AC0 unpredictability

Emanuele Viola*

December 7, 2018

Abstract

We prove that for every distribution D on n bits with Shannon entropy $\geq n - a$ at most $O(2^d a \log^{d+1} g)/\gamma^5$ of the bits D_i can be predicted with advantage γ by an AC⁰ circuit of size g and depth d that is a function of all the bits of D except D_i . This answers a question by Meir and Wigderson (2017) who proved a corresponding result for decision trees.

We also show that there are distributions D with entropy $\geq n - O(1)$ such that any subset of $O(n/\log n)$ bits of D on can be distinguished from uniform by a circuit of depth 2 and size poly(n). This separates the notions of predictability and distinguishability in this context.

A line of papers in the literature [EIRS01, Raz98, Unr07, SV10, DGK17, CDGS18, MW17, ST17, GSV18] proves that if a distribution D on n bits has Shannon entropy H close to n then D possesses several properties of the uniform distribution on n bits. For a discussion and comparison of these results we refer the reader to [GSV18]. In this paper we consider two such properties.

Predictability. Meir and Wigderson prove [MW17] that most coordinates cannot be *pre-dicted* by shallow decision trees. We state their result next with a slightly optimized bound given soon after by Smal and Talebanfard [ST17].

Theorem 1. [MW17, ST17] Let $D = (D_1, D_2, ..., D_n)$ be a distribution on n bits with $H(D) \ge n - a$. Let $t_1, t_2, ..., t_n$ be n decision trees of depth q, where t_i does not query D_i . Let $B := \{i \in [n] : \mathbb{P}_D[D_i = t_i(D)] \ge 1/2 + \gamma\}$. Then $|B| \le 2aq/\gamma^2$.

The bound in [MW17] is $|B| \leq O(aq/\gamma^3)$. Throughout this paper O(.) and $\Omega(.)$ stand for absolute constants. The result in [MW17, ST17] applies to a stronger model that we think of as roughly the intersection of DNF and CNF. But it does not apply to DNF. Meir and Wigderson raised the question of proving a similar result for AC⁰. We answer their question affirmatively in this paper.

 $^{^* \}rm Supported$ by NSF CCF award 1813930. Work partially done while visiting and supported by the Simons institute.

Theorem 2. Let $D = (D_1, D_2, ..., D_n)$ be a distribution on n bits with $H(D) \ge n - a$. Let $C_1, C_2, ..., C_n$ be n circuits on n bits, each of size g and depth d, where C_i does not depend on D_i . Let $B := \{i \in [n] : \mathbb{P}_D[D_i = C_i(D)] \ge 1/2 + \gamma\}$. Then $|B| \le O(2^d a \log^{d+1} g)/\gamma^5$.

It is noted in [ST17] that Theorem 1 is tight. In a tight example, the decision trees simply compute parities on q + 1 bits. Such parities can be computed by circuits of depth $\exp(q^{1/(d-1)})$. Hence the bound on |B| in Theorem 2 is tight up to a factor of $\log^2(g)/\gamma^3$.

The proof of Theorem 2 is in Section 1.

Distinguishability. A result in [GSV18], stated next, shows that if we forbid to query a few bits, the distribution D is *indistinguishable* from uniform by small-depth decision trees. (This is called the *forbidden-set lemma* in [GSV18].)

Theorem 3. [GSV18] Let D be a distribution on n bits with $H(D) \ge n - a$. For every γ, q there exists a set $B \subseteq [n]$ of size $O(aq^3/\gamma^3)$ such that for every decision tree t of depth q that does not make queries in B,

$$|\mathbb{P}[t(U) = 1] - \mathbb{P}[t(D) = 1]| \le \gamma.$$

Theorem 1 can be used to give an alternative proof of Theorem 3, see the discussion in [GSV18]. The other way around is not clear.

In the spirit of the previous result, we ask if Theorem 3 can be extended to constant-depth circuits. We give a negative answer.

