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Abstract

For a pattern grapH onk nodes, we consider the problems of finding and counting theyeun of (not necessarily
induced) copies off in a given large grapli¥ onn nodes, as well as finding minimum weight copies in both node-
weighted and edge-weighted graphs. Our results include:

e The number of copies of aH with an independent set of sizecan be computed exactly iR* (2°n5~+3)
time. A minimum weight copy of such alH (with arbitrary real weights on nodes and edges) can be found
O(4°F°)pk=s+3) time. (TheO* notation omits polyk) factors.) These algorithms rely on fast algorithms
for computing the permanent ofkax n matrix, over rings and semirings.

e The number of copies of ani having minimum (or maximumjode-weigh{with arbitrary real weights on
nodes) can be found i@ (n“*/® + n2%/3+°()) time, wherew < 2.4 is the matrix multiplication exponent
andk is divisible by3. Similar results hold for other values bf Also, the number of copies having exactly a
prescribed weight can be found within this time. These dlgars extend the technique of Czumaj and Lingas
(SODA 2007) and give a new (algorithmic) application of rpatty communication complexity.

¢ Finding anedge-weightettiangle of weight exactly) in general graphs requir€yn?°~<) time for alle > 0,
unless th&SUM problem onV numbers can be solved (N>~¢) time. This suggests that the edge-weighted
problem is much harder than its node-weighted version.

1 Introduction

We consider the problems of finding and counting the copiesfofed k node graphH in a givenn node graphG
(such copies are callell-subgraphs). We also study the case of finding and countingnmuan weight copies when
G has arbitrary real weights on its vertices or edges.

Subgraphs With Large Independent Sets In the unweighted case, the best known algorithm for cognfiit
subgraphs uses Coppersmith-Winograd matrix multipieall5] and runs if2(n«*/3) > Q(n0791%) time andn®*)
space. We present algorithms that do not rely on fast matuitijptication yet still beat the above in both runtime and
space usage, fdi with a large independent set. In particularfifhas an independent set of sigeve can count the
number of copies off in ann-node graph in polynomial space a@d45+°(*)n¥—sn3) or O(s! - n*~*n?) time, or in
O(2°n*~*n3) (and exponential space).

Furthermore, our polynomial space algorithms can be uséddaninimum weightH-subgraphs in a graph with
arbitrary real edge weights. These improvements are aditaira new algorithms for computing the permanent of a
rectangular matrix over a semiring. Our algorithms are #&napd the runtime analysis does not hide huge constants.

Our results on counting and finding maximum subgraphs aeedsting for both practical and theoretical reasons.
On the practical side, pattern subgraph counting and deteste used in diverse areas, including the analysis oékoci
networks [8/ 42, 39], computational biology, and networ&wséy [13,[23/40]. In molecular biology, biomolecular
networks are compared by identifying so-calteztwork motif§30] — connectivity patterns that occur much more fre-
guently than expected in a random graph. Similar techniguesised to detect abnormal patterns in social networks
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(potential spammers, bots) and undesirable usage paitearcomputer network. Because of the extensive computa-
tional overhead of previous exact counting technigapproximatecounting based on the color coding technique [4]

is typically used for pattern graphs on4 nodes (e.gl]1]). Unfortunately, even for approximatelyiing trees, the
current methods are not efficient for patterns with more thandes. Because some of the pattern graphs have large
independent sets, we suspect our methods will be usefukillove settings: for instance, trees with many leaves
will be counted fairly quickly.

On the theoretical side, our algorithms are interestingbse the problem of countirigsubgraphs (evek+paths)
is #W[1]-complete (whereas approximately countirgpaths is not, cf.[[2, 20,]6]). Hence if one could obtain a
O(n>™) time algorithm for counting for a small enough function the Exponential Time Hypothesis would be
false, and manyNP problems would have subexponential algorithms. Alon anth&u?2] have proven in a formal
sense that the color-coding method cannot hope to do batiax(n*/2) for counting paths exactly. Namely, for
any family F of “balanced” functions fronin] to [k], we must havéF| > Q(n*/?). As we obtainO(f (k)n*/2+¢)
algorithms, our results may be optimal in some sense (ajfithey do not use color coding).

Node-Weighted Subgraphs Via Matrix Products In the second part of the paper, we give algorithms that apply
fast matrix multiplication to find and count weightéftsubgraphs fogeneral H. We consider three variants of the
problem: finding and counting/-subgraphs of maximum weight, weight at leaStand weight exactly< (for any
given weightK). Due to its relation to the all pairs shortest paths probbe maximum weight version has received
much recent attention.

The current best algorithm féindinga maximum weigh# -subgraph in aaode-weightedraph is by Czumaj and
Lingas [17] and runs i (n~*/3+¢) time for alle > 0 (whenk is divisible by3; other cases are similar). We show how
to extend their approach muntingmaximum weightH -subgraphs in the same time. Moreover, we show that the
problem of counting the number éf-subgraphs of node weight at ledstand everexactlyK can also be done in the
same time. The previous best algorithm for either of thesblpms is based on the dominance product methaod [43]
and has a running time @b(n G5 5) (for & divisible by 3). Our algorithms rely on a ne®(n* + n220(VIogn))
algorithm for counting the number of triangles of weigkitin a node-weighted graph. In fact, we give two very
different algorithms for exact node-weighted trianglese dased on the Czumaj-Lingas approach, and one based on
a counterintuitive 3-party communication protocol for teactlyJ1” problem.

HardnessResultsfor Edge-Weighted Subgraphs Finally, we provide theoretical evidence that findedge weighted
H-subgraphs faster thad\(n*) will be difficult, for generalH in arbitrary weighted graphs. We focus on the problem
of finding triangles of weight exactlyX’ in an edge-weighted graph. This triangle problem is not kmtavhave a
truly subcubic algorithm. In an attempt to explain this, weye that unles8SUM has a truly subquadratic algorithm,
a triangle of weight suniC in an edge weighted graph cannot be foundim?°-¢) time for anye > 0. 3SUM

is widely believed to require essentially quadratic timk [[¢] for a slight improvement), so our result suggests that
the exact triangle problem for edge-weighted graphs isdratdhn that for node-weighted graphs. Patrascl [35] has
recently observed that using more properties of the hasttibmin our reduction, the conditional lower bound for
exact weighted triangles can be improved optimallf2ta?), i.e. unles$SUM has subquadratic algorithms, finding a
triangle of weight) in an edge-weighted graph requires cubic time(!). We alssvghat subcubic algorithms for edge
weighted triangle imply faster-that algorithms for multivariate quadratic equations, an intgorNP-complete
problem in cryptography.

Prior Work Besides the references we have already mentioned, theetlebiproblems of subgraph finding and
counting are discussed in many works, for exanipléel[28, 332841]. Alon, Yuster and Zwick [5] showed that for all
k < 7the number ok-cycles in an unweighted graph can be computed(in®) time using fast matrix multiplication.
Unfortunately their approach does not generalizekfor 7. Bjorklund et al. [11] have recently found an interesting
algorithm for countingc-paths that runs ilﬁk%)poly(n) time. For sufficiently largé, their algorithm is faster than

n

ours. However, their algorithm only works férpaths and use@((k/Q)) space. For the special case whéfas a
bipartite graph, our algorithm use&*t°(*)n /243 time and polyn, k) space.



Preliminaries For a nodeu in a graph(V, E), N(u) = {v € V | (u,v) € E}. For an integemn, let [n] =
{1,2,...,n}.

