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Abstract

We study a simple and general template for constructing affine extractors by com-
posing a linear transformation with resilient functions. Using this we show that good
affine extractors can be computed by non-explicit circuits of various types, including
AC0-Xor circuits: AC0 circuits with a layer of parity gates at the input. We also show
that one-sided extractors can be computed by small DNF-Xor circuits, and separate
these circuits from other well-studied classes. As a further motivation for studying
DNF-Xor circuits we show that if they can approximate inner product then small
AC0-Xor circuits can compute it exactly – a long-standing open problem.

AC0 with parity gates is a frontier class in circuit complexity, essentially the strongest class
for which we can prove strong lower bounds for explicit functions. These lower bounds
however have been stuck since the classic results from the 80’s [Raz87, Smo87]. In par-
ticular, unlike the case of AC0, we do not have (1) strong average-case lower bounds, (2)
pseudorandom generators, or (3) hierarchy results for this class.

Remarkably, (1), (2), and (3) are not known even for the subclass AC0-Xor of AC0 circuits
with a layer of parity gates (or their negations) next to the input level. (On the other hand,
(1) and (2) are known for Xor-AC0 [Vio07].) In fact, (1) and (2) are not known even for
Or-And-Xor circuits, a.k.a. DNF-Xor circuits. Hence these classes (AC0-Xor and DNF-Xor)
have gained importance as prominent special cases of AC0 with parity gates which require
new proof techniques.

A natural candidate for providing (1) is the inner product function, and the following
question has been highlighted and studied in several works, including [SV12, CS16, ABG+14,
CGJ+18, RE21].

Problem 1. Is the Inner Product function IP(x, y) :=
∑

i xiyi mod 2 computable by
polynomial-size AC0-Xor circuits?

A number of works have solved special cases of the problem, proving lower bounds for
computing IP when the circuit class is further restricted: [Juk06, CS16] proved exponential
lower bounds for Or-And-Xor. [ABG+14] proved a lower bound for small AC0-Xor circuits
when the parity layer is “typical.” [CGJ+18] (cf. [LN90]) proved an n2−o(1) lower bound
for And-Or-And-Xor circuits. For depth-d AC0-Xor circuits they proved an n1+Ω(1/4d) lower
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bound. The latter result was improved on in [BKT19] which obtained an Ω(n1+1/2d) lower
bound that holds even if the circuit computes IP on a 1/2 + n− logn fraction of inputs.

To summarize, to compute IP there are quadratic lower bounds for And-Or-And-Xor.
These lower bounds hold in the worst case while average-case lower bounds are not known.
Average-case lower bounds are not even known for polynomial-size DNF-Xor. For higher
depth we have lower bounds for size which approaches linear exponentially fast with the
depth, and these lower bounds hold even in the average case.

Extractors. An extractor for a class of distributions (a.k.a. source) is a function that
is nearly unbiased when the input is chosen according to any distribution in the class. For
various classes of distributions, extractors have been studied with remarkable intensity in
the theoretical computer science literature for decades. A class of distributions which is
important in many works including the present one is that of distributions which are uniform
over linear or affine vector subspaces of {0, 1}n, which we simply call affine.

Definition 2. [Affine extractors] A function f : {0, 1}n → {0, 1} is an affine extractor for
dimension (a.k.a. entropy) k with error (a.k.a. bias) ε if for every k-dimensional affine space
A ⊆ {0, 1}n and for UA the uniform distribution over A we have |P[f(UA) = 1]− P[f(UA) =
0]| ≤ ε.

We say that the extractor is one-sided if the conclusion is relaxed to P[f(UA) = 1] ≥
1/2− ε, and f is nearly balanced: |P[f(U) = 1]− 1/2| ≤ ε, where U := U{0,1}n .

Many papers have been devoted to constructing affine extractors. The latest [CGL21]
works for nearly logarithmic dimension.

One motivation for studying affine extractors is that they arise naturally in the study of
circuit lower bounds. For example, the method of restrictions partitions the input in affine
spaces, and so any function that becomes constant via a suitable restriction cannot be a
good affine extractor. In particular, switching lemmas [FSS84, Ajt83, H̊as87, IMP12, H̊as14,
HRST17] imply that small AC0 circuits cannot compute affine extractors. The same holds
for models which shrink under restrictions, such as De Morgan formulas, see [Tal14] for the
latest shrinkage bound and history. And the first numerical progress in more than 30 years
on lower bounds for general circuits – [FGHK16] – holds for computing affine extractors.
Finally, affine extractors also give sampling lower bounds [Vio14, Vio16, Vio20].

This also means that showing that a circuit class can compute good affine extractors
indicates some of the difficulties that may arise when trying to prove lower bounds against
that class. This direction has been pursued in a number of works, in fact going back to
[Raz88] (cf. [Sav95]). More recently, the paper [CT15] (Theorem A.6) shows that affine
extractors for dimension k = O(log n) can be computed by

1. polynomials mod 2 of degree O(log n),
2. Xor-And-Xor circuits of size n2+o(1),
3. De Morgan’s formulas of size n5+o(1).
Their results also give good dependence on ε, which we omit for simplicity.