Theorem 4. For infinitely many n:

There is a distribution D on n bits with $H(D) \ge n - O(1)$ such that for any set B of size $O(n/\log n)$ there is a read-once $O(\log n)$ -DNF C with no variable in B such that

$$\left|\mathbb{P}[C(U)=1] - \mathbb{P}[C(D)=1]\right| \ge \Omega(1).$$

The proof of this theorem is in Section 2.

Whereas for the model of decision trees theorems 1 and 3 give similar bounds for predictability and distinguishability, theorems 2 and 4 give a strong separation between these notions for AC^{0} .

Given the negative result in Theorem 4 it is natural to ask if Theorem 3 can be extended in other ways. We note that it is possible to extend it to q-DNF, that is DNF with terms of size q. However the size of B now depends exponentially on q.

Theorem 5. Let D be a distribution on n bits with $H(D) \ge n - a$. For every γ, q there exists a set $B \subseteq [n]$ of size $a2^{O(q)}/\gamma^{O(1)}$ such that for every q-DNF C that does not contain variables in B,

$$|\mathbb{P}[C(U) = 1] - \mathbb{P}[C(D) = 1]| \le \gamma.$$

The proof of this theorem is in Section 3.

One can use Theorem 4 to show that the exponential dependence on q in Theorem 5 is necessary. Given n and q, use Theorem 4 to obtain a distribution D' on $n' = 2^{\Theta(q)}$ bits with entropy $\geq n' - O(1)$ so that for any set B of size $O(n'/\log n')$ there is a q-DNF C with no variable in B such that

$$\left|\mathbb{P}[C(U)=1] - \mathbb{P}[C(D')=1]\right| \ge \Omega(1).$$

Let D be the distribution that equals D' on the first n' bits and is uniform on the other n - n'. The entropy of D is $n' - O(1) + n - n' \ge n - O(1)$, but for indistinguishability we have to exclude a set B of size $\ge \Omega(n'/\log n') = 2^{\Omega(q)}$.

The proofs use standard facts about entropy which can be found online or in the book [CT06]. In particular we use extensively the *chain rule* H(X,Y) = H(X) + H(Y|X) for any random variables X and Y. We find it convenient to use the notation X for either the random variable or a fixed sample. The meaning is given by the context. If X is fixed the expression H(Y|X) denotes the entropy of Y conditioned on the fixed outcome X. If X is not fixed it denotes the average over X of the entropy of Y conditioned on the fixed outcome X.

1 Proof of Theorem 2

The high-level idea is to perform some kind of *restriction* so that the circuits collapse to shallow decision trees and also a lot of entropy is preserved. If that happens we can use Theorem 1 to get a bound. However executing this plan is not straightforward.

High-entropy switching lemma. First we recall the switching lemma. It will be important for our results to use the latest analysis [Hås14].

Definition 6. A function $f : \{0,1\}^m \to \{0,1\}^n$ is computable by a q'-partial common decision tree of depth q if there is a (standard) decision tree of depth q such that on every input, the function f restricted along a path of this tree has the property that every output bit of f is computable by a decision tree of depth q'.

In other words, we can compute f with a decision tree of depth q that has at its leaves decision forests of depth q'.

A restriction on n bits is a subset of $\{0, 1, \star\}^n$ where the symbol \star is called *star*. For an integer s the distribution R_s is obtained by picking uniformly a subset of size s for the stars and setting the other bits uniformly.

Lemma 7. [Switching lemma] Let $C : \{0,1\}^n \to \{0,1\}^n$ be a circuit of size g and depth d with $g \ge n \ge d$. Let $R = R_s$ be a random restriction with $s = \Theta(n/\log^{d-1} g)$ stars. Except with error probability α over R, the circuit restricted to R can be computed by an $O(\log g)$ -partial common decision tree of depth- $O(2^d \log(g/\alpha))$.

Now we are ready for our switching-lemma for high-entropy distributions.

Definition 8. A D-restriction with s stars is obtained by picking the locations for the stars uniformly at random, and setting the other bits according to D.

