G such that a · b 6= b · a, and in particular
a · b · a−1 · b−1 = h with h 6= 1. We can use this fact to encode the And of s and t as

as · bt · a−s · b−t =

{
1 if And(s, t) = 0

h otherwise
.

In the disjointness problem Alice and Bob get inputs x, y ∈ {0, 1}t respectively, and they wish
to check if there exists an i ∈ [t] such that xi ∧ yi = 1. If you think of x, y as characteristic vectors
of sets, this problem is asking if the sets have a common element or not. The communication of
this problem is Ω(t) [KS92, Raz92]. Moreover, in the “unique” variant of this problem where the
number of such i’s is 0 or 1, the same lower bound Ω(t) still applies. This follows from [KS92, Raz92]
– see also Proposition 3.3 in [AMS99]. For more on disjointness see the surveys [She14, CP10].

We will reduce unique disjointness to group products. For x, y ∈ {0, 1}t we produce inputs for
the group problem as follows:

x→ (ax1 , a−x1 , . . . , axt , a−xt)

y → (by1 , b−y1 , . . . , byt , b−yt).
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The group product becomes

ax1 · by1 · a−x1 · b−y1︸ ︷︷ ︸
1 bit

· · · · · · axt · byt · a−xt · b−yt .

If there isn’t an i ∈ [t] such that xi ∧ yi = 1, then for each i the term axi · byi · a−xi · b−yi is 1G,
and thus the whole product is 1.

Otherwise, there exists a unique i such that xi ∧ yi = 1 and thus the product will be 1 · · · 1 ·
h · 1 · · · 1 = h, with h being in the i-th position. If Alice and Bob can check if the above product
is equal to 1, they can also solve the unique set disjointness problem, and thus the lower bound
applies for the former. �

We required the uniqueness property, because otherwise we might get a product hc that could
be equal to 1 in some groups.

Next we prove a result for products of length just 4; it applies to non-abelian groups of the form
G = Hn and not with the promise.

Theorem 6. Let H be a non-abelian group and consider G = Hn. Suppose Alice receives x1, x2

and Bob receives y1, y2. Deciding if x1 · y1 · x2 · y2 = 1G requires randomized communication Ω(n).

Proof. The proof is similar to the proof of Theorem 5. We use coordinate i of G to encode bit i of
the disjointness instance. If there is no intersection in the latter, the product will be 1G. Otherwise,
at least some coordinate will be 6= 1G. �

As a corollary we can prove a lower bound for An.

Corollary 7. Theorem 6 holds for G = An.

Proof. Note that An contains (A4)bn/4c and that A4 is not abelian. �

Theorem 6 is tight for constant-size H.

Problem 8. Is Corollary 7 tight? The trivial upper bound is O(log |An|) = O(n log n).

2 Proof of Theorem 2

Several related proofs of this theorem exist, see [GV15, GV, Sha16]. As in [GV], the proof that
we present can be broken down in three steps. First we reduce the problem to a statement about
conjugacy classes. Second we reduce this to a statement about trace maps. Third we prove the
latter. We present the first step in a way that is similar but slightly different from the presentation
in [GV]. The second step is only sketched, but relies on classical results about SL(2, q) and can be
found in [GV]. For the third we present a proof that was communicated to us by Will Sawin. We
thank him for his permission to include it here.
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2.1 Step 1

We would like to rule out randomized protocols, but it is hard to reason about them directly.
Instead, we are going to rule out deterministic protocols on random inputs. First, for any group
element g ∈ G we define the distribution on quadruples Dg := (x1, y1, x2, (x1 · y1 · x2)−1g), where
x1, y1, x2 ∈ G are uniformly random elements. Note the product of the elements in Dg is always g.

Towards a contradiction, suppose we have a randomized protocol P such that

P[P (D1) = 1] ≥ P[P (Dh) = 1] +
1

10
.

This implies a deterministic protocol with the same gap, by fixing the randomness.
We reach a contradiction by showing that for every deterministic protocol P using little com-

munication, we have

|Pr[P (D1) = 1]− Pr[P (Dh) = 1]| ≤ 1

100
.

We start with the following standard lemma, which describes a protocol using product sets.

Lemma 9. (The set of accepted inputs of) A deterministic c-bit protocol for a function f : X×Y →
Z can be written as a disjoint union of 2c rectangles, where a rectangle is a product set of the form
A×B with A ⊆ X and B ⊆ Y and where f is constant.

Proof. (sketch) For every communication transcript t, let St ⊆ G2 be the set of inputs giving
transcript t. The sets St are disjoint since an input gives only one transcript, and their number is
2c: one for each communication transcript of the protocol. The rectangle property can be proven
by induction on the protocol tree. �

Next, we show that any rectangle A × B cannot distinguish D1, Dh. The way we achieve this
is by showing that the probability that (A × B)(Dg) = 1 is roughly the same for every g, and is
roughly the density of the rectangle. (We write A × B for the characteristic function of the set
A×B.) Without loss of generality we set g = 1G. Let A have density α and B have density β. We
aim to bound above

|Ea1,b1,a2,b2:a1b1a2b2=1A(a1, a2)B(b1, b2)− αβ| ,

where note the distribution of a1, b1, a2, b2 is the same as D1.
Because the distribution of (b1, b2) is uniform in G2, the above can be rewritten as

|Eb1,b2B(b1, b2)Ea1,a2:a1b1a2b2=1(A(a1, a2)− α)|

≤
√
Eb1,b2B(b1, b2)2

√
Eb1,b2E2

a1,a2:a1b1a2b2=1(A(a1, a2)− α).

=
√
β
√
Eb1,b2,a1,a2,a′1,a′2:a1b1a2b2=a′1b1a

′
2b2=1A(a1, a2)A(a′1, a

′
2)− α2.

The inequality is Cauchy-Schwarz, and the step after that is obtained by expanding the square
and noting that (a1, a2) is uniform in G2, so that the expectation of the term A(a1, a2)α is α2.

