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Abstract

Complexity theory typically studies the complexity of computing a function h(x) :
{0, 1}m → {0, 1}n of a given input x. A few works have suggested to study the
complexity of generating – or sampling – the distribution h(x) for uniform x, given
random bits. We further advocate this study, with a new emphasis on lower bounds
for restricted computational models. Our main results are:

1. Any function f : {0, 1}` → {0, 1}n such that (i) each output bit fi depends on
o(log n) input bits, and (ii) ` ≤ log2

(
n
αn

)
+ n0.99, has output distribution f(U) at

statistical distance ≥ 1− 1/n0.49 from the uniform distribution over n-bit strings
of hamming weight αn.
We also prove lower bounds for generating (X, b(X)) for boolean b, and in the
case in which each bit fi is a small-depth decision tree.
These lower bounds seem to be the first of their kind; the proofs use anti-
concentration results for the sum of random variables.

2. Lower bounds for generating distributions imply succinct data structures lower
bounds. As a corollary of (1), we obtain the first lower bound for the membership
problem of representing a set S ⊆ [n] of size αn, in the case where 1/α is a power
of 2: If queries “i ∈ S?” are answered by non-adaptively probing o(log n) bits,
then the representation uses ≥ log2

(
n
αn

)
+ Ω(log n) bits.

3. Upper bounds complementing the bounds in (1) for various settings of parameters.

4. Uniform randomized AC0 circuits of poly(n) size and depth d = O(1) with error
ε can be simulated by uniform randomized AC0 circuits of poly(n) size and depth
d+ 1 with error ε+ o(1) using ≤ (log n)O(log logn) random bits.
Previous derandomizations [Ajtai and Wigderson ’85; Nisan ’91] increase the
depth by a constant factor, or else have poor seed length.

∗An extended abstract of this work appeared in the Proceedings of the 51th IEEE Symposium on Foun-
dations of Computer Science (FOCS), see [Vio10].
†Supported by NSF grant CCF-0845003. Email: viola@ccs.neu.edu



1 Introduction

Complexity theory typically studies the complexity of computing a function h(x) : {0, 1}m →
{0, 1}n of a given input x. A few works, such as the one by Goldreich, Goldwasser, and
Nussboim [GGN10, §2.5], suggest to study instead the complexity of generating – or sampling
– the output distribution h(x) for random x, given random bits. This work further advocates
this study, with a new emphasis on lower bounds for restricted models such as small bounded-
depth circuits with unbounded fan-in (AC0) or bounded fan-in (NC0).

An interesting example of a function h for which computing h(x) is harder than generating
its output distribution is h(x) := (x, parity(x)), where parity(x) :=

∑
i xi mod 2. Whereas

small AC0 circuits cannot compute parity (cf. [H̊as87]), Babai [Bab87] and Boppana and
Lagarias [BL87] show a function f whose output distribution equals that of (x,

∑
i xi mod 2)

for random x ∈ {0, 1}n, and each output bit fi depends on just 2 input bits (so f ∈ NC0):

f(x1, x2, . . . , xn) := (x1, x1 + x2, x2 + x3, . . . , xn−1 + xn, xn). (1)

This construction is useful for proving average-case lower bounds, see [Bab87] and [Bei93,
Corollary 22].

Later, Impagliazzo and Naor [IN96] extend the construction (1) to show that small AC0

circuits can even generate (x, b(x)) for more complicated functions, such as inner product
b(x) = x1 ·x2+x3 ·x4+· · ·+xn−1 ·xn. They use this to construct cryptographic pseudorandom
generators computable by poly-size AC0 circuits based on the hardness of the subset-sum
problem, and similar techniques are useful in constructing depth-efficient generators based
on other assumptions [AIK06, Vio05].

We mention that cryptography provides several candidate functions h for which comput-
ing h(x) is harder than generating its output distribution (e.g., take h−1 to be a one-way
permutation). However, in this work we focus on unconditional results.

The work by Mossel, Shpilka, and Trevisan [MST06] provides another example of the
power of NC0 circuits in generating distributions: NC0 circuits can generate small-bias dis-
tributions with non-trivial stretch.

The surprising nature of the above constructions, and their usefulness (for example for
average-case lower bounds and pseudorandom generators) raises the challenge of understand-
ing the complexity of generating distributions, and in particular proving lower bounds:

Challenge 1.1. Exhibit an explicit map b : {0, 1}n → {0, 1} such that the distribution
(X, b(X)) ∈ {0, 1}n+1 cannot be generated by poly(n)-size AC0 circuits given random bits.

Current lower-bounding techniques appear unable to tackle questions such as Challenge
1.1 (which, to our knowledge, is open even for DNFs). As we have seen, standard “hard
functions” b such as parity and inner product have the property that (X, b(X)) can be
generated exactly by small AC0 circuits. Along the way, in this work we point out that the
same holds for any symmetric b (e.g., majority, mod 3) (up to an exponentially small error).
In fact, weaker models often suffice.

This suggests that our understanding of even these simple models is incomplete, and that
pursuing the above direction may yield new proof techniques.
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1.1 Our results

In this work we prove several “first-of-their-kind” lower bounds for generating distributions.
We also complement these with upper bounds, and establish connections to other areas such
as succinct data structures, derandomization, and switching networks.

Lower bounds. We aim to bound from below the statistical (a.k.a. variation) distance
∆ between a distribution D on n bits and the output distribution of a “simple” function
f : {0, 1}` → {0, 1}n over random input U ∈ {0, 1}`:

∆(f(U), D) := max
T⊆{0,1}n

∣∣∣Pr
U

[f(U) ∈ T ]− Pr
D

[D ∈ T ]
∣∣∣ =

1

2

∑
a

|Pr[f(U) = a]− Pr[D = a]|.

In addition to being a natural measure, small statistical distance (as opposed to equality)
is sufficient in typical scenarios (e.g., pseudorandomness). Moreover, this work shows that
statistical distance lower bounds imply lower bounds for succinct data structure problems,
and uses this implication to derive a new lower bound for a central data structure problem
(Corollary 1.7).

The next convenient definition generalizes NC0 (which corresponds to d = O(1)).

Definition 1.2. A function f : {0, 1}` → {0, 1}n is d-local if each output bit fi depends on
≤ d input bits.

Our first lower bound is for generating the uniform distribution D=α over n-bit strings
with αn ones (i.e., hamming weight αn). This distribution arises frequently. For example,
we will see that it is related to generating (X, b(X)) for symmetric b, and to the membership
problem in data structures.

Theorem 1.3 (Lower bound for generating “= α” locally). For any α ∈ (0, 1) and any
δ < 1 there is ε > 0 such that for all sufficiently large n for which αn is an integer:

Let f : {0, 1}` → {0, 1}n be an (ε log n)-local function where ` ≤ log2

(
n
αn

)
+ nδ.

Let D=α be the uniform distribution over n-bit strings with αn ones.
Then ∆(f(U), D=α) ≥ 1−O(1/nδ/2).

For α = 1/2, Theorem 1.3 matches the 1-local identity function f : {0, 1}n → {0, 1}n,
f(u) := u, achieving ∆(U,D=1/2) ≤ 1 − O(1/

√
n) (a standard bound, see Fact 2.2). For

α < 1/2, upper bounds are a bit more involved. There are poly log(n)-local functions again
achieving statistical distance ≤ 1 − O(1/

√
n). We refine this to also obtain input length

` = log2

(
n
αn

)
+ n/poly log n (Theorem 5.1).

For generating (X, b(X)) for boolean b obviously no lower bound larger than 1/2 holds.
We establish 1/2 − o(1) for the function which checks if the hamming weight of X modulo
p is between 0 and (p− 1)/2. We call it “majority modulo p,” majmod for short.
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Theorem 1.4 (Lower bound for generating (X,majmod X) locally). For any δ < 1 there is
ε > 0 such that for all sufficiently large n: Let p ∈ [0.25 log n, 0.5 log n] be a prime number,
and let majmod : {0, 1}n → {0, 1} be defined as

majmod(x) = 1⇔
∑
i≤n

xi mod p ∈ {0, 1, . . . , (p− 1)/2}.

Let f : {0, 1}` → {0, 1}n+1 be an (ε log n)-local function where ` ≤ n+ nδ.
Then ∆(f(U), (X,majmod X)) ≥ 1/2−O(1/ log n).

Theorem 1.4 is tight up to the O(.): it can be verified that PrX [majmod(X) = 0] =
1/2−Θ(1/ log n), hence ∆((X, 1), (X,majmod X)) ≤ 1/2−O(1/ log n). Moreover, we show
a poly log(n)-local function with statistical distance ≤ 1/n (Theorem 5.4).

Theorems 1.3 and 1.4 may hold even when the input length ` is unbounded, but it is not
clear to us how to prove such statistical bounds in those cases. However we can prove weaker
statistical bounds when the input length ` is unbounded, and these hold even against the
stronger model where each bit of the function f is a decision tree. We call such a function
forest, to distinguish it from a function computable by a single decision tree.

Definition 1.5. A function f : {0, 1}` → {0, 1}n is a d-forest if each bit fi is a decision tree
of depth d.

A d-forest function is also 2d local, so the previous theorems yield bounds for d =
(log(ε log n))-forests. We prove bounds for d = ε log n with a different argument.

Theorem 1.6 (Lower bound for generating “= 1/2” or (X,majority X) by forest). Let
f : {0, 1}∗ → {0, 1}n be a d-forest function. Then:

(1) ∆(f(U), D=1/2) ≥ 2−O(d)−O(1/n), where D=1/2 is the uniform distribution over n-bit
strings with n/2 ones.

(2) ∆(f(U), (X,majority X)) ≥ 2−O(d) −O(1/n).

A similar bound to (1) also holds for generating D=α; we pick α = 1/2 for simplicity.
Theorem 1.6 complements the existence of d-forest functions achieving statistical distance

O(1/n) where d = O(log n) for (1) and d = O(log2 n) for (2). (In fact, d = O(log n) may
hold for both, see §6.) We obtain such functions by establishing a simple connection with
results on switching networks, especially by Czumaj et al. [CKKL99]: we prove they imply
forest upper bounds. These upper bounds are not explicit; explicit upper bounds are known
for d = poly log n, see §6.

