
From RAM to SAT

NEU∗

October 7, 2012

Common presentations of the NP-completeness of SAT suffer from two drawbacks which
hinder the scope of this flagship result. First, they do not apply to machines equipped with
random-access memory, also known as direct-access memory, even though this feature is
critical in basic algorithms. Second, they incur a quadratic blow-up in parameters, even
though the distinction between, say, linear and quadratic time is often as critical as the one
between polynomial and exponential.

But the landmark result of a sequence of works overcomes both these drawbacks simul-
taneously! [HS66, Sch78, PF79, Coo88, GS89, Rob91]

The proof of this result is simplified by Van Melkebeek in [vM06, §2.3.1]. Compared to
previous proofs, this proof more directly reduces random-access machines to SAT, bypassing
sequential Turing machines, and using a simple, well-known sorting algorithm: Odd-Even
Merge sort [Bat68].

In this work we give a self-contained rendering of this simpler proof.
For context, we note that the impressive works [BSCGT12b, BSCGT12a] give the stronger

type of reduction where a candidate satisfying assignment to the SAT instance can be verified
probabilistically in polylogarithmic time.

We work with the random-access Turing-machine model. Most other machines, including
RAM, may be simulated in this model with only a polylogarithmic slow-down in time. On
the other hand Turing machines are easier to describe and arguably cleaner.

Definition 1. A random-access Turing machine (RTM) M is a Turing machine with a
constant number of tapes. These tapes are organized into k pairs. The ith pair, for i ∈
{1, . . . , k}, consists of one RAM tape Rami and one register tape Regi. Each tape has its
own head. M ’s transition function δ inputs the 2k symbols scanned and the state, and it
outputs a new state, 2k new characters to be written on the tapes, and k head movements
to adjacent cells for the register tapes only. M has k special, disjoint sets of jump states,
denoted J1, . . . , Jk. When the machine leaves a state in Ji the following happens at once:

– (1) The head of Rami is moved to the cell whose address is on Regi,

∗Work done as a group project for the Spring 2012 Graduate Theory of Computation class at Northeastern
University. The authors are Zahra Jafargholi, Hamidreza Jahanjou, Eric Miles, Jaideep Ramachandran, and
Emanuele Viola (instructor). We thank all of the students of the class for useful feedback during the
preliminary stages of this project. Supported by NSF grant CCF-0845003.

1

– (2) the contents of Regi are erased, and
– (3) the head of Regi is moved to the beginning of the tape.
The machine starts with the input on the tape Ram1.

We choose the terminology “register tape” because these tapes indeed hold registers when
simulating RAMs.

Theorem 2 (From RAM to SAT). Let M be an RTM, and let T = T (n) ≥ n be a function
computable in time TO(1) given any string of length n.

Given an input x of length n one can construct a 3SAT instance φ of size O(T log5 T) in
time |φ| · TO(1) that is satisfiable if and only if there exists y ∈ {0, 1}T such that M accepts
(x, y) in ≤ T steps.

We note that the exponent of log T in the size of φ in Theorem 2 could be reduced
easily, for example by using better sorting circuits. We also mention that the model of a
non-deterministic machine can be obtained by viewing y in Theorem 2 as the machine’s
guesses. Finally, we note that the head on the tape Ram1 containing the input may only be
moved via jumps. Thus to recover some textbook algorithms for sequential Turing machines
one either needs to simulate sequential access by random, or else first copy the input on a
register tape. Alternatively one could equip RAM tapes with sequential-access capabilities,
too.

Organization. In §1 we prove Theorem 2 under the additional assumption that the ma-
chine uses addresses of bounded length. We note that the machines resulting from standard
simulations of other computational models such as random-access computers satisfy this
assumption, see [GS89]. This proof relies on the possibility of sorting by a circuit of size
n logO(1) n, a standard fact which for completeness is recalled in §3. In §2 we dispense with
the assumption that the machine uses bounded addresses. In §4 we put everything together,
in fact proving a stronger version of Theorem 2 where the 3SAT instance is computed more
explicitly.

