
Subcubic Equivalence of
Triangle Detection and Matrix Multiplication

Bahar Qarabaqi and Maziar Gomrokchi

April 29, 2011

1 Introduction

An algorithm on n×n matrix with the entries in [−M,M ] has a truly subcubic run-time
order if it runs in the order of O(n3−δ.Poly(logM)) for some δ > 0. This notion applies
to the graphs with n nodes and edge-weights in [−M,M ].

The following problems either all have truly subcubic algorithms, or none of them do:

• The all-pairs shortest paths problem on weighted digraphs (APSP).

• Detecting if a weighted graph has a triangle of negative total edge weight.

• Listing up to n2.99 negative triangles in an edge-weighted graph.

• Finding a minimum weight cycle in a graph of non-negative edge weights.

• The replacement paths problem on weighted digraphs.

• Finding the second shortest simple path between two nodes in a weighted digraph.

• Checking whether a given matrix de?nes a metric.

• Verifying the correctness of a matrix product over the (min, +)-semiring.

In this report we only prove the subcubic-equivalence between Detecting Negative Tri-
angle in an edge-weighted graph and matrix product over the (min, +)-semiring problems.
We define the notion of subcubic reducibility as follows:

Definition 1. Let A and B be computational problems with the same input size
n. Then we say there is a subcubic reduction from A to B (A ≤3 B), if there exist an
algorithm F with the oracle access to B such that for every δ > 0 and ϵ > 0 satisfies the
following three properties:

• F runs in O(n3−δ) time with input size of n.

1



• For very instance x of A with size n, let ni be the size of the ith oracle call to B in
F (x). Then Σi ni

3−ϵ ≤ n3−δ

Therefore, we say A and B are subcubic-equivalent if and only if A ≤3 B and B ≤3 A.

2 Intuition and Preliminaries

2.1 Intuition

The key observation is the counterintuitive result that subcubic algorithms for certain
triangle detection problems can be used to obtain subcubic matrix products in many
forms, including products that are not known to be subcubic. We first explain two main
intuitions for why fast triangle detection should not imply fast matrix multiplications and
then we talk about our approach. First that triangle detection returns one bit, while fast
matrix multiplication returns n2 bits. Second, fast matrix multiplication algorithm can
determine for all edges if there is a triangle using the edge, while triangle detection only
determines if some edge is in a triangle. Given these two intuitions about quantifiers, it
looks unlikely that the universally quantified problem could be efficiently reduced to the
existentially quantified problem. So there appears to be strong intuition for why such a
reduction would not be possible.

2.2 Preliminaries

We start with a general definition encompassing all algebraic structures. Let R be a
finite set. A (min,⊙) structure over R is defined by a binary operation ⊙ : R × R →
Z ∪{−∞,∞}. We use the variable R to refer to a (min,⊙) structure. We say a (min,⊙)
structure is extended if R ⊂ Z and R contains elements ϵ0 and ϵ1 such that for all x ∈ R,
x.ϵ0 = ϵ0.x = ∞ and ϵ1.x = x for all x ∈ R. That is, ϵ0 is a type of annihilator, and ϵ1 is
a left identity. We use the variable R̄ to refer to an extended structure. The elements ϵ0
and ϵ1 allow us to define (for every n) an n×n identity matrix In and a n×n zero matrix
Zn over R̄. More precisely, In[i, j] = ϵ0 for all i ̸= j , In[i, i] = ϵ1 , and Zn[i, j] = ϵ0 for all
i, j . We shall omit the subscripts of In and Zn when the dimension is clear.

Matrix Products Over Structures. The matrix product of two n × n matrices
over R is:

(A⊙B)[i, j] = min
k∈[n]

(A[i, k]⊙B[k, j]).

