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Abstract

We exhibit a pseudorandom generator with nearly quadratic stretch for randomized
Turing machines, which have a one-way random tape and a two-way work tape. This
is the first generator for this model. Its stretch is essentially the best possible given
current lower bounds. We use the generator to prove a time lower bound in the above
Turing machine model extended with a two-way read-only input tape. The lower bound
is of the form n1+Ω(1) and is for a function computable in linear time with two quantifier
alternations. Previously lower bounds were not known even for functions computable
in exponential time E = Time(2O(n)).

Turing’s machines (TMs) are one of the most studied models of computation. More than
fifty years ago, Hennie proved quadratic lower bounds [Hen65] for solving simple problems
on one-tape TMs. While this remains the best time lower bound for one-tape machines,
lower bounds for stronger models have been established in many papers including [PPST83,
Maa85, MS87, KS92, San01, vMR05, Wil06], some of which are discussed below.

In 1994, Impagliazzo, Nisan, and Wigderson constructed a pseudorandom generator
[INW94] that fools one-tape TMs. More precisely they show how to efficiently map a seed
of length O(

√
t) into a string of length t that cannot be distinguished from uniform by a

one-tape Turing machine running in time t.
However their result does not apply to randomized Turing machines, which can “toss

coins.” The model in [INW94] corresponds to randomized machines that begin by filling the
tape with coin tosses in a one-way fashion, and then operate deterministically. By contrast,
randomized machines can toss coins at any time during a computation. Equivalently, we
can think of randomized machines as having an extra one-way tape with random bits on it.
Note that in [INW94] the Turing machine receives the output of the generator on its (only)
tape. A randomized machine instead receives it on a separate tape. This allows the machine
to perform several tasks in linear time, such as copying the random bits on the work tape
in reverse order, comparing the first half of the random bits with the second half, etc. All
of these operations require quadratic time on a basic one-tape machine. And in fact, an
instantiation of the [INW94] generator can be broken by a randomized TM (see Section 4).

In this paper we give the first generator for randomized TMs. Since there are several
variants of TMs let us first define the model precisely and then state our result.

∗Supported by NSF CCF awards 1813930 and 2114116.

1



Definition 1. A randomized Turing machine (RTM) is a Turing machine with two tapes:
- A two-way, read-write work tape,
- and a one-way random tape.

Theorem 2. There are explicit pseudorandom generators with seed length O(
√
t log3 t log q)

and error ε = (tq)−
√
t that fool RTMs with q states running in time t. That is, no such RTM

can tell whether its random tape is filled with uniform bits or with the output of the generator
on a uniform seed, except with advantage ε.

The seed length is, up to the polylogarithmic factors, the best possible short of proving
super-quadratic lower bounds for TMs.

One motivation for constructing pseudorandom generators is proving lower bounds for
stronger models. The RTM model above is the natural randomized extension of the basic
one-tape machine model. Now we consider a different model to extend: Turing machines
with a work tape and a two-way read-only input tape. This is one of the strongest models
for which we can prove lower bounds. Time lower bounds of the form n1+Ω(1) were shown
in [MS87, vMR05, Wil06]. The question of extending these lower bounds to hold even for
randomized machines was asked by several authors. In particular it was asked in [Vio06,
Vio09] (by the author), where lower bounds for an intermediate model are proved, and in a
blog post [Lip10] by Lipton.

In this paper we prove a lower bound for this randomized model. Again, let us first define
the model.

Definition 3. An RTM2 is a Turing machine with three tapes:
- A two-way, read-write work tape,
- a one-way random tape, and
- a two-way, read-only input tape.

We prove a lower bound for a problem in Σ3Time(n) – linear time with two quantifier
alternations. By standard completeness results the lower bound holds for QSAT3 – the
problem of deciding the validity of a formula with 2 quantifier alternations. This for example
follows from the proof of Theorem 7 in [DvM06]. Previously lower bounds were not known
even for functions computable in exponential time E = Time(2O(n)).

Theorem 4. There is a function computable in Σ3Time(n) which requires time n1+Ω(1) on
any RTM2 with bounded error probability.

The lower bound holds for general two-sided error. Moreover, as in previous work, see
for example [vMR05], it in fact holds even if the machine has direct access (aka random
access) to the input. This means that there is a separate index tape and in one time step
the machine can move the input head to the position written in binary on the index tape.