1 From bounded-address RTMs to 3SAT

In this section we prove our main Theorem 2 under the assumption that the machine is
O(log T)-bounded-address, as defined next.

Definition 3. Let B(n) be a function. An RTM is B(n)-bounded-address if for every x of
length n, and for every y, the computation of M on input (x, y) satisfies the following for
each i ≤ k: either the length of Regi is always bounded by B(n), or else the machine never
enters a jump state in Ji.

Theorem 2, under the assumption that the machine is O(log T)-bounded-address, follows
from the next two theorems. The first transforms a bounded-address RTM into a circuit
satisfiability instance, and the second transforms the latter into a 3SAT instance.

2

Theorem 4. Let T = T (n) ≥ n be a function computable in time TO(1) given any string of
length n. Let M be an O(log T)-bounded-address RTM.

Given an input x of length n one can construct a Boolean circuit C of size O(T log3 T)
in time |C| · TO(1) that satisfies the following: there exists y ∈ {0, 1}T such that M accepts
(x, y) in ≤ T steps if and only if there exists y′ ∈ {0, 1}O(T log T) such that C(y′) = 1.

Proof. Recalling Definition 3, we refer to tapes Regi which have length always bounded by
O(log T) as bounded register tapes. Note that M has two other types of tapes, RAM tapes
and unbounded register tapes; we are going to treat the last two types in a similar fashion.

We define a configuration of M to contain the following items:

• M ’s current timestep (O(logT) bits),

• M ’s current state (O(1) bits),

• the entire contents of each bounded register tape including head position (O(logT)
bits, using the fact that M is bounded-address),

• the head position and the content of the indexed cell of RAM and unbounded register
tapes (O(log T) bits, using the fact that M is bounded-address and runs in time T).

Summing the bounds above, we see that the size of a configuration is O(log T).
We now describe the circuit C, see Figure 1 for a schematic representation. The input

y′ ∈ {0, 1}O(T log T) to the circuit is parsed in the following way. The first T bits contain y (the
second input for M), and the rest contains T configurations c1, . . . , cT for the computation
of M(x, y). We check that these configurations encode an accepting computation of M , in
two phases. In the first phase (comprising points 1, 2, and 3 below), we check the validity
of states and head positions for all tapes, and we verify the consistency of bounded register
tapes, assuming what is read on RAM and unbounded register tapes is correct. This is a
simple comparison of adjacent configurations. In the second phase (Point 4 below), we check
the consistency of read/write operations on RAM and unbounded register tapes, one tape
at a time. For each tape, we sort the configurations by the head position on that tape and
within each head position by timestep. Then we can check the consistency of read/write
operations again by a simple comparison of adjacent configurations.

To emulate the fact that M starts with the string (x, y) on Ram1, we create a set of
“dummy” configurations c−L, . . . , c−1 for L := |(x, y)| = O(n + T) = O(T). In c−i, the head
position of Ram1 is on the ith cell which contains the ith bit of (x, y), the timestep is say -1
for identification purposes, and all other fields are set to 0. These configurations are added
to c1, . . . , cT . (These dummy configurations are only relevant to the second phase for Ram1;
they are numbered from −L to −1 because conceptually they correspond to an initial walk
through the input (x, y).)

More formally, C operates as follows:

1. Check that c1 is the initial configuration of M .

3

c1 b b b

sort by Ram1 head position

head positions,
bounded-register tapes

check state,

c2 cT

head positions,
bounded-register tapes

check state,
head positions,

bounded-register tapes

check state,

c−1 b b b

check Ram1 contents

c17 c42

check Ram1 contents check Ram1 contents

sort by Ram2 head position

c1 b b b

check Ram2 contents

c19 c71

check Ram2 contents check Ram2 contents

sort by Regk head position

c1 b b b

check Regk contents

c5 c99

check Regk contents check Regk contents

b
b

b

AND

b b b

Figure 1: The circuit from Theorem 4

4

2. (States and heads) For each t = 1, . . . , T −1, check that the state and 2k head positions
in ct+1 are correct given ct. Note that when ct contains a state from a jump set Ji,
this check verifies that Rami’s head position in ct+1 matches the contents of Regi in
ct, and that the head on Regi is at the beginning.

