
Special Topics in Complexity Theory, Fall 2017. Instructor: Emanuele Viola

1 Lecture 1, Scribe: Chin Ho Lee

In this first lecture we begin with some background on pseudorandomness
and then we move on to the study of bounded independence, presenting in
particular constructions and lower bounds.

1.1 Background

Let us first give some background on randomness. There are 3 different
theories:

(1) Classical probability theory. For example, if we toss a coin 12 times
then the probability of each outcome is the same, i.e., Pr[010101010101] =
Pr[011011100011]. However, intuitively we feel that the first outcome is less
random than the second.

(2) Kolmogorov complexity. Here the randomness is measured by the
length of the shortest program outputting a string. In the previous example,
the program for the second outcome could be “print 011011100011”, whereas
the program for the first outcome can be “print 01 six times”, which is shorter
than the first program.

(3) Pseudorandomness. This is similar to resource-bounded Kolmogorov
complexity. Here random means the distribution “looks random” to “efficient
observers.”

Let us now make the above intuition precise.

Definition 1.[Pseudorandom generator (PRG)] A function f : {0, 1}s →
{0, 1}n is a pseudorandom generator (PRG) against a class of tests T ⊆
{t : {0, 1}n → {0, 1}} with error ε, if it satisfies the following 3 conditions:

(1) the output of the generator must be longer than its input, i.e., n > s;
(2) it should fool T , that is, for every test t ∈ T , we have Pr[t(Un) = 1] =

Pr[t(f(Us)) = 1]± ε;
(3) the generator must be efficient.

To get a sense of the definition, note that a PRG is easy to obtain if we
drop any one of the above 3 conditions. Dropping condition (1), then we can
define our PRG as f(x) := x. Dropping condition (2), then we can define our
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PRG as f(x) := 0. Dropping condition (3), then the PRG is not as obvious
to obtain as the previous two cases. We have the following claim.

Claim 2. For every class of tests T , there exists an inefficient PRG with
error ε and seed length s = lg2 lg2(|T |) + 2 lg2(1/ε) +O(1).

Before proving the claim, consider the example where T is the class of
circuits of size n100 over n-bit input, it is known that |T | = 2n

O(1)
. Hence,

applying our claim above we see that there is an inefficient PRG that fools
T with error ε and seed length s = O(lg2(n/ε)).

We now prove the claim using the probabilistic method.

Proof. Consider picking f at random. Then by the Chernoff bound, we have
for every test t ∈ T ,

Pr
f

[|Pr
Us

[t(f(Us)) = 1]− Pr
Un

[t(Un) = 1]| ≥ ε] ≤ 2−Ω(ε22s) < 1/|T |,

if s = lg2 lg2(|T |)+2 lg2(1/ε)+O(1). Therefore, by a union bound over t ∈ T ,
there exists a fixed f such that for every t ∈ T , the probabilities are within
ε. �

1.2 k-wise independent distribution

A major goal in research in pseudorandomness is to construct PRGs for (1)
richer and richer class T , (2) smaller and smaller seed length s, and making
the PRG explicit. For starters, let us consider a simple class of tests.

Definition 3.[d-local tests] The d-local tests are tests that depend only on d
bits.

We will show that for this class of tests we can actually achieve error
ε = 0. To warm up, consider what happens when d = 1, then we can have a
PRG with seed length s = 1 by defining f(0) := 0n and f(1) := 1n.

For d = 2, we have the following construction. Define

f(x)y := 〈x, y〉 =
∑
i

xiyi mod 2.

Here the length of x and y is |x| = |y| = lg2 n, and we exclude y = 0lg2 n.
Note that the output has n− 1 bits, but we can append one uniform bit to
the output of f . So the seed length would be lg2 n+ 1.
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Now we prove the correctness of this PRG.

Claim 4. The f defined above is a PRG against 2-local tests with error
ε = 0.

Proof. We need to show that for every y 6= z, the random variable (f(x)y, f(x)z)
over the choice of x is identical to U2, the uniform 2-bit string. Since y 6= z,
suppose without loss of generality that there exists an i such that yi = 1 and
zi = 0. Now f(x)z is uniform, and conditioned on z, f(x)y is also uniform,
thanks to the index yi. �

The case for d = 3 becomes much more complicated and involves the use
of finite fields. One can think of a finite field as a finite domain that behaves
like Q in the sense that it allows you to perform arithmetic operations, in-
cluding division, on the elements. We will use the following fact about finite
fields.

Lemma 5. There exist finite fields of size pk, for every prime p and integer
k. Moreover, they can be constructed and operated with in time poly(k, p).

Remark 6. Ideally one would like the dependence on p to be lg2 p. However,
such construction remains an open question and there have been many at-
tempts to constructing finite fields in time poly(k, lg2 p). Here we only work
with finite fields with p = 2, and there are a lot of explicit constructions for
that.

One simple example of finite fields are integers modulo p.

Theorem 7. Let D = {0, 1}lg2 n. For every k, there exists an explicit
construction over Dn such that

(1) elements in Dn can be sampled with s = k lg2 n bits, and
(2) every k symbols are uniform in Dk.

For d = 3, we can use the above theorem with k = 3, and the PRG can
output the first bit of every symbol.

Remark 8. There exist other constructions that are similar to the inner
product construction for the case d = 2, with y carefully chosen, but the way
to choose y involves the use of finite fields as well.

Note that we can also apply the theorem for larger d to fool d-local tests
with seed length s = d lg2 n.
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We now prove the theorem.

Proof. Pick a finite field F of size 2lg2 n. Let a0, . . . , an−1 ∈ F be uniform
random elements in F which we think of as a polynomial a(x) of degree
k − 1. We define the generator f to be

f(a0, . . . , an−1)x = a(x) =
n−1∑
i=0

aix
i.