Now we do several transformations to rewrite the distribution in the last expectation in a
convenient form. First, right-multiplying by b−1

2 we can rewrite the distribution as the uniform
distribution on tuples such that

a1b1a2 = a′1b1a
′
2.
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The last equation is equivalent to b−1
1 (a′1)−1a1b1a2 = a′2.

We can now set a′1 to be a1x
−1 to rewrite the distribution of the four-tuple as

(a1, a2, a1x
−1, C(x)a2)

where we use C(x) to denote a uniform element from the conjugacy class of x, that is b−1xb for a
uniform b ∈ G.

Hence it is sufficient to bound∣∣EA(a1, a2)A(a1x
−1, C(x)a2)− α2

∣∣ ,
where all the variables are uniform and independent.

With a similar derivation as above, this can be rewritten as∣∣EA(a1, a2)E(A(a1x
−1, C(x)a2)− α)

∣∣
≤
√

EA(a1, a2)2
√
Ea1,a2E2

x(A(a1x−1, C(x)a2)− α)

=
√
α
√
EA(a1x−1, C(x)a2)A(a1x′−1, C(x′)a2)− α2.

Here each occurrence of C denotes a uniform and independent conjugate. Hence it is sufficient
to bound ∣∣EA(a1x

−1, C(x)a2)A(a1x
′−1, C(x′)a2)− α2

∣∣ .
We can now replace a2 with C(x)−1a2. Because C(x)−1 has the same distribution of C(x−1), it

is sufficient to bound ∣∣EA(a1x
−1, a2)A(a1x

′−1, C(x′)C(x−1)a2)− α2
∣∣ .

For this, it is enough to show that with high probability 1 − 1/|G|Ω(1) over x and x′, the
distribution of C(x′)C(x−1), over the choice of the two independent conjugates, has statistical
distance ≤ 1/|G|Ω(1) from uniform.

2.2 Step 2

In this step we use information on the conjugacy classes of the group to reduce the latter task to
one about the equidistribution of the trace map. Let Tr be the Trace map:

Tr

(
a1 a2

a3 a4

)
= a1 + a4.

We state the lemma that we want to show.

Lemma 10. Let a :=

(
0 1
1 w

)
and b :=

(
v 1
1 0

)
. For all but O(1) values of w ∈ Fq and v ∈ Fq,

the distribution of
Tr
(
au−1bu

)
is O(1/q) close to uniform over Fq in statistical distance.
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To give some context, in SL(2, q) the conjugacy class of an element is essentially determined
by the trace. Moreover, we can think of a and b as generic elements in G. So the lemma can
be interpreted as saying that for typical a, b ∈ G, taking a uniform element from the conjugacy
class of b and multiplying it by a yields an element whose conjugacy class is uniform among the
classes of G. Using that essentially all conjugacy classes are equal, and some of the properties of
the trace map, one can show that the above lemma implies that for typical x, x′ the distribution of
C(x′)C(x−1) is close to uniform. For more on how this fits we refer the reader to [GV].

2.3 Step 3

We now present a proof of Lemma 10. The high-level argument of the proof is the same as in
[GV] (Lemma 5.5), but the details may be more accessible and in particular the use of the Lang-
Weil theorem [LW54] from algebraic geometry is replaced by a more elementary argument. For
simplicity we shall only cover the case where q is prime. We will show that for all but O(1) values
of v, w, c ∈ Fq, the probability over u that Tr(au−1bu) = c is within O(1/q2) of 1/q, and for the
others it is at most O(1/q). Summing over c gives the result.

We shall consider elements b whose trace is unique to the conjugacy class of b. (This holds for
all but O(1) conjugacy classes – see for example [GV] for details.) This means that the distribution
of u−1bu is that of a uniform element in G conditioned on having trace b. Hence, we can write the
probability that Tr(au−1bu) = c as the number of solutions in x to the following three equations
(divided by the size of the group, which is q3 − q):

x3 + x2 + wx4 = c (Tr(ax) = c),

x1 + x4 = v (Tr(x) = Tr(b)),

x1x4 − x3x3 = 1 (Det(x) = 1).

We use the second one to remove x1 and the first one to remove x2 from the last equation. This
gives

(v − x4)x4 − (c− x3 − wx4)x3 = 1.

This is an equation in two variables. Write x = x3 and y = x4 and use distributivity to rewrite
the equation as

−y2 + vy − cx+ x2 + wxy = 1.

At least since Lagrange it has been known how to reduce this to a Pell equation x2 + dy2 = e.
This is done by applying an invertible affine transformation, which does not change the number of
solutions. First set x = x− wy/2. Then the equation becomes

−y2 + vy − c(x− wy/2) + (x− wy/2)2 + w(x− wy/2)y = 1.

Equivalently, the cross-term has disappeared and we have

y2(−1− w2/4) + y(v + cw/2) + x2 − cx = 1.

Now one can add constants to x and y to remove the linear terms, changing the constant term.
Specifically, let h := (v + cw/2)/2 and set y = y − h and x = x+ c/2. The equation becomes

(y − h)2(−1− w2/4) + (y − h)2h+ (x+ c/2)2 − c(x+ c/2) = 1.
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The linear terms disappear, the coefficients of x2 and y2 do not change and the equation can
be rewritten as

y2(−1− w2/4) + h2(−1− w2/4)− 2h2 + x2 + (c/2)2 − c2/2 = 1.

So this is now a Pell equation
x2 + dy2 = e

where d := (−1− w2/4) and

e := 1 + h2(3 + w2/4) + (c/2)2 = 1 + (v2 + (cw/2)2 + cvw)(1/4)(3 + w2/4) + (c/2)2.

For all but O(1) values of w we have that d is non-zero. Moreover, for all but O(1) values of
v, w the term e is a non-zero polynomial in c. (Specifically, for any v 6= 0 and any w such that
3 + w2/4 6= 0.) So we only consider the values of c that make it non-zero. Those where e = 0 give
O(q) solutions, which is fine. We conclude with the following lemma.

Lemma 11. For d and e non-zero, and prime q, the number of solutions over Fq to the Pell
equation

x2 + dy2 = e

is within O(1) of q.