A graph homomorphisnfi from a graph = (V, E) to a graphH = (Vy, Ex) is amapping : V — Vj so that
if (u,v) € E, then(f(u), f(v)) € Eg. A graphisomorphisnf from a graph = (V, E) to a graphH = (Vi, En)
is a bijective map front¥ to H such that bothf and f~! are homomorphisms. An automorphism is an isomorphism
between a grapty and itself.

2 AlgorithmsWithout Matrix Multiplication

We begin by reducing the problems of counting and minimiznggraphs to computing permanents of rectangular
matrices. We assume that all given graphs are undirectéd,ibunot hard to modify the proofs for directed graphs.

Theorem 2.1 Suppose the permanent of arx n matrix can be computed ii'(n, s) time andS(n, s) space. Let
H = {hy,...,hi} be a graph ork nodes with an independent set of sizd etG = (V, F) be a graph om nodes
andw : £ — R be a weight function. Lef’ be the set of all (not necessarily induced) copiegioh G. Then the

guantity
> I w
)

H'eC ecE(H'

can be determined i®((nks + T'(n,s)) - (k — s)!(,",)) time andO(ns + S(n, s)) space.

Note that whenu(e) = 1 for all e € E, the quantity in the theorem is just the number of (not nearéigsnduced)
copies ofH in G.

Proof: LetI be anindependent set of sizén H. Lett = k — s. LetH' = H \ I, with H' = {hy,...,h:} and
I ={s1,...,s5}. Our algorithm proceeds by iterating over all ordetedplesT = (v1,...,v:) of distinct nodes. It
discardsT if the maph; — v; for i € [t] is not a homomorphism. Note the number of choicesfas ¢! - (’t‘)

Consider an orderegituple X = (x4, ..., z,) of distinct nodes.X is good with respect t@ if, for every edge
(hi, s;) betweenH’ andI, the edgdv;, z;) isin G. Let

w(X,T) = H w(v;, z;), and
hiEH/,SjEI,(hi,Sj)EE(H)
w(T) = II w(vi, vj).

v;,v; €T, (hi,h;)EE(H)

Let Ny = " w(X,T) where the sum ranges only ov&rthat are good with respect . [ Then the quantity of
interest is

1
TAut ()| XT:U’(T)NT,

where|Aut(H)| is the number of automorphisms &f. We want to compute eadfy in O(T'(n, s)) time.

For a givenT" = (vy,...,v:) we make ars x n matrix A as follows. For a fixed € [s] ands; € S, consider the
neighbors of; in H, N(s;) = {hi,,...,hi,} (ford < (k — s)). Foreveryj ¢ T', set
A[’Lv.]] = H w(vieaj)a

Ce[d],(viy d)EE

else setd[i, j] = 0. It takesO(ns(k — s)) time to create a matrid. Over allT, it takesO(nks(k — s)! (")) time
to set up allA matrices.

The permanent ofl is exactlyNr: it iterates over the ways to pick an orderetluplez,, ..., z, of distinct nodes
from V' \ T so that ifh, is a neighbor of; in H, thenz; is a neighbor of,,, summing over the edge weight products.

1in the case wherél is ak-path and is unweighted, notéVr is the number of paths of the form — w1 — vo — wy — -+ — wy_1 —
v¢, Where thew; are all distinct.



The number o x n permanent computations that we need to d&is s)!(," ). The space used 8(ns+ S(n, s))
since we just need to store one matrix of size n at any point.

Finally, we observe that computindut(H)| takes negligible time, since we can apply the same approEeh.
computg Aut(H )|, enumerate allk —s)! (kfs) ordered k— s)-tuplesTy of distinct nodes off which are isomorphic
to H'. Then by using ars x k permanent computation we can determine the nunMes of good s-tuples X
with respect toTy, setting|Aut(H)| = Y5, Nr,. Hence|Aut(H)| is computable ink — s)!(,* )T(k,s) <
(k= s)!(,",)T(n,s) time. O

A variant of the above also works for semirings where thetamdbperation isnin or max.

Theorem 2.2 Let R be a semiring withnin (or max) as its addition operation, ang as its multiplication operation.
Suppose the permanent of arnk n matrix over R can be computed iff'(n, s) time andS(n, s) space. LetH =

{h1,...,hi} be a graph ork nodes with an independent set of sizd_etG = (V, E) be a graph om nodes and
w : E — R be aweight function. L&t be the set of all (not necessarily induced) copie&/ah G. Then the quantity

o ® v
ecE(H')

(or themax) can be determined i®((snk + T'(n,s)) - (k — s)!(,",)) time andO(sn + S(n, s)) space.

Proof: Analogous to the proof of Theordm ?.1, except we do not needigputeAut(H) in order to compute
the minimum (or maximum). That is, the permanentdodver the semiring is just the minimum (maximum) value of
w(T) ® Nt over allt-tuplesT. O

Let H be any graph ot nodes. SupposH contains an independent sebf sizes. Let G be ann node graph.
Using the permanent algorithms of the next section, we plika below corollaries of TheoremsP.1 2.2.

Corollary 2.3 There is an algorithm which counts the number of copie§ af G, in

0 <n2(k —s)! <k " S) min {S!,n45+0(5)})

time. The algorithm usgmly(n, k) space.

Corollary 2.4 Let H be a bipartite graph ork nodes. The number of copies Efin ann node graphG can be
counted irk!(,,) poly(n) time.

Corollary 2.5 There exists a®(n®(k — s)!(," ) s2°) time algorithm which counts the number of copiegioin G.
The algorithm usepoly(n, k) + O(n?2°) space.

Corollary 2.6 LetG be a graph with real weights on its edges. There iSHn?(k — s)!(,",) min{s!, n4sto(*)})
time algorithm which can find minimum weightcopy ofH in G. The algorithm usepoly(n, k) space.

The last corollary is obtained by applying Theolen 2.2 wileamanent computation over th&in, +)-semiring
(where addition isnin, and multiplication ist+, overR U {co, —oo}). By negating all weights we can compute the
maximum weightopy as well. Note if the weights on edges are treated as pildhes, and we wish to find a copy of
H with maximum probabilitythis can be found by working over tlimax, x )-semiring.

2.1 Computing Permanents of Rectangular Matrices

We now investigate the problem of computing the permanentatnices with a small number of rows. The best known
algorithm for computing the permanentis very old, due todRy37]. He gives a formula based on inclusion-exclusion
that computes the permanent ofrar n matrix over a ring ir0(2"poly(n)) time andO(poly(n)) space. There are two
downsides to his algorithm (other than its high running jinfiérst, it cannot be feasibly applied to algebraic stroesu



without subtraction, due to its use of the inclusion—exidusarinciplelg Secondly, when one tries to generalize the
formula tok x n matrices, one only obtains & (}) poly(n)) time algorithm (this is well-known folkloré [31]). Both
of these prevent us from using Ryser’s algorithm in the allyors of the previous section. Kawabata and Télrui [26]
have given & x n permanent algorithm over rings that rungi2*n + 3%) time andO(2*) space, by exploiting the
Binet-Minc formula for the permanerit [31]. In this sectiave present new algorithms that work over commutative
semirings and run in FPT time with respectito

Over the integers, the permanent of & n Boolean matrix counts the number of matchings in a bipagtisah
with one partition of siz& and the other of size. The more genergfk-MATCHING problemis to count the number
of matchings ork nodes in am node graph. It is a major open problem in parameterized oaxitplto determine if
#k-MATCHING is FPT or if itisWW[1]-hard [19]. We do not resolve the complete problem here, butesults do show
that for some bipartite graphs (wifi{%) vertices in one partition, for some functigithe problem is fixed-parameter
tractable. Our results also imply24 (%) (k%)poly(n) time, polynomial space algorithm fe¢k-MATCHING.