For AC0 circuits, there are constructions that are both explicit and achieve exponentially
small error. In particular, building on results by Matias and Vishkin [MV91] and Hagerup
[Hag91], we exhibit AC0 circuits of size poly(n) and depth O(1) whose output distribution
has statistical distance 1/2n from the distribution (X,

∑
iXi) ∈ {0, 1}n × {0, 1, . . . , n} for

uniform X ∈ {0, 1}n.
The above lower bounds are obtained via new proof techniques also using anti-concentration

results for the sum of random variables. We provide an overview of the proof of Theorem
1.3 in §2.
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Motivation: Succinct data structures lower bounds. Succinct data structures aim to
compress data using a number of bits close to the information-theoretic minimum while at the
same time supporting interesting queries. For a number of problems, tight bounds are known,
cf. [Pǎt08, Vio, PV10, DPT10]. But there remains a large gap for the notable membership
problem which asks to store a subset x of [n] of size ` (think of x as an n-bit string of weight
`) in

⌈
log2

(
n
`

)⌉
+ r bits, where r is as small as possible, while being able to answer the query

“is i in x” by reading few bits of the data structure [BMRS02, Pag01a, Pag01b, Pǎt08, Vio].
In particular, previous to this work there was no lower bound in the case when ` := αn for
1/α = 2a a fixed power of two. Note that the lower bound in [Vio] does not apply to that
case; intuitively, that is because the techniques there extend to the problem of succinctly
storing arrays over the alphabet [1/α], but when 1/α = 2a no lower bound holds there: using
a bits per symbol yields redundancy r = 0.

Using different techniques, as a corollary to our lower bound for generating the “= α”
distribution (Theorem 1.3) we obtain the first lower bound for the membership problem in
the case where the set-size is a power-of-two fraction of the universe.

Corollary 1.7 (Lower bound for membership). For any α ∈ (0, 1) there is ε > 0 such that
for all large enough n for which αn is an integer:

Suppose one can store subsets x of [n] of size αn in m :=
⌈
log2

(
n
αn

)⌉
+ r bits, while

answering “is i in x” by non-adaptively reading ≤ ε log n bits of the data structure. Then
r ≥ 0.49 log n.

Again, Corollary 1.7 is tight for α = 1/2 up to the constant 0.49, since log2

(
n
n/2

)
=

n− Θ(log n), and using m = n bits the problem is trivial. For α < 1/2 it is not clear what
lower bound on r one should expect, as surprising upper bounds hold for related problems
[BMRS02, Pag01b, DPT10]. In particular, the recent work by Dodis, Pǎtraşcu, and Thorup
[DPT10] yields r = 1 for storing arrays (non-adaptively reading O(log n) bits). It remains
to be seen whether their techniques apply to the membership problem too.

We obtain Corollary 1.7 from Theorem 1.3 by establishing the simple and general fact
that lower bounds for generating distributions somewhat close to a distribution D imply
succinct data structure lower bounds for storing support(D). The following claim formalizes
this for the membership problem, where D = D=α is the uniform distribution over n-bit
strings with αn ones.

Claim 1.8. Suppose one can store subsets x of [n] of size αn in m :=
⌈
log2

(
n
αn

)⌉
+ r bits,

while answering “is i in x” by non-adaptively reading q bits of the data structure. Then there
is a q-local function f : {0, 1}m → {0, 1}n such that ∆(f(U), D=α) ≤ 1− 2−r−1.

Proof. The i-th output bit of f is the algorithm answering “is i in x.” Feed f random bits.

With probability
(
n
αn

)
/2dlog2 ( n

αn)e+r ≥ 1/2r+1 the input is uniform over encodings of subsets
of [n] of size αn, in which case the statistical distance is 0. If we distinguish in every other
case, the distance is at most 1− 1/2r+1.

Similar considerations extend to adaptive bit-probes and cell probes, corresponding to
forest functions (in the latter case, over the alphabet [n] instead of {0, 1}). While one could
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prove lower bounds for data structures without using this approach, Claim 1.8 and Corollary
1.7 appear to suggest an uncharted direction. Finally, we note that none of the upper bounds
mentioned earlier is an obstacle to using Claim 1.8, since those upper bounds use input
length that is larger than the information-theoretic minimum by a quantity polynomial in
the statistical distance gap, while for Claim 1.8 a logarithmic dependence suffices. Whether
the lower bounds for generating D=α can be improved in this case is an interesting open
problem.

Pseudorandom generators. The ability to generate a distribution efficiently has obvious
applications in pseudorandomness which we now elaborate upon. The ultimate goal of
derandomization of algorithms is to remove, or reduce, the amount of randomness used by
a randomized algorithm while incurring the least possible overhead in other resources, such
as time. Typically, this is achieved by substituting the needed random bits with the output
of a pseudorandom generator. That of pseudorandom generators is a general paradigm
with many incarnations (cf. [Gol08, Chapter 8]). To lead to our result we would like to
consider the distinction between two types of generators that can be used to derandomize
relatively robust classes of algorithms. The first type is that of cryptographic generators
[BM84, Yao82] (a.k.a. Blum-Micali-Yao). These use less resources than the algorithm to be
derandomized, and in fact computing these generators can even be done in the restricted
circuit class NC0 [AIK06]. However, unconditional instantiations of these generators are
rare, and in particular we are unaware of any unconditional cryptographic generator with
large stretch, a key feature for derandomization. By contrast, Nisan-Wigderson generators
[NW94] use more resources than the algorithm to be derandomized, and this looser notion
of efficiency allows for more unconditional results [Nis91, NW94, LVW93, Vio07]. Moreover,
all of these results yield generators with large, superpolynomial stretch.

In particular, Nisan [Nis91] shows a generator that fools small AC0 circuits of depth
d with exponential stretch, or seed length logO(d) n. As mentioned above, this generator
uses more resources than the circuits to be derandomized. Specifically, it computes the
parity function on ≥ logd n bits, which requires AC0 circuits that have either depth ≥ d
or superpolynomial size. Thus, if one insists on polynomial-size circuits, the derandomized
circuit, consisting of the circuit computing the generator and the original circuit, has depth
at least twice that of the original circuit. This constant factor blow-up in depth appears
necessary for Nisan-Wigderson constructions.

In this work we exhibit, for any d, a generator computable by depth-2 circuits that fools
circuits of depth d, using a number of random bits close to Nisan’s (an improvement in the
tools we use would let us match the number of random bits in Nisan’s result). As a corollary,
we obtain a derandomization which only blows up the depth by 1.

Theorem 1.9 (Depth-efficient generator against AC0). The following holds for every d.
There is a generator G : {0, 1}` → {0, 1}n such that:
(i) each output bit of G can be written explicitly as both a DNF and a CNF of size nO(1),
(ii) any circuit of depth d and size n has advantage at most o(1) in distinguishing the uniform
distribution from G(U) for random U ∈ {0, 1}`, and
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(iii) ` ≤ (log n)O(log logn).

Corollary 1.10 (Depth-efficient derandomization of AC0). The following holds for every d.
Let f : {0, 1}∗ → {0, 1}∗ be computable by uniform randomized AC0 circuits of poly(n)-size
and depth d with error ε. Then f is computable by uniform randomized AC0 circuits of
poly(n)-size and depth d+ 1 with error ε+ o(1) using ≤ (log n)O(log logn) random bits.

Corollary 1.10 follows easily from Theorem 1.9 by collapsing two adjacent layers of gates.
Some evidence that a generator as efficient as that in Theorem 1.9 may exist comes from

Example (1), which implies a generator mapping n − 1 bits to n bits that can be shown
to look random to AC0 circuits, and yet each output bit just depends on 2 inputs bits.
However, the seed length of this generator is very poor, and it is not clear how to improve
on it. Intuitively, one would like to be able to generate the output distribution of Nisan’s
generator [Nis91] more efficiently than shown in [Nis91]. We were not able to do so, and we
raise this as another challenge. (Some recent progress on this question appears in [LV10].)

For Theorem 1.9, we notice that the recent line of work by Bazzi, Razborov, and Braver-
man [Bra09] shows that any distribution that is (k := logc n)-wise independent looks random
to small AC0 circuits of depth d, for a certain constant c = c(d) ≥ d.

We show how such distributions can be generated by DNFs. Although the constructions
of k-wise independent distributions in [CG89, ABI86, GV04] all require iterated sums of k
bits, which for k := logc n is unfeasible in our setting, we follow an approach of Mossel,
Shpilka, and Trevisan [MST06] and give an alternative construction using unique-neighbor
expanders. Specifically, we use the recent unique-neighbor expanders by Guruswami, Umans,
and Vadhan [GUV09].

In the remainder of this section we discuss related work.

The work by Dubrov and Ishai [DI06]. The interesting work by Dubrov and Ishai
[DI06] also addresses the problem of generating distributions, with a focus on the random-
ness complexity. In particular, [DI06] shows how non-boolean pseudorandom generators
can be used to reduce the randomness necessary to generate a distribution. For the class
AC0, they show how any circuit generating a distribution can be combined with their non-
boolean generator so that the randomness complexity is reduced to roughly the square of
the entropy of the distribution. This square loss comes from the use of the Nisan-Wigderson
generator [NW94]. Can this intriguing result in [DI06] be used to reduce the randomness
used in some of our constructions, or even drop the bound on the input length in Theo-
rem 1.3? For example, this work points out the fact that small AC0 circuits can generate
(X,majority X) with exponentially small error. However, the circuits use Ω(|X| log |X|)
randomness. Can the randomness be reduced to, say, O(|X|), or even |X|? Unfortunately,
the aforementioned quadratic loss prevents us from using [DI06] to obtain any improvement,
as all of our constructions use randomness which is less than quadratic in the output length.
Still, we propose to explore further the approach in [DI06], and especially the construction
of non-boolean pseudorandom generators for the local and the forest models, which may give
new trade-offs in combination with our work.
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More related work and discussion. A result (we already mentioned briefly) by Ap-
plebaum, Ishai, Kushilevitz [AIK06] shows, under standard assumptions, that there are
pseudorandom distributions computable by NC0 circuits. Their result is obtained via a
generic transformation that turns a distribution D into another “padded” distribution D′

that is computable in NC0 and at the same time maintains interesting properties, such as
pseudorandomness (but not stretch). The techniques in [AIK06] do not seem to apply to
distributions such as (x,

∑
i xi) (Theorem 7.1), and they destroy stretch, which in partic-

ular prevents them from obtaining Corollary 1.10 (regardless of the stretch of the original
generator, the techniques in [AIK06] always produce a generator with sublinear stretch).