This is a basic result from algebraic geometry that can be proved from first principles.

Proof. If d = −f2 for some f ∈ Fq, then we can replace y with fy and we can count instead the
solutions to the equation

x2 − y2 = e.

Because x2 − y2 = (x − y)(x + y) we can set x′ := x − y and y′ := x + y, which preserves the
number of solutions, and rewrite the equation as

x′y′ = e.

Because e 6= 0, this has q − 1 solutions: for every non-zero y′ we have x′ = e/y′.
So now we can assume that d 6= −f2 for any f ∈ Fq. Because the number of squares is (q+1)/2,

the range of x2 has size (q + 1)/2. Similarly, the range of e − dy2 also has size (q + 1)/2. Hence
these two ranges intersect, and there is a solution (a, b).

We take a line passing through (a, b): for parameters s, t ∈ F we consider pairs (a + t, b + st).
There is a bijection between such pairs with t 6= 0 and the points (x, y) with x 6= a. Because the
number of solutions with x = a is O(1), using that d 6= 0, it suffices to count the solutions with
t 6= 0.

The intuition is that this line has two intersections with the curve x2 + dy2 = e. Because one
of them, (a, b), lies in Fq, the other has to lie as well there. Algebraically, we can plug the pair in
the expression to obtain the equivalent equation

a2 + t2 + 2at+ d(b2 + s2t2 + 2bst) = e.

Using that (a, b) is a solution this becomes

t2 + 2at+ ds2t2 + 2dbst = 0
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We can divide by t 6= 0. Obtaining

t(1 + ds2) + 2a+ 2dbs = 0.

We can now divide by 1 + ds2 which is non-zero by the assumption d 6= −f2. This yields

t = (−2a− 2dbs)/(1 + ds2).

Hence for every value of s there is a unique t giving a solution. This gives q solutions. �

3 Number-in-hand

In this section we consider the following three-party number-in-hand problem: Alice gets x ∈ G,
Bob gets y ∈ G, Charlie gets z ∈ G, and they want to know if x · y · z = 1G. The communication
depends on the group G. We present next two efficient protocols for abelian groups, and then a
communication lower bound for other groups.

3.1 A randomized protocol for the hypercube

We begin with the simplest setting. Let G = (Z2)n, that is n-bit strings with bit-wise addition
modulo 2. The parties want to check if x + y + z = 0n. They can do so as follows. First, they
pick a hash function h that is linear: h(x+ y) = h(x) + h(y). Specifically, for a uniformly random
a ∈ {0, 1}n define ha(x) :=

∑
aixi mod 2. Then, the protocol is as follows.

• Alice sends ha(x),

• Bob send ha(y),

• Charlie accepts if and only if ha(x) + ha(y) + ha(z) = 0.

The hash function outputs 1 bit, so the communication is constant. By linearity, the protocol
accepts iff ha(x + y + z) = 0. If x + y + z = 0 this is always the case, otherwise it happens with
probability 1/2.

3.2 A randomized protocol for ZN
This protocol is from [Vio14]. For simplicity we only consider the case N = 2n here – the protocol
for general N is in [Vio14]. Again, the parties want to check if x+y+z = 0 mod N . For this group,
there is no 100% linear hash function but there are almost linear hash functions h : ZN → Z2`

that satisfy the following properties. Note that the inputs to h are interpreted modulo N and the
outputs modulo 2`.

1. for all a, x, y there is c ∈ {0, 1} such that ha(x+ y) = ha(x) + ha(y) + c,

2. for all x 6= 0 we have Pa[ha(x) ∈ {−2,−1, 0, 1, 2}] ≤ O(1/2`),

3. ha(0) = 0.

Assuming some random hash function h that satisfies the above properties the protocol works
similarly to the previous one:
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• Alice sends ha(x),

• Bob sends ha(y),

• Charlie accepts if and only if ha(x) + ha(y) + ha(z) ∈ {−2,−1, 0}.

We set ` = O(1) to achieve constant communication. To prove correctness of the protocol, first
note that ha(x) + ha(y) + ha(z) = ha(x + y + z) − c for some c ∈ {0, 1, 2}. Then consider the
following two cases:

• if x+ y + z = 0 then ha(x+ y + z)− c = ha(0)− c = −c, and the protocol is always correct.

• if x+y+ z 6= 0 then the probability that ha(x+y+ z)− c ∈ {−2,−1, 0} for some c ∈ {0, 1, 2}
is at most the probability that ha(x + y + z) ∈ {−2,−1, 0, 1, 2}, which is ≤ 2−Ω(`); so the
protocol is correct with high probability.

The hash function..
For the hash function we can use one analyzed in [DHKP97]. Let a be a random odd number

modulo 2n. Define
ha(x) := (a · x� n− `) mod 2`

where the product a · x is integer multiplication, and � is bit-shift. In other words we output the
bits n− `+ 1, n− `+ 2, . . . , n of the integer product a · x.

We now verify that the above hash function family satisfies the three properties we required
above.

Property (3) is trivially satisfied.
For property (1), notice that if in the addition a · x+ a · y the carry into the n− `+ 1 bit is 0

then
(a · x� n− `) + (a · y � n− `) = (a · x+ a · y)� n− `;

otherwise
(a · x� n− `) + (a · y � n− `) + 1 = (a · x+ a · y)� n− `.

This concludes the proof for property (1).
Finally, we prove property (2). We start by writing x = s · 2c where s is odd. So the binary

representation of x looks like
(· · · · · · 1 0 · · · 0︸ ︷︷ ︸

c bits

).

The binary representation of the product a · x for a uniformly random a looks like

(uniform 1 0 · · · 0︸ ︷︷ ︸
c bits

).