3. (Contents of bounded-register tapes) For each t = 1, . . . , T −1, check that the contents
of bounded register tapes in ct+1 are correct given those in ct. Note that when ct

contains a state from a jump set Ji, this check verifies that Regi’s tape in ct+1 is all
blank.

4. (Contents of RAM and unbounded register tapes) For each tape τ that is either a RAM
tape or an unbounded register tape, sort the configurations (including the dummy
configurations) increasingly by τ ’s head position and within each head position by
timestep. Then for each adjacent pair of configurations (ct, ct′) where ct′ is not a
dummy configuration, check the following:

– (a) If τ ’s head is at the same location on ct and ct′ , check that the content of this
indexed cell in ct′ is correct given ct (this also verifies the presence of the input on
Ram1, thanks to the dummy configurations),

– (b) otherwise, check that the content of τ ’s cell indexed in ct′ is blank.

5. If all checks pass and cT contains M ’s accept state, output 1; else, output 0.

It can be shown that for every x there exist configurations that pass the above checks if
and only if there is y ∈ {0, 1}T such that M accepts (x, y).

We now complete the proof by observing that each step, and thus all of them, can be
implemented by a circuit of size O(T log3 T). Recall that the number of configurations,
including dummy ones, is O(T).

In Step 1, the initial configuration c1 can be checked with size O(logT).
In Step 2, each check of two adjacent configurations is computable with size O(log T): the

state check requires computing the O(1)-size transition function δ, and each head-position
check requires computing δ and subtracting and testing equality of two O(logT)-bit numbers.
Thus the whole step is computable with size O(T log T).

In Step 3, for each bounded register tape Regi, each pair of adjacent configurations can
be checked in size O(log T): it requires computing δ and testing equality of O(log T) cells
each of size O(1). (Here we may think of the head position as being encoded by marking
the indexed tape cell.) Thus the whole step is computable with size O(T log T).

In Step 4, sorting the configurations for a tape τ can be performed in size O(T log3 T)
using the circuit constructed in Theorem 7. Then, checking each pair of adjacent configura-
tions for τ can be computed in size O(log T): it requires computing δ and testing equality
of two O(log T)-bit head positions and two cells. Thus the whole step is computable with
size O(T log3 T).

5

Theorem 5. Given a Boolean circuit C of size T one can construct in polynomial time a
3SAT instance φ with O(T) variables and O(T) clauses such that φ is satisfiable if and only
if there exists a string y for which C(y) = 1.

Proof. We construct a SAT formula whose variables are the input y of C, plus one new
variable for each gate in C. We assume without loss of generality that C contains only fan-
in-1 NOT gates and fan-in-2 AND gates (any circuit can be represented in this form with
only an O(1) multiplicative increase in the number of wires). We construct a set of clauses
for each gate in the circuit as follows:

For a NOT gate represented by variable g with input represented by w, add

(g ∨ w ∨ w) ∧ (g ∨ w ∨ w);

in any satisfying assignment g = NOT w.
For an AND gate represented by variable g with inputs represented by w1 and w2, add

(w1 ∨ w2 ∨ g) ∧ (w1 ∨ w2 ∨ g) ∧ (w1 ∨ w2 ∨ g) ∧ (w1 ∨ w2 ∨ g);

in any satisfying assignment g = w1 AND w2.
Finally, let φ be the 3SAT formula obtained from the conjunction of all the formulas

for all the gates in C. It follows that there exists y such that C(y) = 1 if and only if φ is
satisfiable.

