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Abstract

For a pattern graphH onk nodes, we consider the problems of finding and counting the number of (not necessarily
induced) copies ofH in a given large graphG onn nodes, as well as finding minimum weight copies in both node-
weighted and edge-weighted graphs. Our results include:

• The number of copies of anH with an independent set of sizes can be computed exactly inO∗(2s
n

k−s+3)
time. A minimum weight copy of such anH (with arbitrary real weights on nodes and edges) can be foundin
O(4s+o(s)

n
k−s+3) time. (TheO

∗ notation omits poly(k) factors.) These algorithms rely on fast algorithms
for computing the permanent of ak × n matrix, over rings and semirings.

• The number of copies of anyH having minimum (or maximum)node-weight(with arbitrary real weights on
nodes) can be found inO(nωk/3 + n

2k/3+o(1)) time, whereω < 2.4 is the matrix multiplication exponent
andk is divisible by3. Similar results hold for other values ofk. Also, the number of copies having exactly a
prescribed weight can be found within this time. These algorithms extend the technique of Czumaj and Lingas
(SODA 2007) and give a new (algorithmic) application of multiparty communication complexity.

• Finding anedge-weightedtriangle of weight exactly0 in general graphs requiresΩ(n2.5−ε) time for allε > 0,
unless the3SUM problem onN numbers can be solved inO(N2−ε) time. This suggests that the edge-weighted
problem is much harder than its node-weighted version.

1 Introduction

We consider the problems of finding and counting the copies ofa fixedk node graphH in a givenn node graphG
(such copies are calledH-subgraphs). We also study the case of finding and counting maximum weight copies when
G has arbitrary real weights on its vertices or edges.

Subgraphs With Large Independent Sets In the unweighted case, the best known algorithm for counting H-
subgraphs uses Coppersmith-Winograd matrix multiplication [15] and runs inΩ(nωk/3) ≥ Ω(n0.791k) time andnΘ(k)

space. We present algorithms that do not rely on fast matrix multiplication yet still beat the above in both runtime and
space usage, forH with a large independent set. In particular, ifH has an independent set of sizes, we can count the
number of copies ofH in ann-node graph in polynomial space andO(4s+o(s)nk−sn3) or O(s! · nk−sn2) time, or in
O(2snk−sn3) (and exponential space).

Furthermore, our polynomial space algorithms can be used tofind minimum weightH-subgraphs in a graph with
arbitrary real edge weights. These improvements are obtained via new algorithms for computing the permanent of a
rectangular matrix over a semiring. Our algorithms are simple and the runtime analysis does not hide huge constants.

Our results on counting and finding maximum subgraphs are interesting for both practical and theoretical reasons.
On the practical side, pattern subgraph counting and detection are used in diverse areas, including the analysis of social
networks [8, 42, 39], computational biology, and network security [13, 23, 40]. In molecular biology, biomolecular
networks are compared by identifying so-callednetwork motifs[30] – connectivity patterns that occur much more fre-
quently than expected in a random graph. Similar techniquesare used to detect abnormal patterns in social networks
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(potential spammers, bots) and undesirable usage patternsin a computer network. Because of the extensive computa-
tional overhead of previous exact counting techniques,approximatecounting based on the color coding technique [4]
is typically used for pattern graphs on≥ 4 nodes (e.g. [1]). Unfortunately, even for approximately counting trees, the
current methods are not efficient for patterns with more than9 nodes. Because some of the pattern graphs have large
independent sets, we suspect our methods will be useful in the above settings: for instance, trees with many leaves
will be counted fairly quickly.

On the theoretical side, our algorithms are interesting because the problem of countingk-subgraphs (evenk-paths)
is #W [1]-complete (whereas approximately countingk-paths is not, cf. [2, 20, 6]). Hence if one could obtain a
O(nα(k)) time algorithm for counting for a small enough functionα, the Exponential Time Hypothesis would be
false, and manyNP problems would have subexponential algorithms. Alon and Gutner [2] have proven in a formal
sense that the color-coding method cannot hope to do better thanO(nk/2) for counting paths exactly. Namely, for
any familyF of “balanced” functions from[n] to [k], we must have|F| ≥ Ω(nk/2). As we obtainO(f(k)nk/2+c)
algorithms, our results may be optimal in some sense (although they do not use color coding).

Node-Weighted Subgraphs Via Matrix Products In the second part of the paper, we give algorithms that apply
fast matrix multiplication to find and count weightedH-subgraphs forgeneralH . We consider three variants of the
problem: finding and countingH-subgraphs of maximum weight, weight at leastK, and weight exactlyK (for any
given weightK). Due to its relation to the all pairs shortest paths problem, the maximum weight version has received
much recent attention.

The current best algorithm forfindinga maximum weightH-subgraph in anode-weightedgraph is by Czumaj and
Lingas [17] and runs inO(nωk/3+ε) time for allε > 0 (whenk is divisible by3; other cases are similar). We show how
to extend their approach tocountingmaximum weightH-subgraphs in the same time. Moreover, we show that the
problem of counting the number ofH-subgraphs of node weight at leastK and evenexactlyK can also be done in the
same time. The previous best algorithm for either of these problems is based on the dominance product method [43]

and has a running time ofO(n
(3+ω)

2
k
3 ) (for k divisible by3). Our algorithms rely on a newO(nω + n22O(

√
log n))

algorithm for counting the number of triangles of weightK in a node-weighted graph. In fact, we give two very
different algorithms for exact node-weighted triangles: one based on the Czumaj-Lingas approach, and one based on
a counterintuitive 3-party communication protocol for theExactly-W problem.

Hardness Results for Edge-Weighted Subgraphs Finally, we provide theoretical evidence that findingedge weighted
H-subgraphs faster thanO(nk) will be difficult, for generalH in arbitrary weighted graphs. We focus on the problem
of finding triangles of weight exactlyK in an edge-weighted graph. This triangle problem is not known to have a
truly subcubic algorithm. In an attempt to explain this, we prove that unless3SUM has a truly subquadratic algorithm,
a triangle of weight sumK in an edge weighted graph cannot be found inO(n2.5−ε) time for anyε > 0. 3SUM
is widely believed to require essentially quadratic time (cf. [7] for a slight improvement), so our result suggests that
the exact triangle problem for edge-weighted graphs is harder than that for node-weighted graphs. Patrascu [35] has
recently observed that using more properties of the hash function in our reduction, the conditional lower bound for
exact weighted triangles can be improved optimally toΩ(n3), i.e. unless3SUM has subquadratic algorithms, finding a
triangle of weight0 in an edge-weighted graph requires cubic time(!). We also show that subcubic algorithms for edge
weighted triangle imply faster-than-2n algorithms for multivariate quadratic equations, an important NP-complete
problem in cryptography.

Prior Work Besides the references we have already mentioned, the theoretical problems of subgraph finding and
counting are discussed in many works, for example [25, 33, 14, 28, 41]. Alon, Yuster and Zwick [5] showed that for all
k ≤ 7 the number ofk-cycles in an unweighted graph can be computed inO(nω) time using fast matrix multiplication.
Unfortunately their approach does not generalize fork > 7. Björklund et al. [11] have recently found an interesting
algorithm for countingk-paths that runs in

(

n
k/2

)

poly(n) time. For sufficiently largek, their algorithm is faster than

ours. However, their algorithm only works fork-paths and usesΩ(
(

n
k/2

)

) space. For the special case whereH is a

bipartite graph, our algorithm uses2k+o(k)nk/2+3 time and poly(n, k) space.
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Preliminaries For a nodeu in a graph(V, E), N(u) = {v ∈ V | (u, v) ∈ E}. For an integern, let [n] =
{1, 2, . . . , n}.