We consider the two following cases for the product a · x:

1. If a · x = (uniform 1

2 bits︷︸︸︷
00︸ ︷︷ ︸

` bits

· · · 0), or equivalently c ≥ n − ` + 2, the output never lands in the

bad set {−2,−1, 0, 1, 2};

2. Otherwise, the hash function output has `−O(1) uniform bits. For any set B, the probability
that the output lands in B is at most |B| · 2−`+O(1).
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3.3 Quasirandom groups

What happens in other groups? The hash function used in the previous result was fairly non-
trivial. Do we have an almost linear hash function for 2 × 2 matrices? The answer is negative.
For SL2(q) and An the problem is hard, even under the promise. For a group G the complexity
can be expressed in terms of a parameter d which comes from representation theory. We will not
formally define this parameter here, but several qualitatively equivalent formulations can be found
in [Gow08]. Instead the following table shows the d’s for the groups we’ve introduced.

G : abelian An SL2(q)

d : 1 Ω( log |G|
log log |G|) |G|Ω(1) .

Theorem 12. Let G be a group, and let h 6= 1G. Let d be the minimum dimension of any
irreducible representation of G. Suppose Alice, Bob, and Charlie receive x, y, and z respectively.
They are promised that x · y · z either equals 1G or h. Deciding which case it is requires randomized
communication complexity Ω(log d).

This result is tight for the groups we have discussed so far. The arguments are the same as
before. Specifically, for SL2(q) the communication is Ω(log |G|). This is tight up to constants,
because Alice and Bob can send their elements. For An the communication is Ω(log log |G|). This
is tight as well, as the parties can again just communicate the images of an element a such that
h(a) 6= a, as discussed in Section 2. This also gives a computational proof that d cannot be too large
for An, i.e., it is at most (log |G|)O(1). For abelian groups we get nothing, matching the efficient
protocols given above.

Problem 13. Is Theorem 12 tight for every group? For the upper bounds, can we always find a
protocol that works even without the promise?

4 Proof of Theorem 12

First we discuss several “mixing” lemmas for groups, then we come back to protocols and see how
to apply one of them there.

4.1 mixing

We want to consider “high entropy” distributions over G, and state a fact showing that the multipli-
cation of two such distributions “mixes” or in other words increases the entropy. To define entropy

we use the norms ‖A‖c = (
∑

xA(x)c)
1
c . Our notion of (non-)entropy will be ‖A‖2. Note that ‖A‖22

is exactly the collision probability P[A = A′] where A′ is independent and identically distributed
to A. The smaller this quantity, the higher the entropy of A. For the uniform distribution U we
have ‖U‖22 = 1/|G| and so we can think of 1/|G| as maximum entropy. If A is uniform over Ω(|G|)
elements, we have ‖A‖22 = O(1/|G|) and we think of A as having “high” entropy.

Because the entropy of U is small, we can think of the distance between A and U in the 2-norm
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as being essentially the entropy of A:

‖A− U‖22 =
∑
x∈G

(
A(x)− 1

|G|

)2

=
∑
x∈G

A(x)2 − 2A(x)
1

|G|
+

1

|G|2

= ‖A‖22 −
1

|G|
= ‖A‖22 − ‖U‖22
≈ ‖A‖22.

Lemma 14. [Gow08, BNP08] If X,Y are independent over G, then

‖X · Y − U‖2 ≤ ‖X‖2‖Y ‖2

√
|G|
d
,

where d is the minimum dimension of an irreducible representation of G.

By this lemma, for high entropy distributions X and Y , we get ‖X · Y − U‖2 ≤ O(1)√
|G|d

. The

factor 1/
√
|G| allows us to pass to statistical distance ‖.‖1 using Cauchy-Schwarz:

‖X · Y − U‖1 ≤
√
|G|‖X · Y − U‖2 ≤

O(1)√
d
. (1)

This is the way in which we will use the lemma.
Another useful consequence of this lemma, which however we will not use directly, is this.

Suppose now you have three independent, high-entropy variables X,Y, Z. Then for every g ∈ G
we have

|P[X · Y · Z = g]− 1/|G|| ≤ ‖X‖2‖Y ‖2‖Z‖2

√
|G|
d
. (2)

To show this, set g = 1G without loss of generality and rewrite the left-hand-side as

|
∑
h∈G

P[X = h](P[Y Z = h−1]− 1/|G|)|.

By Cauchy-Schwarz this is at most√∑
h

P2[X = h]

√∑
h

(P[Y Z = h−1]− 1/|G|)2 = ‖X‖2‖Y Z − U‖2

and we can conclude by Lemma 14. Hence the product of three high-entropy distributions is close
to uniform in a point-wise sense: each group element is obtained with probability roughly 1/|G|.

At least over SL(2, q), there exists an alternative proof of this fact that does not mention
representation theory (see [GV] and [Vio16a, Vio16b]).

With this notation in hand, we conclude by stating a “mixing” version of Theorem 1. For more
on this perspective we refer the reader to [GV].
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Theorem 15. Let G = SL(2, q). Let X = (X1, X2) and Y = (Y1, Y2) be two distributions over G2.
Suppose X is independent from Y . Let g ∈ G. We have

|P[X1Y1X2Y2 = g]− 1/|G|| ≤ |G|1−Ω(1)‖X‖2‖Y ‖2.

For example, when X and Y have high entropy over G2 (that is, are uniform over Ω(|G|2) pairs),
we have ‖X‖2 ≤

√
O(1)/|G|2, and so |G|1−Ω(1)‖X‖2‖Y ‖2 ≤ 1/|G|1+Ω(1). In particular, X1Y1X2Y2

is 1/|G|Ω(1) close to uniform over G in statistical distance.

4.2 Back to protocols

As in the beginning of Section 2, for any group element g ∈ G we define the distribution on triples
Dg := (x, y, (x · y)−1g), where x, y ∈ G are uniform and independent. Note that the product of the
elements in Dg is always g. Again as in Section 2, it suffices to show that for every deterministic
protocols P using little communication we have

|Pr[P (D1) = 1]− Pr[P (Dh) = 1]| ≤ 1

100
.

Analogously to Lemma 9, the following lemma describes a protocol using rectangles. The proof
is nearly identical and is omitted.

Lemma 16. (The set of accepted inputs of) A deterministic c-bit number-in-hand protocol with
three parties can be written as a disjoint union of 2c rectangles, that is product sets of the form
A×B × C.