Under an assumption on the hardness of decoding random linear codes, the same authors
show in [AIK08] how to construct generators computable in NC0 that have linear stretch.
Their construction requires generating in NC0 a uniform “noise vector” e ∈ {0, 1}n. They
consider two types of noise vectors. The first type is when e has hamming weight exactly
pn (think p = 1/4), i.e. e comes from the distribution D=pn. The results in this paper
show that it is impossible to generate such an e in NC0, regardless of the input length,
except with constant statistical distance, see Remark 4.2 related to Theorem 1.6. The
second type of noise vector is when e is obtained by setting each bit to 1 independently with
probability p. This distribution can be trivially generated in NC0 when p = 2−t, using tn
bits of randomness, which is much larger than the entropy of the distribution. This loss
in randomness is problematic for pseudorandom generator constructions, but the authors of
[AIK08] make up for it by applying an extractor. (They use an extractor computable in NC0

that is implied by [MST06]). Whether such a noise vector can be generated in NC0 using
randomness close to optimal is an interesting open question.

It is perhaps worthwhile to pause to make a philosophical remark. While the above
mentioned works [AIK06, AIK08] show that, under various assumptions, one can locally
generate distributions on n bits with small entropy that look random to any polynomial-
time test, by contrast our results show that one cannot locally generate a distribution that
is close to being uniform over n-bit strings with n/2 ones, which superficially seems a less
demanding goal.

Recently, Lovett and the author [LV10] prove that small AC0 circuits cannot generate
the uniform distribution over any good error-correcting codes. This result does not solve
Challenge 1.1 – it does not apply to distributions like (X, b(X)) – although it does answer a
question asked in a preliminary version of this work.

Organization In §2 we provide the intuition and the proof of our lower bound for gen-
erating the “= α” distribution locally (Theorem 1.3). The lower bound for generating
(X,majmod X) locally (Theorem 1.4) is in §3, and the lower bounds in the decision tree
model (Theorem 1.6) are in §4. Upper bounds are in §5, §6, and §7, respectively for the local,
decision-tree, and AC0 models. In §8 we prove Theorem 1.9, our depth-efficient generator
against AC0 circuits. In §9 we conclude and summarize a few open problems.
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2 Intuition and proof of lower bound for generating

“= α” locally

In this section we prove our lower bound for generating the “= α” distribution, restated
next.

Theorem 1.3 (Lower bound for generating “= α” locally). (Restated.) For any α ∈ (0, 1)
and any δ < 1 there is ε > 0 such that for all sufficiently large n for which αn is an integer:

Let f : {0, 1}` → {0, 1}n be an (ε log n)-local function where ` ≤ log2

(
n
αn

)
+ nδ.

Let D=α be the uniform distribution over n-bit strings with αn ones.
Then ∆(f(U), D=α) ≥ 1−O(1/nδ/2).

2.1 Intuition for the proof of Theorem 1.3.

We now explain the ideas behind the proof of Theorem 1.3. For simplicity, we consider
the case ` = n and α = 1/2, that is, we want to prove that any (ε log n)-local function
f : {0, 1}n → {0, 1}n has output distribution f(U) for uniform U ∈ {0, 1}n at statistical
distance ≥ 1− 1/nΩ(1) from the distribution D=1/2 uniform over n-bit strings with n/2 ones.
For simplicity, we denote the latter by D = D=1/2.

We start with two warm-up scenarios:

Low-entropy scenario. Suppose that f is the constant function f(u) := 0n/21n/2. In this
case, the simple test

TF := support(f) = {0n/21n/2}
gives PrU [f(U) ∈ TF ] = 1 and Pr[D ∈ TF ] = 1/

(
n
n/2

)
� 1/n, proving the theorem.

We call this the “low-entropy” scenario because f(U) has low entropy.

Anti-concentration scenario. Suppose that f(u) := u. In this case we consider the test

TS := support(D) = {z :
∑
i

zi 6= n/2}.

Note Pr[D ∈ TS] = 0 by definition, while PrU [f(U) ∈ TS] = Pr[
∑

i Ui 6= n/2] =
(
n
n/2

)
/2n ≥

1 − O(1/
√
n) by a standard bound (Fact 2.2). (Taking TS to be the complement of the

support of D, rather than the support itself, is useful when pasting tests together.)
We call this the “anti-concentration” scenario because the bound Pr[

∑
i Ui 6= n/2] ≥

1 − O(1/
√
n) is an instance of the general anti-concentration phenomenon that the sum of

independent, non-constant, uniform random variables is unlikely to equal any fixed value.
Specifically, the bound is a special case (Si = Ui ∈ {0, 1}) of the following anti-concentration
inequality by Littlewood and Offord (later we use the general case).

Fact 2.1 (Littlewood-Offord anti-concentration [LO43, Erd45]). Let S1, S2, . . . , St be t inde-
pendent random variables, where Si is uniform over {ai, bi} for ai 6= bi. Then for any integer
c, Pr[

∑
i Si = c] ≤ O(1/

√
t).
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Having described the two scenarios, we observe that each of them, taken by itself, is not
sufficient. This is because the output distribution of the low-entropy function f(u) = 0n/21n/2

has the same probability of passing the anti-concentration test TS as the distribution D, and
similarly in the other case.

We would like to use a similar approach for a generic f . The first step is to partition the
input bits u of f as u = (x, y) and rewrite (up to a permutation)

f(u) = f(x, y) = h(y) ◦ g1(x1, y) ◦ g2(x2, y) ◦ · · · ◦ gs(xs, y),

where each function gi depends on only the single bit xi of x (but arbitrarily on y), and
has small range: gi(xi, y) ∈ {0, 1}O(d) = {0, 1}O(ε logn). A greedy approach allows for such
a decomposition with |x| = s ≥ Ω(n/d2) = n/poly log n. Specifically, by an averaging
argument a constant fraction of the input bits are adjacent to ≤ O(d) output bits. We
iteratively collect such a bit xi and move in y the ≤ O(d2) other input bits adjacent to any
of the input bits xi is adjacent to.

To reduce to the previous scenarios, fix y. Two things can happen: either ≥
√
n of the

functions gi are fixed, i.e., do not depend on xi anymore, or at least s−
√
n = n/poly log n

take two different values over the choice of xi. We think of the first case as the low-entropy
scenario. Indeed, for this y the output distribution of f(x, y) has small support, and we can
hardwire it in the test. Here we use that the input length n of f is close to the information-
theoretic minimum necessary to generate D, which is n−Θ(log n), and hence removing

√
n

bits of entropy yields a tiny support where D is unlikely to land.
In the second case, intuitively, we would like to use anti-concentration, since we have

independent random variables g1(x1, y), g2(x2, y), . . . , gs(xs, y). Specifically, we let Si :=∑
k(gi(xi, y))k denote the sum of the bits of gi, and would like to apply the Littlewood-

Offord inequality to argue that f(U) is likely to pass the anti-concentration test TS, which
checks if the hamming weight of f is 6= n/2. However, the following problem arises. It may
be the case that, for example,

gi(0, y) = 01, and gi(1, y) = 10,

corresponding to the constant variable Si ≡ 1. In this case, the value of gi is not fixed,
hence this is not a low-entropy scenario, but on the other hand it does not contribute to
anti-concentration, since Si ≡ 1. In fact, precisely such functions gi arise when running this
argument on the function that generates the uniform distribution over n-bit strings with an
even number of ones, which can be done with locality 2 via the construction (1) in §1.

We solve this problem as follows. We add to our test the check T0 that ≤ 2
√
n of

the blocks of output bits corresponding to gi are all 0. Since the blocks are small (recall
gi ∈ {0, 1}O(ε logn)), the distribution D will have ≥ n0.99 such blocks with high probability,
and so will almost never pass T0.

Consider however what happens with f(x, y), for a fixed y. If ≤ 2
√
n functions gi(xi, y)

can output all zeros (for some xi ∈ {0, 1}), then f(x, y) ∈ T0 for every x, and we are again
done. Otherwise, since ≤

√
n functions gi are fixed, we have 2

√
n −
√
n =

√
n functions
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gi(xi, y) that take two different values over xi ∈ {0, 1}, and one of the two is all zero. That
means that the other value is not all zero, and hence has a sum of bits ai > 0. We are
now in the position to apply the Littlewood-Offord anti-concentration inequality, since we
have ≥

√
n independent variables Si, each uniform over {0, ai} for ai 6= 0. The inequality

guarantees that f(x, y) ∈ TS with probability ≥ 1−1/nΩ(1), and this concludes the overview
of the proof of Theorem 1.3.

We now proceed with the formal proof. We use several times the following standard
approximation of the binomial by the binary entropy function H(x) = x log2(1/x) + (1 −
x) log2(1/(1− x)):

Fact 2.2 (Lemma 17.5.1 in [CT06]). For 0 < p < 1, q = 1 − p, and n such that np is an
integer,

1√
8npq

≤
(
n

pn

)
· 2−H(p)n ≤ 1

√
πnpq

.

2.2 Proof of Theorem 1.3

We begin by bounding some parameters in a way that is convenient for the proof. First, we
assume without loss of generality that α ≤ 1/2 (otherwise, complement the output of f).
Next, we bound ` = Θ(H(α)n). For this, first note that if ` ≤ log

(
n
αn

)
− log n then the size

of the range of f is at most a 1/n fraction of the support of D=1/2, and the result follows.
Hence ` ≥ log

(
n
αn

)
− log n. Fact 2.2 gives | log2

(
n
αn

)
−H(α)n| ≤ O(log n), for n large. Hence,

` = Θ(H(α)n).
Now consider the bipartite graph with the n output nodes on one side and the ` input

nodes on the other, where each output node is connected to the d input nodes it is a function
of. Without loss of generality, each input node has degree at least 1 (otherwise, run this
proof with ` the number of input bits actually used by f).

Claim 2.3. There is a set I of s := |I| ≥ Ω(H(α)2n/d2) input bits such that (i) each input
bit in I has degree at most b = O(d/H(α)), and (ii) each output bit is adjacent to at most
one input bit in I.

Proof. The average degree of an input node is dn/`. By a Markov argument, at least `/2
input nodes have degree ≤ 2dn/` = O(d/H(α)). Let K be the set of these nodes. We obtain
I ⊆ K greedily as follows: Put a v ∈ K in I, then remove from K any other input node
adjacent to one of the outputs that v is adjacent to. Repeat until K = ∅.