A graph homomorphismf from a graphG = (V, E) to a graphH = (VH , EH) is a mappingf : V → VH so that
if (u, v) ∈ E, then(f(u), f(v)) ∈ EH . A graph isomorphismf from a graphG = (V, E) to a graphH = (VH , EH)
is a bijective map fromG to H such that bothf andf−1 are homomorphisms. An automorphism is an isomorphism
between a graphG and itself.

2 Algorithms Without Matrix Multiplication

We begin by reducing the problems of counting and minimizingsubgraphs to computing permanents of rectangular
matrices. We assume that all given graphs are undirected, but it is not hard to modify the proofs for directed graphs.

Theorem 2.1 Suppose the permanent of ans × n matrix can be computed inT (n, s) time andS(n, s) space. Let
H = {h1, . . . , hk} be a graph onk nodes with an independent set of sizes. LetG = (V, E) be a graph onn nodes
andw : E → R be a weight function. LetC be the set of all (not necessarily induced) copies ofH in G. Then the
quantity

∑

H′∈C

∏

e∈E(H′)

w(e)

can be determined inO((nks + T (n, s)) · (k − s)!
(

n
k−s

)

) time andO(ns + S(n, s)) space.

Note that whenw(e) = 1 for all e ∈ E, the quantity in the theorem is just the number of (not necessarily induced)
copies ofH in G.

Proof: Let I be an independent set of sizes in H . Let t = k − s. Let H ′ = H \ I, with H ′ = {h1, . . . , ht} and
I = {s1, . . . , ss}. Our algorithm proceeds by iterating over all orderedt-tuplesT = (v1, . . . , vt) of distinct nodes. It
discardsT if the maphi → vi for i ∈ [t] is not a homomorphism. Note the number of choices forT is t! ·

(

n
t

)

.

Consider an ordereds-tupleX = (x1, . . . , xs) of distinct nodes.X is good with respect toT if, for every edge
(hi, sj) betweenH ′ andI, the edge(vi, xj) is in G. Let

w(X, T ) =
∏

hi∈H′,sj∈I,(hi,sj)∈E(H)

w(vi, xj), and

w(T ) =
∏

vi,vj∈T,(hi,hj)∈E(H)

w(vi, vj).

Let NT =
∑

X w(X, T ) where the sum ranges only overX that are good with respect toT . 1 Then the quantity of
interest is

1

|Aut(H)|
∑

T

w(T )NT ,

where|Aut(H)| is the number of automorphisms ofH . We want to compute eachNT in O(T (n, s)) time.

For a givenT = (v1, . . . , vt) we make ans × n matrixA as follows. For a fixedi ∈ [s] andsi ∈ S, consider the
neighbors ofsi in H , N(si) = {hi1 , . . . , hid′

} (for d′ ≤ (k − s)). For everyj /∈ T , set

A[i, j] =
∏

ℓ∈[d′],(viℓ
,j)∈E

w(viℓ
, j),

else setA[i, j] = 0. It takesO(ns(k − s)) time to create a matrixA. Over allT , it takesO(nks(k − s)!
(

n
k−s

)

) time
to set up allA matrices.

The permanent ofA is exactlyNT : it iterates over the ways to pick an ordereds-tuplex1, . . . , xs of distinct nodes
from V \ T so that ifhk is a neighbor ofsi in H , thenxi is a neighbor ofvk, summing over the edge weight products.

1In the case whereH is ak-path andG is unweighted, noteNT is the number of paths of the formv1 → w1 → v2 → w2 → · · · → wt−1 →

vt, where thewi are all distinct.
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The number ofs×n permanent computations that we need to do is(k− s)!
(

n
k−s

)

. The space used isO(ns+S(n, s))
since we just need to store one matrix of sizes × n at any point.

Finally, we observe that computing|Aut(H)| takes negligible time, since we can apply the same approach.To
compute|Aut(H)|, enumerate all(k−s)!

(

k
k−s

)

ordered(k−s)-tuplesTH of distinct nodes ofH which are isomorphic
to H ′. Then by using ans × k permanent computation we can determine the numberNTH

of good s-tuplesX
with respect toTH , setting|Aut(H)| =

∑

TH
NTH

. Hence|Aut(H)| is computable in(k − s)!
(

k
k−s

)

T (k, s) ≤
(k − s)!

(

n
k−s

)

T (n, s) time. �

A variant of the above also works for semirings where the addition operation ismin or max.

Theorem 2.2 LetR be a semiring withmin (or max) as its addition operation, and⊗ as its multiplication operation.
Suppose the permanent of ans × n matrix overR can be computed inT (n, s) time andS(n, s) space. LetH =
{h1, . . . , hk} be a graph onk nodes with an independent set of sizes. Let G = (V, E) be a graph onn nodes and
w : E → R be a weight function. LetC be the set of all (not necessarily induced) copies ofH in G. Then the quantity

min
H′∈C

⊗

e∈E(H′)

w(e)

(or themax) can be determined inO((snk + T (n, s)) · (k − s)!
(

n
k−s

)

) time andO(sn + S(n, s)) space.

Proof: Analogous to the proof of Theorem 2.1, except we do not need tocomputeAut(H) in order to compute
the minimum (or maximum). That is, the permanent ofA over the semiring is just the minimum (maximum) value of
w(T ) ⊗ NT over allt-tuplesT . �

Let H be any graph onk nodes. SupposeH contains an independent setI of sizes. Let G be ann node graph.
Using the permanent algorithms of the next section, we obtain the below corollaries of Theorems 2.1 and 2.2.

Corollary 2.3 There is an algorithm which counts the number of copies ofH in G, in

O

(

n2(k − s)!

(

n

k − s

)

min
{

s!, n4s+o(s)
}

)

time. The algorithm usespoly(n, k) space.

Corollary 2.4 Let H be a bipartite graph onk nodes. The number of copies ofH in an n node graphG can be
counted ink!

(

n
k/2

)

poly(n) time.

Corollary 2.5 There exists anO(n3(k − s)!
(

n
k−s

)

s2s) time algorithm which counts the number of copies ofH in G.
The algorithm usespoly(n, k) + O(n22s) space.

Corollary 2.6 Let G be a graph with real weights on its edges. There is anO(n2(k − s)!
(

n
k−s

)

min{s!, n4s+o(s)})
time algorithm which can find aminimum weightcopy ofH in G. The algorithm usespoly(n, k) space.

The last corollary is obtained by applying Theorem 2.2 with apermanent computation over the(min, +)-semiring
(where addition ismin, and multiplication is+, overR ∪ {∞,−∞}). By negating all weights we can compute the
maximum weightcopy as well. Note if the weights on edges are treated as probabilities, and we wish to find a copy of
H with maximum probability, this can be found by working over the(max,×)-semiring.

2.1 Computing Permanents of Rectangular Matrices

We now investigate the problem of computing the permanent onmatrices with a small number of rows. The best known
algorithm for computing the permanent is very old, due to Ryser [37]. He gives a formula based on inclusion-exclusion
that computes the permanent of ann×n matrix over a ring inO(2npoly(n)) time andO(poly(n)) space. There are two
downsides to his algorithm (other than its high running time). First, it cannot be feasibly applied to algebraic structures
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without subtraction, due to its use of the inclusion-exclusion principle.2 Secondly, when one tries to generalize the
formula tok×n matrices, one only obtains anO(

(

n
k

)

poly(n)) time algorithm (this is well-known folklore [31]). Both
of these prevent us from using Ryser’s algorithm in the algorithms of the previous section. Kawabata and Tarui [26]
have given ak × n permanent algorithm over rings that runs inO(2kn + 3k) time andO(2k) space, by exploiting the
Binet-Minc formula for the permanent [31]. In this section,we present new algorithms that work over commutative
semirings and run in FPT time with respect tok.