Lemma 9. In the same setting of Theorem 7, let R be a D-restriction, where $H(D) \ge n-a$. Then the error bound is $(1 + a)/\log(1/\alpha)$.

For σ a subset of [n] we write D_{σ} for the $|\sigma|$ bits of D corresponding to D, and $D_{\bar{\sigma}}$ for the others.

Proof. Let A be the set of all possible restrictions with $s \star$. We have $|A| = \binom{n}{s} 2^{n-s}$. Let H be the set of restrictions that don't collapse the circuits in the sense of Lemma 7. By the same lemma, $|H|/|A| \leq \alpha$.

R is a distribution over *A*. We shall show that it lands in *H* with small probability. Write *R* as $(S, D_{\bar{S}})$, where *S* is the subset of the \star , and $D_{\bar{S}}$ is the projection of *D* outside of *S*. We have

$$H(R) = H(S, D_{\bar{S}}) = H(S) + H(D_{\bar{S}}|S) \ge \log_2 \binom{n}{s} + n - a - s$$

In the inequality we use that for every fixed S, the distribution $D_{\bar{S}}$ is over n-s variables and we have $H(D) = H(D_S, D_{\bar{S}}) = H(D_{\bar{S}}) + H(D_S|D_{\bar{S}})$. The latter term is at most s. And so we have $H(D_{\bar{S}}) \ge H(D) - s \ge n - a - s$.

Thus the entropy of R is only a away from the maximum entropy $m := \log_2 \binom{n}{s} + n - s$ of any distribution over A.

Let p be the probability that $R \in H$. Let E be the indicator random variable of the event $R \in H$. We have

$$\begin{split} m-a &\leq H(R) = H(R,E) = H(R|E) + H(E) \leq H(R|E) + 1 \\ &= pH(R|E=1) + (1-p)H(R|E=0) + 1 \leq p\log_2|H| + (1-p)m + 1. \\ &\leq p\log\alpha + pm + (1-p)m + 1. \end{split}$$

Hence $p \log(1/\alpha) \leq 1 + a$, and the result follows.

We apply Lemma 9 with $\alpha := 2^{-200a/\gamma}$. This gives an $O(\log g)$ -partial common tree of depth $q = O(2^d(\log g + a/\gamma))$ and an error bound of 0.01γ .

High-entropy after restrictions. We need to show that after the restriction the entropy is still large. First note $H(D|R) \ge s - a$, indeed this holds for any fixed choice for the positions S for the stars. To verify this note that, for any fixed S,

$$n - a \le H(D) = H(D_S, D_{\bar{S}}) \le H(D_{\bar{S}}) + H(D_S|D_{\bar{S}}) = H(R) + H(D|R) \le n - s + H(D|R).$$

Applying Markov's inequality to $\mathbb{E}_R[s - H(D|R)] = s - H(D|R) \leq a$, where note the argument inside the expectation is non-negative, we obtain $\mathbb{P}_R[s - H(D|R) \geq a/\epsilon] \leq \epsilon$ for any ϵ . Setting $\epsilon = 0.01\gamma$ we obtain that with probability $\geq 1 - 0.01\gamma$ over R, $H(D|R) \geq s - O(a/\gamma)$.

Intersecting *B*. We argue that $|S \cap B| \ge 0.5(s|B|/n) = \Omega(|B|/\log^{d-1}g)$ with high probability. This quantity is the hypergeometric distribution of the number of red balls sampled without replacement from a set of *n* balls |B| of which are red. The expected number of red balls is *sp* where p := |B|/n. The probability of sampling less than half of that is at most (see Section 4 in [Hoe63])

$$2^{-\mathcal{D}(0.5p|p)s} < 2^{-\Omega(ps)} < 2^{\Omega(|B|/\log^{d-1}g)}$$

where \mathcal{D} is divergence. The upper bound is at most 1/1000 (else the theorem is vacuously true).