1 Overview of techniques

The proof of Theorem 2 relies on a new simulation of RTMs by a family of space-efficient
branching programs, henceforth called programs for brevity. It is critical that each program
in the family is allowed to read bits in a different order, so let us first define such programs.
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Definition 5. A (branching) program with space s on t bits consists of a permutation π
of the bits and a layered directed graph with t + 1 layers. Each layer has 2s nodes, except
the first layer which has 1, and the last layer which has 2. Each node in layer i ≤ t has
two edges, labeled with 0 and 1, connecting to nodes in layer i + 1. Nodes on layer m + 1
are labeled with 0 and 1. On a t-bit input, the program follows the path corresponding to
reading the input in a one-way fashion according to the permutation π: layer i reads input
bit π(i). It then outputs the label of the last node.

If M is an RTM we write M(r) for the output of M when its random tape is initialized
with r (and the work tape is blank). We can now state our simulation.

Theorem 6. Let M be an RTM running in time t and with q states. There is a family of
(tq)O(

√
t) programs Pα using space O(

√
t log tq) such that for any r:

- if M(r) = 1 then there is exactly one α such that Pα(r) = 1,
- if M(r) = 0 then Pα(r) = 0 for every α.

The string α in the simulation is used to guess short crossing sequences which partition
the work tape into small blocks; the program then simulates the machine one block at the
time. This idea goes back at least to the work by Maass and Schorr [MS87], see also the paper
by van Melkebeek and Raz [vMR05]. We show that it can be applied to RTMs if the random
bits can be permuted. Here is where we use that the programs read bits in any order. This
step is inspired by the works of Maass [Maa85] and Kalyanasundaram and Schnitger [KS92]
who give explicit functions (of the random bits) that are hard for RTMs. Our partition of the
work tape has the additional property that it can be “verified” by the program, a property
which is not apparent in previous simulations. This allows us to guarantee that Pα(r) = 1
for at most one α, which is used in obtaining pseudorandom generators.

Given the simulation, we can use pseudorandom generators for programs that read bits
in any order. However, we need a good dependence on the number of states and the error.
Using a result from [HLV18] (Corollary 20 and surrounding discussion) gives a pseudorandom
generator for RTMs with seed length t5/6+o(1). This is sufficient for Theorem 4. Using the
generator in the follow-up by Forbes and Kelley [FK18] we improve 5/6 to 1/2.

Proof. [Proof of Theorem 2 from Theorem 6] The generator in [FK18], Corollary 4.3, fools
branching programs on t bits using space s with error ε and seed length O(log(t2s/ε) log2 t) =

O(s+log(1/ε)) log2 t. We set ε to (tq)−O(
√
t) and recall s = O(

√
t log tq) to obtain seed length

at most O(
√
t log3 t log q). To show correctness, let U be the uniform distribution and D the

output distribution of the generator. We have

|E[M(U)]− E[M(D)]| =

∣∣∣∣∣E[
∑
α

Pα(U)]− E[
∑
α

Pα(D)]

∣∣∣∣∣ ≤ (tq)O(
√
t)ε = (tq)−Ω(

√
t)

concluding the proof.

The proof of Theorem 4 is in Section 3. It follows closely the proof of Theorem 6.2 in
[Vio09] which establishes a lower bound for a different model of Turing machines. Theorem
4 in this paper is to Theorem 6.2 in [Vio09] as Theorem 2 in this paper is to the generator in
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[INW94]: Theorem 6.2 in [Vio09] does not allow for a separate random-bit tape, but instead
concerns Turing machines whose work tape is initially filled with random bits.

In turn, the proof from [Vio09] relies on a number of other results in the literature, which
are also required for the proof in this paper. We use the arguments mentioned earlier in
[MS87, vMR05] to simulate TMs using little space and non-determinism. We then follow
the lead of Diehl and van Melkebeek [DvM06] who proved time-space lower bounds for ran-
domized space-bounded computation. They used Nisan’s pseudorandom generator [Nis92]
and the Sipser-Gacs-Lautemann [Sip83, Lau83] simulation of BPP in the polynomial-time hi-
erarchy. We use instead the pseudorandom generator given by Theorem 2. Here it is critical
that the seed length has a good dependence on the number of states, since we will hard-wire
the input to an RTM2 in the states. Turning to the Sipser-Gacs-Lautemann simulation, we
note that this simulation (which has two quantifiers) is too slow for our purpose; we use
the faster simulation in [Vio09] (with three quantifiers). Finally, we rely on the machinery
of time-space tradeoffs; for a survey of those see van Melkebeek [vM06] or Williams’ thesis
[Wil07].