Over the integers, the permanent of ak × n Boolean matrix counts the number of matchings in a bipartitegraph
with one partition of sizek and the other of sizen. The more general#k-MATCHING problem is to count the number
of matchings onk nodes in ann node graph. It is a major open problem in parameterized complexity to determine if
#k-MATCHING is FPT or if it isW [1]-hard [19]. We do not resolve the complete problem here, but our results do show
that for some bipartite graphs (withf(k) vertices in one partition, for some functionf ) the problem is fixed-parameter
tractable. Our results also imply a2k+o(k)

(

n
k/2

)

poly(n) time, polynomial space algorithm for#k-MATCHING.

Theorem 2.7 The permanent of ak × n matrixA can be computed inO(k! · kn2) operations over any finite commu-
tative semiring.

Note that we count time in terms of the number of plus and timesoperations over the semiring along with other
basic machine instructions, and we count space in terms of the total number of elements of the semiring that need to
be stored at any given point in the computation.

Proof: For ak × n matrixA wherek ≤ n, we have

perm(A) =
∑

f :[k]→[n]
f is 1-1

(

k
∏

i=1

A[i, f(i)]

)

.

Our permanent algorithm tries all possible permutationsπ : [k] → [k] of the rows inA. LetAπ be the resulting matrix.
A functionf on [k] is increasingif f(i + 1) > f(i) for all i = 1, . . . , k − 1. Givenπ, define

perm∗(A) =
∑

f is increasing

(

k
∏

i=1

A[i, f(i)]

)

.

Observe that
perm(A) =

∑

π

perm∗(Aπ),

since for any one-to-onef there is a unique permutationπ on [k] such thatf ′ with f ′(i) = f(π(i)) is increasing.

We now show how to compute eachperm∗(Aπ) efficiently. Make a layered DAG havingk layers and at mostn
nodes per layer. We include a node labelledj in layeri if and only if Aπ [i, j] 6= 0. Give the node labelledj in layeri
a weight ofAπ [i, j]. Now from layeri to layeri + 1, put arcs from all nodes labelledj to all nodes labelledj′, for all
j < j′.

Finally, we need to sum the weights of allk-paths in this DAG, where a path with node weightsw1, . . . , wk is
said to have weight

∏k
i=1 wi. Note this sum is preciselyperm∗(Aπ). The idea is to process the nodes in topological

order and do dynamic programming. At each nodev, we maintain the weightW v
i of all i-paths that end withv, for all

i = 1, . . . , k. Observe whenv has indegree0, computingW v
i is trivial. For an arbitrary nodev, we may assume that

we have already computed theW v′

i ’s, for all nodesv′ with arcs tov. Let the nodes with arcs tov bev′1, . . . , v
′
d and let

w(v) be the weight of nodev. Clearly,W v
1 = w(v). For everyi = 1, ..., k − 1, compute

W v
i+1 =





d
∑

j=1

W
v′

j

i



 · w(v).

When this process completes, we have the weights of allk-paths that end in each nodev. It follows thatperm∗(Aπ) =
∑

v W v
k . �

We can improve the dependence onk by using recursion.
2It is possible to apply the algorithm to structures like the(min,+)-semiring by embedding that structure in the ring, but such embeddings

require an exponential blowup in the representations of elements in the semiring, cf. Romani [36], Yuval [46].
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Theorem 2.8 The permanent of ak × n matrix can be computed inO(4k+o(k)n3) time andO(kn2) space over any
commutative semiring.

Proof: Let A be the matrix. The idea is to try all possible partitions of[k] into setsL andR of cardinality⌊k/2⌋
and⌈k/2⌉ respectively, performing a recursive call on an|L| × n and an|R| × n submatrix (one indexed byL, one
indexed byR) which returns all the information we need to reconstruct the permanent. More precisely, letj1 ≤ j2
and defineAj1,j2

L to be the|L| × |j2 − j1 + 1| submatrix ofA with rows indexed byL and columns ranging from the
j1th column ofA to thej2th column ofA. NoteA = A1,n

[k] . Let

Bj1,j2
L =

∑

ℓ∈L

A[ℓ, j2] · perm(Aj1,j2−1
L\{ℓ} ), and

Cj1,j2
L =

∑

ℓ∈L

A[ℓ, j1] · perm(Aj1+1,j2
L\{ℓ} ).

The following identity is the key to the algorithm.

Claim 2.9
perm(A) =

∑

L⊆[k]
|L|=⌊k/2⌋

∑

1≤j2<j3≤n

B1,j2
L · Cj3,n

|k|−L.

Proof: Note that on the right hand side, we have
∑

L⊆[k]:|L|=⌊k/2⌋

∑

1≤j2<j3≤n

B1,j2
L · Cj3,n

|k|−L =

=
∑

L⊆[k]
|L|=⌊k/2⌋

∑

1≤j2<j3≤n
ℓ∈L,ℓ′∈[k]−L

A[ℓ, j2]·A[ℓ′, j3]·









∑

f :(L\{ℓ})→{1,...,j2−1}
f is 1-1

∏

i∈L\{ℓ}
A[i, f(i)]









·















∑

f :([k]\L∪{ℓ′})
→{j3+1,...,n}

f is 1-1

∏

i∈[k]\L∪{ℓ′}
A[i, f(i)]















.

By distributivity, this sum is

=
∑

L⊆[k]
|L|=⌊k/2⌋

∑

1≤j2<j3≤n
ℓ∈L,ℓ′∈[k]−L















∑

f :L−{ℓ}→{1,...,j2−1}
f :([k]−L−{ℓ′})→{j3+1,...,n}

f(ℓ)=j2,f(ℓ′)=j3,f is 1-1

∏

i

A[i, f(i)]















.

=
∑

L⊆[k]
|L|=⌊k/2⌋









∑

f :[k]→{1,...,n} is 1-1
∀i∈L,j/∈L f(i)<f(j)

(

k
∏

i=1

A[i, f(i)]

)









.

But every one-to-onef fits the condition under the inner sum, for exactly oneL of size⌊k/2⌋. So the above is just

∑

f :[k]→[n]
f is 1-1

(

k
∏

i=1

A[i, f(i)]

)

= perm(A).

More generally, for alli, j, perm(Ai,j
[k]) can be expressed as a sum of products of permanentsperm(Ai,j2

L−{ℓ}) ·
perm(Aj3,j

[k]−L−{ℓ′}). This completes the proof. �

We give a simple algorithm PERMANENT to recursively computeperm(A) using the claim. In particular, given a
k × n matrixA, the algorithm returns ann× n matrixM whereM [i, j] = perm(Ai,j

[k]). HenceM [1, n] = perm(A).
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PERMANENT(A):
If k = 1 then

Returnn × n M with M [i, j] =
∑

ℓ:i≤ℓ≤j A[1, ℓ]

M := then × n matrix of all zeroes
For allL ⊆ [k] with |L| = ⌊k/2⌋,

Let BL andCL be initially all zero
For all ℓ ∈ L:

Let ML−{ℓ} := PERMANENT(A1,n
L−{ℓ}).

For all i, j2:
addA[ℓ, j2] · ML−{ℓ}[i, j2 − 1] to BL[i, j2].

For all ℓ′ ∈ [k] − L:
Let M[k]−L−{ℓ′} := PERMANENT(A1,n

[k]−L−{ℓ′}).
For all j3, j:

addA[ℓ′, j3] · M[k]−L−{ℓ′}[j3 + 1, j] to CL[j3, j].
DefineM ′ by
M ′[i, j] =

∑

j2,j3:i≤j2<j3≤j BL[i, j2] · CL[j3, j]

M := M + M ′.
ReturnM .

The correctness of PERMANENT follows from Claim 2.9. A naive way to construct theM ′ of the algorithm
requiresΘ(n4) time. To implement it inO(n3), first compute for alli, j, ℓ, NL[i, ℓ] =

∑ℓ
x=i BL[i, x] andNR[ℓ, j] =

CR[ℓ + 1, j] wheneverℓ < j andNR[ℓ, j] = 0 otherwise. Via dynamic programming, building upNR andNL takes
only O(n2) operations. We claim thatM = NL · NR where the matrix product is over the semiring. Indeed, for all
i, j we have

∑

ℓ

NL[i, ℓ] · NR[ℓ, j]

=
∑

ℓ: i≤ℓ≤j

(BL[i, i] + · · · + BL[i, ℓ]) · CR[ℓ + 1, j]

=
∑

ℓ1,ℓ2:i≤ℓ1<ℓ2≤j

BL[i, ℓ1] · CR[ℓ2, j] = M ′[i, j].