It is a folklore result that IP is an affine extractor for dimension larger than n/2 (a proof
can be found in [Vio16]). Moreover, some of the previous lower bounds hold for computing
affine extractors. The worst-case n1+c−d

lower bound for depth d in [ABG+14] holds for
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computing affine extractors, even with very weak parameters. The quadratic lower bound
for And-Or-And-Xor [ABG+14] and the average-case lower bound for depth d [BKT19] hold
for computing extractors if the error is exponentially small. We do not know if they can
be generalized to affine extractors with constant error, but jumping ahead we give a simple
proof of an n1.5−o(1) lower bound for computing constant-error extractors by And-Or-And-
Xor circuits (Section 4).

Our first main result is that small (non-explicit) AC0-Xor circuits can compute very good
affine extractors. In fact, And-Or-And-Xor circuits of size n2 logO(1) n suffice, matching the
depth and – up to logarithmic factors – the size lower bounds in [CGJ+18].

Theorem 3. There exists an And-Or-And-Xor circuit C of size n2 logO(1) n that computes
an affine extractor for dimension k ≥ logc n with error 1/Ω(log n), were c > 0 is an absolute
constant.

The proof is in Section 1. We actually give a general template for constructing affine
extractors, and obtain constructions in other models as well. In particular, we show that De
Morgan formulas of size n4+o(1) can compute affine extractors (see Theorem 15), improving
the n5+o(1) bound from [CT15] (Item 3 above).

It is natural to ask if the depth of the circuit in Theorem 3 is tight, that is if Or-And-Xor
(a.k.a. DNF-Xor) circuits can compute good affine extractors. We note that an And-Xor
circuit computes (the characteristic function of) an affine space, and so a DNF-Xor circuit
of size s computes an union of s affine spaces. Understanding the power of unions of affine
spaces seems interesting from a mathematical perspective as well, and it is a natural next
step towards more general models after affine spaces.

It is easy to show that DNF-Xor circuits require exponential size to compute good affine
extractors, and a proof can be found in [CS16]. However, we show next that they can
compute one-sided extractors. (Note that the DNF-Xor sub-circuits in the construction in
Theorem 3 are not balanced and so do not compute one-sided affine extractors.)

Theorem 4. There exists an O(n log2 n) size DNF-Xor circuit that computes a one-sided
affine extractor for dimension k ≥ c log3 n with error 1/ log1.9 n, were c > 0 is an absolute
constant.

We apply this theorem to separate DNF-Xor circuits from other classes such as parity
decision trees (PDTs) and AC0-Xor circuits with n parity gates. The separation from PDTs
is obtained by showing the more general separation from disjoint unions of affine subspaces.
These separations hold in the average case too, and we show tightness with respect to several
parameters. These results point to the strength of the model and to the techniques we can
(not) use for lower bounds.

Let us elaborate on the separation from PDTs. For comparison, recall that any polynomial-
size DNF on n bits can be approximated by a decision tree (DT) of depth n− Ω(n/ log n).
(Proof sketch: We can ignore terms of size ω(log n). Then a switching lemma shows that
we can fix all but Ω(n/ log n) variables and the DNF collapses to a decision tree of depth
O(log n).) It is natural to ask if a corresponding switching lemma or simulation exists for
DNF-Xor in terms of PDT. We show that the answer is negative:
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Corollary 5. There exists a DNF-Xor circuit f : {0, 1}n → {0, 1} of size n · poly log n such
that for any depth n − log2+o(1) n PDT T : {0, 1}n → {0, 1} we have P[f(U) = T (U)] ≤
1/2 + 1/Ω(log n).

Note that the “depth deficiency” (i.e., n minus the depth of the tree) decreases exponen-
tially from the Ω(n/ log n) in the simulation of DNFs by DTs to log2+o(1) n in the simulation
of DNF-Xors by PDTs. We summarize this finding informally as follows:

— PDTs are not to DNF-Xor what DTs are to DNFs —

This finding stands in contrast with our extensions of other simulations of AC0 circuits
by DTs to the setting of AC0-Xor circuits and PDTs. This includes simulations given by
the switching lemma, and simulations that exploit various restrictions on fan-in, see Section
2.

The study of DNF-Xor circuits is also motivated by our next result, which shows that if
IP can be approximated by small such circuits, then in fact IP can be computed (exactly)
by small AC0-Xor circuits.

Theorem 6. Suppose there is c > 0 and a DNF-Xor circuit of size nc that computes IP
correctly on a 1/2+1/ logc n fraction of the inputs. Then there are polynomial-size, constant-
depth AC0-Xor circuits that compute IP.