2 Proof of Theorem 6

The reader may want to refer to Table 1 for an example of an RTM computation and some
of the parameters in this proof. For integers i and j we write [i, j] for the set {i, i+1, . . . , j}.
Because the machine runs in time t it can only use t + 1 work cells. We identify these cells
with [1, t+ 1]. There are t boundaries between these cells. Boundary i ∈ [t] is between work
cell i and i+ 1.

The string α. The string α contains
√
t boundaries b1, b2, . . . , b√t ∈ [t]. These boundaries

partition the work cells into
√
t+1 blocks, where block i are the cells [bi−1 +1, bi] with b0 = 0

and b√t+1 = t+ 1. Each boundary bi belongs to the set

Bi := [
√
t(i− 1) + 1,

√
ti].

This implies that each block has ≤ 2
√
t cells.

The string α also contains
√
t crossings c1, c2, . . . , c√t. A crossing c is a tuple (i→ j, h, q)

which means that the machine is crossing from block i to block j with the head on the
random tape in position h and state q. The length of α is

√
tO(log tq) as required.

The property of Pα. We shall give programs Pα such that Pα(r) = 1 if and only if
(1) M(r) = 1,
(2) for every i the boundary bi is the one among Bi such that the computation M(r)

crosses it the least number of times, picking the smallest bi in case of ties, and
(3) the crossings ci are those induced by the bi and the computation M(r).

Concluding the proof assuming the property. Assuming we have Pα as above, we
conclude the proof as follows. First, we need to verify that there are boundaries with respect
to which the computation has ≤

√
t crossings. This would be true even if we picked the bi
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Tape cell 1 2 3 4 5 6 7 8 9

?1
H

H
H

H
H

?3
?3

H
H

H
H

H
H

H
H

H
H

H
?2

H
?3

H
H

H
H

H
H

H
?3

block 1 2 2 2 3 3 3 3 3

b1 b2 b3

Table 1: Computation table of an RTM with 9 work tape cells reading 6 random bits. Each
row corresponds to a different time stamp and shows the position of the head H on the work
tape. The symbol ? indicates when a random bit is read. We have three boundaries shown
at the bottom. The “block” row shows the partition of work cells in blocks. The induced
partition on the random-bit tape is 133233.
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in a progression bi =
√
t(i− 1) + j: Because different values of j give disjoint crossings, and

the total number of crossings is at most the computation time t, there is a value j ∈ [1,
√
t]

for which such bi induce ≤
√
t crossings. More so it holds for our definition of bi.

Also, there cannot be α 6= α′ such that Pα(r) = Pα′(r) = 1. This is true because α is
uniquely specified by the computation M(r).

Designing the Pα. It remains to exhibit the programs Pα. The crossings ci = (ki →
ki+1, hi, qi) induce a partition of the random tape in at most

√
t + 1 intervals. Interval i is

[hi−1 + 1, hi] corresponding to the computation in block ki from crossing i − 1 to i, where
crossing 0 is the beginning of the computation and h0 = 0, and h√t+1 = t. We use the
convention that [x + 1, x] is the empty interval, which may arise if the machine goes from
one crossing to the next without reading random bits. These intervals can have any length.

The program simulates the machine one block at the time, reusing space across the blocks.
The program will read the random bits in the following order. First it reads all the random
bits in the intervals corresponding to work-tape block 1, then all the intervals corresponding
to work-tape block 2, and so on.