The runtime recurrence is

T (k) ≤ k

(

k

⌈k/2⌉

)

(

T (k/2) + O(n3)
)

,

yielding T (k) ≤ O(klog k4kn3). The space bound holds, since onlyO(n2) semiring elements are stored in each
recursive call. �

We remark that Gurevich and Shelah [24] gave a4npoly(n) algorithm for solving TSP, by trying all partitions of
the vertices into two halves and recursing. In retrospect, the above approach is similar in spirit.

Finally, we can obtain a faster permanent algorithm over rings. While it also uses exponential space, it still
exponentially improves on Kawabata and Tarui’s algorithm [26]. We require a lemma which is a simple extension of
the fast subset convolution of Bjorklund et al. [10].

Lemma 2.10 LetN be a positive integer andR be a ring. Letf be a function from the subsets of[N ] of size⌊K/2⌋
to R and letg be a function from the subsets of[N ] of size⌈K/2⌉ to R. Suppose we are given oracle access tof and
g. Considerh which is a function on the subsets of[N ] of sizeK to R and is defined as follows:

h(S) =
∑

L: |L|=⌊K/2⌋
f(L) · g(S − L).

Then one can computeh(S) for all S ⊂ [N ], |S| = K in overallO(K2N ) time.
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Proof: For any subsetX ⊆ [N ] of size≤ K, define

f̂(X) =
∑

T⊆X
|T |=⌊K/2⌋

f(T ), andĝ(X) =
∑

T⊆X
|T |=⌈K/2⌉

g(T ).

Let S ⊆ [N ], |S| = K. Consider

∑

X⊆S

(−1)|S\X| · f̂(X) · ĝ(X) =
∑

X⊆S

(−1)|S\X| ·
∑

U,T⊆X
|U|=⌊K/2⌋
|T |=⌈K/2⌉

f(U)g(T ) =

=



















∑

U,T⊆S
U∩T=∅

|U|=⌊K/2⌋
|T |=⌈K/2⌉

(−1)0f(U)g(T )



















+

K
∑

r=1

∑

U,T⊆S
|U∩T |=r

|U|=⌊K/2⌋,|T |=⌈K/2⌉

f(U)g(T )

r
∑

i=0

(

r

i

)

(−1)r−i =

=
∑

U⊆S
|U|=⌊K/2⌋

f(U)g(S \ U) +

K
∑

r=1

∑

U,T⊆S
|U∩T |=r

|U|=⌊K/2⌋,|T |=⌈K/2⌉

f(U)g(T ) · (−1 + 1)r =

=
∑

U⊆S
|U|=⌊K/2⌋

f(U)g(S \ U).

Let ĥ be the function witĥh(X) = f̂(X) · ĝ(X) for all X ⊆ [n], |X | ≤ K.

To computeh(S) =
∑

U⊆S
|U|=⌊K/2⌋

f(U)g(S \ U) for all S ⊆ [N ] with |S| = K in O(K2N ) time it suffices to be

able to compute

1. f̂(X), ĝ(X) for all X ⊆ [N ] and|X | ≤ K in O(K2N ) time, and

2. given allĥ(X),
∑

X⊆S(−1)|S\X|ĥ(X) in O(K2N ) time.

We will first show how to computêf(X) in O(K2N) time: Iterate over alls from 1 to N and over all setsX of
size≤ K containings. For each fixeds andX , let s′ be the largest element ofX smaller thans, and set

f̂s(X) = f̂s′(X \ {s}) + f̂s′(X).

We initialize for eachX ⊆ [N ]

f̂0(X) =

{

f(X) if |X | = ⌊K/2⌋
0 otherwise.

The runtime of this procedure isO(K
(

N
K

)

) = O(K2N ) as every setX is accessed at most|X | + 1 times and

|X | ≤ K. The final result isf̂(X) = f̂N(X). Computingĝ(X) is analogous. To obtain̂h(S), simply go through all
S in O(2N ) time and set̂h(S) = f̂(S) · ĝ(S).

Computing
∑

X⊆S(−1)|S\X|ĥ(X) given allĥ(X) proceeds similarly to above: Iterate over alls from 1 to N and
over all setsX of size≤ K containings. For each fixeds andX , let s′ be the largest element ofX smaller thans,
and set

ĥs(X) = −ĥs′(X \ {s}) + ĥs′(X).

We initialize for eachX ⊆ [N ], ĥ0(X) = ĥ(X). The runtime of this procedure is alsoO(K2N ) as every setX is
accessed at most|X | + 1 times and|X | ≤ K. The final result iŝhN (S). �
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Theorem 2.11 The permanent of ak × n matrix over any ring can be computed inO(kn32k) time andO(n22k)
space.

Proof: We use the formula from Claim 2.9 from the proof of Theorem 2.8.

Suppose thatperm(Aj1,j2
T ) is known for allj1, j2 ∈ [n] and all setsT of size⌊k/2i⌋ − 1, ⌊k/2i⌋ − 2, ⌊k/2i⌋ − 3.

Then for all setsL of size⌊k/2i⌋, ⌊k/2i⌋ − 1, ⌊k/2i⌋ − 2, Bj1,j2
L andCj1,j2

L can be computed inO(kn22k/2i) time.
ConsiderAj1,j2

S for S of size⌊k/2i−1⌋ − 1, ⌊k/2i−1⌋ − 2, ⌊k/2i−1⌋ − 3. From Claim 2.9 we have:

perm(Aj1,j2
S ) =

∑

L⊆S
|L|=⌊|S|/2⌋

∑

j1≤p2<p3≤j2

Bj1,p2

L · Cp3,j2
S−L .

The size⌊|S|/2⌋ is ⌊k/2i⌋, ⌊k/2i⌋ − 1, or ⌊k/2i⌋ − 2, and⌈|S|/2⌉ is ⌊k/2i⌋ or ⌊k/2i⌋ − 1. The values forBj1,p2

L

andCp3,j2
L for L of such sizes have been computed and stored. By computingNL andNR as in the previous theorem,

and swapping the order of the sums in the resulting expression, we can use the fast subset convolution of Lemma 2.10
to computeperm(Aj1,j2

S ) in O(n3k2k/2i) time, for allS of size⌊k/2i−1⌋ − 1, ⌊k/2i−1⌋ − 2, or ⌊k/2i−1⌋ − 3, and
j1, j2 ∈ [n].

Therefore computingperm(A) takesO(
∑log k

i=0 kn32k−i) = O(kn32k) time. The space usage isO(n22k) since
at each stage we need to storeO(n22k) values. �

3 Counting Weighted Patterns

In the following, we assumek = |H | is divisible by3. However our results trivially extend to allk, with possibly an
extra factor ofn or n2 in the running time. The weight of a subgraph is defined to be the sum of its node (or edge)
weights. A graph hasK-weightif its weight isK.

The algorithms in the previous section can find a maximum (or minimum) weightH-subgraph in a givenG. They
can be extended tocountmaximum weight subgraphs if the weights inG are bounded. However, it is unclear how to
extend the results of the previous section for counting general weighted subgraphsH .