Fixing restrictions. Call a fixed restriction R good if both $H(D|R) \ge s - O(a/\gamma)$ and every circuit collapses to an $O(\log g)$ -partial common depth-q tree. By above and a union bound, the probability that R is not good is $\le 0.01\gamma + 0.01\gamma \le \gamma/10$. Writing R as $(S, D_{\bar{S}})$ we conclude that

$$\mathbb{P}_S[\mathbb{P}_{D_{\bar{S}}}[R \text{ bad}] \ge \gamma/2] \le 1/5,$$

because otherwise the probability of being bad is > $(1/5)(\gamma/2) = \gamma/10$, contradicting the previous fact.

Combining this with the bound on intersecting B we obtain that there exists a fixed S such that

- (1) $\mathbb{P}_{D_{\bar{S}}}[R \text{ bad}] \leq \gamma/2,$
- (2) $|S \cap B| \ge \Omega(|B|/\log^{d-1}g).$

Now, for this fixed S, let $L := S \cap B$. Because $L \subseteq B$, we have by assumption

$$1/2 + \gamma \leq \mathbb{P}_{i \in L}[D_i = C_i(D)] \leq \mathbb{P}_{i \in L}[D_i = C_i(D) | R \text{ good}] + \mathbb{P}[R \text{ bad}].$$

So $\mathbb{P}_{i\in L}[D_i = C_i(D)|R \text{ good}] \geq 1/2 + \gamma - \gamma/2 \geq 1/2 + \gamma/2$. Fix a good restriction R for which this holds. (Note S was fixed already, so we are just fixing $D_{\bar{S}}$.) Project the resulting distribution onto S and call it X. We have $H(X) \geq s - O(a/\gamma)$, the circuit is computable by a $O(\log g)$ -partial common depth-q tree, and moreover there is a set L of size $\geq \Omega(|B|/\log^{d-1}g)$ such that $\mathbb{P}_{i\in L}[X_i = C_i(X)] \geq 1/2 + \gamma/2$.

Handling the common part. Now we need to handle the common part of the decision tree. We need to fix the variables along a path so that both the entropy and the prediction is preserved. Let t be the common decision tree. We think of sampling X by first sampling the q bits Y along a path, and then sampling the other s - q bits Z, in a fixed order. We want to show that H(Z|Y) is large. Indeed,

$$s - O(a/\gamma) = H(X) = H(Y,Z) = H(Z|Y) + H(Y) \le H(Z|Y) + q.$$

The second equality can be verified by noting that X is a function of (Y, Z) and (Y, Z) is a function of X. Rearranging and using our bound on q we get $s - H(Z|Y) \le q + O(a/\gamma) = O(q)$. By a Markov argument, the probability over Y that $s - H(Z|Y) \ge O(q/\gamma)$ is at most $\gamma/4$. Call such a Y bad. Like before, we have

$$1/2 + \gamma/2 \le \mathbb{P}_{i \in L}[X_i = C_i(X)] \le \mathbb{P}_{i \in L}[X_i = C_i(X)|Y \text{ good}] + \mathbb{P}[Y \text{ bad}].$$

Hence $\mathbb{P}_{i \in L}[X_i = C_i(X)|Y \text{ good}] \geq 1/2 + \gamma/4$. Fix a good Y such that this holds, and call the resulting distribution V. We have $H(V) \geq s - O(q/\gamma)$,

$$\mathbb{P}_{i \in L}[V_i = C_i(V)] \ge 1/2 + \gamma/4, \tag{1}$$

and now each C_i is a decision tree of depth $O(\log g)$.

Finishing up. By Theorem 1 the number of the *s* coordinates of *V* that can be $(1/2+\gamma/8)$ -predicted is at most twice the entropy deficiency $O(q/\gamma)$ times the depth of the tree $O(\log g)$, divided by $O(1/\gamma)^2$. This equals

$$O(q/\gamma^3)\log g. \tag{2}$$

Hence we have

$$\mathbb{P}_{i \in L}[V_i = C_i(V)] \le O(q/\gamma^3) \log(g)/|L| + 1/2 + \gamma/8.$$

Combining equations 1 and 2 we obtain

$$O(q/\gamma^3)\log g/|L| \ge \gamma/8.$$

Now recall $q = O(2^d (\log g + a/\gamma))$. Hence we can crudely bound $O(q/\gamma^3) \log g$ above by $O(2^d \log^2(g)a/\gamma^4)$. Also recall $|L| \ge \Omega(|B|/\log^{d-1}g)$. Hence we get

$$O(2^d \log^{d+1}(g)a/|B|\gamma^4) \ge \gamma/8.$$

This concludes the proof.