The proof is in Section 3.
A concurrent work [RE21] shows that if small DNF-Xor circuits compute IP on a 5/6 + ε

fraction of the inputs, then there are efficient data-streaming and communication protocols
for low-degree polynomials. The conclusions in [RE21] and the present work thus concern
different models. The hypotheses are also different. Whereas [RE21] requires the circuit to
compute IP on 5/6 + ε, in our application 1/2 + 1/poly log suffices. Also, a partial converse
to Theorem 6 is given by the so-called discriminator lemma [HMP+93]: if a size-s And-
Or-And-Xor circuit computes IP, then a size-s DNF-Xor circuit computes IP on 1/2 + 1/s
fraction of the inputs.

We note that the hypothesis in Theorem 6 is related to extractors. Indeed, let C be a
DNF-Xor circuit of size s. Let S := {x : C(x) = 1} and let |S|/2n =: p. Suppose that IP is
biased on S, that is |P[IP (US) = 1] − P[IP (US) = 0]| ≥ ε. Then either C or the negation
of C computes IP correctly on a 1/2 + pε fraction of inputs. In other words, if IP is not an
extractor, then we can approximate IP, and by Theorem 6 we can compute it with small
AC0-Xor circuits. To avoid the latter, IP should have bias ≤ 1/ logc n on any set S as above
of size ≥ 1/ logcn, for any c.

Problem 7. Does IP extract randomness from unions of polynomially many affine spaces?

This work raises several other questions. Besides the question of explicitness, an obvious
question is matching lower bounds and affine-extractor constructions. In particular, it would
be interesting to know if one can compute affine extractors by depth-d AC0-Xor circuits of
size n1+c−d

. This would follow if one can show a size-depth tradeoff for r-wise resilient
functions (defined later), which we also raise as a question. In general, we raise the question
of understanding the complexity of computing r-wise resilient functions in various models of
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computation. For example, can they be computed by linear-size circuits? From the side of
lower bounds, it would be interesting to strengthen our n1.5−o(1) lower bound for computing
affine extractors (in Section 4) to quadratic.

1 Constructing affine extractors

The proof of Theorem 3 builds on ideas developed in the literature on extractors. At the
high level, we use an approach from [GVW15], Section 5.3, of combining a suitable linear
transformation with a resilient function (defined below). [GVW15] aims to construct ex-
tractors for bit-fixing sources (a special case of affine sources) of large entropy (n/poly log)
and computable in AC0. They pick a sparse linear transformation, which guarantees that
the extractor is computable in AC0, and which is sufficient because the entropy is close to n.
By contrast, we aim to extract from the more general affine sources, and even with polylog-
arithmic entropy. On the other hand, we can pick a non-sparse linear transformation thanks
to the layer of parity gates. [GVW15] shows that the output of the linear transformation
is uniform except for few bits; instead we can only guarantee that it is r-wise independent
except for few bits.

Definition 8. [Vio14] A distribution D over {0, 1}m is r-wise uniform but for b bits if there
is a set S ⊆ [m] of size m− b such that for any r elements in S the projection of D onto the
corresponding bits is uniform over {0, 1}r. If b = 0 we simply say r-wise uniform.

A main and simple result in this paper is that applying a suitable linear transformation
one can turn an affine source into a distribution of the type above. The corresponding linear
transformations seem interesting to study, so we give a definition.

Definition 9. An m × n matrix T is k-affine to r-wise uniform but for b-bits if for any
distribution UA uniform over an affine space A ⊆ {0, 1}n of dimension ≥ k the distribution
TUA is r-wise uniform but for b bits.

We raise the question of understanding the complexity of computing such matrices effi-
ciently. For example, in particular we ask if these transformations (with good parameters as
below) can be computed by linear-size circuits, local maps, etc. For starters, we prove that
such matrices exist via the probabilistic method.

Lemma 10. A matrix T as in Definition 9 exists for any b > 3n and k ≥ 2r logm.

Proof. It suffices to prove the lemma for any linear space (rather than affine). To verify
this, write the uniform distribution over an affine space A as SX + s where S is a full-
rank n × k matrix, X ∈ {0, 1}k is uniform, and s ∈ {0, 1}n is a fixed shift. Consider
T (SX + s) = TSX + Ts. Since SX is a linear space, TSX is r-wise uniform but for b bits.
This property is unaffected by adding the fixed shift Ts.

Recall that for a r×k matrix M the distribution MU where U ∈ {0, 1}k is uniform if and
only if the rows of M are linearly independent. Hence, for our goal it suffices to construct
matrices with the latter property. Pick T uniformly at random. Fix a full-rank n×k matrix
S and note that TS is a uniform m×k matrix M . We bound the probability that there exists
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a bad set B ⊆ [m] of b bits such that each row (with index) in B is a linear combination
of ≤ r rows not in B. If such bad sets do not exist then the proof is completed as follows.
Greedily pick rows of TS that are not linear combinations of ≤ r rows already picked. One
can pick ≥ m− b rows, otherwise a bad set of size b exists.

Fix B, and fix arbitrarily the rows of M not in B. Let H be the set of vectors that can
be obtained as a linear combination of ≤ r rows not in B. We have

|H| ≤
(
m

0

)
+

(
m

1

)
+ · · ·+

(
m

r

)
≤ 2r logm.