Next we show that these product sets cannot distinguish these two distributions D1, Dh, via a
straightforward application of lemma 14.

Lemma 17. For all A,B,C ⊆ G we have |P(A× B × C)(D1) = 1]− P[(A× B × C)(Dh) = 1]| ≤
1/dΩ(1).

Proof. For any h ∈ G we have

P[(A×B × C)(Dh) = 1] = P[(x, y) ∈ A×B] · P[(x · y)−1 · h ∈ C|(x, y) ∈ A×B], (3)

where (x, y) is uniform in G2. If either A or B is small, that is P[x ∈ A] ≤ ε or P[y ∈ B] ≤ ε, then
also P[(x, y) ∈ A × B] ≤ ε and hence (3) is at most ε as well. This holds for every h, so we also
have |P(A×B × C)(D1) = 1]− P[(A×B × C)(Dh) = 1]| ≤ ε. We will choose ε later.

Otherwise, A and B are large: P[x ∈ A] > ε and P[y ∈ B] > ε. Let (x′, y′) be the distribution of
(x, y) conditioned on (x, y) ∈ A×B. We have that x′ and y′ are independent and each is uniform

over at least ε|G| elements. By Lemma 14 this implies ‖x′ · y′ − U‖2 ≤ ‖x′‖2 · ‖y′‖2 ·
√
|G|
d , where

U is the uniform distribution. As mentioned after the lemma, by Cauchy–Schwarz we obtain

‖x′ · y′ − U‖1 ≤ |G| · ‖x′‖2 · ‖y′‖2 ·
√

1

d
≤ 1

ε
· 1√

d
,

where the last inequality follows from the fact that ‖x‖2, ‖y‖2 ≤
√

1
ε|G| .
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This implies that ‖(x′ · y′)−1 − U‖1 ≤ 1
ε ·

1√
d

and ‖(x′ · y′)−1 · h− U‖1 ≤ 1
ε ·

1√
d
, because taking

inverses and multiplying by h does not change the distance to uniform. These two last inequalities
imply that

|P[(x′ · y′)−1 ∈ C]− P[(x′ · y′)−1 · h ∈ C]| ≤ O(
1

ε
√
d

);

and thus we get that

|P[(A×B × C)(D1) = 1]− P[(A×B × C)(Dh) = 1]| ≤ O(
1

ε
√
d

).

Picking ε = 1/d1/4 completes the proof. �

Returning to arbitrary deterministic protocols P (as opposed to rectangles), write P as a union
of 2c disjoint rectangles by Lemma 16. Applying Lemma 17 and summing over all rectangles we
get that the distinguishing advantage of P is at most 2c/d1/4. For c ≤ (1/100) log d the advantage
is at most 1/100, concluding the proof.

5 Number-on-forehead

In number-on-forehead (NOH) communication complexity [CFL83] with k parties, the input is a
k-tuple (x1, . . . , xk) and each party i sees all of it except xi. The seminal work [BNS92] proved
lower bounds when k is logarithmic in the input length, and it remains a major open problem to
prove lower bounds for larger k.

Theorem 2 can be extended to the multiparty setting as follows (enabling an application in
cryptography from [MV13], where the question is asked).

Theorem 18. Let G = SL(2, q) and let h 6= 1G. Let M be a k×t matrix of elements of G. Suppose
party i = 1, 2, . . . ,k knows all rows except row i. Let g be the product of the entries of M column
by column: g =

∏t
j=1Mj,1Mj,2 · · ·Mj,k. Suppose the parties are promised that g either equals 1G

or h. Deciding which case it is requires randomized communication ≥ t/b2
k

log |G| for all t ≥ b2
k

where b is a universal constant.

In particular, for every fixed k the communication is Ω(log |G|), which is tight. The lower bound
above is only meaningful when k is doubly-logarithmic in t.

Problem 19. Is there a lower bound with k logarithmic in t? More ambitiously, is there a lower
bound with k super-logarithmic in t? We know of no non-trivial upper bounds. For k = 3, what is
the smallest t for which lower bounds hold? The proof in [GV] gives a large constant for t. Does
t = 2 suffice?

The proof of Theorem 18 is obtained from the following mixing result. Let X be a probability
distribution on Gm such that any two coordinates are uniform in G2. Then, a pointwise product
of s independent copies of X is nearly uniform in Gm, where s depends on m only. Again, such a
result is false for abelian groups. For more on this proof we refer the reader to [GV].

In the remainder of this survey we shall instead focus on the problem of separating determin-
istic and randomized communication. For k = 2, we know the optimal separation: The equality
function requires Ω(n) communication for deterministic protocols, but can be solved using O(1)
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communication if we allow the protocols to use randomness. (Randomness is public, here and else-
where in this survey.) For k = 3, the best known separation between deterministic and randomized
protocol is Ω(log n) vs O(1) [BDPW10]. In the following we give a new proof of this result, for a
different function: f(x, y, z) = 1G if and only if x · y · z = 1 for x, y, z ∈ SL(2, q). As is true for
some functions in [BDPW10], a stronger separation could hold for f . For context, let us state and
prove the upper bound for randomized communication.

Claim 20. f has randomized communication complexity O(1).

Proof. In the number-on-forehead model, computing f reduces to two-party equality with no addi-
tional communication: Alice computes y ·z =: w privately, then Alice and Bob check if x = w−1. �

To prove the lower bound for deterministic protocols we reduce the communication problem to
a combinatorial problem.

Definition 21. A corner in a group G is a set {(x, y), (xz, y), (x, zy)} ⊆ G2, where x, y are arbitrary
group elements and z 6= 1G.

For intuition, if G is the abelian group of real numbers with addition, a corner becomes
{(x, y), (x + z, y), (x, y + z)} for z 6= 0, which are the coordinates of an isosceles triangle. We
now state the theorem that connects corners and lower bounds.

Lemma 22. Let G be a group and δ a real number. Suppose that every subset A ⊆ G2 with
|A|/|G2| ≥ δ contains a corner. Then the deterministic communication complexity of f (defined as
f(x, y, z) = 1 ⇐⇒ x · y · z = 1G) is Ω(log(1/δ)).