1.1 Proof of Lemma 7

We denote by R_p the standard distribution on restrictions where the bits are independent and each comes up 1, 0, \star with probabilities (1-p)/2, (1-p)/2, p.

Lemma 10. [Lemma 3.8 in [Hås14] with $s := 1 + \log S$] Let $f : \{0,1\}^n \to \{0,1\}^S$ be a function computable by a depth-2 circuit with input fan-in r. Then the probability over R_p that f restricted to R_p cannot be computed by a $(1 + \log S)$ -partial common depth-q decision tree is at most $S(24pr)^q$.

The straightforward corollary we need is not stated anywhere.

Corollary 11. Let $C : \{0,1\}^n \to \{0,1\}^n$ be a circuit of size g and depth d with $g \ge n \ge d$. Let $p = \Theta(1/\log^{d-1} g)$. With probability $1 - \alpha$ over R_p the circuit restricted to R_p can be computed by a $(1 + \log n)$ -partial common depth- $O(2^d \log(g/\alpha))$ decision tree.

Proof. First we take a restriction with $p = \Omega(1)$, and apply Lemma 10 to the g_1 gates at level 1 (viewed as a DNF or CNF with input fan-in 1). For a parameter q_0 , with probability $1 - g_1 2^{-q_0}$ we can compute f by a common decision tree of depth q_0 at the leaves of which we have circuits of depth d whose number of gates at levels ≥ 2 hasn't changed, and whose input fan-in is $O(\log g)$.

Then we take a restriction with $p = \Omega(1/\log g)$, and apply Lemma 10 to the g_2 gates at level 2. We take a union bound over all 2^{q_0} paths of the common decision tree just discussed. For a parameter q_1 , with probability $1 - 2^{q_0}g_22^{-q_1}$ we can compute f by a decision tree of depth $q_0 + q_1$ at the leaves of which we have circuits of depth d - 2 whose inputs are decision trees of depth $O(\log g)$. We can write the latter trees as CNF or DNF as appropriate and merge them with the next layer of gates. Hence we can compute f by a decision tree of depth $q_0 + q_1$ at the leaves of which we have circuits of depth d - 1 with input fan-in $O(\log g)$. The number of gates at the higher levels hasn't changed.

We continue in this fashion. In the end, we can compute f by a tree of depth $q_0 + q_1 + \cdots + q_{d-1}$ whose leaves are forests of depth $O(\log g)$. The error probability is $g_1 2^{-q_0} + 2^{q_0}g_2 2^{-q_1} + 2^{q_0+q_1}g_3 2^{-q_2} + \cdots$. Picking $q_i = t \cdot 2^i$ this is at most $g \cdot d \cdot 2^{-t}$.

So for error α we should take $t = \log(1/\alpha) + \log(g) + \log(d) \le O(\log g/\alpha)$. This gives a common tree of depth $O(\log g/\alpha)2^d$ whose leaves are forests of depth $O(\log g)$. \Box

To conclude the proof of Lemma 7 we only need to verify that the same result holds if we take a restriction with exactly $s = np \star$. Indeed, the probability that R_p has exactly sstars is $\geq \Omega(1/\sqrt{s}) \geq \Omega(1/g)$. So if we set the error probability to $O(\alpha/g)$ in Corollary 11 we obtain an error probability of α for restrictions with exactly s stars, and the depth of the tree hasn't changed asymptotically.