Theorem 2.7 The permanent of & x n matrix A can be computed i@ (k! - kn?) operations over any finite commu-
tative semiring.

Note that we count time in terms of the number of plus and tioperations over the semiring along with other
basic machine instructions, and we count space in termsedbthl number of elements of the semiring that need to
be stored at any given point in the computation.

Proof: For ak x n matrix A wherek < n, we have

k
perm(A) = Z (H A[%f@)]) ‘

filkl—[n] \i=1
fis1-1
Our permanent algorithm tries all possible permutation$k] — [k] of the rows inA. Let A, be the resulting matrix.
A function f on [k] isincreasingif f(i+1) > f(i) foralli =1,..., k — 1. Givenr, define

k
perm*(A) =) (H Ali, f(z‘)]) :
f isincreasing \i=1
Observe that
perm(A) = Zperm* (Ar),
since for any one-to-ongthere is a unique permutatianon [k] such thatf’ with f/(i) = f(=(¢)) is increasing.

We now show how to compute eapbrm* (A, ) efficiently. Make a layered DAG havinglayers and at most
nodes per layer. We include a node labeljed layer: if and only if A, [i, j] # 0. Give the node labelledin layeri
a weight of A, [z, j]. Now from layeri to layer: + 1, put arcs from all nodes labellgdo all nodes labelleg’, for all
J<j'

Finally, we need to sum the weights of &Hlpaths in this DAG, where a path with node weights, ..., wy is
said to have weithf:1 w;. Note this sum is preciselyerm*(A,). The idea is to process the nodes in topological
order and do dynamic programming. At each nogdee maintain the weighti’” of all i-paths that end with, for all
i=1,...,k Observe whem has indegre®, computingl¥? is trivial. For an arbitrary node, we may assume that
we have already computed thié’"’s, for all nodes’ with arcs tov. Let the nodes with arcs tobe v}, . . ., v/, and let
w(v) be the weight of node. Clearly, Wy = w(v). Foreveryi =1, ...,k — 1, compute

d
’
vV
=YW ] w(v).
j=1

When this process completes, we have the weights &fpdliths that end in each nodelt follows thatperm*(A,) =
> WE. O

We can improve the dependencelohy using recursion.

2|t is possible to apply the algorithm to structures like thein, +)-semiring by embedding that structure in the ring, but sunibeddings
require an exponential blowup in the representations ofiefes in the semiring, cf. Romani [36], Yuval [46].



Theorem 2.8 The permanent of & x n matrix can be computed i@ (4*+°*)n3) time andO(kn?) space over any
commutative semiring.

Proof: Let A be the matrix. The idea is to try all possible partitiong/dfinto setsL and R of cardinality | k/2|
and|[k/2] respectively, performing a recursive call on|dn x n and an|R| x n submatrix (one indexed b¥, one
indexed byR) which returns all the information we need to reconstruetlermanent. More precisely, Igt < jo
and defineAJE"j2 to be thelL| x |j2 — j1 + 1| submatrix ofA with rows indexed by. and columns ranging from the
j1th column ofA to thejsth column of A. Note A = A[lk]" Let

B = 3" Alt, jo] - perm(AJ73Y), and

L\{¢}
leLl
CH = N AL 1] - perm( AT ).
leL

The following identity is the key to the algorithm.

Claim 2.9 | |
perm(A) = Z Z Bé’” . C\J]:":l[/'

LC[k] 1<j2<ja<n
|L|=|k/2]

Proof: Note that on the right hand side, we have

> S B o, =

LCIK:|L|=k/2) 1<j2<ja<n

LClK]  1<ja<js<n PN = {Lyeonja—1} i€L\{£} FRNLUL'}) i€ R\ LU{L')
|L|=|k/2] L€Ll'€[k]—L fis1-1 —{jz+1,...,n}
fis11

By distributivity, this sum is

= 2 > JEI0)

LClk]  1<jajssn FL—{f)—{lojo=1} i
|L|=1k/2] €L L'€k]—L \ f:([k]—L—{€})—{js+1,...n}
fO)=j2,f (€)=js.f is 1-1

k

S 5 (HMJ(Z’)])

LCIH | Filk—{1,..n} is 1-1 \i=1
|L|=|k/2] \Vi€eL,j¢L f(i)<f(j)

But every one-to-on¢ fits the condition under the inner sum, for exactly dnef size|k/2]. So the above is just

k
5 (HA[i,fw):perm(A).

Fi[k—[n) \i=1

fis11
More generally, for alli, j, perm(Af;j}') can be expressed as a sum of products of permaments(AiL*jj{g}) :
perm(A'[jg]’iL_{g,}). This completes the proof. O

We give a simple algorithm#ERMANENT to recursively computgerm (A) using the claim. In particular, given a
k x n matrix A, the algorithm returns an x n matrix M whereM|i, j] = perm(AE,’j]). HenceM|[1,n] = perm(A).

6



PERMANENT(A):
If £ =1then
Returnn x n M with M[i, j] = >, ,<; A[L, ]
M :=then x n matrix of all zeroes
ForallL C [k] with |L| = |k/2],
Let B;, andCy, be initially all zero
Forall/ € L:
Let My g = PERMANENT(AlL’f{é}).
For alli, ja:
addA[é,jQ] : ML,{g}[i,jg — 1] to BL[i,jg].
Forall?' € [k] — L:
Let My (o) := PERMANENT(A[II;T_L_{K,}).
For all j5, 5:
addA[él,jg] . M[k],[‘,{g/}[]é + 1,]] to CL[]3,]]
Define M’ by
M'i, ) = 225, jyi<ja<jacy Brli: 2] - Clis 7]
M:= M+ M.
ReturnM.

The correctness of BERMANENT follows from Claim[2.9. A naive way to construct the’ of the algorithm
requiresd(nt) time. To implement it inD(n?), first compute for alk, j, ¢, N [i, ] = Zi:i Brli,x] andNgl¢, j] =
Crl¢ + 1, j] whenever < j andNg[/, j] = 0 otherwise. Via dynamic programming, building Df; and N, takes
only O(n?) operations. We claim that/ = N, - Nr where the matrix product is over the semiring. Indeed, fbr al
1,7 we have

ZNL[ivé] ! NR[&.]]
14

= Y (Bglii]+ -+ Brli,f]) - Crlt + 1, 5]
£ i<l<j

- 3 Byrli,t1] - Crll2, 5] = M'[i, 5].

£1,02:i<ly <l2<j

The runtime recurrence is

k
70 < b)) (T 0/2) + 00
k1) ¢ )
yielding T'(k) < O(k'°e*4*n3). The space bound holds, since oiiyn?) semiring elements are stored in each
recursive call. O

We remark that Gurevich and Shelahl[24] gav&'poly(n) algorithm for solving TSP, by trying all partitions of
the vertices into two halves and recursing. In retrospletabove approach is similar in spirit.

Finally, we can obtain a faster permanent algorithm ovegginWhile it also uses exponential space, it still
exponentially improves on Kawabata and Tarui’s algorit2@j| We require a lemma which is a simple extension of
the fast subset convolution of Bjorklund et al. [10].