Since each output node has degree d, for each node put in I we remove ≤ (d − 1) ·
O(d/H(α)) = O(d2/H(α)) others. So we collect at least (`/2)/(1+O(d2/H(α))) = Ω(H(α)2n/d2).

Let I by the set given by Claim 2.3, and without loss of generality let I = [s] =
{1, 2, . . . , s}. For an input node ui ∈ [s], let Bi be the set of output bits adjacent to ui.
Note 1 ≤ |Bi| ≤ O(d/H(α)) (the first inequality holds because input nodes have degree
≥ 1).

10



By dividing an input u ∈ {0, 1}` in (x, y) where x are the first s input bits and y are the
other `− s, and by permuting output bits, we rewrite f as

f(x, y) = h(y) ◦ g1(x1, y) ◦ g2(x2, y) ◦ · · · ◦ gs(xs, y),

where gi has range {0, 1}|Bi|.

Definition 2.4. We say that a function gi is y-fixed if gi(0, y) = gi(1, y), i.e., after fixing y
it does not depend on xi anymore.

For a string z ∈ {0, 1}n, we denote by zBi the projection of z on the bits of Bi, so that
f(x, y)B2 = g2(x2, y), for example.

Definition of the statistical test. The statistical test T ⊆ {0, 1}n which will witness
the claimed statistical distance is the union of three tests:

TF :={z : ∃(x, y) : f(x, y) = z and ≥ 2nδ functions gi(xi, y) are y-fixed, i ∈ [s]},
T0 :={z : zBi = 0|Bi| for ≤ 3nδ indices i ∈ [s]},

TS :={z :
∑
i

zi 6= αn};

T :=TF
⋃

T0

⋃
TS.

We now prove that the output of f is likely to pass the test, while a uniform string of
weight αn is not.

Claim 2.5. Pru[f(u) ∈ T ] ≥ 1−O(1/nδ/2).

We recall the Littlewood-Offord anti-concentration inequality.

Fact 2.1 (Littlewood-Offord anti-concentration [LO43, Erd45]). (Restated.) Let S1, S2, . . . , St
be t independent random variables, where Si is uniform over {ai, bi} for ai 6= bi. Then for
any integer c, Pr[

∑
i Si = c] ≤ O(1/

√
t).

To prove this fact, reduce to the case ai ≤ 0, bi > 0. Then generate
∑
Si by first

permuting variables, and then setting exactly the first S of them to the smallest values of
their domains, where S is binomially distributed. Since for every permutation there is at
most one value of S yielding sum c, and each value has probability ≤ O(1/

√
t), the result

follows.

Proof of Claim 2.5. Write again an input u to f as u = (x, y). We prove that for every y we
have Prx[f(x, y) ∈ T ] ≥ 1−O(1/nδ/2), which implies the claimed bound. Fix any y.

If ≥ 2nδ functions gi(xi, y) are y-fixed, then Prx[f(x, y) ∈ TF ] = 1.
Also, if there are ≤ 3nδ indices i ∈ [s] such that gi(xi, y) = 0|Bi| for some xi, then clearly

for any x the string f(x, y) satisfies f(x, y)Bi = gi(xi, y) = 0|Bi| for ≤ 3nδ indices i. In this
case, Prx[f(x, y) ∈ T0] = 1.

11



Therefore, assume both that there are ≤ 2nδ functions gi(xi, y) that are y-fixed, and that
there are ≥ 3nδ indices i such that gi(xi, y) = 0|Bi| for some xi. Consequently, there is a set
J ⊆ [s] of ≥ 3nδ− 2nδ = nδ indices i such that gi(xi, y) is not y-fixed and gi(xi, y) = 0|Bi| for
some xi ∈ {0, 1}. The key idea is that for the other value of xi ∈ {0, 1} the value of gi(xi, y)
must have hamming weight bigger than 0, and therefore it contributes to anti-concentration.

Specifically, fix all bits in x except those in J , and denote the latter by xJ . We show
that for any such fixing, the probability over the choice of the bits xJ that the output falls
in TS, i.e. PrxJ [

∑
k≤n f(x, y)k 6= αn], is at least 1 − O(1/nδ/2). To see this, note that, for

i ∈ J , the sum Si of the bits in gi(xi, y) (i.e., Si :=
∑

k≤|Bi| gi(xi, y)k) is 0 with probability

1/2 over xi and strictly bigger than 0 with probability 1/2 (since 0|Bi| is the only input with
sum 0); moreover, the variables Si are independent. Writing the sum of the bits in f(x, y)
as a+

∑
i∈J Si for some integer a which does not depend on xJ , we have

Pr
xJ∈{0,1}|J|

[f(x, y) 6= αn] = Pr
xJ∈{0,1}|J|

[
∑
i∈J

Si 6= αn− a] ≥ 1−O(1/nδ/2),

where the last inequality is by Fact 2.1.

Claim 2.6. Let D = D=α be the uniform distribution over n-bit strings of hamming weight
αn. Then PrD[D ∈ T ] ≤ 1/n.

The proof gives the stronger bound PrD[D ∈ T ] ≤ 1/2n
γ
, for a γ > 0 depending on δ.

Proof of Claim 2.6. By a union bound,

Pr
D

[D ∈ T ] ≤ Pr
D

[D ∈ TF ] + Pr
D

[D ∈ T0] + Pr
D

[D ∈ TS].

We separately show that each term is at most 1/(3n).
First, PrD[D ∈ TS] = 0 by definition of D.
Also, PrD[D ∈ TF ] = |TF |/

(
n
αn

)
. Note each string in TF can be described by a string of

|y| + |x| − 2nδ bits, where the first |y| are interpreted as a value for y, and the remaining
|x| − 2nδ are interpreted as values for the variables xi corresponding to functions gi(xi, y)
that are not y-fixed. Hence,

|TF | ≤ 2|y|+|x|−2nδ = 2`−2nδ ≤ 2log ( n
αn)−nδ ,

and
Pr
D

[D ∈ TF ] ≤ 2−n
δ ≤ 1/(3n),

for large enough n.
Finally, we bound PrD[D ∈ T0]. There are several ways of doing this; the following is

self-contained. For i ∈ [s], let Ni be the event DBi 6= 0|Bi|, over the choice of D. Let t := 3nδ

be as in the definition of T0. We have:

Pr
D

[D ∈ T0] ≤ Pr[∃J ⊆ [s], |J | = s− t, such that Ni holds for all i ∈ J ]

≤
(
s

t

)
max

J⊆[s],|J |=s−t
Pr[Ni for all i ∈ J ] ≤

(
s

t

)
max

J⊆[s],|J |=n/ log2 n
Pr[Ni for all i ∈ J ], (2)
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where in the last inequality we use that s− t = Ω(H(α)2n/d2)− 3nδ ≥ n/ log2 n for δ < 1,
sufficiently small ε, and sufficiently large n, using that d ≤ ε log n. Let

m := n/ log2 n.

We now bound maxJ⊆[s],|J |=m Pr[Ni for all i ∈ J ]. Without loss of generality, let the
maximum be achieved for J = {1, 2, . . . ,m}. Write

Pr[Ni for all i ≤ m] = Pr[N1] · Pr[N2|N1] · · · · · Pr[Nm|Nm−1 ∧ . . . ∧N1]. (3)

We proceed by bounding Pr[Nk|Nk−1 ∧ . . . ∧ N1] for any k ≤ m. Recall that each set Bi

has size ≤ b = O(d/H(α)). So the event Nk−1 ∧ . . . ∧ N1 depends on ≤ (k − 1)b bits. If
we condition on any value of (k − 1)b bits, the probability that Nk is not true, i.e. that
DBk = 0|Bk|, is at least

b−1∏
j=0

(1− α)n− (k − 1)b− j
n− (k − 1)b− j

≥
(

(1− α)n− kb
n

)b
≥ 1/3b ≥ 1/nO(ε/H(α)),

using our initial assumption α ≤ 1/2, and that k ≤ m = n/ log2 n and b = O(d/H(α)) =
O(ε log n/H(α)), so kb = o(n). Hence, Pr[Nk|Nk−1 ∧ . . . ∧N1] ≤ 1− 1/nO(ε/H(α)).

Plugging this bound in Equation (3), we obtain

Pr[Ni for all i ≤ m] ≤
(
1− 1/nO(ε/H(α))

)m ≤ e−n
1−O(ε/H(α))/ log2 n ≤ e−n

(1+δ)/2

,

for sufficiently small ε and large n (recall δ < 1).
Plugging this bound back in Equation (2) we get

Pr
D

[D ∈ T0] ≤ (es/t)te−n
(1+δ)/2 ≤ n3nδe−n

(1+δ)/2 ≤ 1/(3n),

for large enough n.

To conclude the proof of the theorem, note that the combination of the two claims gives
∆(f(U), D) ≥ 1−O(1/nδ/2)− 1/n = 1−O(1/nδ/2).

This proof actually shows that for any τ > 0 and δ < 1, we can pick the same ε for any
α ∈ (τ, 1− τ).

3 Lower bound for generating (X,majmod X) locally

In this section we prove our lower bound for generating (X,majmod X), restated next.

Theorem 1.4 (Lower bound for generating (X,majmod X) locally). (Restated.) For any
δ < 1 there is ε > 0 such that for all sufficiently large n: Let p ∈ [0.25 log n, 0.5 log n] be a
prime number, and let majmod : {0, 1}n → {0, 1} be defined as

majmod(x) = 1⇔
∑
i≤n

xi mod p ∈ {0, 1, . . . , (p− 1)/2}.

Let f : {0, 1}` → {0, 1}n+1 be an (ε log n)-local function where ` ≤ n+ nδ.
Then ∆(f(U), (X,majmod X)) ≥ 1/2−O(1/ log n).
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Intuition for the proof of Theorem 1.4. The proof follows closely that of the lower
bound for generating the “= αn” distribution (Theorem 1.3). The main difference is that
we use anti-concentration modulo p to argue that the number of ones in the input is uniform
modulo p, and thus the output is correct with probability about 1/2.

The problem in the proof of Theorem 1.3 that unfixed functions gi can take two values
with the same hamming weight translates here in the problem that gi can take two values
with the same weight modulo p. Locality is used to guarantee that the output length of gi is
smaller than p, and so if one of the two values of gi is all zero the other one must be different
modulo p.