The probability that each row in B falls in H is then(
|H|
2k

)b
= 2b(r logm−k).

When k ≥ 2r logm this probability is

≤ 2−kb/2.

Hence the probability that there exists a bad set of size b is

≤
(
m

b

)
2−kb/2 ≤ 2b(logm−k/2) ≤ 2−bk/3.

Finally, there are at most 2kn linear spaces of dimension k. Hence the probability that
there exists such a space with a bad set as above is≤ 2k(n−b/3). Setting b > 3n this probability
is less than one and the desired matrix T exists.

Given this lemma, it remains to extract from distributions over {0, 1}m which are r-wise
uniform but for b bits.

Definition 11. A function f : {0, 1}m → {0, 1} is r-wise (b, ε)-resilient if for any r-wise
uniform distribution X we have |P[f(X) = 1] − 1/2| ≤ ε, and for any set B of size ≤ b
the probability over X that changing the bits in B changes the value of f is ≤ ε (and in
particular the bias that one can obtain changing those bits is ≤ 1/2 + 2ε). Note that this is
equivalent to saying that f is an extractor with error 2ε for distributions which are r-wise
uniform but for b bits.

The paper [Vio14] showed that the majority function is resilient over r-wise uniform
distributions, relying on the Central Limit Theorem for r-wise uniform distributions from
[DGJ+10].

Lemma 12. [Vio14] The Majority function is r-wise (m0.499, 1/100)-resilient for all suffi-
ciently large r.

Using this, we can show that Maj-Xor circuits can compute affine extractors with optimal
dependence on dimension, up to constant factors.

Theorem 13. There is a non-explicit Maj-Xor circuit of polynomial size that computes an
affine extractor for dimension O(log n) with error 1/100.
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Proof. Apply Lemma 10 with m = n2.1 and b = 4n. Let V be an affine space of dimension
k ≥ 2r logm = O(log n). Let UV be the uniform distribution over V . By Lemma 10, TUV is
r-wise independent except for b bits. We conclude by Lemma 12.

For Theorem 3 we need extractors computable in AC0 however. The seminal work [AL93]
(cf. [Wel20] for a streamlined exposition of a slightly weaker result) showed through the prob-
abilistic method the existence of functions on m bits that are m-wise (Ω(αm/ log2m), O(α))-
resilient for any α. We observe that their construction is also resilient over poly logm-wise
distributions. This can be shown using the fact that polylog-wise uniformity fools AC0
circuits [Baz09, Raz09, Bra10], and for completeness we include a proof in Section A.

Lemma 14. There exist c > 0 and a function f : {0, 1}m → {0, 1} that is logcm-wise
(Ω(αm/ log2m), O(α))-resilient, for any α ≥ 1/m. Moreover, f is computable by depth-3
circuits of size O(m2/ logm).

We note that explicit constructions of poly log-wise resilient functions appear in [CZ16]
and [Mek17]. One can use either [CZ16] or [Mek17] to obtain affine extractors with our
approach. However, some of the parameters would be a little worse than what we claimed.
For example, the circuit size would be nc for c > 2. Using these constructions we see that
the only bottleneck to an explicit construction is the layer of parity gates. Should an explicit
construction for that be found, the affine extractor would be simpler than previous explicit
constructions for comparable entropy (see [CGL21] and references therein).

Proof. [Theorem 3]. The parity gates compute the linear transformation T in Lemma 10
with the parameters m = O(n log3 n) and b = m/ log3m > 3n. By the assumption on k we
have r = logc

′
m for a constant c′ as large as desired. The distribution TU is r-wise uniform

but for b bits. We feed its output to the function f in Lemma 14 for α = Θ(1/ logm). Then
f is (m/ log3m,O(1/ logm))-resilient, and the result follows.

Finally, we obtain a construction for De Morgan formulas.

Theorem 15. The affine extractor in Theorem 3 can be computed by De Morgan formulas
of size n4 logO(1) n, or by formulas over the full binary base B2 of size n3 logO(1) n.

Proof. From the proof of Theorem 3 we know that the fan-ins of the And-Or-And-Xor circuit,
starting from the output And, are n logO(1) n, n logO(1) n, logO(1) n, n. Note that an And or
Or on t bits can be computed by De Morgan formulas of size O(t), while Parity on t bits
can be computed by such formulas of size O(t2) and B2 formulas of size O(t). The result
follows.

2 DNF-Xor

Our construction proving Theorem 4 is similar to our affine-extractor construction. We show
that the so-called Tribes function is “one-sided resilient,” so composing it with the layer of
Xor gates from Lemma 10 yields a one-sided extractor.
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Definition 16. [BL85] (cf. [O’D14], Proposition 4.12) Tribesw : {0, 1}m → {0, 1} is the
read-once DNF where every term has size w and |P[Tribes(U) = 1] − 1/2| = O(logm)/m.
This makes w = logm− log logm+O(1).

We need the following lemma.