Proof. We saw already twice that a number-in-hand c-bit protocol can be written as a disjoint
union of 2c rectangles (Lemmas 9, 16). Likewise, a number-on-forehead c-bit protocol P can be
written as a disjoint union of 2c cylinder intersections Ci := {(x, y, z) : fi(y, z)gi(x, z)hi(x, y) = 1}
for some fi, gi, hi : G

2 → {0, 1}:

P (x, y, z) =

2c∑
i=1

fi(y, z)gi(x, z)hi(x, y).

The proof idea of the above fact is to consider the 2c transcripts of P , then one can see that the
inputs giving a fixed transcript are a cylinder intersection.

Let P be a c-bit protocol. Consider the inputs {(x, y, (xy)−1)} on which P accepts. Note
that at least a 2−c fraction of them are accepted by some cylinder intersection C = f · g · h. Let
A := {(x, y) : (x, y, (xy)−1) ∈ C} ⊆ G2. Since the first two elements in the tuple determine the
last, we have |A|/|G2| ≥ 2−c.

Now suppose A contains a corner {(x, y), (xz, y), (x, zy)}. Then

(x, y) ∈ A =⇒ (x, y, (xy)−1) ∈ C =⇒ h(x, y) = 1,

(xz, y) ∈ A =⇒ (xz, y, (xzy)−1) ∈ C =⇒ f(y, (xyz)−1) = 1,

(x, zy) ∈ A =⇒ (x, zy, (xzy)−1) ∈ C =⇒ g(x, (xyz)−1) = 1.

This implies (x, y, (xzy)−1) ∈ C, which is a contradiction because z 6= 1 and so x · y · (xzy)−1 6=
1G. �
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It is known that δ ≥ 1/polyloglog|G| implies a corner for certain abelian groups G, see [LM07]
for the best bound and pointers to the history of the problem. For G = SL(2, q) a stronger result,
presented in the next section, is known: δ ≥ 1/polylog|G| implies a corner [Aus16]. This in turn
implies communication Ω(log log |G|) = Ω(logn).

Problem 23. Does δ ≥ 1/|G|Ω(1) imply a corner for some group G? This would give the optimal
separation.

6 The corners theorem for quasirandom groups

In this section we prove the corners theorem for quasirandom groups, following Austin [Aus16]. Our
exposition has several minor differences with that in [Aus16], which may make it more computer-
science friendly. Possibly a proof can also be obtained via certain local modifications and simpli-
fications of Green’s exposition [Gre05b, Gre05a] of an earlier proof for the abelian case. We focus
on the case G = SL(2, q) for simplicity, but the proof immediately extends to other quasirandom
groups (with corresponding parameters).

Theorem 24. Let G = SL(2, q). Every subset A ⊆ G2 of density |A|/|G|2 ≥ 1/ logα |G| contains a
corner, where α > 0 is a universal constant.

6.1 Proof idea

For intuition, suppose A is a rectangle, i.e., A = B × C for B,C ⊆ G. Let’s look at the quantity

Ex,y,z←G[A(x, y)A(xz, y)A(x, zy)]

where A(x, y) = 1 iff (x, y) ∈ A. Note that the random variable in the expectation is equal to 1
exactly when {(x, y), (xz, y), (x, zy)} ⊆ A. However, z could be 1, which cannot be the case for a
corner. We’ll show that this expectation is greater than 1/|G|, which implies that A does contain
a corner, that is, a set {(x, y), (xz, y), (x, zy)} with z 6= 1. Since we are taking A = B × C, we can
rewrite the above quantity as

Ex,y,z←G[B(x)C(y)B(xz)C(y)B(x)C(zy)] = Ex,y,z←G[B(x)C(y)B(xz)C(zy)]

= Ex,y,z←G[B(x)C(y)B(z)C(x−1zy)]

where the last line follows by replacing z with x−1z in the uniform distribution. If |A|/|G|2 ≥ δ,
then both |B|/|G|≥ δ and |B|/|G| ≥ δ. Condition on x ∈ B, y ∈ C, z ∈ B. Then the distribution
x−1zy is a product of three independent distributions, each uniform on a set of density ≥ δ. (In
fact, two distributions would suffice for what follows.) By Lemma 14, x−1zy is δ−1/|G|Ω(1) close to
uniform in statistical distance. This implies that the above expectation equals

|A|
|G|2

· |B|
|G|
·
(
|C|
|G|
± δ−1

|G|Ω(1)

)
≥ δ2

(
δ − 1

|G|Ω(1)

)
≥ δ3/2 > 1/|G|,

for δ > 1/|G|c for a small enough constant c. Hence, rectangles of density polynomial in 1/|G|
contain corners.

Given the above, it is natural to try to decompose an arbitrary set A into rectangles. We will
make use of a more general result.
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6.2 Weak regularity lemma

Let U be some universe (we will take U = G2) and let f : U → [−1, 1] be a function (for us, f = 1A).
Let D ⊆ {d : U → [−1, 1]} be some set of functions, which can be thought of as “easy functions”
or “distinguishers” (these will be rectangles or closely related to them). The next theorem shows
how to decompose f into a linear combination g of the di up to an error which is polynomial in the
length of the combination. More specifically, f will be indistinguishable from g by the di.

Lemma 25. Let f : U → [−1, 1] be a function and D ⊆ {d : U → [−1, 1]} a set of functions. For
all ε > 0, there exists a function g :=

∑
i≤s ci · di where di ∈ D, ci ∈ R and s = 1/ε2 such that for

all d ∈ D
|Ex←U [f(x) · d(x)]− Ex←U [g(x) · d(x)]| ≤ ε.

A different way to state the conclusion, which we will use, is to say that we can write f = g+h
so that E[h(x) · d(x)] is small.