For each block i, the program goes through the crossings involving block i in order and
simulates the machine starting when a crossing enters block i until it leaves it. While doing
so it verifies that the crossings leaving the block are correct assuming those entering it are.
If not the program aborts and outputs zero. For this the program just needs memory for the
work cells in one block, and the state of the machine, overall O(

√
t+ log q) bits. Moreover,

the program computes the number of crossings for each boundary in the block i it simulates.
This takes additional O(

√
t log t) bits. At the end of the simulation of one block, the program

can use this information to verify that the boundaries match the intended values. Recall
that block i is [bi−1 + 1, bi] and that each bi ∈ Bi. The computation on block i can verify
“one side” of the requirements for both bi−1 and bi. Specifically, the program verifies that
for each b′ ∈ Bi−1 that is bigger than bi−1 the number of crossings at b′ is at least as big as
the number of crossings at bi−1, and that for each b′ ∈ Bi that is smaller than bi the number
of crossings at b′ is strictly bigger than the number of crossings at bi. If one of these checks
does not pass the program aborts and outputs zero. If all checks pass for every block then
the bi are correct.

Overall the space required by the program is O(
√
t+ log q) +O(

√
t log t) = O(

√
t log tq).

3 Proof of Theorem 4

In this section we present the proof of Theorem 4. The proof involves several different
computational models, so we need a definition.

Definition 7. We denote by RTM2Time (t) the class of problems that can be solved by an
RTM2 machine running in time t.

We denote by TiSp (s, t) the class of problems that can be solved in time t and simulta-
neously space s. The precise machine model is not important here – we can assume a RAM
machine.

For a complexity class C and a function b we denote by ∃bC the class of problems that
can be solved in C with an ∃ quantifier on b bits: ∃bC = {L′ : ∃L ∈ C such that x ∈ L′ ⇔
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∃y ∈ {0, 1}b(|x|) : (x, y) ∈ L}. We use the corresponding definition for the ∀ and probabilistic
BP quantifiers.

Towards a contradiction, assume that Σ3Time (n) ⊆ RTM2Time
(
n1+o(1)

)
. Let m := n2.

We derive the following contradiction as in [Vio09]:

Σ3Time (m) ⊆ RTM2Time
(
m1+o(1)

)
(1)

⊆ BPm1−Ω(1)∃m1−Ω(1)

TiSp
(
poly(m),m1−Ω(1)

)
(2)

⊆ ∃m1−Ω(1)∀m1−Ω(1)∃m1−Ω(1)

TiSp
(
poly(m),m1−Ω(1)

)
(3)

⊆ ΣO(1)Time
(
m1−Ω(1)

)
(4)

⊆ Σ3Time (o(m)) (5)

contradiction. (6)

The only inclusion that requires a new proof is (2). Before providing that proof we review
why the other inclusions hold.

(1) is by padding.
(3) is by the time-efficient simulation of probabilistic time with three alternations, proved

in [Vio09] (Theorem 1.3).
(4) follows by the fact, usually attributed to [Nep70], that one can trade alternations for

time in sublinear-space computations. The required inclusion can be found in Section 3.2 in
[vM04], or in [FLvMV05].

(5) follows by noting that the assumption Σ3Time (n) ⊆ RTM2Time
(
n1+o(1)

)
plus the

simulation in [Vio09] (Theorem 1.3) imply that Σ3Time (n) ⊆ Π3Time
(
n1+o(1)

)
. This allows

us to efficiently collapse the polynomial hierarchy at the third level.
The contradiction in (6) is with the time hierarchy, see for example Section 3.1 in [vM04].

3.1 Proving (2)

In this subsection we give the proof of inclusion (2). First we need that the generator is
computable in linear space and polynomial time.

Claim 8. Given an index i to an output bit, and a seed, we can compute the output bit i of
the generator in Theorem 2 in space t1−Ω(1) and simultaneously polynomial time.

Proof. [Sketch] The generator in [FK18], Corollary 4.3, involves computing small-bias gen-
erators [NN93, AGHP92] and bounded-independence generators [CG89, ABI86]. Those gen-
erators are in fact computable even in logarithmic space, see Theorem 14 in [HV06]. The
rest of the computation amounts to taking bit-wise ANDs and XORs of strings, which can
be done efficiently in small space.

We can now prove Inclusion (2). We obtain the following variant of Claim 6.3 in [Vio09].
For an RTM2 machine M we write M(x; r) for the output of M on input x and random bits
r. Recall that m = m(n) = n2.
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Claim 9. Let M be an RTM2 machine with O(1) states running in time m1+o(1). Let

G : {0, 1}m
1−Ω(1)

→ {0, 1}m
1+Ω(1)

be the generator from Claim 8. Then the language {(x;σ) :

M(x;G(σ)) = 1} is in ∃m1−Ω(1)
TiSp

(
poly(m),m1−Ω(1)

)
. In particular,

RTM2Time
(
m1+o(1)

)
⊆ BPm1−Ω(1)∃m1−Ω(1)

TiSp
(
poly(m),m1−Ω(1)

)
.