(One should think of the outputs of f as lines and curves in the real plane.)
The analysis of the PRG follows from the following useful fact: For every

k points (x0, y0), (x1, y1), . . . , (xk−1, yk−1), there exists exactly one degree k−1
polynomial going through them. �

Let us now introduce a terminology for PRGs that fool d-local tests.

Definition 9. We call distributions that look uniform (with error 0) to k-
local tests k-wise independent (also known as k-wise uniform). The latter
terminology is more precise, but the former is more widespread.

We will soon see an example of a distribution where every k elements are
independent but not necessarily uniform.

1.3 Lower bounds

We have just seen a construction of k-wise independent distributions with
seed length s = d lg2 n. It is natural to ask, what is the minimum seed length
of generating k-wise independent distributions?

Claim 10. For every k ≥ 2, every PRG for k-local tests over {0, 1}n has
seed length s ≥ Ω(k lg2(n/k)).

Proof. We use the linear-algebraic method. See the book by Babai–Frankl [1]
for more applications of this method.

To begin, we will switch from {0, 1} to {−1, 1}, and write the PRG as a
2s × n matrix M , where the rows are all the possible outputs of the PRG.
Since the PRG fools k-local tests and k ≥ 2, one can verify that every 2
columns of M are orthogonal, i.e., 〈Mi,Mj〉 = 0 for i 6= j. As shown below,
this implies that the vectors are independent. And by linear algebra this
gives a lower bound on s.
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However so far we have not used k. Here’s how to use it. Consider all
the column vectors v obtained by taking the entry-wise products of any of
the k/2 vectors in M . Because of k-wise independence, these v’s are again
orthogonal, and this also implies that they are linearly independent.

Claim 11. If v1, v2, . . . , vt are orthogonal, then they are linearly independent.

Proof. Suppose they are not and we can write vi =
∑

j∈S,i6∈S vj for some
S. Taking inner product with vi on both sides, we have that the L.H.S. is
nonzero, whereas the R.H.S. is zero because the vectors are orthogonal, a
contradiction. �

Therefore, the rank of M must be at least the number of v’s, and so

2s ≥ number of v’s ≥
(
n

k/2

)
≥ (2n/k)k/2.

Rearranging gives s ≥ (k/2) lg2(2n/k). �

1.4 Who is fooled by k-wise independence?

In the coming lectures we will see that k-wise independence fools AC0, the
class of constant-depth circuits with unbounded fan-in. Today, let us see
what else is fooled by k-independence in addition to k-local tests.

(1) Suppose we have n independent variables x1, . . . , Xn ∈ [0, 1] and we
want to understand the behavior of their sum

∑
iXi. Then we can apply

tools such as the Chernoff bound, tail bounds, Central Limit Theorem, and
the Berry–Esseen theorem. The first two give bounds on large deviation from
the mean. The latter two are somewhat more precise facts that show that
the sum will approach a normal distribution (i.e., the probability of being
larger than t for any t is about the same). One can show that similar results
hold when the Xi’s are k-wise independent. The upshot is that the Chernoff
bound gives error 2−samples, while under k-wise independence we can only get
an error (samples)−k/2.

(2) We will see next time that k-wise independence fools DNF and AC0.
(3) k-wise independence is also used as hashing in load-balancing.
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1.4.1 k-wise independence fools AND

We now show that k-wise independent distributions fool the AND function.

Claim 12. Every k-wise uniform distribution fools the AND functions on
bits with error ε = 2−Ω(k).

Proof. If the AND function is on at most k bits, then by definition the error
is ε = 0. Otherwise the AND is over more than k bits. Without loss of
generality we can assume the AND is on the first t > k bits. Observe that
for any distribution D, we have

Pr
D

[AND on t bits is 1] ≤ Pr
D

[AND on k bits is 1].

The right-hand-side is the same under uniform and k-wise uniformity, and is
2−k. Hence,

| Pr
uniform

[AND = 1]− Pr
k-wise ind.

[AND = 1]| ≤ 2−k. �

Instead of working over bits, let us now consider what happens over a
general domain D. Given n functions f1, . . . , fn : D → {0, 1}. Suppose
x1, . . . , xn are k-wise uniform over Dn. What can you say about the AND of
the outputs of the fi’s, f1(x1), f2(x2), . . . , fn(xn)?

This is similar to the previous example, except now that the variables are
independent but not necessarily uniform. Nevertheless, we can show that a
similar bound of 2−Ω(k) still holds.

Theorem 13.[[2]] Let X1, X2, . . . , Xn be random variables over {0, 1}, which
are k-wise independent, but not necessarily uniform. Then

Pr[
n∏
i=1

Xi = 1] =
n∏
i=1

Pr[Xi = 1]± 2−Ω(k).

This fundamental theorem appeared in the conference version of [2], but
was removed in the journal version. One of a few cases where the journal
version contains less results than the conference version.

Proof. Since each Xi is in {0, 1}, by De Morgan’s law, we can write

Pr[
n∏
i=1

Xi = 1] = E[
n∏
i=1

Xi] = E[ANDn
i=1Xi] = E[1−ORn

i=1(1−Xi)].
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If we define the event Ei to be (1−Xi), then ORn
i=1(1−Xi) is the same as

Pr[
⋃n
I=1Ei]. Now we apply the inclusion-exclusion principle, which says

Pr[
n⋃
i=1

Ei] =
n∑
i=1

Pr[Ei]−
∑
i 6=j

Pr[Ei∩Ej]+· · ·+(−1)J+1
∑

S⊆[n],|S|=J

Pr[
⋂
i∈S

Ei]+· · · .

we will finish the proof in the next lecture. �
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