There has been a lot of recent work in finding weightedH-subgraphs in node-weighted graphs ([43, 44, 17]). There
are several versions of the problem: (1) find a maximum (or minimum) weightH-subgraph, (2) find anH-subgraph
of weight at leastK for a givenK, and (3) find aK-weightH-subgraph for a given weightK. The idea which has
been used in attacking all three versions of the problem is that each version can be reduced to finding a weighted
(maximum, at leastK, or K-weight) triangle in a larger node-weighted graph. If such a triangle can be found in
T (n) time andS(n) space in ann node graph, then the corresponding weightedH-subgraph problem can be solved
in O(k2T (nk/3)) time andO(S(nk/3)) space. The same reduction works for countingH-subgraphs: if the weighted
triangles in ann node graph can be counted inT (n) time andS(n) space, then the weightedH-subgraphs can be
counted inO(k2T (nk/3)) time andO(S(nk/3)) space. Here we take a similar approach, and study the corresponding
triangle problems.

In previous work [43] we showed that the triangles of weight at leastK in a node-weighted graph onn nodes can
be counted inO(n

3+ω
2 ) time. The same approach yielded anO(n

3+ω
2 ) runtime for countingK-weight triangles. By

binary searching onK, this gave a way to count the maximum weight triangles in a node-weighted graph iñO(n
3+ω

2 )
time. This in turn implied anO(n0.896k) running time for counting weightedH-subgraphs (for any of the three
versions of the problem), and constituted the first nontrivial improvement over the brute forceO(nk) runtime.

Czumaj and Lingas [17] used an interesting technique to showthat a maximum weight triangle can be found in
O(nω + n2+ε) time for all ε > 0. Their method is based on a combinatorial lemma which boundsthe number of
triples in a set where no triple strictly dominates another.

Lemma 3.1 (Czumaj and Lingas [17]) Let U be a subset of{1, . . . , n}3. If there is no pair of points(u1, u2, u3),
(v1, v2, v3) ∈ U such thatuj > vj for all j = 1, 2, 3, then|U | ≤ 3n2.

We show that Lemma 3.1 can be used to solve all three versions of the weighted triangle problem in node-weighted
graphs. Furthermore, it can be used tocountnode-weighted triangles inO(nω) time, improving on theO(n

3+ω
2 ) time
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solution. The new algorithm immediately implies anO(nωk/3) running time for counting weighted subgraph patterns
in a node-weighted graph. We prove the result for counting exact node-weighted triangles. Counting maximum weight
triangles or triangles of weight at leastK can be done similarly, hence we omit those algorithms.

Theorem 3.2 Let G = (V, E) be a givenn node graph with weight functionw : V → R. Let K ∈ R be given.
Then inn2 · 2O(

√
log n) +O(nω) time one can compute for every pair of verticesi, j the number ofK-weight triangles

that include the edge(i, j). Furthermore, for every(i, j) in a K-weight triangle, the algorithm can find a witness
nodek such thati, j, k form aK-weight triangle. The witness computation incurs only a polylogarithmic factor in the
runtime.

Proof: Create a globaln × n output matrixD that is initially zero. After the completion of the algorithm,D[i, j]
will contain the number ofK-weight triangles that includei andj.

Sort the vertices in nondecreasing order of their weights inO(n log n) time. We build three identical sorted lists
A, B, C of then nodes. Our algorithm counts all triangles with a single nodein each ofA, B, andC.

The algorithm is recursive, and its input is three sorted lists of nodesA, B, C each having at mostN nodes. The
algorithm does not return information, but rather adds numbers toD when the recursion bottoms out.

Let c be a parameter. PartitionA, B andC into c sorted sublists{A1, . . . , Ac}, {B1, . . . , Bc}, {C1, . . . , Cc}
of at most⌈N/c⌉ nodes each. In particular, the partition splits the sorted lists intoc sorted sublists; for example, if
A = (a1, . . . , aN ) thenAi+1 = (ai⌈N/c⌉+1, . . . , a(i+1)⌈N/c⌉) for i + 1 < c. Each new sublist is now associated with
the interval of weights between the smallest and largest weights of its nodes.

Consider allc3 triples (Ai, Bj , Ck). Let [ai, a
′
i], [bj, b

′
j ] and[ck, c′k] be the weight intervals forAi, Bj , andCk,

respectively.

Case 1: ai = a′
i, bj = b′j , or ck = c′k. If bj = b′j , then create two matricesX andY , defined as:

X [p, q] =

{

1 if (Ai[p], Bj [q]) ∈ E,
0 otherwise,

and

Y [q, r] =

{

1 if (Bj [q], Ck[r]) ∈ E,
0 otherwise.

Multiply X andY . For allp, q with w(Ai[p]) +w(Ck[q]) = K − bj and(Ai[p], Ck[q]) ∈ E, (XY )[p, q] gives the
number of nodes inBj which form aK-weight triangle withAi[p] andCk[q]. Add (XY )[p, q] to D[Ai[p], Ck[q]].

The casesai = a′
i andck = c′k are symmetric. WLOG assumeai = a′

i. Then create two matricesX andY as
follows:

X [p, q] =

{

1 if (Ai[p], Bj [q]) ∈ E
0 otherwise.

Y [q, r] =







1 if (Bj [q], Ck[r]) ∈ E and
w(Bj [q]) + w(Ck [r]) = K − ai,

0 otherwise.

Multiply X andY . For everyp, q with (Ai[p], Ck[q]) ∈ E, (XY )[p, q] gives the number of nodes inBj which
form aK-weight triangle withAi[p] andCk[q]. Add (XY )[p, q] to D[Ai[p], Ck[q]].

In both cases above, one can find witnesses and incur only a polylogarithmic factor by using the Boolean matrix
product witness algorithm of Alon et al. [3].

Case 2: ai < a′
i, bj < b′j , and ck < c′k. Recurse on all triples(Ai, Bj, Ck) with intervals[ai, a

′
i], [bj , b

′
j], [ck, c′k]

satisfying
ai + bj + ck ≤ K ≤ a′

i + b′j + c′k.

Note we can disregard all other triples of nodes, as they could not contain aK-weight triangle with a node in each of
Ai, Bj , andCk. This concludes the algorithm.

Observe that we only add toD when the recursion bottoms out, and at least one sublist has the same weight on all
of its nodes. Because of the partitioning, we never overcount, and every triangle of weightK is counted exactly once.
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We claim that the number of recursive calls in the algorithm is at most6c2. There are two types of triples that the
algorithm recurses on: those withai+bj+ck ≤ K < a′

i+b′j+c′k (type 1) and those withai+bj+ck < K ≤ a′
i+b′j+c′k

(type 2). LetT1 andT2 be the sets of type 1 and type 2 triples respectively. We show that|Ti| ≤ 3c2 for i = 1, 2.

Each triple inT1 is uniquely determined by the threeleft endpoints of its weight intervals,(ai, bj , ck). This follows
sinceai < a′

i, bj < b′j andcj < c′j . Similarly, each triple inT2 is uniquely determined by the threeright endpoints of
its weight intervals,(a′

i, b
′
j , c

′
k).

To prove that|T1| ≤ 3c2, let (Ai, Bj, Ck) ∈ T1 and consider any(Aℓ, Bp, Cq) with ai < aℓ, bj < bp andck < cq.
Because of the way we partitionedA, B, C, we must havea′

i ≤ aℓ, b′j ≤ bp andc′k ≤ cq. Hence

ai + bj + ck ≤ K < a′
i + b′j + c′k ≤ aℓ + bp + cq,

and therefore(Aℓ, Bp, Cq) /∈ T1. That is, no triple inT1 is strictly dominated by another one. By Lemma 3.1 there
are at most3c2 triples inT1. The argument forT2 is symmetric.

The time recurrence has the form:

T (n) ≤ 6c2T (n/c) + dc3(n/c)ω,

for a constantd. Now we prove thatc can be chosen (depending onω) so that the recurrence solves toT (n) ≤
O(nω) + n22O(

√
log n).

If ω > 2, pick anyε with 0 < ε < ω − 2 and setc = 61/ε (we can pickε so thatc is an integer). By the master
theorem, if2+ ε = (log 6+2 log c)/(log c) < ω and for somec′′ < 1, 6c2(n/c)ω ≤ c′′nω then the runtime isO(nω).
Now 6c2(n/c)ω = 6nω/cω−2 = nω · 61−ω−2

ε , and61−ω−2
ε < 61−1 = 1. Hence in this case the runtime is precisely

O(nω).