2 From general to bounded-address RTMs

Theorem 6 (From general to bounded-address RTMs). For any function T = T (n) ≥ n,
given an RTM M one can construct in time |M |O(1) an O(log T)-bounded-address RTM M ′

that satisfies the following:
for every input x of length n, there exists y ∈ {0, 1}T such that M accepts (x, y) in T

steps if and only if there exist y ∈ {0, 1}T , y′ ∈ {0, 1}bT log T such that M ′ accepts (x, (y, y′))
in O(T log2 T) steps, where b is a universal constant.

Proof. M ′ operates by consolidating the memory locations used by M into a continuous
block of length ≤ O(T log T), thus allowing each location to be referenced with an address
of ≤ O(log T) bits. To do this we require a method for mapping long addresses to short
addresses. This mapping is done separately for each RAM tape, and we now describe it for
one such tape.

We define a one-to-one correspondence between the set of all addresses of length ≤ T and
the nodes of a full depth-(T + 1) binary tree in the following natural way. For an address A
with |A| ≤ T , the corresponding node is selected by walking from the root, choosing at the
jth step either the right or left child depending if Aj = 0 or 1.

Fix an input z = (x, y), and let {A1, . . . , Ar} be the set of r ≤ T addresses accessed on
the RAM tape by M on input z. The above set of random-access addresses corresponds to
a subtree L where the ith address Ai corresponds to a node at depth |Ai| + 1.

6

In order to analyze the size of our subtree L, we observe that since each register tape
is erased after a random access, the sum of the lengths of the addresses used during M ’s
computation is at most T :

r∑

i=1

|Ai| ≤ T. (1)

Further, since the ith address Ai corresponds to a node at depth |Ai| + 1, we have

#nodes in L ≤
r∑

i=1

(|Ai| + 1) ≤ T + r ≤ 2T. (2)

We represent L in a specific, compact fashion as a sequence of nodes augmented with
the following auxiliary information: a left-child pointer, a right-child pointer and a flag. The
flag indicates whether or not the node corresponds to an address Ai accessed by M . If set
(to 1), the node stores two more items: the address Ai itself and the storage space for one
cell. The address Ai is used to verify the integrity of L (i.e. that L does not use a single
node for multiple addresses). The storage space is updated throughout the simulation with
the value that M would have at address Ai. As pointers to the children require O(logT)
bits, the amount of memory needed to store L is

≤

#nodes∑

i=1

O(log T) +
r∑

i=1

(|Ai| + O(1)) = O(T · log T). (3)

Now we describe how M ′ simulates M . This simulation involves copying various informa-
tion among tapes. To facilitate such tasks, we equip M ′ with an additional constant number
of tapes. We also note that copying one bit from a RAM cell typically costs a number of
steps which is logarithmic in the address of the cell, due to the need to write down this
address which is then erased, cf. Definition 1. One use of the additional tapes is to backup
addresses used in jumps, to keep track of the heads on the RAM tapes.

The additional input y′ to M ′ encodes k trees, y′ = (L1, L2, . . . , Lk), where k is the
number of RAM tapes of M . In an initialization step, M ′ sweeps through the whole input
(x, (y, y′)), computes n = |x| and T = |y|, and additionally for each node of L1 with a set
flag it does the following. If the address field A is ≤ |(x, y)|, M ′ verifies that the storage
field contains the corresponding bit of (x, y), otherwise it verifies it contains blank. M ′ also
verifies that the storage fields of nodes on the other trees L2, . . . , Lk all contain blank, and
notes the address of the root of each Li.

This initialization phase takes O(|L| log |L|) = O(T log2 T) time.
After the initialization phase, M ′ begins the simulation of M . When M leaves a jump

state in a set Ji, M ′ intercepts the computation and does the following.

1. M ′ jumps to the address of Li’s root.

2. It traverses Li according to the bits of the address A written on Regi. (Namely for
j = 1, . . . , |A|, if the jth bit of A is 0 then jump to the left child and otherwise jump
to the right child.) Let N be the node reached by this process.