Lemma 17. Let D be a w log(1/ε)-wise uniform distribution on n bits. Let f : {0, 1}n →
{0, 1} be a read-once DNF with terms of size ≤ w. Let U be the uniform distribution over
{0, 1}n. Then |P[f(D) = 1]− P[f(U) = 1]| ≤ ε.

This claim follows by noting that the input distribution to the Or in the DNF is log(1/ε)-
wise independent (and not necessarily uniform). We can then apply the corresponding
fundamental result in pseudorandomness from [EGL+92]; see [Vio17], Lecture 1, for an
exposition.

Proof. [Theorem 4] We need a slight extension of Lemma 10. We claim that the matrix T
constructed there has the additional property (?) that any linear combination of ≤ r rows of
T is linearly independent. This can be established with essentially the same proof, because
the probability that a uniform m× k matrix does not satisfy this is ≤ 2O(r logm)−k which is
less than 1/2 by our choice of parameter (and the proof of the lemma shows that a uniformly
selected T satisfies the lemma with probability > 1/2).

Hence, consider the matrix T from Lemma 10 with m = O(n log2 n) and b = 4n, and
further take it to satisfy (?). Feed this distribution into the Tribes function on m bits.
First, note that by (?) we have that TU is r-wise uniform where r = k/2 logm. Hence, the
output distribution of the And gates is r/ logm-wise independent. By our assumption that
k ≥ c log3 n, it will be c logm-wise independent for a c large enough so that by Lemma 17
the probability that Tribes outputs 1 on TU is within 1/m of the probability it outputs 1
over the uniform distribution, and so still within O(logm)/m of 1/2.

This proves that our function is indeed nearly balanced. There remains to prove that it
is 1 with high probability over any large affine space S. We have that TSU is k/4 logm-wise
uniform but for b = 4n bits. Now we basically show that the good bits suffice to make
the function 1 with probability about 1/2. The bad bits touch ≤ b terms. Hence there are
m/w − b good terms, defined as those terms that do not take any bad bit as input. By
Lemma 17 as above, the probability that the Or of the good terms is 0 over TSU is within
1/m of the probability that it is 0 over U . The latter probability is

(1− 2−w)m/w−b ≤ (1/2 +O(logm)/m)(1− 2−w)−b,

where the first term in the right-hand side is from the definition of Tribes. For the second
term note that

(1− 2−w)−b ≤ eb/2
w

.

We have 2w = Θ(m/ logm) = Θ(n log2 n/ log log n) and so b/2w ≤ 1/ log 1.9n and eb/2
w ≤

1 +O(1)/ log1.9 n, and the result follows.

We now use the above result to give separations.
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Definition 18. We say g : {0, 1}n → {0, 1} is a k-affine-partition if g can be expressed as
g(x) =

∑t
i=1 αi1Vi where V1, V2, . . . , Vt are disjoint affine subspaces of dimension ≥ k that

form a partition of Fn2 and for each i, αi ∈ {0, 1}.

We next show one-sided extractors for dimension k cannot even be approximated by
k-affine partitions.

Claim 19. Let f : {0, 1}n → {0, 1} be a one-sided extractor for dimension k with error ε,
and let g : {0, 1}n → {0, 1} be a k-affine partition. Then

P[f(U) = g(U)] ≤ 1

2
+ 3ε.

Proof. Let G0 := {x : g(x) = 0}, p := |G0|/2n and G1 := {x : g(x) = 1}. Let α :=
Px∈G0 [f(x) = 0] and β := Px∈G1 [f(x) = 0]. We have

P[f(U) 6= g(U)] = p(1− α) + (1− p)β.

Because f is nearly balanced, we have pα+(1−p)β ≥ 1/2−ε, and so (1−p)β ≥ 1/2−ε−pα.
Plugging this above we get

P[f(U) 6= g(U)] ≥ 1/2− ε− pα + p(1− α) = 1/2− ε+ p(1− 2α).

Also by the extractor property we have α ≤ 1/2 + ε. (Since G0 is the disjoint union
of spaces on which f outputs 0 on at most a 1/2 + ε fraction of the elements.) Hence
1− 2α ≥ −2ε. Combining with above yields

P[f(U) 6= g(U)] ≥ 1/2− ε− 2pε ≥ 1/2− 3ε.

We showed in Theorem 4 that small DNF-Xor circuits can compute such extractors.
In fact, the circuits are of the type Orn logO(1) n-AndO(logn)-Xor; subscripts indicate fan-ins.
Again, this is equivalent to a nearly-linear collection of spaces of very large dimension (n−
O(log n)) that cannot be approximated by disjoint spaces, even if the dimensions of the
latter spaces are as small as polylogarithmic. Note that a parity decision tree (PDT) on n
bits with depth n− k gives a k-affine partition, and this proves Corollary 5.

It is natural to ask if this separation (between DNF-Xor and PDT) is tight. We show
that indeed it is, in three different settings.

2.1 Setting 1: The number of parity gates

We consider AC0-Xor circuits where the Xor gates correspond to a basis.