Informal Statement of Theorems 1 and 2: Let R̄ be an extended (min,⊙) struc-
ture. The following problems over R̄ either all have truly subcubic algorithms, or none of
them do:

• Negative Triangle Detection. Given an n-node graph with weight function
w : V × V → Z, find nodes i, j, k such that w(i, j) ∈ Z, w(i, k) ∈ Z, w(k, j) ∈ Z,
and (w(i, j)⊙ w(k, j)) + w(i, j) < 0.

2



• Matrix Product. Given two n × n matrices A, B with entries from Z, compute
the product of A and B over R̄.

The abovementioned reductions crucially rely on the fact that the addition operation
in a (min,⊙) structure is a minimum.

3 Negative Triangle Detection is subcubic-equivalent

with Matrix Product

We first show that matrix product can solve the negative triangle problem over any
extended structure R̄ in the same asymptotic runtime and then we show that negative
triangle problem over any extended structure R̄ can solve matrix product in the same
asymptotic runtime. For two problems A and B, we write A ≤3 B to express that there
is a subcubic reduction from A to B.

3.1 Negative Triangle Detection Implies Matrix Product

Theorem 1. Negative Triangle Over R̄ ≤3 Matrix Product Over R̄. Suppose
matrix product over R̄ can be done in time T (n), then the negative triangle problem for
graphs over R̄ can be solved in O(T (n)) time.

Proof. Algorithm:
A tripartite graph G = {I ∪ J ∪ K,E} is given by the negative triangle detection

over R̄, where I, J,K are three disjoint sets of nodes in the graph and E is the set of
edges. Given the weight function w : V × V → Z ∪{∞,−∞}. We first construct A,B,C
matrices as follows:

• For each edge (i, j) ∈ I × J ∩ E set C[i, j] = w(i, j).

• For each edge (j, k) ∈ J ×K ∩ E set B[j, k] = w(j, k).

• For each edge (i, k) ∈ I ×K ∩ E set A[i,K] = w(i, k).

• When there is no edge in the graph, the corresponding matrix entry in A or B
becomes ε0 and in C it becomes ∞.

We know that nodes i, j, k from graphG form a negative triangle if and only if (w(i, k)⊙
w(k, j)) < w(i, k). Knowing this, the problem becomes to determine whether there are
i, j, k ∈ [n] so that A[i, k] ⊙ B[k, j] < C[i, j]. Let A′ be the n × 2n matrix obtained by
concatenating A to the left of the n× n identity matrix I. Let B′ be the 2n× n matrix
obtained by concatenating B on top of C. Then if we run matrix product algorithm on
matrices A′andB′, this is the same as componentwise minimum of A⊙B and C. We can
expand A′, B′and C to 2n × 2n matrices by concatenating and n × 2n matrix of ϵ0s to

3



the button of A′ , all ϵ0s 2n× n matrix to the right of B′ and n columns of all ϵ0s and n
rows of all ϵ0s to the right and bottom of C.

Now given A′ and B′, we run the matrix product algorithm (with the subcubic runtime
order) and it returns the matrix C ′. Since:

min
k

(A′[i, k]⊙B′[k, j]) = min{C[i, j],min
k

(A[i, k], B[k, j])} ≤ C[i, j]

and given that mink(A
′[i, k] ⊙ B′[k, j]) ̸= C[i, j], then we can run a componentwise

comparison (with the order of O(n2)) between C and C ′, if it returns false then there must
exist a k ∈ [n] such that A[i, k] ⊙ B[k, j] < C[i, j] and therefore a negative triangle over
R̄. But if for all i, j, C ′[i, j] = C[i, j] then based on the right hand side of abovementioned
equation, for all i, j we have mink(A[i, k] ⊙ B[k, j]) ≥ C[i, j] and therefore no negative
triangle.

Correctness: The algorithm is correct by construction.
Runtime: Based on the abovementioned algorithm, construction of matrices A, B

and C is in the order of O(n2), the componentwise comparison between C and C ′ is in
the order of O(n2) and since we only have one oracle call to the matrix multiplication
algorithm with the order of O(n3−δ.Poly(logM)), therefore the negative triangle detection
algorithm is in the order of O(n3−δ.Poly(logM)).