7

3. It verifies that N ’s flag is set, and that the stored address = A. It moves the head of
Rami to the cell which holds the storage for A.

4. Finally, it erases Regi.

Accessing an address A by this process takes time |A| ·O(log2 T), because for each bit of
A the child pointer of length O(log T) is copied from a RAM tape in O(log T) steps per bit.

Including the initialization phase and the ≤ T steps not involving jumps, in total the
simulation takes time at most

O(T log2 T) + T +

r∑

i=1

|Ai| · O(log2 T) ≤ O(T log2 T).

Finally, it can be seen from the construction that, for every x, if there exists a y
such that M accepts (x, y), then there exist y and trees L1, ..., Lk for which M ′ accepts
(x, (y, L1, ..., Lk)). Conversely, if M ′ accepts (x, (y, y′)) for some y, y′ then, as a result of the
integrity check performed in Step 3 of the simulation, for each address A accessed in a tree
Li in M ′, there corresponds a unique address on Rami in M . Consequently, M also accepts
(x, y).

3 Sorting

In this section for completeness we show how to sort using a quasi-linear size circuit.

Theorem 7. Given n and r one can construct in time (rn)O(1) a circuit of size O(r ·n·log2 n)
that sorts any sequence of n r-bit elements by keys of ≤ r bits.

We use a comparison-based sorting algorithm. The only difficulty is that to convert
the algorithm into a circuit that implements it, we need the sequence of comparisons to
be independent of the input. This is not the case with the most common algorithms. For
example, the comparisons in the merge subroutine of Mergesort depend on the input.

We will use a variant of Mergesort, namely Odd-Even Mergesort [Bat68]. This is just
like Mergesort except that the problematic merge subroutine is replaced with a subroutine
whose comparisons do not depend on the input. We now present the algorithm. In the rest
of this section we abbreviate Odd-Even by OE.

Algorithm 1, OE-MERGE(A, n), merges the two already sorted halves of the sequence
A = [a0, a1, . . . , an−1], resulting in a sorted output sequence. It uses an operation CMP-
EX(A, i, j) that compares values at indices i < j of the sequence A and exchanges them
if and only if ai > aj . (CMP-EX is short for Compare-Exchange.) Algorithm 2, OE-
MERGESORT, uses OE-MERGE as a subroutine.

Lemma 8. OE-MERGESORT correctly sorts any input sequence of n elements.

8

Algorithm 1 OE-MERGE(A, n)

Require: Sequence A = [a0, . . . , a(n−1)] of length n, such that [a0, a1, . . . , an/2−1] and
[an/2, an/2+1, . . . , an−1] are sorted; n ≥ 2; n is a power of 2.

Ensure: Sequence A is replaced with its sorted version.

if n = 2 then

CMP-EX(A, 0, 1);
else

OE-MERGE([a0, a2, . . . , a(n−2)], n/2); //the even subsequence
OE-MERGE([a1, a3, . . . , a(n−1)], n/2); //the odd subsequence
for i ∈ {1, 3, 5, 7, . . . , n − 3} do

CMP-EX(A, i, i + 1);
end for

end if

Algorithm 2 OE-MERGESORT(A, n)

Require: n ≥ 1; n is a power of 2
Ensure: Sequence A is replaced with its sorted version.

if n > 1 then

OE-MERGESORT([a0, a1, . . . , an/2−1], n/2); //first half
OE-MERGESORT([an/2, an/2+1 . . . , an−1], n/2); //second half
OE-MERGE(A, n);

end if

(a) (b) (c) (d) (e)