3.1 Proof of Theorem 1.4

The beginning of the proof is like that of Theorem 1.3: we write (up to a permutation of the
input and output bits):

f(x, y) = h(y) ◦ g1(x1, y) ◦ g2(x2, y) ◦ · · · ◦ gs(xs, y),

where gi has range {0, 1}|Bi| (Bi denotes the output bits of gi, so that f(x, y)Bi = gi(xi, y))
for 1 ≤ |Bi| ≤ O(d), and s ≥ Ω(n/d2).

For notational simplicity, we assume that the last bit of f does not get permuted; so fn+1

is still the bit corresponding to majmod.

Definition of the statistical test. Let

TF :={z ∈ {0, 1}n+1 : ∃(x, y) : f(x, y) = z and ≥ 2nδ functions gi(xi, y) are y-fixed, i ∈ [s]},
T0 :={z ∈ {0, 1}n+1 : zBi = 0|Bi| for ≤ 3nδ indices i ∈ [s]},

TS :={(z′, b) ∈ {0, 1}n × {0, 1} :

(∑
i

z′i mod p ∈ {0, 1, . . . , (p− 1)/2}

)
xor (b = 1)}

(that is, TS = “wrong answer”);

T :=TF
⋃

T0

⋃
TS.

We now prove that the output of f passes the test with probability 1/2 − O(1/ log n),
while (X,majmod(X)) passes the test with probability 1/n.

Claim 3.1. Pru[f(u) ∈ T ] ≥ 1/2−O(1/ log n).

The proof uses the following well-known fact, which can be thought of as an anti-
concentration result for the sum of random variables modulo p.

Fact 3.2. Let a1, a2, . . . , at be t integers not zero modulo p. The statistical distance between
the distribution

∑
i≤t aixi mod p for uniform x ∈ {0, 1}t and the uniform distribution over

{0, 1, . . . , p− 1} is at most
√
pe−t/p

2
.
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Proof using various results. By [BV10, Claim 33], the statistical distance is at most

√
pmax

a6=0
|Ex∈{0,1}t [e(a

∑
i≤t

aixi)]− EUp [e(aUp)]|,

where e(x) := e2π
√
−1x/p and Up is the uniform distribution over {0, 1, . . . , p − 1}. Fix any

a 6= 0. By [LRTV09, Lemma 12] |Ex∈{0,1}t [e(a
∑

i≤t aixi)] ≤ e−t/p
2
; also, EUp [e(aUp)] = 0.

Proof of Claim 3.1. Write again an input u to f as u = (x, y). We prove that for every y we
have Prx[f(x, y) ∈ T ] ≥ 1/2−O(1/ log n), which implies the claimed bound. Fix any y.

If ≥ 2nδ functions gi(xi, y) are y-fixed, then Prx[f(x, y) ∈ TF ] = 1.
Also, if there are ≤ 3nδ indices i ∈ [s] such that gi(xi, y) = 0|Bi| for some xi, then clearly

for any x the string f(x, y) satisfies f(x, y)Bi = gi(xi, y) = 0|Bi| for ≤ 3nδ indices i. In this
case, Prx[f(x, y) ∈ T0] = 1.

Therefore, assume both that there are ≤ 2nδ functions gi(xi, y) that are y-fixed, and that
there are ≥ 3nδ indices i such that gi(xi, y) = 0|Bi| for some xi. Consequently, there is a set
J ⊆ [s] of ≥ 3nδ − 2nδ = nδ indices i such that gi(xi, y) is not y-fixed and gi(xi, y) = 0|Bi|

for some xi ∈ {0, 1}. The key idea is that for the other value of xi ∈ {0, 1} the value of
gi(xi, y) must have hamming weight different from 0 modulo p, and therefore it contributes
to anti-concentration.

Specifically, note that gs is the only function that may affect the output bit fn+1, corre-
sponding to majmod. If present, remove s from J . Fix all bits in x except those in J , and
denote the latter by xJ . We show that for any such fixing, the probability over the choice
of the bits xJ that the output falls in TS is ≥ 1/2− O(1/ log n). To see this, note that, for
i ∈ J , the sum Si of the bits in gi(xi, y) (i.e., Si :=

∑
k≤|Bi| gi(xi, y)k) is 0 with probability

1/2 over xi, and ai 6= 0 mod p with probability 1/2. This is because the maximum sum is

|Bi| = O(d) = O(ε log n) < p

for sufficiently small ε. Moreover, the variables Si are independent. Writing the sum of the
first n bits of f(x, y) as a +

∑
i∈J Si for some integer a which does not depend on xJ , we

have by Fact 3.2 that, over the choice of xJ , the statistical distance between the sum of the
first n bits of f and the uniform distribution Up over {0, 1, . . . , p− 1} is at most

√
pe−(nδ−1)/p2 ≤ 1/n,

since p = O(log n). Because the last bit b := fn+1(x, y) is fixed (independent from xJ), and

Pr
Up

[Up ∈ {0, 1, . . . , (p− 1)/2}] = 1/2− 1/(2p) = 1/2−Θ(1/ log n),

we have
Pr
xJ

[f(x, y) ∈ TS] ≥ 1/2−O(1/ log n)− 1/n ≥ 1/2−O(1/ log n).
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Claim 3.3. Let D = (X,majmod(X)) for uniform X ∈ {0, 1}n. Then PrD[D ∈ T ] ≤ 1/n.

The proof gives a stronger, exponential bound.

Proof of Claim 3.3. By a union bound,

Pr
D

[D ∈ T ] ≤ Pr
D

[D ∈ TF ] + Pr
D

[D ∈ T0] + Pr
D

[D ∈ TS].

We separately show that each term is at most 1/(3n).
First, PrD[D ∈ TS] = 0 by definition of D.
Also, PrD[D ∈ TF ] = |TF |/2n. Note each string in TF can be described by a string of

|y| + |x| − 2nδ bits, where the first |y| are interpreted as a value for y, and the remaining
|x| − 2nδ are interpreted as values for the variables xi corresponding to functions gi(xi, y)
that are not y-fixed. Hence,

|TF | ≤ 2|y|+|x|−2nδ = 2`−2nδ ≤ 2n−n
δ

, and Pr
D

[D ∈ TF ] ≤ 2−n
δ ≤ 1/(3n),

for large enough n.
Finally, we bound PrD[D ∈ T0]. For any i ∈ [s],

Pr
X∈{0,1}n

[XBi ] = 0|Bi| = 1/2|Bi| = 1/2O(d) = 1/nO(ε).

Moreover, these events are independent for different i. Hence, recalling that s = Ω(n/d2) ≥
n/ log2 n, we have:

Pr
D

[D ∈ T0] ≤
(
s

3nδ

)
(1− 1/nO(ε))s−3nδ ≤ n3nδe−n

1−O(ε)/ log2 n ≤ 1/(3n)

for a sufficiently small ε and large enough n.

To conclude the proof of the theorem, note that the combination of the two claims gives
∆(f(U), (X,majmod X)) ≥ 1/2−O(1/ log n)− 1/n = 1/2−O(1/ log n).

4 Lower bounds for generating by decision trees

In this section we prove our lower bounds in the forest model, restated next. Recall that a
function f : {0, 1}` → {0, 1}n is a d-forest if each bit fi is a decision tree of depth d.

Theorem 1.6 (Lower bound for generating “= 1/2” or (X,majority X) by forest). (Re-
stated.) Let f : {0, 1}∗ → {0, 1}n be a d-forest function. Then:

(1) ∆(f(U), D=1/2) ≥ 2−O(d)−O(1/n), where D=1/2 is the uniform distribution over n-bit
strings with n/2 ones.

(2) ∆(f(U), (X,majority X)) ≥ 2−O(d) −O(1/n).
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The proof uses anti-concentration inequalities for random variables with bounded inde-
pendence (we say that X ∈ {0, 1}n is k-wise independent if any k bits of X are uniformly
distributed over {0, 1}k). The Pailey-Zygmund inequality would be sufficient for (1) but not
immediately for (2), due to its symmetry. The next lemma is sufficient for both; it follows
from the main result in [DGJ+10] and Fact 2.2.

Lemma 4.1 ([DGJ+10]). There is a constant k such that for large enough n and any k-wise
independent distribution X ∈ {0, 1}n, with probability ≥ 0.49 the variable X has strictly less
than n/2 ones.

Proof of Theorem 1.6, (1). Let k be the constant from Lemma 4.1. Suppose the distribution
X := f(U) is k-wise independent. Then by Lemma 4.1 Pr[

∑
iXi < n/2] ≥ 0.49. The

statistical test which checks if the output bits sum to n/2 proves the claim in this case.
Otherwise, there are k output bits of f that are not uniformly distributed over {0, 1}k.

We claim that, for any y, the probability k output bits evaluate to y equals A/2kd for an
integer A. To see this, note that the k output bits can be computed with a decision tree
of depth dk (e.g., use the decision tree for the first bit, then use the decision tree for the
second, and so on). Since the probability of outputting a value y in a decision tree is the
sum over all leaves labeled with y of the probabilities of reaching that leaf, and each leaf has
probability a/2kd for some integer a, the result follows.

Therefore, if these k bits are not uniform, there there must be an output value that has
probability at least 1/2k + 1/2kd.

But over D=1/2, this output combination of the k bits has probability at most

1

2
· n/2
n− 1

· · · · · n/2

n− (k − 1)
≤ 1

2k
1

(1− k/n)k
≤ 1

2k
1

(1− k2/n)
=

1

2k
+O(1/n).

So, checking if these k bits equal y we get statistical distance ≥ 1/2O(d) −O(1/n).

Remark 4.2. A lower bound similar to Theorem 1.6, (1), holds also for generating the
“= α” distribution for α 6= 1/2. This can be obtained with a similar proof but using a recent
result by Gopalan et al. [GOWZ10, Theorem 1.5] which generalizes [DGJ+10] and hence
Lemma 4.1 to biased distribution.

To prove Theorem 1.6, (2), we start with the following lemma which relates the ability to
generate (X,majority(X)) to that of generating the uniform distribution over n-bit strings
with ≥ 1/2 ones (we only need one direction for Theorem 1.6, (2)).

Lemma 4.3 (Generate (X,majority(X)) ⇔ generate upper half). Let n be odd, A (for
above) denote the uniform distribution over n-bit strings with ≥ n/2 ones. Write ⊕ for xor
and z̄ for the bit-wise complement of z.