3.2 Matrix product over R ≤3 Negative triangle over R

Before we prove the other direction, we state and prove two lemmas that will be later
used in the proof of Theorem 2.

Lemma 1. If the negative triangle detection over R on a tripartite graph G can be done
in T (n) time, then there is an algorithm that returns a negative triangle over R in G in
time O(T (n)) if one exists. Assume that T (n) = nf(n) where f(n) is a non-decreasing
function.

Proof. Algorithm: In algorithm 1, NTD[G] is a procedure that takes graph G as input
and returns true if exists a negative triangle in G and false otherwise. Also, EIiJjKk

is a
subset of the edges in G that contains only the edges between the nodes in Ii, Jj and Kk.

Correctness: The procedure is recursive: First splits each of the three parts I, J andK
into two parts of almost equal size. Then iterates through all 8 possible ways to choose a
triple of these subparts and runs the negative triangle detection algorithm on each. If one
returns ‘true’, skips running the detection algorithm on the other triples and recursively
calls the current algorithm on that triple. If none returns ‘true’, there is no negative
triangle in G. The procedure continues until each part in the triple that returns ‘true’
has only one node. Those nodes are the nodes of a negative triangle.

Run time: Let T ′(n) be the run time of the algorithm. From the algorithm, we know
that:

4



Algorithm 1 Negative Triangle Finding

NTF[G]

1: if G has only 1 node in each part I, J,K then
2: if NTD[G] = true then
3: return G
4: else
5: return null
6: end if
7: end if
8: Split I, J,K each into 2 parts Ii, Jj, Kk : i, j, k ∈ {1, 2} of almost equal size
9: for all 8 combinations of Ii, Jj, Kk : i, j, k ∈ {1, 2} do
10: G′ := (Ii ∪ Jj ∪Kk, EIiJjKk

)
11: if NTD[G′] = true then
12: goto 16
13: end if
14: end for
15: return null
16: NTF[G′]

T ′(n) = 8T (n) + T ′(n/2)

T ′(1) = O(1)

T ′(n) = 8T (n) + 8T (n/2) + 8T (n/4) + ...+ 8T (1) + T ′(1)

≤ 8cnf(n)(1 + 1/2 + 1/4 + ...+ 1/n) +O(1)

≤ 16cnf(n) +O(1)

= O(nf(n)) = O(T (n))

Note that a special case is T (n) = O(n3−δ).

Lemma 2. If the negative triangle finding over R on a tripartite graph G can be done in
T (n) time, then there is an algorithm that lists all IJ-disjoint negative triangles over R
in G in O(T (n1/3)n2) time.

Proof. Algorithm:
Correctness: The algorithm splits each part I, J and K into na parts, each having

at most ⌈n1−a⌉ nodes. Parameter a will be set later. It iterates through all n3a possible
ways to choose a triple of parts and considers the subgraph G′ ⊂ G that is generated
from the nodes in the triple and the edges between its nodes. Then repeatedly runs the
algorithm from Lemma 1 on G′; each time a negative triangle is found, adds it to the
list of triangles and removes edge (i, j) from G′ and G. The procedure continues until

5



Algorithm 2 Negative Triangle Listing

NTL[G]

1: Split I, J,K each into na parts Ii, Jj, Kk : i, j, k ∈ {1, ..., na} of almost equal size
2: for all n3a combinations of Ii, Jj, Kk : i, j, k ∈ {1, ..., na} do
3: G′ := (Ii ∪ Jj ∪Kk, EIiJjKk

)

4: while NTF[G′] returns a negative triangle t=(̂i, ĵ, k̂) do
5: add t to the list L
6: remove (̂i, ĵ) from G′ and G
7: end while
8: end for
9: return L

G′ contains no more negative triangle. The same procedure is repeated for all triples of
parts. Note that we are looking for IJ-disjoint negative triangles. If some edge (i, j) is in
a negative triangle, it is found when the negative triangle finding algorithm is performed
on one of the triple parts that contains a negative triangle including that edge. When
the triangle is detected, the edge is removed from the graph and hence, it is not in any
triangle anymore.