 11

 12 13

 14 15

 10

 9 8

 7 6

 5 4

 3 2

 1 0

Figure 2: OE-MERGE illustration

9

Proof. Since OE-MERGESORT is a comparison-based sorting algorithm, by the so-called
“0-1 Principle” it is sufficient to show that any sequence of 0s and 1s is sorted correctly. For
completeness we sketch a proof of this principle in this paragraph. Let A = [a0, . . . , an−1] be
an input sequence of arbitrary numbers, and let B = [b0, . . . , bn−1] be the output sequence
produced by the comparison-based sorting algorithm. If the algorithm fails to correctly sort
A, then consider the smallest index k such that bk > bk+1. Define a function f such that
f(c) = 1 if c ≥ bk and f(c) = 0 otherwise, and let f(B) be the sequence obtained by applying
f pointwise to each element of B. Observe that f(B) is not sorted. However it is easy to
see that f commutes with any CMP-EX operation applied to any sequence X, i.e.,

f(CMP-EX(X, i, j)) = CMP-EX(f(X), i, j).

Hence
f(B) = f(OE-MERGESORT(A)) = OE-MERGESORT(f(A))

and so OE-MERGESORT fails to correctly sort the 0-1 sequence f(A).
The correctness of OE-MERGESORT is immediate assuming the correctness of OE-

MERGE. So we now argue the latter by induction on n, based on the recursive definition
of OE-MERGE. Refer to Figure 2, reproduced here with permission from Lang’s website
[Lan01].

The base case n = 2 is clear. Assume that OE-MERGE correctly merges any two sorted
0-1 sequences of size n/2. We view an input sequence of n elements as an n/2 × 2 matrix,
with the left column corresponding to elements at the even-indexed positions 0, 2, . . . , n− 2
and the right column corresponding to elements at the odd-indexed positions 1, 3, . . . , n− 1
(Figure 2(a)).

Since the upper half of the matrix is sorted by assumption, the right column in the upper
half has the same number or exactly one more 1 than the left column in the upper half.
The same is true for the lower half (Figure 2(b)). Because each (length-(n/4)) column in
each half of the matrix is also individually sorted by assumption, the induction hypothesis
guarantees that after the two calls to OE-MERGE both the left and right (length-(n/2))
columns are sorted (Figure 2(c)).

At this point only one of 3 cases arises:

1) The odd and even subsequences have the same number of 1s.
2) The odd subsequence has a single 1 more than the even subsequence.
3) The odd subsequence has two 1s more than the even subsequence.

In the first two cases, the sequence is already sorted. In the third case, the CMP-EX
operations (Figure 2(d)) yield a sorted sequence (Figure 2(e)).

To conclude the proof of Theorem 7 we only need to argue efficiency. Let SM(n) denote
the number of CMP-EX for OE-MERGE for an input sequence of length n. We have the
recurrence SM(n) = 2 · SM(n/2) + (n/2 − 1), which yields SM(n) = O(n · log n). Let S(n)
denote the number of calls to CMP-EX for OE-MERGESORT with an input sequence of
length n. Then we have the recurrence S(n) = 2 · S(n/2) + (n · log n), which yields S(n) =
O(n · log2 n).

10

Finally, we observe that a comparator for two r-bit strings based on any key of length ≤ r
can be implemented by a Boolean circuit of size O(r), and thus the entire sorting network
can be implemented by a Boolean circuit of size O(r · n · log2 n), establishing Theorem 7.

4 Putting things together

In this section we state a more explicit version of our main Theorem 2. We then prove the
original version as well as the more explicit one.

In the next theorem we make the additional restriction that the time bound T (n) is
computable in time logO(1) T (n). This holds for most natural functions.

Theorem 9 (From RAM to SAT, more explicit). Let M be an RTM, and let T = T (n) ≥ n
be a function computable in time logO(1) T . Given an input x of length n and an index
i ≤ O(T log5 T) one can compute in time logO(1) T the i-th clause of a 3SAT instance φ (of
size O(T log5 T)) that is satisfiable if and only if there exists y ∈ {0, 1}T such that M accepts
(x, y) in ≤ T steps.