Lemma 2.10 Let N be a positive integer an& be a ring. Letf be a function from the subsets|df] of size| K /2]
to R and letg be a function from the subsets|df] of size[ K /2] to R. Suppose we are given oracle accesg tnd
g. Considerh which is a function on the subsets|df] of sizeK to R and is defined as follows:

hS)= > f(L)-g(S-1L).
L: |LI=|K/2)

Then one can computdS) for all S C [N],|S| = K in overall O(K2%) time.



Proof: For any subseX C [N] of size< K, define
fX)y="% f(m,andg(x)= 3 g(T).

TCX TCX
|T|=[K/2] |T|=[K/2]

LetS C [N],|S| = K. Consider

YD g0 = Y DI YT f(U)g(T) =

XCS XCS UTCX
|U|=K/2]
|T|=[K/2]

K
= S W) |+ >
UTCS r=1 UTCS
unT=0 |lUNT|=r
|U|=K/2] |U|=|K/2],|T|=
|T|=[K/2]
K
= > e\ +> >
Ucs r=1 U,TCS
[U|=1K/2] [UNT|=r

|U|=LK/2],|T|=TK/2]

S A5\ V).
Ucs
|U|=|K/2]

Let / be the function withh(X) = f(X) - (X) forall X C [n], |X| < K.

[K/2]

To computeh(S) =5, vcs  f(U)g(S\U)forall S C [N]with |S| = K in O(K2") time it suffices to be

|U|=k/2]
able to compute

1. f(X), §(X)forall X C [N]and|X| < K in O(K2") time, and
2. givenallh(X), - ycg(—1)IS\XIA(X) in O(K2V) time.

We will first show how to computg(X) in O(K2") time: Iterate over alk from 1 to N and over all sets{ of
size< K containings. For each fixed and X, let s’ be the largest element &f smaller thars, and set

Fo(X) = fo (X \ {s}) + fu(X).

We initialize for eachX C [N]

2 _ ) X)) if|X|=[K/2]
fo(X) = { 0 otherwise.

The runtime of this procedure 8(K () = O(K2V) as every sefX is accessed at mogK | + 1 times and
|X| < K. The final result isf(X) = fn(X). Computingj(X) is analogous. To obtaih(S), simply go through all

Sin O(2N) time and seh(S) = £(S) - §(S).

ComputingZXCS(—1)|S\X‘B(X) given all (X)) proceeds similarly to above: Iterate overaftom 1 to N and
over all setsX of size< K containings. For each fixeds and X, let s’ be the largest element &f smaller thars,

and set X R R
ha(X) = —ha (X \ {s}) + b (X).

We initialize for eachX C [N], ho(X) = h(X). The runtime of this procedure is al§f(k2") as every seX is

accessed at mogX | + 1 times and X| < K. The final result igi (S).

O



Theorem 2.11 The permanent of & x n matrix over any ring can be computed @(kn32%) time andO(n?2%)
space.

Proof: We use the formula from Claim 2.9 from the proof of Theofen 2.8

Suppose thaterm( A7t 72) is known for alljy, j» € [n] and all setg” of size | k/27| — 1, |k/2!] — 2, |k/2¢] — 3.
Then for all setd. of size|k/2!|, |k/2'| — 1, |k/2] — 2, B}*7* andC?}'7* can be computed i (kn22% /27) time.
ConsiderAZ 7 for S of size | k/2i~ 1| — 1, [k/2°"!] — 2, [k/2"~"| — 3. From Clain{Z.D we have:

Ji,d2\ J1,P2 D3,J2
perm(Ag7?) = g g B2 CEPF.
LCS  j1<p2<p3<j2
|LI=LIS1/2]

The size||S|/2] is |k/2!], |k/2'] — 1, or |k/2'| — 2, and[|S|/2] is |k/2] or |k/2| — 1. The values foi3]" ">
andCf?”j2 for L of such sizes have been computed and stored. By comphitirend N as in the previous theorem,
and swapping the order of the sums in the resulting express#® can use the fast subset convolution of Lerhma 2.10
to computeperm (A% 72) in O(n3k2% /2%) time, for all S of size |k/2'71] — 1, |k/2¢71] — 2, or |k/27!] — 3, and
J1,J2 € [n].

Therefore computingerm(A) takesO(3128 kn325—i) = O(kn32¥) time. The space usage¥n22*) since
at each stage we need to st6ren?2%) values. O

3 Counting Weighted Patterns

In the following, we assumé = |H| is divisible by3. However our results trivially extend to &l with possibly an
extra factor ofn. or n2 in the running time. The weight of a subgraph is defined to leestim of its node (or edge)
weights. A graph ha&-weightif its weight is K.

The algorithms in the previous section can find a maximum (afmmum) weightH -subgraph in a givet¥. They
can be extended twountmaximum weight subgraphs if the weightsGhare bounded. However, it is unclear how to
extend the results of the previous section for counting ggneesighted subgraphd.

There has been a lot of recent work in finding weightegubgraphs in node-weighted graphs([43/44, 17]). There
are several versions of the problem: (1) find a maximum (otirmim) weight H-subgraph, (2) find af/-subgraph
of weight at leasf# for a givenK, and (3) find akK -weight H-subgraph for a given weight'. The idea which has
been used in attacking all three versions of the problemasehch version can be reduced to finding a weighted
(maximum, at leasf(, or K-weight)triangle in a larger node-weighted graph. If such a triangle can baddn
T(n) time andS(n) space in am node graph, then the corresponding weightedubgraph problem can be solved
in O(k>T(n*/?)) time andO(S(n*/3)) space. The same reduction works for countifigubgraphs: if the weighted
triangles in ann node graph can be countedi{n) time andS(n) space, then the weightdd-subgraphs can be
counted inO(k2T'(n*/3)) time andO(S(n*/3)) space. Here we take a similar approach, and study the conesy
triangle problems.

In previous work([43] we showed that the triangles of weighHeastK in a node-weighted graph onnodes can
be counted irO(nHT“) time. The same approach yielded(a('nHTw) runtime for countingi(-weight triangles. By
binary searching oi’, this gave a way to count the maximum weight triangles in seradighted graph iﬁ)(n”Tw)
time. This in turn implied arO(n?-896%) running time for counting weightedl-subgraphs (for any of the three
versions of the problem), and constituted the first nordtivhprovement over the brute foréyn»*) runtime.

Czumaj and Lingas [17] used an interesting technique to shatva maximum weight triangle can be found in
O(n¥ + n?T¢) time for alle > 0. Their method is based on a combinatorial lemma which botimelsumber of
triples in a set where no triple strictly dominates another.

Lemma 3.1 (Czumaj and Lingas[17]) LetU be a subset of1,...,n}3. If there is no pair of point§uy, us, u3),
(v1,v2,v3) € U such thatu; > v, forall j = 1,2, 3, then|U| < 3n?.

We show that Lemm{a3.1 can be used to solve all three versidins weighted triangle problem in node-weighted
34w

graphs. Furthermore, it can be usead¢tmntnode-weighted triangles i@ (n*) time, improving on th@(n%) time



solution. The new algorithm immediately implies @tn~*/3) running time for counting weighted subgraph patterns
in a node-weighted graph. We prove the result for countirrgerode-weighted triangles. Counting maximum weight
triangles or triangles of weight at leaktcan be done similarly, hence we omit those algorithms.