(1) For any function f : {0, 1}` → {0, 1}n define f ′ : {0, 1}` × {0, 1} → {0, 1}n+1 as

f ′(u, b) := (f(u)1 ⊕ b̄, . . . , f(u)n ⊕ b̄, b).

Then ∆(f ′(U,B), (X,majority(X))) ≤ ∆(f(U), A). (Here B is uniform in {0, 1}.)
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(2) For any function f : {0, 1}` → {0, 1}n+1 define f ′ : {0, 1}` → {0, 1}n as

f ′(u) := (f(u)1 ⊕ f(x)n+1, ..., f(u)n ⊕ f(x)n+1).

Then ∆(f ′(U), A) ≤ ∆(f(U), (X,majority(X))).

Proof. Think of generating the distribution (X,majority(X)) by first tossing a coin b, and
if b = 1 output (A, 1), and if b = 0 output (Ā, 0).

(1) Pick any test T ⊆ {0, 1}n+1. We have

| Pr
U,B

[f ′(U,B) ∈ T ]− Pr[(X,maj(X)) ∈ T ]|

≤ (1/2)(|Pr[f ′(U, 1) ∈ T ]− Pr[(A, 1) ∈ T ]|+ |Pr[f ′(U, 0) ∈ T ]− Pr[(Ā, 0) ∈ T ]|)
≤ (1/2)(∆(f(U), A) + |Pr[f ′(U, 1) ∈ T x]− Pr[(A, 1) ∈ T x]|)
≤ (1/2)2∆(f(U), A),

where T x := {z̄ : z ∈ T}.
(2) Pick any test T ⊆ {0, 1}n. Let T ′ be the test that on input z of length n+ 1 xors the

first n bits with the complement of the last bit (i.e., if the last bit is 0 then it flips the first
n), and checks if the resulting string is in T . We show T ′ tells f from (X,maj(X)) equally
well as T tells f ′ from A.

First note Pr[(X,maj(X)) ∈ T ′] = (1/2) Pr[(A, 1) ∈ T ′] + (1/2) Pr[(Ā, 0) ∈ T ′] = Pr[A ∈
T ].

Also, for B the last bit of f(U):

Pr[f(U) ∈ T ′] = Pr[B = 1] Pr[f(U) ∈ T ′|B = 1] + Pr[B = 0] Pr[f(U) ∈ T ′|B = 0]

= Pr[B = 1] Pr[f(U)1,...,n ∈ T |B = 1] + Pr[B = 0] Pr[f(U)1,...,n ∈ T |B = 0]

= Pr[f ′(U) ∈ T ].

Hence,

∆(f(U), (X,maj(X))) ≥ |Pr[f(U) ∈ T ′]−Pr[(X,maj(X)) ∈ T ′]| = |Pr[f ′(U) ∈ T ]−Pr[A ∈ T ]|.

Proof sketch of Theorem 1.6, (2). By Lemma 4.3 it suffices to bound from below ∆(f ′(U), A)
for f ′ a (2d)-forest. For this, we follow the approach of the proof of Theorem 1.6, (1).

Let k be the constant from Lemma 4.1. Suppose the distribution X := f ′(U) is k-wise
independent. Then by Lemma 4.1 Pr[

∑
iXi < n/2] ≥ 1/k. The statistical test which checks

if the output bits have sum ≥ n/2 proves the claim in this case.
Otherwise, there are k bits that not are not uniformly distributed over {0, 1}k. A rea-

soning similar to that of the proof of Theorem 1.6, (1), completes the proof.
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5 Local upper bounds

The following Theorem shows that for any t = ω(log n) there is an O(t)-local function whose
output distribution has distance ≤ 1 − O(1/

√
n) from the uniform distribution over n-bit

strings with αn ones, and the input length is only sublinearly more than the information-
theoretic minimum.

Theorem 5.1 (Local & succinct generation of the “= α” distribution). For every α there
is k ≥ 1 such that for all n ≥ k for which αn is an integer, and for all t ≥ k log n:

There is a function f : {0, 1}` → {0, 1}n such that

1. ` ≤ H(α)n+ nk
√

(log n)/t),

2. f has locality `t/n ≤ H(α)t+ k
√
t log n, and

3. let Nn
α over {0, 1}n be the distribution where each bit equals 1 independently with prob-

ability α.

Then ∆(f(U), Nn
α ) ≤ O(1/n).

In particular, ∆(f(U), D=α) ≤ 1−O(1/
√
n), where D=α is the uniform distribution over

n-bit strings with αn ones.

The proof of Theorem 5.1 uses the following lemma to “discretize” distributions.

Lemma 5.2 (Discretize distribution). For any distribution D on n elements and any t ≥ 1
there is a function f : {0, 1}dlog2 nte → support(D) such that the statistical distance between
f(U) and D is ≤ 1/t.

Proof. Partition the interval [0, 1] in n intervals Ii of lengths Pr[D = i], i = 1, . . . , n. Also
partition [0, 1] in ` := 2dlog2 nte ≥ nt intervals of size 1/` each, which we call blocks. The
function f interprets an input as a choice of a block b, and outputs i if b ⊆ Ii and, say,
outputs 1 if b is not contained in any interval.

For any i we have |Pr[D = i] − Pr[f(U) = i]| ≤ 2/`. Hence the statistical distance is
≤ (1/2)

∑
i |Pr[D = i]− Pr[f(U) = i]| ≤ (1/2)n2/` ≤ 1/t.

We also need the following fact about the entropy function.

Fact 5.3. For any α ∈ (0, 1) and any ε such that α + ε ∈ [0, 1], we have:

H(α + ε) ≤ H(α) + ε log((1− α)/α).

Proof sketch of Fact 5.3. The entropy function is concave [CT06, Theorem 2.7.3], and its
derivative at α is log((1− α)/α).
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Proof of Theorem 5.1. The “in particular” claim follows from the first claim because the
probability that Nn

α contains exactly αn ones is Ω(1/
√
n) (Fact 2.2).

For simplicity, we assume α ≤ 1/2. Also, if α = 0 or α = 1/2 the theorem is easily proved
(in the latter case, let f(x) := x). Hence, assume α ∈ (0, 1/2). Let N t

α be the distribution on
{0, 1}t where each bit is 1 independently with probability α. By a Chernoff bound [DP09,
Theorem 1.1], the probability of the event E that the number of ones is more than

√
ct log n = αtε, where ε :=

1

α

√
c log n

t
,

away from the mean αt is

exp(−Ω(ε2αt)) = exp(−Ω((c/α) log n)) ≤ 1/n2

for suitable c = O(1). Denoting by N ′ the distribution N t
α conditioned to E, this means that

∆(N ′, N t
α) ≤ 1/n2. (4)

Note that N ′ is a distribution on

support(N ′) ≤ O(
√
ct log n)

(
t

αt+
√
ct log n = t(α +

√
(c log n)/t)

)
points, where we bounded each binomial by the largest one, using that for α < 1/2 and
t ≥ k log n for a sufficiently large k depending on α, αt +

√
ct log n ≤ t/2. Hence, since

t ≥ log n,

log2 support(N ′) ≤ O(log t) +H
(
α +

√
(c log n)/t)

)
t (Fact 2.2)

≤ O(log t) +H(α)t+
√
ct log n log((1− α)/α) (Fact 5.3)

≤ H(α)t+O
(√

t log n log((1− α)/α)
)
.

By Lemma 5.2, there is a function f ′ : {0, 1}`′ → {0, 1}t on

`′ = log2 support(N ′) +O(log n) = H(α)t+O
(√

t log n log((1− α)/α)
)

bits with ∆(f ′(U), N ′) ≤ 1/n2. By (4), ∆(f ′(U), N t
α) ≤ 2/n2.

Letting f : {0, 1}` → {0, 1}n be n/t independent copies of f ′, we have an `′-local function
on

` = `′n/t = H(α)n+ nO
(√

(log n)/t log((1− α)/α)
)

bits such that ∆(f(U), Nn
α ) ≤ n2/n2 = O(1/n).

We now show how to generate (X,
∑

iXi mod p) with locality O((log n)p2 log p).

20



Theorem 5.4 (Generating (X,
∑

iXi mod p) locally). For any n and any prime p there
is an O((log n)p2 log p)-local function f : {0, 1}O(n) → {0, 1}n such that ∆(f(U), (X,

∑
iXi

mod p)) ≤ 1/n.

Proof. Let t := c(log n)p2 log p for a c = O(1) to be determined later. Divide n in b := n/t
blocks of t bits each. Let R1, R2, . . . , Rb be independent binomials over t bits, modulo p,
corresponding to the sum modulo p of the t bits in each block of X. Consider the following
randomized process G: on input R1, R2, . . . , Rb, output

(X1 ◦X2 ◦ · · · ◦Xb,
∑

Ri mod p),

where X i is a uniform t-bit strings with hamming weight Ri modulo p.
Note that the distribution of G, over random input R1, R2, . . . , Rb and random choices

for the variables X i, is the same as (X,
∑

iXi mod p).
By Fact 3.2, for each i, letting Si be the uniform distribution over {0, 1, . . . , p − 1}, we

have
∆(Ri, Si) ≤

√
pe−t/p

2 ≤ o(1/n2),

for a suitable c = O(1). Hence,

∆((R1, . . . , Rb), (S1, . . . , Sb)) ≤ o(1/n).

This means that if we run the randomized process G on input S1, . . . , Sb we observe

∆(G(S1, . . . , Sb), (X,
∑
i

Xi mod p)) ≤ o(1/n).

We now show how to generate G(S1, . . . , Sb) locally. Via the telescopic trick from (1) in
§1, we have (writing “≡” for “having the same distribution)

G(S1, . . . , Sb) ≡ G(S1, S2 − S1 mod p, S3 − S2 mod p, . . . , Sb − Sb−1 mod p)

≡ (Z1 ◦ Z2 ◦ · · · ◦ Zb, Sb),

where Zi is a uniform t-bit string with weight Si − Si−1 modulo p.
To generate this distribution locally, we discretize these distributions via Lemma 5.2.

Specifically, first generate discretizations Ti of Si. Since each Si is over p values, we can
generate Ti with error o(1/n2) using input length = locality ≤ log p + O(log n) = O(log n).
With input length bO(log n) = O(n), we can generate (T1, . . . , Tb) with statistical distance
≤ o(1/n) from (S1, . . . , Sb).