The lemma is due to Frieze and Kannan [FK96], see also [RTTV08, Gow10, Skó17]. It is called
“weak” because it came after Szemerédi’s regularity lemma, which has a stronger distinguishing
conclusion. However, the lemma is also “strong” in the sense that Szemerédi’s regularity lemma
has s as a tower of 1/ε whereas here we have s polynomial in 1/ε. The weak regularity lemma is
also simpler. There also exists a proof [Tao17] of Szemerédi’s theorem (on arithmetic progressions),
which uses weak regularity as opposed to the full regularity lemma used initially.

Proof. We will construct the approximation g through an iterative process producing functions
g0, g1, . . . , g. We will show that ||f − gi||22 decreases by ≥ ε2 each iteration.

Start: Define g0 = 0 (which can be realized setting c0 = 0).
Iterate: If not done, there exists d ∈ D such that |E[(f − g) · d]| > ε. Assume without loss of

generality E[(f − g) · d] > ε.
Update: g′ := g + λd where λ ∈ R shall be picked later. Let us analyze the progress made by

the algorithm. We have

||f − g′||22 = Ex[(f − g′)2(x)]

= Ex[(f − g − λd)2(x)]

= Ex[(f − g)2] + Ex[λ2d2(x)]− 2Ex[(f − g) · λd(x)]

≤ ||f − g||22 + λ2 − 2λEx[(f − g)d(x)]

≤ ||f − g||22 + λ2 − 2λε

≤ ||f − g||22 − ε2,

where the last line follows by taking λ = ε. Therefore, there can only be 1/ε2 iterations because
||f − g0||22 = ||f ||22 ≤ 1. �

6.3 Getting more for rectangles

Returning to the main proof, we will use the weak regularity lemma to approximate the indicator
function of an arbitrary set A by rectangles. That is, we take D to be the collection of indicator
functions for all sets of the form S × T for S, T ⊆ G. The weak regularity lemma shows how to
decompose A into a linear combination of rectangles. These rectangles may overlap. However, we
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ideally want A to be a linear combination of non-overlapping rectangles. In other words, we want
a partition of rectangles. It is possible to achieve this at the price of exponentiating the number of
rectangles. Note that an exponential loss is necessary even if S = G in every S × T rectangle; or
in other words in the uni-dimensional setting. This is one step where the terminology “rectangle”
may be misleading – the set T is not necessarily an interval. If it was, a polynomial rather than
exponential blow-up would have sufficed to remove overlaps.

Claim 26. Given a decomposition of A into rectangles from the weak regularity lemma with s
functions, there exists a decomposition with 2O(s) rectangles which don’t overlap.

Proof. Exercise. �

In the above decomposition, note that it is natural to take the coefficients of rectangles to be
the density of points in A that are in the rectangle. This gives rise to the following claim.

Claim 27. The weights of the rectangles in the above claim can be the average of f in the rectangle,
at the cost of doubling the error.

Consequently, we have that f = g + h, where g is the sum of 2O(s) non-overlapping rectangles
S × T with coefficients P(x,y)∈S×T [f(x, y) = 1].

Proof. Let g be a partition decomposition with arbitrary weights. Let g′ be a partition decomposi-
tion with weights being the average of f . It is enough to show that for all rectangle distinguishers
d ∈ D

|E[(f − g′)d]| ≤ |E[(f − g)d]|.

By the triangle inequality, we have that

|E[(f − g′)d]| ≤ |E[(f − g)d]|+ |E[(g − g′)d]|.

To bound E[(g − g′)d]|, note that the error is maximized for a d that respects the decomposition
in non-overlapping rectangles, i.e., d is the union of some non-overlapping rectangles from the
decomposition. This can be argued using that, unlike f , the value of g and g′ on a rectangle S×T
from the decomposition is fixed. But, from the point of “view” of such d, g′ = f ! More formally,
E[(g − g′)d] = E[(g − f)d], which concludes the proof. �

We need to get still a little more from this decomposition. In our application of the weak
regularity lemma above, we took the set of distinguishers to be characteristic functions of rectangles.
That is, distinguishers that can be written as U(x) · V (y) where U and V map G → {0, 1}. We
will use that the same guarantee holds for U and V with range [−1, 1], up to a constant factor
loss in the error. Indeed, let U and V have range [−1, 1]. Write U = U+ − U− where U+ and U−
have range [0, 1], and the same for V . The error for distinguisher U · V is at most the sum of the
errors for distinguishers U+ · V+, U+ · V−, U− · V+, and U− · V−. So we can restrict our attention
to distinguishers U(x) · V (y) where U and V have range [0, 1]. In turn, a function U(x) with range
[0, 1] can be written as an expectation EaUa(x) for functions Ua with range {0, 1}, and the same
for V . We conclude by observing that

Ex,y[(f − g)(x, y)EaUa(x) · EbVb(y)] ≤ max
a,b

Ex,y[(f − g)(x, y)Ua(x) · Vb(y)].
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6.4 Proof

Let us now finish the proof by showing a corner exists for sufficiently dense sets A ⊆ G2. We’ll
use three types of decompositions for f : G2 → {0, 1}, with respect to the following three types of
distinguishers, where Ui and Vi have range {0, 1}:

1. U1(x) · V1(y),

2. U2(xy) · V2(y),

3. U3(x) · V3(xy).

The first type is just rectangles, what we have been discussing until now. The distinguishers in
the last two classes can be visualized over R2 as parallelograms with a 45-degree angle. The same
extra properties we discussed for rectangles can be verified for them too.

Write f for the characteristic function of A. Recall that we want to show

Ex,y,g[f(x, y)f(xg, y)f(x, gy)] >
1

|G|
.

We’ll decompose the i-th occurrence of f via the i-th decomposition listed above. We’ll write this
decomposition as f = gi+hi. We apply this in a certain order to produce sums of products of three
functions. The inputs to the functions don’t change, so to avoid clutter we do not write them, and it
is understood that in each product of three functions the inputs are, in order (x, y), (xg, y), (x, gy).
The decomposition is:

fff

=ffg3 + ffh3

=fg2g3 + fh2g3 + ffh3

=g1g2g3 + h1g2g3 + fh2g3 + ffh3.

We first show that the expectation of the first term is big. This takes the next two claims. Then
we show that the expectations of the other terms are small.