Proof of Theorems 2 and 9. We first note the size of the 3SAT instance produced by com-
bining the preceding theorems. By Theorem 6 we assume we have an equivalent RTM M ′

that is O(log T)-bounded address and runs in time T ′ := O(T log2 T). From M ′, Theorem
4 produces a circuit C of size O(T ′ log3 T ′) = O(T log5 T). Finally from C, Theorem 5
produces the 3SAT formula φ which is also of size O(T log5 T). This establishes Theorem 2.

We now observe that, due to the regularity of the circuit produced by Theorem 4, each
clause of φ can be computed in time logO(1) T . Note that T ′ is computable in time logO(1) T
under the assumption that T is. Also, the time logO(1) T subsumes that needed to write
down the description of M ′ from M (Theorem 6). (Actually in our theorem statements the
algorithm in the conclusion may depend on M , in which case we could just assume we have
M ′ at our disposal. But more generally M can be given as input together with x and i.)

Let C be the circuit produced from M ′ by Theorem 4, and note that each clause of
φ corresponds to exactly one gate in C. We view C as being composed of a series of
subcircuits, where each subcircuit either checks the consistency of two adjacent O(log T ′)-
bit configurations, or sorts the set of configurations by the head position of one of the tapes
and within head position by timestamp (refer to Figure 1).

Given an n-bit input x and an index i, we first determine which subcircuit the ith clause
belongs to. If the subcircuit is a sorting circuit constructed via Theorem 7, then we compute
the clause in time logO(1) T exploiting the simple structure of this circuit. Otherwise, the
subcircuit checks two adjacent configurations; such a circuit has size O(logT ′), and can also
be constructed in this time. So in this case we may explicitly compute the subcircuit and
output the corresponding clause.

Acknowledgments. We thank Eli Ben-Sasson for a stimulating conversation on [BSCGT12b,
BSCGT12a]. We are also grateful to Dieter van Melkebeek for pointing out his proof [vM06,
§2.3.1] to us (alas, after this work was first posted).

11

References

[Bat68] Kenneth E. Batcher. Sorting networks and their applications. In AFIPS Spring Joint
Computing Conference, volume 32, pages 307–314, 1968.

[BSCGT12a] Eli Ben-Sasson, Alessandro Chiesa, Daniel Genkin, and Eran Tromer. Fast reduc-
tions from RAMs to delegatable succinct constraint satisfaction problems. IACR
Cryptology ePrint Archive, 2012:71, 2012.

[BSCGT12b] Eli Ben-Sasson, Alessandro Chiesa, Daniel Genkin, and Eran Tromer. On the
concrete-efficiency threshold of probabilistically-checkable proofs. Electronic Collo-
quium on Computational Complexity (ECCC), 19:45, 2012.

[Coo88] Stephen A. Cook. Short propositional formulas represent nondeterministic computa-
tions. Information Processing Letters, 26(5):269–270, 1988.

[GS89] Yuri Gurevich and Saharon Shelah. Nearly linear time. In Logic at Botik, Symposium
on Logical Foundations of Computer Science, pages 108–118, 1989.

[HS66] Fred Hennie and Richard Stearns. Two-tape simulation of multitape turing machines.
J. of the ACM, 13:533–546, October 1966.

[Lan01] Hans Werner Lang. Odd-even mergesort, 2001.
http://www.iti.fh-flensburg.de/lang/algorithmen/sortieren/networks/oem.htm.

[PF79] Nicholas Pippenger and Michael J. Fischer. Relations among complexity measures.
J. of the ACM, 26(2):361–381, 1979.

[Rob91] J. M. Robson. An O(T log T) reduction from RAM computations to satisfiability.
Theoretical Computer Science, 82(1):141–149, 1991.

[Sch78] Claus-Peter Schnorr. Satisfiability is quasilinear complete in NQL. J. of the ACM,
25(1):136–145, 1978.

[vM06] Dieter van Melkebeek. A survey of lower bounds for satisfiability and related prob-
lems. Foundations and Trends in Theoretical Computer Science, 2(3):197–303, 2006.

12