Supposeω = 2. Setc(n) = 2p
√

log n for some constantp > 7. Let q = p
2 − ε for some0 < ε < 1/2. Let

c′′ = 2qc′

2q−6 and noticec′′ > c′ > 0 andq = log
(

6c′′

c′′−c′

)

.

For large enoughn,

q2 − 2ε

√

log n − p
√

log n < 0, and

(

√

log n − p
√

log n + q)2 = (log n − p
√

log n) + (p − 2ε)

√

log n − p
√

log n + q2 ≤

log n + q2 − 2ε

√

log n − p
√

log n < log n.

Hence,
√

log n − p
√

log n + q <
√

log n. Substitutingq = log 6c′′

c′′−c′ , p
√

log n = log c and multiplying byp,

log(6c′′) + p

√

log
n

c
< p
√

log n + log(c′′ − c′).

Raising2 to the power of each side, addingcc′ to both sides and then multiplying both sides byn2, we obtain

n2(6c′′ · 2p
√

log(n/c) + cc′) < c′′n22p
√

log n.

By the induction hypothesis, however, the left hand side is at least6c2T (n/c) + c′c3(n2/c2) ≥ T (n). We get that
T (n) ≤ c′′n22p

√
log n and hence by induction our algorithm takesn2 · 2O(

√
log n) time. �

Theorem 3.2 can be viewed as an efficient reduction from counting node-weighted triangles to counting un-
weighted triangles. However the reduction does not preserve the sparsity of the original graph, and hence a very
good algorithm for counting/finding triangles in a sparse unweighted graph does not necessarily imply an algorithm
with a comparable running time3. Furthermore, because of the sorting, the method used in Theorem 3.2 would require
linear space to solve weighted triangle problems in truly subcubictime, even if triangle finding can be done inno(1)

space andO(n3−ε) time. This means that the reduction from counting or finding weightedH-subgraphs to counting or
finding triangles would requirenΩ(k) space. To resolve these issues, we give a completely different construction which

3We note that anO(m1.41) runtime for counting weighted triangles is possible using the high degree/low degree method of Alon, Yuster, and
Zwick [5].
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reduces the problem of finding a weighted triangle to a small number of instances of finding unweighted triangles in
graphs with the same number of nodes and edges.

We first observe that all versions of the weighted triangle existence problems can be reduced to theK-weight
(exact weight) case with a poly(log W ) runtime overhead, whereW is the maximum weight in the graph. Hence we
can concentrate on the exact weight case.

Theorem 3.3 Suppose there is aT (m, n, W ) time andS(m, n, W ) space algorithm which determines if there is a tri-
angle of weight0, in an node or edge weighted graph onn nodes andm edges with maximum weightW . Then given an
n nodem edge graph with node or edge weights at mostW , there areO(S(m, n, W )) space algorithms for finding a
triangle of weight at leastK (for anyK) and for finding a maximum weight triangle, with timeO(T (m, n, W ) log W )
andO(T (m, n, W ) log2 W ), respectively.

Given aB bit integerx we define theith prefix ofx prei(x) as the integer obtained fromx by removing the last
B − i bits ofx. The proof of Theorem 3.3 relies on the following Proposition.

Proposition 3.4 For three integersx, y, z we have thatx + y > z, if and only if one of the following holds:

• there exists ani such thatprei(x) + prei(y) = prei(z) + 1, or

• there exists ani such thatprei+1(x) = prei(x)1, prei+1(y) = prei(y)1, prei+1(z) = prei(z)0 andprei(x) +
prei(y) = prei(z).

Proof: If one of the two conditions holds, we clearly havex + y > z. We only need to prove the opposite direction.
Supposex + y > z. Then there exists somei with prei(x) + prei(y) ≥ prei(z) + 1. Consider the smallest suchi. If
prei(x) + prei(y) = prei(z) + 1, then we are done, so assumeprei(x) + prei(y) ≥ prei(z) + 2. Then we have that
prei−1(x) + prei−1(y) ≤ prei−1(z). For someb1, b2, b3 ∈ {0, 1}, prei(x) = prei−1(x)b1, prei(y) = prei−1(y)b2

andprei(z) = prei−1(z)b3, and

2(prei−1(x) + prei−1(y)) + 2 ≥ 2(prei−1(x) + prei−1(y)) + b1 + b2 ≥ prei(z) + 2 =

2prei−1(z) + b3 + 2 ≥ 2(prei−1(x) + prei−1(y)) + 2 + b3.

Hence we have thatb3 = 0, b1 = b2 = 1 andprei−1(x) + prei−1(y) = prei−1(z). �

Now we can prove the Theorem:

Proof of Theorem 3.3. The maximum weight triangle case can be reduced to the≥ K case just by binary searching
for the maximum weight. This incurs an overhead oflog W in the running time and no space overhead. Hence we
just reduce the≥ K case to the= 0 case. We assume that we have aT (m, n, W ) time,S(m, n, W ) space algorithm
which can find a triangle of weight exactly0 if one exists. Given this algorithm it is straightforward toobtain an
O(T (m, n, W )) time, O(S(m, n, W )) algorithmALG which finds a triangle of weightK for any givenK. We will
give a procedure which givenK, determines whether there is a triangle in the graph of weight sum> K. We give the
reduction for edge weighted graphs. The node-weighted graph case is similar.

Implicitly build a tripartite graphG′ = (V ′, E′) from G = (V, E) by creating three copiesV1, V2, V3 of the vertex
setV and setV ′ = V1 ∪ V2 ∪ V3. For everyu ∈ V , let ui denote its copy inVi. ThenE′ = {(ui, vj) | (u, v) ∈
E, i, j ∈ {1, 2, 3}, i 6= j}. LetW = maxu,v |w(u, v)|. We set up the weightsw′ for G′ as follows: we letw′(u1, vj) =
w(u, v) + W for j ∈ {2, 3} andw′(u2, v3) = 2W + K − w(u, v). Now, a trianglea1, b2, c3 with the property that
w′(a1, b2) + w′(a1, c3) > w′(b2, c3) exists inG′ iff there is a trianglea, b, c in G of weight sum> K. To create a
procedure which determines whether there is such a trianglein G′ we use Proposition 3.4.

The integers inG′ haveO(log W ) bits. We createO(log W ) instances of0 sum triangle as follows. For every
prefix i = 0, . . . , O(log W ) create two instances of0 sum triangleGi1 andGi2.

For every(uj , vk) ∈ E′, (uj, vk) is also an edge inGi1 with weightprei(w
′(uj , vk)) if j = 1 andk ∈ {2, 3} and

with weight−prei(w
′(uj , vk)) − 1 otherwise.

For every(uj , vk) ∈ E′, (uj, vk) is an edge inGi2 if j = 1 andprei+1(w
′(uj, vk)) = prei(w

′(uj , vk))1, or
if j = 2, k = 3 andprei+1(w

′(uj , vk)) = prei(w
′(uj , vk))0. The weight of(uj , vk) in Gi2 is prei(w

′(uj , vk)) if
j = 1 and−prei(w

′(uj , vk)) otherwise.
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We note that we do not need to explicitly construct the graphsGi1 andGi2. Whenever the0 sum triangle algorithm
needs to know whether a particular edge exists and if so what its weight is, we compute this by checking the adjacency
matrix of the original graph. Hence there is no space overhead. �

We now give a tight reduction from node-weighted triangle finding to triangle finding which is both time and space
efficient.

Theorem 3.5 Suppose there is aT (m, n) time,S(m, n) space algorithm which finds a triangle in ann-node,m-edge
graph, provided one exists. Then there is aT (m, n) · 2O(

√
log W ) time, O(S(m, n)) space algorithm which finds a

K-weight triangle (for any givenK) in ann nodem edge graph with node weights in[1, W ].