Then generate discretizations W i of the variables Zi. Each Zi ranges on at most 2t values,
and depends on Si and Si−1. Hence we can generate W i with statistical distance o(1/n2) from
Zi using input length = locality ≤ t + O(log n) = O(t). With input length bO(t) = O(n)
and locality O(t) we can generate (W 1, . . . ,W b) with statistical distance ≤ o(1/n) from
(Z1, . . . , Zb). The total error loss is ≤ 1/n; we output (W 1 ◦W 2 ◦ · · · ◦W b, Tb).
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A different proof yielding qualitatively similar parameters may be conceptually simpler.
Think of G as a (deterministic) function that in addition to R1, . . . , Rb takes as input bp vari-
ables X i,j, where X i,j is uniform over t-bit strings with weight j modulo p, and corresponds
to the i-th block. G outputs the selection of variables X i,j corresponding to the variables
Ri. Now use the telescopic trick from (1) in §1, and then simply replace each input variable
by a discretization.

6 Decision tree upper bounds

In this section we prove that various distributions can be generated by functions whose
output bits are shallow decision trees. The distributions include the uniform distribution
over n-bit strings with αn ones, and (X, b(X)) for symmetric b.

The upper bounds in this section rely on previous results on switching networks, which
we now recall. See [CKKL01] for details.

Definition 6.1. A switching network S of depth d with n inputs is a list of d matchings of
[n]. The output distribution S(x) of S on fixed input x ∈ {0, 1}n is obtained as follows. For
i = 1, . . . , d: independently for any edge in the i-th matching, swap the corresponding bits of
x with probability 1/2. Output x.

Czumaj et al. [CKKL99] prove the existence of small-depth switching networks that
“shuffle” balanced strings and generate random permutations.

Theorem 6.2 ([CKKL99]). (1) For any even n there is a switching network of depth O(log n)
whose output distribution on input 1n/20n/2 has statistical distance O(1/n) from the uniform
distribution over n-bit strings with n/2 ones.

(2) For any n there is a switching network of depth O(log2 n) such that for any input
x ∈ {0, 1}n with k ones the output distribution on input x has statistical distance O(1/n)
from the uniform distribution over n-bit strings with k ones.

Remark 6.3 (Remark on Theorem 6.2). (1) is [CKKL99, Theorem 2.3]. (2) is a corollary
of the stronger result in [CKKL99] that there are switching networks that generate random
permutations over [n]. It appears (Czumaj, personal communication) that the techniques
yielding (1) also establish (2) with depth O(log n) as opposed to O(log2 n). This immediately
would entail the same improvement in Theorems 6.5 and 6.6 below. Finally, we note that (1)
and (2) are not explicit, but for d = poly log n there are explicit such networks, see [CKKL01]
and the pointers therein.

We make the technically simple observation that decision trees can simulate switching
networks. Recall from Definition 1.5 that a d-forest is a function where each output bit is a
decision tree of depth d.

Lemma 6.4 (Switching network⇒ decision trees). Let S be a switching network of depth d
on n inputs, and x ∈ {0, 1}n any input. There is a d-forest function f : {0, 1}dn/2 → {0, 1}n
such that the output distribution f(U) equals the output distribution of S on x.
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Proof. The input to f corresponds to the random choices in the computation of S on x: one
choice per edge in each of the d matchings. To compute fi, follow the path via matchings
d, d− 1, . . . , 1 to an input node; output that node.

We now show how to generate the distribution Dα on {0, 1}n, which recall is the uniform
distribution over n-bit strings with n/2 ones.

Theorem 6.5 (Generating “= αn” distribution by decision trees). For every even n there is
an O(log n)-forest function f : {0, 1}O(n logn) → {0, 1}n such that ∆(f(U), D=1/2) ≤ O(1/n).

Also, for every n and α such that αn is an integer, there is a O(log2 n)-forest function
f : {0, 1}O(n log2 n) → {0, 1}n such that ∆(f(U), D=α) ≤ O(1/n).

Proof. Combine Theorem 6.2 and Lemma 6.4.

We now turn to the task of generating distributions of the form (X, b(X)), where b is
symmetric. The idea is to use Lemma 5.2 to “discretize” the binomial distribution

∑
iXi.

Theorem 6.6 (Generating (X,
∑

iXi) by decision trees). For every n there is an O(log2 n)-

forest function f : {0, 1}O(n log2 n) → {0, 1}n such that ∆(f(U), (X,
∑

iXi)) ≤ O(1/n).
In particular, (X, b(X)) can be generated with the same resources for any symmetric b

(e.g., b = majority,majmod).

Proof. The “in particular” part is immediate; we now prove the first claim. We dedicate
O(log n) input bits to generating s :=

∑
iXi with statistical distance O(1/n2), via Lemma

5.2. Each output bit of fi queries these bits first. Once the discretization s′ of s has been
determined, we use the decision trees for generating a distribution at distance ≤ O(1/n)
from the uniform distribution over n-bit strings with s′ ones, given by the combination of
Theorem 6.2, (2), and Lemma 6.4.

7 Generating (x,
∑

i xi) in AC0

In this section, we prove that small AC0 circuits can generate (x, f(x)) for any symmetric
function f , including for example the majority function, except for an exponentially small
statistical distance. This is an immediate corollary of the following theorem, stating that
one can generate (x,

∑
i xi) ∈ {0, 1}n × {0, 1, . . . , n}.

Theorem 7.1. There are explicit AC0 circuits C : {0, 1}poly(n) → {0, 1}n × {0, 1, . . . , n} of
size poly(n) and depth O(1) whose output distribution has statistical distance ≤ 2−n from
the distribution (x,

∑
i xi) ∈ {0, 1}n × {0, 1, . . . , n} for random x ∈ {0, 1}n.

We note that the statistical distance can be made 2−n
c

for an arbitrary constant c at the
price of having the size of the circuit be a polynomial depending on c (choose larger ` in
§7.1).

The proof of Theorem 7.1 relies on the following result by Matias and Vishkin [MV91] and
Hagerup [Hag91] about generating random permutations of [n]. We think of a permutation
of [n] as represented by an array A[1..n] ∈ [n]n.
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Lemma 7.2 ([MV91, Hag91]). There are explicit AC0 circuits C : {0, 1}poly(n) → [n]n of
size poly(n) and depth O(1) whose output distribution has statistical distance ≤ 2−n from
the uniform distribution over permutations of [n].

Lemma 7.2 is obtained in [MV91] and Hagerup [Hag91, Theorem 3.9] in the context of
PRAMs. Those works also achieve a nearly optimal number of processors, which appears
to make the proofs somewhat technical. In §7.1 we present a proof that uses the ideas in
[MV91, Hag91] but is simpler and sufficient for our purposes.

To prove Theorem 7.1 we first generate a random permutation π of [n], then select
s ∈ {0, 1, . . . , n} binomially distributed, let x ∈ {0, 1}n be the string where exactly the bits
at position π(i) for i ≤ s are set to 1, and output (x, s). The difference between this proof
and that of Theorem 6.6 is that to obtain exponentially small error we use [MV91, Hag91]
instead of [CKKL99] to generate random permutations, and we construct an AC0 circuit to
discretize (in fact, generate exactly) the binomial distribution instead of using Lemma 5.2.

Proof of Theorem 7.1. First, note for every s ∈ {0, . . . , n} there is a circuit Cs of size poly(n)
and depth O(1) whose output distribution is exponentially close to the uniform distribution
over n-bit strings of weight s. To see this, run the circuit from Lemma 7.2 to produce array
A[1..n] containing a random permutation. The i-th output bit of Cs is set to 1 if and only
if there is j ≤ s such that A[j] = i. In other words, we set to 1 exactly the first s elements
of A. It is easy to see that this can be implemented using poly-size AC0 circuits.

To generate (x,
∑

i xi), it remains to select the circuits Cs with the correct probability.
To do this, recall that, given two n-bit integers a, b, we can efficiently determine if a > b as
follows (a1 is the most significant digit):

a > b⇔ (a1 > b1) ∨ (a1 = b1 ∧ a2 > b2) ∨ (a1 = b1 ∧ a2 = b2 ∧ a3 > b3) . . . .

Now interpret n fresh random bits as an integer z ∈ {1, . . . , 2n}. Let circuit D : {0, 1}n →
{0, 1, . . . , n} output s ∈ {0, . . . , n} if and only if

s−1∑
i=0

(
n

i

)
< z ≤

s∑
i=0

(
n

i

)
.

To do this in parallel, we can for example construct circuits Ds each responsible of one
output, and then take the OR of their outputs. By construction, the output distribution
of D over uniform input equals the distribution

∑
iXi where Xi are independent uniform

random bits.
The circuit claimed in the theorem first runs D to obtain s, then runs Cs to obtain

x ∈ {0, 1}n, and outputs (x, s).

7.1 Generating random permutations in AC0

In this section we give a simple proof of the following lemma.
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Lemma 7.2 ([MV91, Hag91]). (Restated.) There are explicit AC0 circuits C : {0, 1}poly(n) →
[n]n of size poly(n) and depth O(1) whose output distribution has statistical distance ≤ 2−n

from the uniform distribution over permutations of [n].

The main technique is known as “dart throwing:” we view the input random bits as
random pointers p1, p2, . . . , pn into m � n cells. We then write i in the pi-th cell (empty
cells get “∗”). If there are no collisions, the ordering of [n] in the cells gives a random
permutation of [n]. However, it is not clear how to explicitly write out this permutation
using small depth, because to determine the image of i one needs to count how many cells
before pi are occupied, which cannot be done in small depth.

The key insight of Matias and Vishkin [MV91] (see also [Hag91]) is to view the cells as
representing the permutation in a different format, one from which we can explicitly write
out the permutation in small depth. The format is known as the canonical form for the cyclic
notation. We now briefly review it closely following [MV91]. Just like the standard format,
the alternative format represents a permutation via an array A[1..n] whose entries contain
all the elements [n]. However, rather than thinking of A[i] as the image of i, we think of the
entries of A as listing the cycles of the permutation in order. Each cycle is listed starting
with its smallest element, and cycles are listed in decreasing order of the first element in the
cycle. This format allows for computing the permutation efficiently: the image of i is the
element to the right of i in A, unless the latter element is the beginning of a new cycle, in
which case the image of i is the first element in the cycle containing i. Identifying the first
element of a cycle is easy, because it is smaller than any element preceding it in A. One can
now verify that computing the image of i can be done by circuits of size poly(n) and depth
O(1).