Claim 28. For all g ∈ G, the expectations Ex,y[g1(x, y)g2(xg, y)g3(x, gy)] are the same up to
2O(s)/|G|Ω(1).

Proof. We just need to get error 1/|G|Ω(1) for any product of three functions from the three de-
composition types. We have:

Ex,y[c1U1(x)V1(y) · c2U2(xgy)V2(y) · c3U3(x)V3(xgy)]

=c1c2c3Ex,y[(U1 · U3)(x)(V1 · V2)(y)(U2 · V3)(xgy)]

=c1c2c3 · Ex[(U1 · U3)(x)] · Ey[(V1 · V2)(y)] · Ez[(U2 · V3)(z)]± 1

|G|Ω(1)
.

This is similar to what we discussed in the overview, and is where we use mixing. Specifically,
if Ex[(U1 · U3)(x)] or Ey[(V1 · V2)(y)] are at most 1/|G|c for a small enough constant c than we are
done. Otherwise, conditioned on (U1 · U3)(x) = 1, the distribution on x is uniform over a set of
density 1/|G|c, and the same holds for y, and the result follows by Lemma 14. �
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Recall that we start with a set of density ≥ 1/ logα |G|.
Claim 29. Ex,y[g1(x, y)g2(x, y)g3(x, y)] > 1/ log4α |G|.

Proof. We will relate the expectation over x, y to f using the Hölder inequality: For random
variables X1, X2, . . . , Xk,

E[X1 . . . Xk] ≤
k∏
i=1

E[Xci
i ]1/ci such that

∑
1/ci = 1.

To apply this inequality in our setting, write

f = (f · g1g2g3)1/4 ·
(
f

g1

)1/4

·
(
f

g2

)1/4

·
(
f

g3

)1/4

.

By the Hölder inequality the expectation of the right-hand side is

≤ E[f · g1g2g3]1/4E
[
f

g1

]1/4

E
[
f

g2

]1/4

E
[
f

g3

]1/4

.

The last three terms equal to 1 because

Ex,y
f(x, y)

gi(x, y)
= Ex,y

f(x, y)

Ex′,y′∈Cell(x,y)[f(x′, y′)]
= Ex,y

Ex′,y′∈Cell(x,y)[f(x′, y′)]

Ex′,y′∈Cell(x,y)[f(x′, y′)]
= 1.

where Cell(x, y) is the set in the partition that contains (x, y). Putting the above together we
obtain

E[f ] ≤ E[f · g1g2g3]1/4.

Finally, because the functions are positive, we have that E[f · g1g2g3]1/4 ≤ E[g1g2g3]1/4. This
concludes the proof. �

It remains to show the other terms are small. Let ε be the error in the weak regularity lemma
with respect to distinguishers with range {0, 1}. Recall that this implies error O(ε) with respect
to distinguishers with range [−1, 1]. We give the proof for one of the terms and then we say little
about the other two.

Claim 30. |E[f(x, y)f(xg, y)h3(x, gy)]| ≤ O(ε)1/4.

The proof involves changing names of variables and doing Cauchy-Schwarz to remove the terms
with f and bound the expectation above by E[h3(x, g)U(x)V (xg)], which is small by the regularity
lemma (with Type 3 decomposition).

Proof. Replace g with gy−1 in the uniform distribution to get

E4
x,y,g[f(x, y)f(xg, y)h3(x, gy)]

= E4
x,y,g[f(x, y)f(xgy−1, y)h3(x, g)]

= E4
x,y[f(x, y)Eg[f(xgy−1, y)h3(x, g)]]

≤ E2
x,y[f

2(x, y)]E2
x,yE2

g[f(xgy−1, y)h3(x, g)]

≤ E2
x,yE2

g[f(xgy−1, y)h3(x, g)]

= E2
x,y,g,g′ [f(xgy−1, y)h3(x, g)f(xg′y−1, y)h3(x, g′)],
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where the first inequality is by Cauchy-Schwarz.
Now replace g → x−1g, g′ → x−1g and reason in the same way:

= E2
x,y,g,g′ [f(gy−1, y)h3(x, x−1g)f(g′y−1, y)h3(x, x−1g′)]

= E2
g,g′,y[f(gy−1, y) · f(g′y−1, y)Ex[h3(x, x−1g) · h3(x, x−1g′)]]

≤ Ex,x′,g,g′ [h3(x, x−1g)h3(x, x−1g′)h3(x′, x′−1g)h3(x′, x′−1g′)].

Replace g → xg to rewrite the expectation as

E[h3(x, g)h3(x, x−1g′)h3(x′, x′−1xg)h3(x′, x′−1g′)].

We want to view the last three terms as a distinguisher U(x) · V (xg). First, note that h3 has
range [−1, 1]. This is because h3(x, y) = f(x, y) − Ex′,y′∈Cell(x,y)f(x′, y′) and f has range {0, 1},
where recall that Cell(x, y) is the set in the partition that contains (x, y). Fix x′, g′. The last term
in the expectation becomes a constant c ∈ [−1, 1]. The second term only depends on x, and the
third only on xg. Hence for appropriate functions U and V with range [−1, 1] this expectation can
be rewritten as

E[h3(x, g)U(x)V (xg)],

which concludes the proof. �

There are similar proofs to show that the remaining terms are small, see [Aus16]. For fh2g3,
we can perform simple manipulations and then reduce to the above case. For h1g2g3, we have a
slightly easier proof than above.

To conclude the proof, suppose our set has density δ ≥ 1/ logα |G|, and the error in the regularity
lemma is ε. By the above results we can bound

Ex,y,g[f(x, y)f(xg, y)f(x, gy)] ≥ 1/ log4α |G| − 2O(1/ε2)/|G|Ω(1) − εΩ(1),

where the terms in the right-hand size come, left-to-right, from Claim 29, 28, and 30. Picking
ε = 1/ log1/3 |G| the proof is completed for sufficiently small α.
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groups. In ACM-SIAM Symp. on Discrete Algorithms (SODA), pages 248–257, 2008.
(document), 14
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