Proof. The “in particular” part follows from the first part by the correctness of the generator,
using m1−Ω(1) uniform bits as seed for the generator. Here note that we hardwire the input
x by multiplying the number of states by |x|, and think of the resulting machine as an RTM.

To prove the first part, denote by τ the work tape of M . Let us divide τ in consecutive
blocks where the first block is of size d and all the others are of size, say,

√
m. The parameter

d will be specified later. Note d completely specifies this subdivision in blocks. For fixed d,
similarly to before let us define a crossing to be a tuple

(a→ a′, hi, hr, q)

where a is an index to a block in τ , a′ = a ± 1, hi is the position of the head on the input
tape, hr is the position of the head on the random tape, and q is the state. A crossing
(a→ a′, hi, hr, q) corresponds to M crossing the boundary of block a towards block a′ with
state q and input-tape and random-tape head positions hi and hr (the position of the head
on the work tape is determined by a and a′).

Since different values of d ∈ {0, 1, . . . ,
√
m−1} give rise to disjoint sets of blocks, there is

d < b such that the number of crossings induced by the computation M(x;G(σ)) is at most
t/
√
m ≤ m0.51.
Simulation: We simulate the machine M as follows: First we guess a shift d and a

sequence of t/
√
m crossings. Then we check consistency of the computation one block at the

time. For every block number i, we use
√
m bits of space to simulate the machine on that

block. First we initialize those bits to 0. Then we scan, in order, the list of guessed crossings.
Whenever we encounter a crossing of the form (a → i, hi, hr, q) we do the following. We
move the input head to hi and we initialize a counter r to hr. We simulate M starting in
state q until it crosses the block boundary towards block a′. Whenever M asks for a random
bit, we reply with the r-th output bit of G(σ) and increase r by one. Then we look at the
next crossing (α → α′, hi′, hr′, q′) in the guessed list and check that α = i, α′ = a′ and
r = hr′ and that hi′ and q′ match too. We continue in this way until the list is over. Finally,
without loss of generality we can check that the last crossing has the accepting state of M .

Complexity: Note that each crossing can be specified by O(logm) bits, and therefore we
guess at most m0.51O(logm) = m1−Ω(1) bits total. The rest of the computation can be done
simultaneously in time poly(m) and space m1−Ω(1). To see this, note that the generator is
computable in these resources by Claim 8, while the rest of the simulation only uses space
for one block, which takes

√
m bits, plus O(logm) bits for various counters.

4 RTM breaks INW

In this section we show that an instantiation of the generator in [INW94] for Turing machines
does not fool RTMs. Let s be a parameter and G be a graph on vertex set {0, 1}s. The basic

8



step of the [INW94] generator is showing the pseudorandomness of the distribution (x, y, z),
where (x, z) is a uniform edge in G and y is a uniform string in {0, 1}s. The strength of the
generator is related to the expansion of G. A simple graph with nearly maximum expansion
is the one where (x, z) is an edge when the bit-wise XOR v of x and z has zero inner product
modulo 2, that is v1v2 ⊕ v3v4 ⊕ · · · ⊕ vs−1vs = 0. This corresponds to the distribution
(x, y, x ⊕ v) where x and y are uniform and v is a uniform string with zero inner product
modulo 2. (It can be verified directly that the distribution v has bias 2−Ω(s) in the sense
of Naor and Naor [NN93], and it is folklore that this equals the normalized second largest
eigenvalue in G, which is a well-known algebraic measure of expansion, see [HLW06].)

We now claim that an RTM can distinguish this distribution from uniform in time O(s).
The RTM first copies x on the work tape, then moves the work-tape head back to the
beginning. Then by XORing corresponding random bits and work-tape bits the RTM can
recover the bits of v and compute the inner product of v. Note we use one-way access to the
random tape, but two-way access to the work tape.

By contrast, a one-tape TM cannot distinguish this distribution from uniform unless it
runs in time Ω(s2) [INW94].

Acknowledgments. We thank the anonymous referees for the detailed and helpful feed-
back.
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