Definition 20. AC0-Xor-B circuits on n bits are AC0-Xor circuits where the number of Xor
gates is n and the corresponding vectors form a basis.
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We show that small AC0-Xor-B circuits can be approximated by moderate-depth PDTs,
showing that in Corollary 5 it is essential that the number of Xor gates is larger than n, even
if we allow general AC0 post-process (instead of DNF).

The proof amounts to observing that switching lemmas for AC0 apply as stated to AC0-
Xor-B, except that they yield PDTs rather than DTs. Specifically, it follows for example
from the switching lemma in [H̊as14] (see Corollary 11 in [Vio] for an explicit statement about

AC0) that for h := 2o(n/2
d logd−1 n) an AC0 circuit of size ≤ h and depth d can be approximated

by a DT of depth n − Ω(n/ logd−1 n) except with error 1/h. The corresponding statement
applies to AC0-Xor-B.

Claim 21. For h := 2o(n/2
d logd−1 n), an AC0-Xor-B circuit of size ≤ h and depth d can be

approximated by a PDT of depth n− Ω(n/ logd−1 n) except with error 1/h.

To prove this, apply the result for AC0 mentioned above to the AC0 part of the circuit.
Querying one input bit to the AC0 part can be simulated by querying a parity of the input
bits to the AC0-Xor-B circuit, resulting into a PDT. A straightforward combination of the
above results also yields a separation between small DNF-Xor and AC0-Xor-B circuits.

2.2 Setting 2: The fan-in of the And gates

Next we show that the fan-in of the And gates in the separation (between DNF-Xor and
PDT) is tight up to an O(log log n) factor: We show that any Or-And-Xor circuit where
the And fan-in is at most log n − 2 log log n can be approximated by a depth O(n/ log n)
PDT with at most constant error. This follows from the following lemma, which is a “PDT
version” of the corresponding result for DNF and DT, see [AW89, Tre04]. We follow the
exposition in [Vio].

Lemma 22. For every Or-Andw-Xor circuit C : {0, 1}n → {0, 1}, there exists a PDT T of
depth ≤ 2w2w log(1/ε) with range {0, 1, ?} such that:

1. Prx∈{0,1}n [T (x) =?] ≤ ε.

2. For all x ∈ {0, 1}n, T (x) 6=?⇒ T (x) = C(x).

Proof. We are going to define T : {0, 1}n → {0, 1, ?} recursively. If C is a constant then T is
a constant. Otherwise, let C = ∨mi=1Ci where each subcircuit Ci is an And of a set of at most
w parities, denoted by Pi. We can assume w.l.o.g. that for each i, Pi is linearly independent.
We greedily construct an index set I ⊆ [m] as follows: we look at each Pi one-by-one, and
add i into I if Pi ∪

⋃
j∈I Pj is linearly independent. There are two cases:

1. If |I| ≥ 2w log(1/ε), we let T query all the parities in Pi for the first 2w log(1/ε)
indices in I, which decide the values for the corresponding subcircuits Ci. If any of the
subcircuits is True, then T outputs 1, otherwise it outputs ?.

2. Otherwise |I| < 2w log(1/ε), then the size of
⋃
i∈I Pi is at most w2w log(1/ε). Moreover,

for any Pj with j 6∈ I, there must exists a parity pj ∈ Pj such that pj ∈ span(
⋃
i∈I Pi∪

(Pj \ {pj})). The tree T first queries every parity in
⋃
i∈I Pi. After that, we know that

for eachj 6∈ I, pj ∈ span(Pj \ {pj}). As the subcircuit Cj is an And of the parities in
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Pj, if setting all the parities in Pj \ {pj} to be 1 forces pj to be 0, we can just ignore
this subcircuit. If it forces pj to be 1, we can safely remove pj to get an And of ≤ w−1
parities. Therefore what we get is an Or-And-Xor circuit C ′ where the fan-in of each
And is ≤ w− 1 (which might depend on the results of the queries), and we recurse on
C ′ to get a parity decision tree T ′.

The depth of tC is ≤ w2w log(1/ε) + (w − 1)2w−1 log(1/ε) + · · · ≤ 2w2w log(1/ε). Item
2 is evident by definition. For Item 1, note that T outputs ? only if none of the first
2w log(1/ε) subcircuits in I is True. Each Pi is linearly independent, and by construction of
I the outputs of these subcircuits are independent, so the probability can be bounded by
(1− 2−w)2w log(1/ε) ≤ ε.

2.3 Setting 3: The fan-in of the Or gate

We show that Oro(n/ logn)-And-Xor circuits can be approximated by moderate-depth PDTs.

Claim 23. Let C : {0, 1}n → {0, 1} be an Oro(n/ logn)-And-Xor circuit. There exists a PDT
T of depth (1− Ω(1))n such that P[C(U) = T (U)] ≥ 1/2 + Ω(1) .