Theorem 3.2 Let G = (V, E) be a givenn node graph with weight functiom : V' — R. Let K € R be given.
Then inn? - 20(V1een) L O(n«) time one can compute for every pair of vertiéesthe number of< -weight triangles
that include the edgéi, j). Furthermore, for everyi, j) in a K-weight triangle, the algorithm can find a witness
nodek such that, j, £ form a K-weight triangle. The witness computation incurs only ayfagarithmic factor in the
runtime.

Proof: Create a globak x n output matrixD that is initially zero. After the completion of the algonith D[i, j]
will contain the number of{ -weight triangles that includeand;.

Sort the vertices in nondecreasing order of their weight3(inlog n) time. We build three identical sorted lists
A, B, C of then nodes. Our algorithm counts all triangles with a single niodgach ofA, B, andC.

The algorithm is recursive, and its input is three sorteid Iid nodes4, B, C' each having at mosY nodes. The
algorithm does not return information, but rather adds nemskoD when the recursion bottoms out.

Let ¢ be a parameter. Partitiod, B andC into ¢ sorted sublist 4y, ...,A.}, {B1,..., B}, {C1,...,C:}
of at most[N/c]| nodes each. In particular, the partition splits the sorigd Intoc sorted sublists; for example, if
A= (ay,...,an) thend; 1 = (a;{n/c14+1,- - > @+1)[n/e)) TOri +1 < c. Each new sublist is now associated with
the interval of weights between the smallest and largegihwgiof its nodes.

Consider allc® triples (A;, B;, Ci). Let [a;,a;], [b;, b;] and[ck, ¢;] be the weight intervals fod;, B;, andCy,
respectively.

Casel: a; = aj, b; = b}, or ¢ = ¢} If b; = b}, then create two matrices andY’, defined as:

L if (Ailpl, Bjlg]) € E,

X[p.d] :{ 0 otherwise, and

[ 1 if(Bjlq],Cklr]) € E,
Yig,r] = { 0 othervx(/]ise.k

Multiply X andY". For allp, ¢ with w(A4;[p]) +w(Ck[q]) = K — b; and(4;[p], Cklq]) € E., (XY )[p, q] gives the
number of nodes iB; which form aK -weight triangle withA4; [p] andCy[q]. Add (XY')[p, ¢] to D[A;[p], Ckq]].
The cases; = a; andcy, = ¢, are symmetric. WLOG assumg = «}. Then create two matrice¥ andY” as

follows: (A )
B 1 if (A p ,Bj q)) e E
Xlp.dl = { 0 otherwise.

1 if (Bj[g],Ck[r]) € E and
Yig, 7] = { w(Bjlq]) + w(Ck[r]) = K — a,
0 otherwise.

Multiply X andY. For everyp, ¢ with (A;[p], Cxlq]) € E, (XY)[p, ¢] gives the number of nodes iB; which
form a K-weight triangle withA;[p] andCy[q]. Add (XY')[p, ¢] to D[A;[p], Cklq]]-

In both cases above, one can find withesses and incur onlyyébgatithmic factor by using the Boolean matrix
product witness algorithm of Alon et al.|[3].
Case 2 a; < aj, bj < b}, and ¢, < ). Recurse on all triplesA;, B;, Cy.) with intervals[a;, aj], [b;, b], [ck, ¢} ]
satisfying

a; +b; +cp SKga;—i—b;—i—c;.

Note we can disregard all other triples of nodes, as theydoood contain & -weight triangle with a node in each of
A;, B;, andCy. This concludes the algorithm.

Observe that we only add 0 when the recursion bottoms out, and at least one sublishleasaine weight on all
of its nodes. Because of the partitioning, we never overt@m every triangle of weight' is counted exactly once.
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We claim that the number of recursive calls in the algoriteratimostc2. There are two types of triples that the
algorithm recurses on: those withi-b;+c, < K < a§+b}+0§c (type 1) and those with; +b,+ci, < K < a§+b}+c§C
(type 2). LetTy andT; be the sets of type 1 and type 2 triples respectively. We shaty¥;| < 3c? fori = 1, 2.

Each triple in} is uniquely determined by the thrést endpoints of its weight intervalég;, b;, ¢x,). This follows
sincea; < aj, b; < b andc; < c;. Similarly, each triple iri; is uniquely determined by the threight endpoints of
its weight intervals(a;, b, c;.).

To prove thatTy| < 3¢?, let(A;, B;, Cx) € Ty and consider anyA,, B, C,) With a; < as, b; < b, andey, < c,.
Because of the way we partitioned B, C, we must have; < a,, b; < b, andc), < ¢,. Hence

ai—i-bj—i—ck§K<a’i+b;+c§€§a5+bp+cq,

and therefor€ A,, B,,,C,) ¢ T1. Thatis, no triple inl} is strictly dominated by another one. By Lemmal 3.1 there
are at mos8c? triples inTy. The argument fof, is symmetric.

The time recurrence has the form:
T(n) < 6c¢*T(n/c) + dc®(n/c)”,

for a constanti. Now we prove that can be chosen (depending af) so that the recurrence solvesTgn) <
O(n®) + n?20Whoen),

If w > 2, pick anye with 0 < ¢ < w — 2 and set = 6'/¢ (we can picke so thatc is an integer). By the master
theorem, i2+ ¢ = (log 6+ 2logc)/(log c) < w and for some” < 1,6¢*(n/c)* < ¢’n* then the runtime i®)(n*).
Now 6¢2(n/c)* = 6n/c¢*~2 = n¥ - 61= ", and6' == < 6!~ = 1. Hence in this case the runtime is precisely
O(n®).

Supposes = 2. Sete(n) = 2PVI°e™ for some constang > 7. Letq = £ —cforsomel < e < 1/2. Let

no_ 29 i~y / _ 6c”
c = 29_6 and notice: >c >0 andq = 10g (m)

For large enough,
q® — 2e\/logn — py/logn < 0, and
(\/logn — py/logn + q)* = (logn — py/logn) + (p — 2¢)y/logn — py/logn + ¢* <
logn + ¢* — 2¢\/logn — py/logn < logn.

Hence,/logn — py/logn + ¢ < v/logn. Substitutingg = log % pv/logn = log ¢ and multiplying byp,
log(6¢”) + py/log L py/logn + log(c” — ).
C

Raising2 to the power of each side, adding to both sides and then multiplying both sidesi3y we obtain
n?(6c” - opV/log(n/c) 4. cc') < 'n2orViosn

By the induction hypothesis, however, the left hand side is@st6c¢*T (n/c) + ¢'c®(n?/c?) > T(n). We get that
T(n) < ¢’n?2rPV1°e™ and hence by induction our algorithm takes. 20(VIeg™) time. O

Theoren{ 3.2 can be viewed as an efficient reduction from dogimtode-weighted triangles to counting un-
weighted triangles. However the reduction does not presthre sparsity of the original graph, and hence a very
good algorithm for counting/finding triangles in a sparseveighted graph does not necessarily imply an algorithm
with a comparable running titleFurthermore, because of the sorting, the method used ioréh€3.2 would require
linear space to solve weighted triangle problems in truly subctibie, even if triangle finding can be donenf(!)
space and(n3~¢) time. This means that the reduction from counting or findimgghtedH -subgraphs to counting or
finding triangles would require®*(*) space. To resolve these issues, we give a completely diffeoastruction which

3We note that amD (m!-41) runtime for counting weighted triangles is possible usimghigh degree/low degree method of Alon, Yuster, and
Zwick [5].
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reduces the problem of finding a weighted triangle to a smattlper of instances of finding unweighted triangles in
graphs with the same number of nodes and edges.