Our method relies on the existence of a good3 party communication protocol for Exactly-W . Exactly-W is
the multiparty communication problem wherew ∈ [W ] is known to all parties, theith party has an integerni ∈
[1, W ] on its forehead, and all wish to determine if

∑

i ni = w. This problem was defined by Chandra, Furst, and
Lipton [12]. They showed that Exactly-W has three-party communication complexityO(

√
log W ), but they did not

give an effectively computable version of their protocol. We show how to modify the protocol to run in polynomial
time, with O(log W ) public bits of randomness andO(1) communication. Although the number of random bits is
large, fortunately the error probability is good enough that we can apply this protocol to obtain a fast exact triangle
algorithm. A crucial aspect of the protocol is that it does not have false positives: if the sum is notw then it always
rejects.

Theorem 3.6 Exactly-W has a simultaneous randomized three-party protocol withO(1) communication complexity,
where each party runs apoly(log W ) time algorithm and has access to2 log W public random bits. In particular,
consider an instance(w1, w2, w3) ∈ [W ] of Exactly-W for three parties. Ifw1 + w2 + w3 = w then the protocol
acceptswith probability at least1/2Ω(

√
log W ), and ifw1 + w2 + w3 6= w then the protocol alwaysrejects.

Proof: Let us survey the protocol in [12], then describe how to adaptit. Their protocol is deterministic, uses
O(

√
log n) bits of communication, and is non-constructive. At the heart of the protocol is a “hash” functionc(x)

from [n] to [k], wherek << n, which we now describe. LetS ⊆ [n] be 3-sum-free, meaning that it contains no
arithmetic progression of length three. It is known that forall n, there is a constantc > 0 and 3-sum-free setS ⊆ [n]
of sizecn/2c

√
log n (more details are given below). TakeO( n

|S| log n) random translates ofS, i.e. sets of the form
Si = {x + yi | x ∈ S} for a uniform randomyi ∈ {−n, . . . , n}. The set[n] is covered byk ≤ O( n

|S| log n) ≤
O(2c

√
log n log n) random translates{S1, . . . , Sk} with high probability, where each|Si| = |S|, and eachSi is 3-sum-

free. Forx ∈ n, definec(x) to be the smallesti ∈ [k] such thatx ∈ Si.

Now we describe the protocol. Each party holds two of thewi ∈ [n] (along with knowledge ofw) and wants to
know if w1 + w2 + w3 = w. Observe that each party “knows” what its missing number ought to be if the sum isw,
for example the party holdingw1 andw2 knows thatw3 should bew − w1 − w2. The ith party computes its own
xi = w1 + 2w2 + 3w3, using the difference betweenw and its two known integers in place of its missing integer, then
sendsc(xi) usingO(log(n/|S|)) bits. We claim thatw1 + w2 + w3 = w if and only if c(x1) = c(x2) = c(x3), so
the protocol accepts if and only if all messages are identical. If w1 + w2 + w3 = w, then obviouslyx1 = x2 = x3. If
w1+w2+w3 6= w, we claim thatx1, x2, x3 is a three-term arithmetic progression; by construction ofS, it follows that
not allc(xi) are equal. Letα = w−w1−w2−w3 6= 0. Thenx1 = (w−w2−w3)+2w2+3w3 = (α+w1)+2w2+3w3,
x2 = w1 +2(w−w1−w3)+3w3 = w1 +2(α+w2)+w3, x3 = w1+2w2 +3(α+w3). Lettinga = w1 +2w2+3w3,
we havex1 = a + α, x2 = a + 2α, x3 = a + 3α, a progression.

There are two obstacles to a constructive version of the protocol: the 3-sum-free setS and the translatesS1, . . . , Sk.
Behrend [9] (building on Salem and Spencer [38]) gave the first 3-sum-freeS of sizeΩ(n1−c/

√
log n). His proof gives

a procedure for generating elements ofS, but in the above protocol we need to be able to recognize members ofS; it is
not clear how to do this quickly with Behrend’s set. Fortunately, Moser [32] later gave a 3-sum-freeS of comparable
size for which membership of a(log n)-bit numberx can be determined inO(poly(log n)) time. We describe his
construction in the appendix.

To deal with the issue of constructing theSj = {x + yj | x ∈ S}, we modify the protocol slightly. We assume all
parties have public access to a uniform randomz ∈ {−n, . . . , n}. Then theith party sends a1 if xi + z ∈ S (where
xi is calculated as above), otherwise it sends a0. If all parties sent1, the protocol accepts. Otherwise, it rejects.
By construction, ifw1 + w2 + w3 = w then the probability that a randomz makes all parties send a1 is at least
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|S|/(2n) ≥ 1/2Ω(
√

log n). On the other hand, ifw1 + w2 + w3 6= w then the parties will never all send1’s regardless
of z, since in that casex1 + z, x2 + z, x3 + z are in arithmetic progression. �

Proof of Theorem 3.5. Let G = (V, E) be a given graph. LetV = {v1, . . . , vn} and letG have weightsw : V →
{1, . . . , W}. We run the following algorithm an expected2O(

√
log W ) number of times. Pick2 logW bits at random.

Let B = O(1) be the communication complexity of the simultaneous protocol in Theorem 3.6. The algorithm cycles
over every possible sequenceb1, b2, b3, wherebj ∈ {0, 1}∗ and|bj | ≤ B for j ∈ {1, 2, 3}. These sequences represent
all possible simultaneous communications that could take place. Note the number of sequences isO(1).

Given a possible communication sequenceS, we implicitly construct a graphG′
S on 3n nodes.G′

S is tripartite
with vertex partitionsV 1 = {v1

1 , . . . , v
1
n}, V 2 = {v2

1 , . . . , v
2
n}, V 3 = {v3

1 , . . . , v
3
n}. For i ∈ {1, 2, 3} andk, ℓ ∈ [n],

there is an edge betweenvi
k andvi+1

ℓ (the indexing is donemod 3) iff (1) (vk, vℓ) ∈ E and (2) theith party accepts
while holdingw(vk) andw(vℓ) and viewing communication sequenceS.

If one finds a triangle inG′
S then the corresponding triangle inG has weightK, by the correctness of the protocol.

If there is aK-weight triangle inG, then with constant nonzero probability there is a trianglein G′
S for someS,

after2O(
√

log W ) runs of the algorithm. We do not need to construct any of the graphsG′
S , rather every time we need

to check whether an edge(vi
j , v

i+1
k ) is in G′

S , we run the protocol of Theorem 3.6 for partyi in poly(log W ) time,
making sure it matchesS. �

4 Hardness for Edge Weighted Subgraphs

The methods for finding weighted triangles described in the previous section still fail in the edge weighted case.
No truly subcubic algorithms are known for finding a (maximum/at leastK/K-weight) triangle in anedge-weighted
graph. Finding a maximum weight triangle in truly subcubic time has received recent attention (e.g. [44]) due to its
connection to all pairs shortest paths (APSP): the distanceproduct (a.k.a.(min, +)-product) of two matrices can be
used to find for every pair of nodes the minimum weight of a triangle going through them. Understanding the hardness
of finding edge-weighted triangles could explain why it seems so difficult to obtain anO(n3−ε) algorithm for APSP in
n node graphs. In this section we relate the edge-weighted triangles to3SUM and the multivariate quadratic equations
problem. We say that a triangle in an edge-weighted graph hasK-edge-weight if the sum of its edge weights isK.