The benefit of this format is that it works even if the array A has m� n cells, of which
m− n are empty and marked by “∗.”

To conclude the proof of the lemma, generate ` uniform and independent sets of pointers
pi1, . . . , p

i
n, i = 1, . . . , `, where each pointer has range [m] for m the smallest power of 2 larger

than 2n2 (thus each pointer can be specified by logm bits).
If there exists i such that the pointers pi1, . . . , p

i
` are all distinct (i.e., there are no colli-

sions), then run the above algorithm on the output corresponding to the first such i. This
results in a random permutation.

Since the pointers are chosen independently, the probability that there is no such i is

Pr[∀i∃j, k ≤ n : pij = pik] = Pr[∃j, k ≤ n : p1
j = p1

k]
` ≤ (1/2)`.

Choosing ` := n proves the lemma.

8 Depth-efficient derandomization of AC0

In this section we prove Theorem 1.9:

Theorem 1.9 (Depth-efficient generator against AC0). (Restated.) The following holds for
every d. There is a generator G : {0, 1}` → {0, 1}n such that:
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(i) each output bit of G can be written explicitly as both a DNF and a CNF of size nO(1),
(ii) any circuit of depth d and size n has advantage at most o(1) in distinguishing the uniform
distribution from G(U) for random U ∈ {0, 1}`, and
(iii) ` ≤ (log n)O(log logn).

For our generator, we need the results by Bazzi, Razborov, and Braverman that polylog-
wise distributions fool small AC0 circuits.

Theorem 8.1 ([Bra09]). For every d there is c such that the following holds for every m.
Let C be a boolean circuit of depth d and size m. Let D be a (logcm)-wise independent
distribution. Then

|PrU [C(U) = 1]− Pr[C(D) = 1]| ≤ 1/m,

where U is the uniform distribution.

Overview of the proof of Theorem 1.9. The proof goes by showing how to generate
(logc n)-wise independent distribution by DNFs. This relies on the expander graphs by
Guruswami, Umans, and Vadhan [GUV09]. Specifically, [GUV09] gives explicit bipartite
expanders with n nodes on the left, s nodes on the right, and left degree O(log n) such that
any subset of left-hand nodes of size ≤ k = logc n has at least one unique neighbor. We
define the i-th output bit of our (logc n)-wise independent generator as the xor of the O(log n)
neighbors of the left-hand node i in this graph, which can be computed by a poly(n)-size
DNF. The unique neighbor property guarantees that the xor of any t ≤ k = logc n output
bits will be unbiased. And this implies that any k output bits are uniformly distributed over
{0, 1}k (as observed e.g. in [CGH+, §3.1]), concluding our overview.

As noted in the Introduction, the use of unique-neighbor expanders to construct distribu-
tions with bounded independence also appears in the work by Mossel, Shpilka, and Trevisan
[MST06]

We now proceed with the formal proof. We recall the result by Guruswami, Umans, and
Vadhan.

Theorem 8.2 (Theorem 3.3 in [GUV09]). For any integers s,m, and q, where q is a power
of 2, there are explicit graphs G : [q]s × [q] → [q]m+1 such that any set S ⊆ [q]s of size at
most 2m has at least |S| · (q − (s− 1)m) neighbors.

The following is our efficient constructions of k-wise independent distributions.

Theorem 8.3. For every n and d ≤ log n there is an explicit circuit C : {0, 1}` → {0, 1}n
such that:

(i) each output bit of C can be written explicitly as both a DNF and a CNF of size nO(d),
(ii) the distribution C(U) for random U ∈ {0, 1}` is (logd n)-wise independent,
(iii) ` ≤ (log n)O(d·log logn).
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Proof. Let c be a sufficiently large, even constant to be set later. Let q be a power of 2 such
that

c · d · log n ≤ q ≤ 2c · d · log n.

Choose

s :=

⌈
log n

log q

⌉
,

and

m :=

⌈
q

4
· log q

log n

⌉
≤
⌈

2c · d log n

4
· log q

log n

⌉
=
c · d · log q

2
.

Let G be the graph given by Theorem 8.2 for the above parameters. The i-th output
bit of C is the parity of the neighbors of the i-th left-hand node in G. First, note that the
numbers of left-hand nodes in G is

qs ≥ q(logn)/ log q ≥ n,

so the output length of C is as desired. Also, each left-hand node has ≤ 2c ·d log n neighbors
by our choice of q. The corresponding parity can be computed in brute-force by both a DNF
and a CNF of size nO(d). This verifies (i).

The number of right-hand side nodes is the input length ` of C. Using our above bounds
on m and q, and the assumption that d ≤ log n, we have

` = qm+1 ≤ (2c · d · log n)O(d·log q) ≤ (log n)O(d·log logn).

This verifies (iii).
To see (ii), it is enough to observe that every S ⊆ [q]s of size |S| ≤ logd n has at least one

unique neighbor. This unique neighbor guarantees that the parity of the bits corresponding
to S (which recall are each defined to be the parity of their neighbors) is unbiased. Therefore,
as observed e.g. in [CGH+, §3.1], the output distribution is (logd n)-wise independent.

Indeed, note that the expansion property of the graph holds for sets of size up to

2m ≥ exp

(
q

4
· log q

log n

)
≥ exp

(
c · d · log n

4
· log log n

log n

)
≥ exp

(
c · d · log log n

4

)
≥ logd n,

for a sufficiently large c.
Hence, by the expansion property, S has at least |S|(q−(s−1)m) neighbors. To guarantee

a unique neighbor, we need more than |S|q/2 neighbors. Equivalently, (s− 1)m < q/2. By
our choice of s and m we have

(s− 1)m ≤
(

log n

log q
+ 1− 1

)
m =

log n

log q
· q

4

log q

log n
=
q

4
<
q

2
,

concluding the proof.
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Combining the above two theorems yields Theorem 1.9. Suitable improvements in theo-
rems 8.2 and 8.1 would make the number of random bits in the conclusion of Theorem 1.9
match the state-of-the-art [Nis91].

We also draw a connection to the long-standing challenge of finding an algorithm that,
given a DNF, computes an additive approximation to the number of satisfying assignments
(see, e.g., [Tre04]). The above techniques show that the latter problem is polynomial-time
reducible to the problem of computing an additive approximation to the number of satisfying
assignments of a given depth-3 circuit with only (log n)O(log logn) variables.

9 Conclusion

This paper makes a step towards a systematic study of the complexity of generating dis-
tributions. Many open problems remain. We already mentioned the problem of extending
Theorems 1.3 and 1.4 to hold even when the input length is unbounded, and also the prob-
lem of generating independent biased bits with input length close to optimal. We note a
few other problems: What is the complexity of generating (x,majority(x)) ∈ {0, 1}n+1? We
have proved the existence of AC0 circuits with exponentially close output distribution; can
they generate exactly (x,majority(x)) ∈ {0, 1}n+1? We have connected this problem to gen-
erating the “upper half” of the boolean cube, and gave a lower bound for forest functions.
Can we prove a stronger bound for local functions?

For simplicity we have stated Challenge 1.1 for generating a distribution exactly, but a
statistical distance lower bound would be desirable. To our knowledge, that is open even for
O(log n)-local functions: Can we prove, say, a Ω(1) statistical distance bound for O(log n)-
local functions?
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[Bab87] László Babai. Random oracles separate PSPACE from the polynomial-time hi-
erarchy. Inform. Process. Lett., 26(1):51–53, 1987.

[Bei93] Richard Beigel. The polynomial method in circuit complexity. In 8th Annual
Structure in Complexity Theory Conference, pages 82–95. IEEE, 1993.

[BL87] Ravi Boppana and Jeffrey Lagarias. One-way functions and circuit complexity.
Inform. and Comput., 74(3):226–240, 1987.

[BM84] Manuel Blum and Silvio Micali. How to generate cryptographically strong se-
quences of pseudo-random bits. SIAM J. on Computing, 13(4):850–864, Novem-
ber 1984.

[BMRS02] Harry Buhrman, Peter Bro Miltersen, Jaikumar Radhakrishnan, and Venkatesh
Srinivasan. Are bitvectors optimal? SIAM J. Comput., 31(6):1723–1744, 2002.

[Bra09] Mark Braverman. Poly-logarithmic independence fools AC0 circuits. In 24th
Conference on Computational Complexity (CCC). IEEE, 2009.

[BV10] Andrej Bogdanov and Emanuele Viola. Pseudorandom bits for polynomials.
SIAM Journal on Computing, 39(6):2464–2486, 2010. FOCS special issue.

[CG89] Benny Chor and Oded Goldreich. On the power of two-point based sampling.
Journal of Complexity, 5(1):96–106, 1989.

[CGH+] B. Chor, O. Goldreich, J. Hastad, J. Friedman, S. Rudich, and R. Smolensky.
The bit extraction problem and t-resilient functions. In 26th IEEE Symposium
on Foundations of Computer Science (FOCS), pages 396–407.

[CKKL99] Artur Czumaj, Przemyslawa Kanarek, Miroslaw Kutylowski, and Krzysztof Lo-
rys. Delayed path coupling and generating random permutations via distributed
stochastic processes. In Symposium on Discrete Algorithms (SODA), pages 271–
280, 1999.

[CKKL01] Artur Czumaj, Przemyslawa Kanarek, Miroslaw Kutylowski, and Krzysztof Lo-
rys. Switching networks for generating random permutations, 2001.

[CT06] Thomas Cover and Joy Thomas. Elements of Information Theory (Wiley Series
in Telecommunications and Signal Processing). Wiley-Interscience, 2006.

[DGJ+10] Ilias Diakonikolas, Parikshit Gopalan, Ragesh Jaiswal, Rocco A. Servedio, and
Emanuele Viola. Bounded independence fools halfspaces. SIAM Journal on
Computing, 39(8):3441–3462, 2010.

[DI06] Bella Dubrov and Yuval Ishai. On the randomness complexity of efficient sam-
pling. In 38th Annual ACM Symposium on Theory of Computing (STOC), pages
711–720, 2006.

29



[DP09] Devdatt Dubhashi and Alessandro Panconesi. Concentration of measure for the
analysis of randomized algorithms. Cambridge University Press, 2009.

[DPT10] Yevgeniy Dodis, Mihai Pǎtraşcu, and Mikkel Thorup. Changing base without
losing space. In 42nd Annual Symposium on Theory of Computing (STOC),
pages 593–602. ACM, 2010.
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