We first observe that all versions of the weighted trianglisterce problems can be reduced to Kieveight
(exact weight) case with a pdlyg W) runtime overhead, whef@ is the maximum weight in the graph. Hence we
can concentrate on the exact weight case.

Theorem 3.3 Suppose there isA(m,n, W) time andS(m, n, W) space algorithm which determines if there is a tri-
angle of weigho, in an node or edge weighted graphemodes andn edges with maximum weight. Then given an
n nodem edge graph with node or edge weights at midstthere areO(S(m,n, W)) space algorithms for finding a
triangle of weight at leask (for any K) and for finding a maximum weight triangle, with ti&7"(m, n, W) log W)
andO(T (m,n, W) log® W), respectively.

Given aB bit integerz we define theth prefix ofz pre;(z) as the integer obtained fromby removing the last
B — i bits of z. The proof of Theoren 3|3 relies on the following Propositio

Proposition 3.4 For three integers:, y, z we have that + y > z, if and only if one of the following holds:
e there exists an such thaipre;(z) + pre;(y) = pre;(z) + 1, or

e there exists am such thapre; 1 (z) = pre;(x)1, pre,+1(y) = pre;(y)1, preiv1(z) = pre;(2)0 andpre;(z) +
prei(y) = prei(z).

Proof: If one of the two conditions holds, we clearly have- y > z. We only need to prove the opposite direction.
Supposer + y > z. Then there exists someavith pre;(z) 4+ pre;(y) > pre;(z) + 1. Consider the smallest suchlf
pre;(z) + pre;(y) = pre;(z) + 1, then we are done, so assume; (z) + pre;(y) > pre;(z) + 2. Then we have that
pre;—1(x) + pre;—1(y) < pre;—1(z). For someby, be, b3 € {0,1}, pre;(z) = pre;—1(x)by, pre;(y) = prei—1(y)ba
andpre;(z) = pre;_1(z)bs, and

2(pre;—1(z) + prei—1(y)) + 2 > 2(pre;—1(x) + prei—1(y)) + b1 + ba > pre;(z) +2 =

2prei—1(z) +bs +2 > 2(prei—1(x) + prei—1(y)) + 2 + bs.
Hence we have thag = 0,b; = bo = 1 andpre;_1(x) + pre;—1(y) = pre;—1(2). O

Now we can prove the Theorem:

Proof of Theorem[3.3 The maximum weight triangle case can be reduced te>th¢€ case just by binary searching
for the maximum weight. This incurs an overhead®f W in the running time and no space overhead. Hence we
just reduce the> K case to the= 0 case. We assume that we havé(@n, n, W) time, S(m, n, W) space algorithm
which can find a triangle of weight exactlyif one exists. Given this algorithm it is straightforwarddbtain an
O(T (m,n,W)) time, O(S(m,n, W)) algorithmALG which finds a triangle of weighk™ for any givenk. We will
give a procedure which giveli, determines whether there is a triangle in the graph of vieigin> K. We give the
reduction for edge weighted graphs. The node-weightedgrage is similar.

Implicitly build a tripartite graptG’ = (V', E’) from G = (V, E) by creating three copidg, V5, V3 of the vertex
setV and setl” = V; UV, U V5. For everyu € V, letu® denote its copy iV;. ThenE’ = {(u?,v?) | (u,v) €
E,i,j€{1,2,3},i# j}. LetW = max, , |w(u,v)|. We set up the weights’ for G’ as follows: we let’ (u!,v7) =
w(u,v) + W for j € {2,3} andw’ (u?,v3) = 2W + K — w(u,v). Now, a trianglea!, b?, ¢* with the property that
w'(at,b?) +w'(at, ) > w'(b?, ¢3) exists inG’ iff there is a triangles, b, ¢ in G of weight sum> K. To create a
procedure which determines whether there is such a trianglé we use Proposition 3.4.

The integers inG’ haveO(log W) bits. We create) (log W) instances of) sum triangle as follows. For every
prefixi =0, ...,0(log W) create two instances 6fsum trianglez;; andG;.

For every(u’,v*) € E’, (u?,v*) is also an edge iti;; with weightpre; (w’(u’, v¥)) if j = 1 andk € {2,3} and
with weight —pre; (w’(u?, v*)) — 1 otherwise.

For every(u?,v*) € E’, (u/,v*) is an edge inG;» if 5 = 1 andpre; 1 (w'(u?,v*)) = pre;(w' (v, v*))1, or
if 7 =2,k =3andpre,,1(w (u?,v*)) = pre;(w’ (u?,v*))0. The weight of(u?, v¥) in Gys is pre;(w' (u?, v*)) if
j = land—pre;(w'(u’,v*)) otherwise.
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We note that we do not need to explicitly construct the gr@phsandG;.. Whenever thé sum triangle algorithm
needs to know whether a particular edge exists and if so whasight is, we compute this by checking the adjacency
matrix of the original graph. Hence there is no space ovethea O

We now give a tight reduction from node-weighted triangldiiig to triangle finding which is both time and space
efficient.

Theorem 3.5 Suppose there is’B(m, n) time, S(m, n) space algorithm which finds a triangle in aanode,m-edge
graph, provided one exists. Then there i§ an,n) - 2°(V1°eW) time, O(S(m,n)) space algorithm which finds a
K-weight triangle (for any giverk) in ann nodem edge graph with node weights ih, W].

Our method relies on the existence of a g@ogarty communication protocol for Exacthy?. ExactlydV is
the multiparty communication problem whete € [W] is known to all parties, théth party has an integer; €
[1,W] on its forehead, and all wish to determineif, n; = w. This problem was defined by Chandra, Furst, and
Lipton [12]. They showed that Exactlji* has three-party communication complexi®y+/log W), but they did not
give an effectively computable version of their protocole $how how to modify the protocol to run in polynomial
time, with O(log W) public bits of randomness an@(1) communication. Although the number of random bits is
large, fortunately the error probability is good enought tha can apply this protocol to obtain a fast exact triangle
algorithm. A crucial aspect of the protocol is that it does Imave false positives: if the sum is notthen it always
rejects.

Theorem 3.6 Exactly# has a simultaneous randomized three-party protocol with) communication complexity,
where each party runs poly(log W) time algorithm and has access 2dog W public random bits. In particular,
consider an instancéw;, wq, ws) € [W] of Exactly3V for three parties. lfw; + we + w3 = w then the protocol
acceptswith probability at leastl /29(V°e W) "and ifw; + w, + w3 # w then the protocol alwayeejects

Proof: Let us survey the protocol in [12], then describe how to adaptheir protocol is deterministic, uses
O(y/logn) bits of communication, and is non-constructive. At the heéthe protocol is a “hash” function(z)
from [n] to [k], wherek << n, which we now describe. Le¥ C [n] be 3-sum-free meaning that it contains no
arithmetic progression of length three. It is known thatdtm, there is a constamt> 0 and 3-sum-free sef C [n]
of sizecn/2°V1°e™ (more details are given below). Ta@a(l%l logn) random translates df, i.e. sets of the form
S; = {z + y; | x € S} for a uniform randomy; € {—n,...,n}. The set[n] is covered byk < O(‘—g‘ logn) <

0(2¢V1°g ™ Jog ) random translategs, . . ., Sy, } with high probability, where eadl$;| = | S|, and eacts; is 3-sum-
free. Forx € n, definec(x) to be the smalleste [k] such thatr € S;.