Proof. Let C ′ denote the circuit obtained from C by deleting all the And gates with fan-in
greater than log n − log log n − O(1). By Lemma 22 a PDT with depth (1 − Ω(1))n can
approximate C ′ with constant error. Now we argue that the removal of And gates does not
introduce too much error. Any removed And gate evaluates to True under uniform inputs
with probability ≤ 2−(logn−log logn−O(1)) = O(log n/n). Since the number of removed And
gates is o(n/ log n), by a union bound the total error introduced by the removal is o(1).

3 Proof of Theorem 6

We begin by observing that IP can be “randomly self-reduced” very efficiently: the overhead
is just computing a parity. More formally:

IP (x+ a) = IP (x) + La(x)

for any x, a ∈ {0, 1}n, and where La : {0, 1}n → {0, 1} is an affine transformation that
depends on a only. To verify this just consider a monomial and note that (x1 +a1)(x2 +a2) =
x1x2 +a1x2 +a2x1 +a1a2 = x1x2 +La(x). The same fact is used for example in pseudorandom
generators for low-degree polynomials [BV10], and in [RE21]. In general the proof is also
similar to the simplified average-case lower bounds for parity [Vio09].

Let C : {0, 1}n → {0, 1} be a circuit that computes IP on 1/2 + ε fraction of the inputs.
Consider the random circuit CA for uniform A which on input x outputs

CA(x) := C(x+ A) + LA(x).

Note that for every x, PA[CA(x) = IP (x)] ≥ PA[C(x + A) = IP (x + A)] ≥ 1/2 + ε.
Moreover, for any fixed A the circuit CA is an AC-Xor circuit of polynomial size. To verify
this, note that we can compute LA(x) using parities at the input level, and the output Xor is

11



on two bits and can be computed in AC0. Also, adding the “shift” A to x can be absorbed
in the parity gates at the input level.

There remains to boost the probability. Consider the random circuit D which computes
t = O(n/ε2) copies of CA with independent A, and then computes approximate majority.
Specifically, it outputs 1 if at least (1/2 + ε/2)t copies output 1, and it outputs 0 if at least
(1/2 + ε/2)t copies output 0. By a Chernoff bound, on any input this circuit has error
probability < 2−n. Hence we can fix the randomness so that it computes correctly every
input. Moreover, the approximate majority computation can be done by polynomial-size
AC0 circuits for ε = 1/ logO(1) n [Ajt83, Ajt93].

4 A lower bound for computing affine extractors

In this section we prove the following almost n1.5 lower bound for computing affine extractors,
even if the error is constant (when the error is exponentially small, a quadratic lower bound
can be inferred from the techniques in [CGJ+18]). While the bound is weaker, the proof
appears more elementary than the one in [CGJ+18].

Theorem 24. Let C : {0, 1}n → {0, 1} be an And-Or-And-Xor circuit that computes an
affine extractor for dimension n/2 with error 1/4. Then C has size Ω (n1.5/ log n).

Lemma 25. Let t ≤ n and C be as in Theorem 24 but with the additional restriction that
the fan-in of the middle And gates is t. Then C has size Ω (n2/(t log n)).

Proof. [Lemma 25] We assume that a circuit of size o(n2/t log n) exists, and reach a contra-
diction. Let R denote the set of Or gates in C, and let A denote the set of And gates in C,
excluding the output And gate. Draw a bipartite graph G = (R ∪ A,E) between R and A.
Each Or gate must have at least n/16 edges, otherwise we can set C to 0 using n/16 linear
restrictions (corresponding to a vector space of dimension n− n/16).

Hence there exists some And gate that is connected to at least a n
16|A| fraction of Or

gates in R. We set it to 1 using at most t restrictions, eliminate the adjacent Or gates, and
consider G on the resulting affine subspace. We repeat this process k times for k = n/16t.
Note that we can always find an Or gate with fan-in ≥ n/16, for else we can set the circuit
to 0 by setting kt+ n/16 ≤ n/8 parities.

At the end of the process, the number of Or gates is

|R|
(

1− n

16|A|

)k
≤ |R|

(
1− 100t log n

n

)n/16t

≤ n2/n3 < 1.

This means that the circuit is fixed, which is a contradiction.

Lemma 26. Let t ≤ n and C : {0, 1}n → {0, 1} be an And-Or-And-Xor circuit that computes
an affine-extractor for dimension n/2 with error 1/4. Either the size of C is Ω (nt/ log n) or
there exists an affine subspace H of dimension ≥ 7n/8 such that C|H is an And-Or-Andt-Xor
circuit.
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Proof. [Lemma 26] Let At denote the set of And gates of fan-in greater than t, excluding
the output, and let Xt denote the set of Xor gates connected toAt. Draw the bipartite graph
G = (At ∪Xt, E) connecting At, Xt. There is some gate x ∈ Xt connected to at least a t

|Xt|
fraction of nodes in At as long as |At| ≥ 1. After k = n/16 iterations of setting the XOR
gate with the highest degree in G to 0, if |At| ≥ 1 we have at most

|At|
(

1− t

|XH |

)k
≤ |At|e−

nt
16|Xt|

And gates left in G. If |Xt| ≥ nt/16 log n we are done, since obviously C has size ≥ |Xt|.
Otherwise,

|At|e−
nt

16|Xt| ≤ |At|
1

n
≤ n

16
.