2 Proof of Theorem 4

Let $n = m(\log_2 m + 1)$ and think of the *n* bits as divided in *m* blocks of $(\log_2 m + 1)$ bits each. The distribution *D* is sampled as follows. First select $I \in \{1, 2, ..., m\}$ uniformly. Set the *I* block to all zero. Then for every other block independently, set the block to a uniform value *excluding* all zero. We can write *D* as (I, X) where *X* are non-zero values for m - 1blocks.

We have

$$\begin{split} H(D) = &H(I, X) = H(I) + H(X) = \log_2 m + (m-1)\log_2(2m-1) \\ = &\log_2 m + (m-1)\log_2(2m) + (m-1)\log_2(1-1/2m) \\ \ge &m\log_2(2m) - O(1). \end{split}$$

The set B intersects $\leq |B|$ of the blocks. Let G be the other blocks. Consider the function C that outputs 1 if any of the blocks in G is all zero. This function can be written as a read-once DNF with terms of size $\log_2 m + 1$.

Under the uniform distribution, the probability that C equals 1 is at most $m/2^{\log_2 m+1} = 1/2$.

Under D it is at least the probability that $I \in G$, which is $\geq (m - |B|)/m$. So if $|B| \leq m/3$ the DNF C distinguishes. The result follows because $m \geq \Omega(n/\log n)$.

3 Proof of Theorem 5

We rely on a simulation of DNF by *decision trees*, showing that a q-DNF can be written as a tree of depth about 2^{q} , which may output "?" with small probability. A weaker version of

the result was proved by Ajtai and Wigderson [AW89]. The stronger version, stated next, is due to Trevisan [Tre04].

Lemma 12. For every q-DNF C there exists a decision tree t_C of depth $\leq 2q2^q \log(1/\epsilon)$ with range $\{0, 1, ?\}$ such that

(1) for every input x, $t_C(x) \neq ? \Rightarrow t_C(x) = C(x)$, and (2) $\mathbb{P}[t_C(U) = ?] \leq \epsilon$.

Proof. A covering of the terms is a set of variables such that any term contains a variable from the set, possibly negated. We define $t_C : \{0,1\}^n \to \{0,1,?\}$ recursively as follows. If C is a constant then t_C is the same constant. If C has $\geq 2^q \log(1/\epsilon)$ disjoint terms, then t_C queries the first $2^q \log(1/\epsilon)$ of them. If any term is True, t_C outputs 1, else it outputs ?. Otherwise, there exists a covering of the terms of size $\leq q2^q \log(1/\epsilon)$. The tree t_C first queries this covering, and then recursively queries the resulting (q-1)-DNF.

The tree t_C has depth $\leq q 2^q \log(1/\epsilon) + (q-1)2^{q-1} \log(1/\epsilon) + \ldots \leq 2q 2^q \log(1/\epsilon)$.

Item (1) follows by definition.

To verify Item (2), note that the only case in which t_C outputs ? is that none of $\geq 2^q \log(1/\epsilon)$ disjoint terms is True. This happens with probability at most

$$(1 - 1/2^q)^{2^q \log(1/\epsilon)} \le (1/e)^{\log(1/\epsilon)} \le \epsilon.$$

As a corollary, any distribution which fools decision trees of depth about 2^q also fools q-DNF. We say that a distribution $D \epsilon$ -fools a class of functions F if for every $f \in F$ we have $|\mathbb{P}[f(D) = 1] - \mathbb{P}[f(U) = 1]| \leq \epsilon$, where U is the uniform distribution.

Corollary 13. Let D be a distribution that ϵ -fools decision trees of depth $2q2^q \log(1/\epsilon)$. Then D $O(\epsilon)$ -fools q-DNF.