Now we describe the protocol. Each party holds two ofdhes [n] (along with knowledge ofv) and wants to
know if wy 4+ wa + w3 = w. Observe that each party “knows” what its missing numbehotmbe if the sum isov,
for example the party holding; andws knows thatws should bew — w; — ws. Theith party computes its own
x; = w1 + 2ws + 3ws, using the difference betweemnand its two known integers in place of its missing integegnth
sendsc(z;) usingO(log(n/|S])) bits. We claim thatv; + ws + w3 = w if and only if ¢(z1) = ¢(z2) = ¢(z3), SO
the protocol accepts if and only if all messages are idenfica; + ws + w3 = w, then obviouslyr; = x5 = 3. If
wi +ws +ws # w, we claim thate, zo, 3 is a three-term arithmetic progression; by constructiofi,éf follows that
notalle(z;) are equal. Letv = w—wy —we—ws # 0. Thenz; = (w—wy—ws)+2wa+3ws = (a+w;)+2we+3ws,
o = w1 +2(w—wy —ws)+3ws = w1 + 2(a+ws) +ws, x3 = w1 + 2w+ 3(a+ws). Lettinga = wy + 2wy + 3ws,
we haver; = a + «, r2 = a + 2a, 3 = a + 3«, a progression.

There are two obstacles to a constructive version of th@potitthe 3-sum-free sétand the translates,, . . ., S.
Behrend[[9] (building on Salem and Spencer [38]) gave theFksum-freeS of sizeQ(n!~¢/VIog™) His proof gives
a procedure for generating elementsobut in the above protocol we need to be able to recognize reesabsS; it is
not clear how to do this quickly with Behrend'’s set. Fort@hgtMoser [32] later gave a 3-sum-fréeof comparable
size for which membership of dogn)-bit numberz can be determined i®(poly(logn)) time. We describe his
construction in the appendix.

To deal with the issue of constructing tS¢ = {z + y; | z € S}, we modify the protocol slightly. We assume all
parties have public access to a uniform random {—n, ..., n}. Then theith party sends & if z; + z € S (where
x; is calculated as above), otherwise it sends df all parties sentl, the protocol accepts. Otherwise, it rejects.
By construction, ifw; + ws + ws = w then the probability that a randommakes all parties sendlais at least
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|S|/(2n) > 1/2%(1°en) On the other hand, i), + wo 4+ w3 # w then the parties will never all serid regardless
of z, since in that case; + z, z2 + z, x3 + z are in arithmetic progression. O

Proof of Theorem[B5 LetG = (V, E) be a given graph. Lét’ = {v1,...,v,} and letG have weightsv : V —
{1,...,W}. We run the following algorithm an expecte@l(vVi°e™W) number of times. PicR log W bits at random.
Let B = O(1) be the communication complexity of the simultaneous pritocTheoreni36. The algorithm cycles
over every possible sequenige b, bs, whereb; € {0,1}* and|b;| < B for j € {1,2,3}. These sequences represent
all possible simultaneous communications that could td&eep Note the number of sequence®id).

Given a possible communication sequescave implicitly construct a grapld’s on 3n nodes. G is tripartite
with vertex partitions/! = {vl,... 0L}, V2 = {vf ... 02}, V3 = {v},...,03}. Fori € {1,2,3} andk, ¢ € [n],
there is an edge betweep andv}ﬁ+1 (the indexing is donemod 3) iff (1) (vg,ve) € E and (2) theith party accepts
while holdingw(vy,) andw(v,) and viewing communication sequenge

If one finds a triangle ifi7y then the corresponding triangle@has weight’, by the correctness of the protocol.
If there is aK -weight triangle inG, then with constant nonzero probability there is a triariglé&’y for somes,
after20(v1oeW) ryns of the algorithm. We do not need to construct any of tlaplgsG'y, rather every time we need
to check whether an edg{e;,v,i“) is in G, we run the protocol of Theoreln 3.6 for paityn poly(log W) time,
making sure it matches. O

4 Hardnessfor Edge Weighted Subgraphs

The methods for finding weighted triangles described in thevipus section still fail in the edge weighted case.
No truly subcubic algorithms are known for finding a (maximahteastK /K -weight) triangle in aredge-weighted
graph. Finding a maximum weight triangle in truly subculiiee has received recent attention (elg.| [44]) due to its
connection to all pairs shortest paths (APSP): the distansguct (a.k.a.(min, +)-product) of two matrices can be
used to find for every pair of nodes the minimum weight of agia going through them. Understanding the hardness
of finding edge-weighted triangles could explain why it seem difficult to obtain a® (n3~¢) algorithm for APSP in

n node graphs. In this section we relate the edge-weightgies t3SUM and the multivariate quadratic equations
problem. We say that a triangle in an edge-weighted graptikhadge-weight if the sum of its edge weightdis

41 3SUM

First we show a connection between findiigedge-weight triangles and tBE UM problem, which is widely believed
to have no truly subquadratic algorithm (¢f.[22]). In peutar, if the K-edge-weight triangle problem can be solved
in O(n5-¢) time then3SUM is solvable inO(n2~<") time. (Recall that in th@ode-weightedase of the previous
section, we obtained af(n*) solution.) Therefore if one can use an algorithm for theagtise product to find an
exact edge weighted triangle in the same time, then APSRresgssentiall§2(n2-%), unless3SUM can be solved in
subquadratic tim@.Such a conclusion would be intriguing, especially sincedbeision tree complexity of APSP is
O(n*?) (1))

Theorem 4.1 If for somes > 0 there is anO(n?-°~¢) algorithm for finding a0-edge-weight triangle in an node
graph, then there is a randomized algorithm which soB&85M onn numbers in expecte(d(ng + n2‘§5) time.

Proof: Suppose we are given an instariee B, C') of 3SUM so that4, B andC are sets of: integers each. We
first use a hashing scheme given by Dietzfelbingel [18] amdl ly Baran, Demaine and Patrascu [7] which maps
each distinct integer independently to onengfn buckets wheren is a parameter we will choose latér For each
1 € [n/m], let A;, B;, andC; be the sets containing the elements hashed to buckée hashing scheme has two nice
properties:

1. for every pair of bucketsl; and B; there are two buckets;,, ., andCy,;, (which can be located i®(1) time
giveni, j) such thatifa € A; andb € By, then ifa + b € C thena + b is in eitherCy, ,, or Cy,

ij11

4We note that Patrascu’s recent modificafion[35] of our rédudmplies an2(n?3) hardness for APSP.
5The scheme performs multiplications with a random numbedrsame bit shifts hence we require that these operationsoatemcostly. We
can ensure this by first mapping the numbers dow® ttwg n) bits, e.g. by computing modulo some sufficiently la@8og n) bit prime.
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2. the number of elements which are mapped to buckets witaatdm elements i€ (n/m) in expectation.

After the hashing we process all elements that get mappetde buckets (size 3m). Suppose: € A is such an
element (WLOG it is ind). Then go through all elementof B and check whether + b € C. This takesO(n?/m)
time overall in expectation.

Now the bucketsi;, B;, C; for all i € [n/m] containO(m) elements each. For each se€ {A;, B;, C; }ic[n/m)
we pick an arbitrary ordering of the elements and then demp#g k| the kth element inS.