The last inequality follows because |At| ≤ n2/16. So after making n/16 restrictions, we are
left with at most n/16 And gates in At. We can make at most n/16 additional restrictions
setting them to 0, so that there are no more And gates in At (we might set some to 1 during
this process, but that only helps us). We have made at most n/16 +n/16 = n/8 restrictions
to reach a subspace H where C|H has no And gates of fan-in ≥ t.

Proof. [Theorem 24] We combine Lemmas 25 and 26 with the threshold t =
√
n. By Lemma

26, either C = Ω
(
n3/2/ log n

)
or there is some affine subspace H of dimension 7n/8 on which

C|H has middle And gates of fan-in ≤
√
n. In the first case we are done. In the second case,

let n′ = 7n/8. Then we can think of C|H as a (4n′/7, 1/4) affine extractor on n′ variables
and apply Lemma 25.
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[Sav95] Petr Savický. Improved boolean formulas for the ramsey graphs. Random Struct.
Algorithms, 6(4):407–416, 1995.

[Smo87] Roman Smolensky. Algebraic methods in the theory of lower bounds for Boolean
circuit complexity. In 19th ACM Symp. on the Theory of Computing (STOC),
pages 77–82. ACM, 1987.

[SV12] Rocco A. Servedio and Emanuele Viola. On a special case of rigidity. Available
at http://www.ccs.neu.edu/home/viola/, 2012.

[Tal14] Avishay Tal. Shrinkage of de morgan formulae by spectral techniques. In IEEE
Symp. on Foundations of Computer Science (FOCS), pages 551–560. IEEE Com-
puter Society, 2014.

[Tre04] Luca Trevisan. Some applications of coding theory in computational complexity.
In Complexity of computations and proofs, volume 13 of Quad. Mat., pages 347–
424. Dept. Math., Seconda Univ. Napoli, Caserta, 2004.

[Vio] Emanuele Viola. AC0 unpredictability. ACM Trans. Computation Theory. Avail-

15



able at http://www.ccs.neu.edu/home/viola/.
[Vio07] Emanuele Viola. Pseudorandom bits for constant-depth circuits with few arbi-

trary symmetric gates. SIAM J. on Computing, 36(5):1387–1403, 2007.
[Vio09] Emanuele Viola. On the power of small-depth computation. Foundations and

Trends in Theoretical Computer Science, 5(1):1–72, 2009.
[Vio14] Emanuele Viola. Extractors for circuit sources. SIAM J. on Computing,

43(2):355–972, 2014.
[Vio16] Emanuele Viola. Quadratic maps are hard to sample. ACM Trans. Computation

Theory, 8(4), 2016.
[Vio17] Emanuele Viola. Special topics in complexity theory. ECCC lecture notes. Also

available at http://www.ccs.neu.edu/home/viola/classes/spepf17.html, 2017.
[Vio20] Emanuele Viola. Sampling lower bounds: boolean average-case and

permutations. SIAM J. on Computing, 49(1), 2020. Available at
http://www.ccs.neu.edu/home/viola/.

[Wel20] Jake Wellens. Assorted results in boolean function complexity, uniform sampling
and clique partitions of graphs. PhD thesis, Massachusetts Institute of Technol-
ogy, 2020.

A Proof of Lemma 14

Let f : {0, 1}m → {0, 1} be the function in [AL93, Theorem 5.1] which ism-wise (Ω(αm/ log2m), O(α))-
resilient. f is the And of m read-once DNFs, so it is a depth-3 circuit of size O(m2/ logm).
We need to show that over any r-wise distribution D:

1. The bias of f is ≤ O(α).
2. The probability of changing the value of f by changing at most αm/ log2m bits of D

is O(α).
[AL93, Theorem 5.1] proves 1. and 2. for r = m. The fact that 1. holds for r = poly logm

then follows by [Bra10], using that α ≥ 1/m. For the second point we reason as follows.

Fix some set Q of αm/ log2m bad bits. Let e(y) : {0, 1}|Q| → {0, 1} denote the indicator
function of f not being fixed after assigning y to the good bits Q. Now we show that
e(y) is computable by an AC0 circuit so we can again apply [Bra10] and reduce to the
known resilience under the uniform distribution from [AL93, Theorem 5.1]. For some partial
assignment y to Q,f is not fixed if and only if at least one DNF function is not fixed, and
no DNF outputs 0. What remains to show is that for each DNF function, the corresponding
indicator e′(y) can be expressed as an AC0 function. To verify this, note that the DNF is
not fixed by y if every And term that does not intersect with Q has a bit set to 0, and there
is at least one And term intersecting with Q such that all possible bits set by y are 1. This
computation can be written as a polynomial-size AC0 circuit.
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