Run time: Let tIiJjKk
be the number of triangles that are found in the set of IJ-disjoint

negative triangles when (Ii, Jj, Kk) is processed. Let T (n) be the run time of the negative
triangle finding algorithm in G. According to the algorithm, the run time is

T ′(n) = O(
∑

n3a triples Ii,Jj ,Kk

(tIiJjKk
T (n1−a) + T (n1−a)))

Note that tIiJjKk
T (n1−a) is for finding the tIiJjKk

negative triangles and the second T (n1−a)
is to make sure that there is no more negative triangle left. Also note that there are at
most n2 IJ-disjoint negative triangles in the graph and therefore, the sum of all tIiJjKk

is
at most n2. Hence,

T ′(n) = O(
∑

n3a triples Ii,Jj ,Kk

(tIiJjKk
T (n1−a) + T (n1−a)))

≤ cT (n1−a)
∑

n3a triples Ii,Jj ,Kk

(tIiJjKk
+ 1)

≤ cT (n1−a)(n2 + n3a)

Now set a := 2/3, the run time becomes O(T (n1/3)n2). An immediate corollary is
that if T (n) is subcubic, then T ′(n) is also subcubic.

Theorem 2. If the negative triangle detection over R in an n-node graph can be solved in
T (n) time, then the product of two n×n matrices over R can be performed in O(n2T (n1/3)logW )
time, where W is the largest absolute value in the output.

6



Proof. Algorithm: Let A and B be the given matrices in algorithm 3. Suppose the integers
in the output A⊙B lie in [−W,W ].

Algorithm 3 Matrix Product

MP[A,B,W ]

1: generate n× n matrices U and L
2: U [i, j]← W + 1, L[i, j]← −W : ∀i, j ∈ {1, ..., n}
3: generate a complete tripartite graph G with weight function w(.)
4: w(i, k)← A[i, k], w(k, j)← B[k, j]
5: repeat

6: w(i, j)←
⌈
U [i, j] + L(i, j)

2

⌉
7: List LNT ← NTL[G]
8: for all i, j ∈ {1, ..., n} do
9: if (i, j) appears in a negative triangle in LNT then
10: U [i, j]← w(i, j)
11: else
12: L[i, j]← w(i, j)
13: end if
14: end for
15: until U [i, j] = L[i, j] + 1 : ∀i, j ∈ {1, ..., n}
16: return L

Correctness: The algorithm correctly finds the matrix C = A ⊙ B by performing
a binary search on [−W,W ] for each entry in C. U [i, j] determines the exclusive upper
bound for C[i, j] and L[i, j] determines the inclusive lower bound. Note that since C[i, j] =
mink{A[i, k] + B[k, j]}, it is equal to A[i, k] + B[k, j] for some k. Every time a negative
triangle with nodes i and j is detected, it means that there exists some k such that
A[i, k] + B[k, j] < w(i, j) and hence, C[i, j] is less than w(i, j). Therefore, we set the
upper bound for i, j to the current w(i, j). But if no negative triangle is detected for
nodes i, j we must update the lower bound.

Run time: In each iteration, we need to find the list of IJ-disjoint negative triangles.
Applying Lemma 2, this can be done in O(T (n1/3)n2). Due to the binary search on
[−W,W ], the total number of iterations is logW and hence, the algorithm can be done
in O(n2T (n1/3)logW ).

References

[1] V. Vassilevska Williams and R. Williams, Subcubic Equivalences Between Path, Ma-
trix, and Triangle Problems. In 51st IEEE Symposium on Foundations of Computer
Science, 2010.

7



[2] V. Vassilevska Williams and R. Williams, Triangle Detection Versus Matrix Multipli-
cation: A Study of Truly Subcubic Reducibility. 2010.

8