Proof. For a q-DNF C let t_C be the tree from Lemma 12. By its properties we have, for every distribution X:

$$\mathbb{P}[t_C(X) = 1] \le \mathbb{P}[C(X) = 1] \le \mathbb{P}[t_C(X) = 1] + \mathbb{P}[t_C(X) = ?].$$

Writing down this fact for both X = D and X = U we have

$$\mathbb{P}[t_C(U) = 1] \le \mathbb{P}[C(U) = 1] \le \mathbb{P}[t_C(U) = 1] + \mathbb{P}[t_C(U) = ?],\\ \mathbb{P}[t_C(D) = 1] \le \mathbb{P}[C(D) = 1] \le \mathbb{P}[t_C(D) = 1] + \mathbb{P}[t_C(D) = ?].$$

By assumption, the left-hand sides are within ϵ , and so are the rightmost terms. Moreover, $\mathbb{P}[t_C(U) = ?] \leq \epsilon$. Hence $\mathbb{P}[C(X) = 1]$ for both X = D and X = U lies in the interval $[\mathbb{P}[t_C(U) = 1] - \epsilon, \mathbb{P}[t_C(U) = 1] + 3\epsilon]$ and so they are within $O(\epsilon)$.

Combining Corollary 13 with Theorem 3 we immediately obtain Theorem 5.

Acknowledgment. We thank Chin Ho Lee for pointing out that Lemma 12 appears in [Tre04]. We also thank Or Meir and Li-Yang Tan for helpful discussions.

References

- [AW89] Miklos Ajtai and Avi Wigderson. Deterministic simulation of probabilistic constant-depth circuits. Advances in Computing Research - Randomness and Computation, 5:199–223, 1989.
- [CDGS18] Sandro Coretti, Yevgeniy Dodis, Siyao Guo, and John Steinberger. Random oracles and non-uniformity. In Int. Conf. on the Theory and Applications of Cryptographic Techniques (EUROCRYPT), 2018.
- [CT06] Thomas Cover and Joy Thomas. Elements of Information Theory (Wiley Series in Telecommunications and Signal Processing). Wiley-Interscience, 2006.
- [DGK17] Yevgeniy Dodis, Siyao Guo, and Jonathan Katz. Fixing cracks in the concrete: Random oracles with auxiliary input, revisited. In *Int. Conf. on the Theory and Applications of Cryptographic Techniques (EUROCRYPT)*, pages 473–495, 2017.
- [EIRS01] Jeff Edmonds, Russell Impagliazzo, Steven Rudich, and Jiri Sgall. Communication complexity towards lower bounds on circuit depth. Computational Complexity, 10(3):210–246, 2001.
- [GSV18] Aryeh Grinberg, Ronen Shaltiel, and Emanuele Viola. Indistinguishability by adaptive procedures with advice, and lower bounds on hardness amplification proofs. In *IEEE Symp. on Foundations of Computer Science (FOCS)*, 2018. Available at http://www.ccs.neu.edu/home/viola/.
- [Hås14] Johan Håstad. On the correlation of parity and small-depth circuits. SIAM J. on Computing, 43(5):1699–1708, 2014.
- [Hoe63] Wassily Hoeffding. Probability inequalities for sums of bounded random variables. Journal of the American Statistical Association, 58:13–30, 1963.
- [MW17] Or Meir and Avi Wigderson. Prediction from partial information and hindsight, with application to circuit lower bounds. *Electronic Colloquium on Computational Complexity (ECCC)*, 24:149, 2017.
- [Raz98] Ran Raz. A parallel repetition theorem. SIAM J. on Computing, 27(3):763–803, 1998.
- [ST17] Alexander Smal and Navid Talebanfard. Prediction from partial information and hindsight, an alternative proof. *Electronic Colloquium on Computational Complexity (ECCC)*, 24:191, 2017.
- [SV10] Ronen Shaltiel and Emanuele Viola. Hardness amplification proofs require majority. *SIAM J. on Computing*, 39(7):3122–3154, 2010.
- [Tre04] Luca Trevisan. A note on approximate counting for k-DNF. In 7th Workshop on Randomization and Computation (RANDOM), volume 3122 of Lecture Notes in Computer Science, pages 417–426. Springer, 2004.

[Unr07] Dominique Unruh. Random oracles and auxiliary input. In *Int. Cryptology* Conf. (CRYPTO), pages 205–223, 2007.