For everyc € [2m] we will create an instance dfFedge-weight triangle as follows. For everg [n/m], create
nodesz; andy;. For everyr € [m] ands € [m] create a node,;. Add an edgéz;, zs;) for everyi, s, t with weight
A;[s]. Add an edgéz.;, y;) for everyy, s, t with weight B;[t]. For everyi, j add an edgér;, y;) with weightCy, ,, [c]
if ¢ <m andCy,;, [c —m]if ¢ > m.

Ifin any one of the2m instances there is a triangle of edge weigithen this triangle has the form, z, y; and
henceA;[s], B;[t], Cy,, [c] for somec is a solution to th&8SUM instance. Suppose on the other hand that there is a
solutiona, b, d of the3SUM instance. Either we found this solution during the reituncto 0-edge-weight triangle, or
a = Ai[k], b= Bj[{] andd = Cy,,, [p], forb € {0,1},k,£,p € {1,...,m},andi,j € {1,...,n/m}. Then consider
instancec = bm + p. The triangler;, y;, zxe has weightd;[k] + B;[{] + Cy,,,[p] = a + b+ d.

Each graph has/m + m? nodes and can be constructeddtn?/m? + m*) time. The entire reduction takes
O(n?/m + m*) expected time. By settings = O(n'/?) we obtainO(n'/?) instances of-edge-weight triangle,
each orD(n?/3) nodes. Hence if 8-edge-weight triangle in aiv node graph can be found ®(N2-5—¢) time, then
3SUMis inO(n%/3 + ni+**s%) = O(n%/3 + n?=<%) time.

We note that the reduction can be improved slightly by irstefacreatingn!/? instances of size?/3 we create
one instance of size*/>. Then anO(n2-><) algorithm for0-edge-weight triangle would imply a@(n8/5 4 n25¢)
algorithm for3SUM. To do this, for eachand; create2,/m copiesz;. andy,. (forc = 1,...,2,/m) of the original
nodesr; andy;. For eache and each node,; the weight of edgéx;., z:) is A;[s] and that of edgéy,., zs:) iS B;[t].
Now there arelm instancesz;., y; ) of the original edgéz;, y;) and we can place than numbers oy, UCy, |
on these edges so that each number appears at least once eNmwveone instance éhn/+/m-+m?) nodes created
in O(n?/m + m*) time. By settingn = n2/> we obtain the result. a

4.2 Multivariate Quadratic Equations

Finally, we show that faster algorithms for finding edgegited triangles would also imply faster algorithms for
NP-hard problems. In particular, a better algorithm for exage weighted triangle over finite fields could be used to
solve MULTIVARIATE QUADRATIC EQUATIONS (abbreviated as Igs) faster than exhaustive search. An instance of
M Qs consists of a set of equations oven variables that take values from a finite fidid where each equation is of
the form

p(x1,...,2,) =0
for a degree-two polynomial. The task is to find an assignment, . .., x,,) € F" that satisfies all equations.

Several very important cryptosystems have been designaer tine assumption that &% is intractable even in
the average case (e.0.[29] 34]). A faster algorithm faydwlvould help attack these.

To our knowledge, there are no known algorithms fop $that improve significantly on exhaustive search in the
worst case, though some practical algorithms suggest tlge telay have such an algorithin [27,116]. We show that
an better worst-case algorithm ford doesexist, if edge-weighted triangle (or evérclique) can be solved faster.
More precisely, in thé’-WEIGHT k-CLIQUE problem, we are given an edge-weighted undirected graghwatghts
drawn from a finite field?” of 20() elements, and are asked if there is-alique whose total sum of edge weights is
zero overF. We consider the hypothesis that this problem can be sob&difthan brute-force search. Observe the
trivial algorithm can be implemented to rundb - n*) time.

Hypothesis4.2 There is & € (0,1) and somék > 3 such thatF-WEIGHT k-CLIQUE is in O(poly(b) - n°*) time
over a fieldF of 2°() elements.

Theorem 4.3 Hypothesi§ 412 implies thal Qs over a fieldF onn variables has an algorithm running i@ (| F'|°™)
time, for some < 1.
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In the following paragraphs we establish Theofenh 4.3. Tha id to reduce Msto the problem of determining
whether a sum of degree-two polynomials has a zero soluti@m reduce that problem to edge-weightedique.
Our reduction is very similar to known algorithms for MAX CUWihd MAX 2-SAT [45], so we only describe it briefly
here.

Letp; = 0,...,p,n = 0 be an instance of Ms. Let ' = GF(p*) for some primep and positive integef. Let
K = GF(p'™). TreatK as anm-dimensional vector space over, and lete;, ..., e, be a basis for this space.
Define a polynomiaP : F'* — K as

m
P(zy,...,x,) = Zeipi(xl, ce X))
i=1

The following is immediate from the representationfofas a vector space ovér. Let (ay,...,a,) € F™.
Claim4.4 P(as,...,a,) =0(overK) < foralli=1,...,m, p;(a1,...,a,) =0 (overF).

Hence we have reduced the original problem to that of findmgssignment € F™ satisfyingP(a) = 0 over
K. It remains to show that this problem can be reduceld-/EIGHT k-CLIQUE so that arO(poly(b)n°*) algorithm
for F-WEIGHT k-CLIQUE translates to a®(poly(m, n)|F|°™) algorithm for MQs. Briefly, the reduction works by

o splitting the set of variables intb parts and listing th&F’|/* partial assignments for each part,
e building a completé-partite graph ork|F|*/* nodes, where the nodes correspond to partial assignmeudts, a

e putting weights (from the field{) on edge«, v} corresponding to the sum of those monomial$imvhose
variable are assigned by the partial assignmerasadv. Here we need to assign degree-one terms via some
convention so that we do not overcount the degree-one tefriis o

Find ak-clique with0 edge weight, when evaluated ov&r Note|K | < |F|™poly(n), so the hypothesis entails that
this clique problem is i (poly(m, n)|F|°™) time.

5 Open Problems

We conclude with three interesting open problems relatéklisovork.

e Isthere af (k)-n*(1/2=¢) poly(n) time algorithm for#k-MATCHING for some constant > 0 and some function
f only depending o&?

e Can one use a fast distance product algorithm to obtain alfgstithm for finding &)-edge-weight triangle?

e Is there any way to find triangles fast without recourse tarxatultiplication?
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A Appendix: Large 3-Sum-Free Sets With Easy Member ship

We briefly describe a 3-sum-free set of Moser [32], where [27], |S| > Q(2"~ V") for some fixed: > 0, and we
can determine if am-bit numberz € S in poly(n) time.

The following procedure decidesife S. Assume the most significant bit (msb).ofs 1. We bracket the bits of
going from right to left: the least significant bit (Isb) istpa the first bracket, the next two are in the next bracket, the
next three in the thirdgtc. If the last bracket (containing the most significant bit) slaet have the maximum number
of bits, it is padded with zeroes. For example, we would beatt101101 as(0010)(101)(10)(1), and1011011100
as(1011)(011)(10)(0).

Let 2; be the number in théh bracket (counting from right to left). Suppose theresabrackets. Lety be the
number obtained by concatenating andx,._1, with the msb ofx,. omitted. Finally,z € S if and only if (a) the
msb ofz,. is 1, (b) forallz;,: = 1,...,r — 2, the Isb ofz; is 0, and (C)Z:;f x? = y. ltis easy to see that all the
requirements can be determined in galytime.

Theorem A.1 (Moser) The setS defined by the above procedureBisum-free.
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