4.1 3SUM

First we show a connection between findingK-edge-weight triangles and the3SUM problem, which is widely believed
to have no truly subquadratic algorithm (cf. [22]). In particular, if theK-edge-weight triangle problem can be solved
in O(n2.5−ε) time then3SUM is solvable inO(n2−ε′

) time. (Recall that in thenode-weightedcase of the previous
section, we obtained anO(nω) solution.) Therefore if one can use an algorithm for the distance product to find an
exact edge weighted triangle in the same time, then APSP requires essentiallyΩ(n2.5), unless3SUM can be solved in
subquadratic time.4 Such a conclusion would be intriguing, especially since thedecision tree complexity of APSP is
O(n2.5) ([21]).

Theorem 4.1 If for someε > 0 there is anO(n2.5−ε) algorithm for finding a0-edge-weight triangle in ann node
graph, then there is a randomized algorithm which solves3SUM onn numbers in expectedO(n

8
5 + n2− 4

5 ε) time.

Proof: Suppose we are given an instance(A, B, C) of 3SUM so thatA, B andC are sets ofn integers each. We
first use a hashing scheme given by Dietzfelbinger [18] and used by Baran, Demaine and Patrascu [7] which maps
each distinct integer independently to one ofn/m buckets wherem is a parameter we will choose later5. For each
i ∈ [n/m], letAi, Bi, andCi be the sets containing the elements hashed to bucketi. The hashing scheme has two nice
properties:

1. for every pair of bucketsAi andBj there are two bucketsCkij0 andCkij1 (which can be located inO(1) time
giveni, j) such that ifa ∈ Ai andb ∈ Bj , then ifa + b ∈ C thena + b is in eitherCkij0 or Ckij1 ,

4We note that Patrascu’s recent modification[35] of our reduction implies anΩ(n3) hardness for APSP.
5The scheme performs multiplications with a random number and some bit shifts hence we require that these operations are not too costly. We

can ensure this by first mapping the numbers down toO(log n) bits, e.g. by computing modulo some sufficiently largeΘ(log n) bit prime.
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2. the number of elements which are mapped to buckets with at least3m elements isO(n/m) in expectation.

After the hashing we process all elements that get mapped to large buckets (size> 3m). Supposea ∈ A is such an
element (WLOG it is inA). Then go through all elementsb of B and check whethera + b ∈ C. This takesO(n2/m)
time overall in expectation.

Now the bucketsAi, Bi, Ci for all i ∈ [n/m] containO(m) elements each. For each setS ∈ {Ai, Bi, Ci}i∈[n/m]

we pick an arbitrary ordering of the elements and then denoteby S[k] thekth element inS.

For everyc ∈ [2m] we will create an instance of0-edge-weight triangle as follows. For everyi ∈ [n/m], create
nodesxi andyj. For everyr ∈ [m] ands ∈ [m] create a nodezst. Add an edge(xi, zst) for everyi, s, t with weight
Ai[s]. Add an edge(zst, yj) for everyj, s, t with weightBj [t]. For everyi, j add an edge(xi, yj) with weightCkij0 [c]
if c ≤ m andCkij1 [c − m] if c > m.

If in any one of the2m instances there is a triangle of edge weight0, then this triangle has the formxi, zst, yj and
henceAi[s], Bj [t], Ckij

[c] for somec is a solution to the3SUM instance. Suppose on the other hand that there is a
solutiona, b, d of the3SUM instance. Either we found this solution during the reduction to0-edge-weight triangle, or
a = Ai[k], b = Bj [ℓ] andd = Ckijb

[p], for b ∈ {0, 1}, k, ℓ, p ∈ {1, . . . , m}, andi, j ∈ {1, . . . , n/m}. Then consider
instancec = bm + p. The trianglexi, yj , zkℓ has weightAi[k] + Bj [ℓ] + Ckijb

[p] = a + b + d.

Each graph hasn/m + m2 nodes and can be constructed inO(n2/m2 + m4) time. The entire reduction takes
O(n2/m + m4) expected time. By settingm = Θ(n1/3) we obtainO(n1/3) instances of0-edge-weight triangle,
each onO(n2/3) nodes. Hence if a0-edge-weight triangle in anN node graph can be found inO(N2.5−ε) time, then

3SUM is inO(n5/3 + n
1
3+ (2.5−ε)2

3 ) = O(n5/3 + n2−ε 2
3 ) time.

We note that the reduction can be improved slightly by instead of creatingn1/3 instances of sizen2/3 we create
one instance of sizen4/5. Then anO(n2.5−ε) algorithm for0-edge-weight triangle would imply anO(n8/5 + n2− 4

5 ε)
algorithm for3SUM. To do this, for eachi andj create2

√
m copiesxic andyjc (for c = 1, . . . , 2

√
m) of the original

nodesxi andyj . For eachc and each nodezst the weight of edge(xic, zst) is Ai[s] and that of edge(yjc, zst) is Bj [t].
Now there are4m instances(xic, yjc′) of the original edge(xi, yj) and we can place the2m numbers ofCkij0 ∪Ckij1

on these edges so that each number appears at least once. Now we have one instance onO(n/
√

m+m2) nodes created
in O(n2/m + m4) time. By settingm = n2/5 we obtain the result. �

4.2 Multivariate Quadratic Equations

Finally, we show that faster algorithms for finding edge-weighted triangles would also imply faster algorithms for
NP-hard problems. In particular, a better algorithm for exactedge weighted triangle over finite fields could be used to
solve MULTIVARIATE QUADRATIC EQUATIONS (abbreviated as MQS) faster than exhaustive search. An instance of
MQS consists of a set ofm equations overn variables that take values from a finite fieldF , where each equation is of
the form

p(x1, . . . , xn) = 0

for a degree-two polynomialp. The task is to find an assignment(x1, . . . , xn) ∈ Fn that satisfies all equations.

Several very important cryptosystems have been designed under the assumption that MQS is intractable even in
the average case (e.g. [29, 34]). A faster algorithm for MQS would help attack these.

To our knowledge, there are no known algorithms for MQS that improve significantly on exhaustive search in the
worst case, though some practical algorithms suggest that MQS may have such an algorithm [27, 16]. We show that
an better worst-case algorithm for MQS doesexist, if edge-weighted triangle (or evenk-clique) can be solved faster.
More precisely, in theF -WEIGHT k-CLIQUE problem, we are given an edge-weighted undirected graph with weights
drawn from a finite fieldF of 2Θ(b) elements, and are asked if there is ak-clique whose total sum of edge weights is
zero overF . We consider the hypothesis that this problem can be solved faster than brute-force search. Observe the
trivial algorithm can be implemented to run inO(b · nk) time.

Hypothesis 4.2 There is aδ ∈ (0, 1) and somek ≥ 3 such thatF -WEIGHT k-CLIQUE is in O(poly(b) · nδk) time
over a fieldF of 2Θ(b) elements.

Theorem 4.3 Hypothesis 4.2 implies thatMQS over a fieldF on n variables has an algorithm running inO(|F |δn)
time, for someδ < 1.
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In the following paragraphs we establish Theorem 4.3. The idea is to reduce MQS to the problem of determining
whether a sum of degree-two polynomials has a zero solution,then reduce that problem to edge-weightedk-clique.
Our reduction is very similar to known algorithms for MAX CUTand MAX 2-SAT [45], so we only describe it briefly
here.

Let p1 = 0, . . . , pm = 0 be an instance of MQS. Let F = GF (pℓ) for some primep and positive integerℓ. Let
K = GF (pℓm). TreatK as anm-dimensional vector space overF , and lete1, . . . , em be a basis for this space.
Define a polynomialP : Fn → K as

P (x1, . . . , xn) :=

m
∑

i=1

eipi(x1, . . . , xn).

The following is immediate from the representation ofK as a vector space overF . Let (a1, . . . , an) ∈ Fn.

Claim 4.4 P (a1, . . . , an) = 0 (overK) ⇐⇒ for all i = 1, . . . , m, pi(a1, . . . , an) = 0 (overF ).

Hence we have reduced the original problem to that of finding an assignmenta ∈ Fn satisfyingP (a) = 0 over
K. It remains to show that this problem can be reduced toF -WEIGHT k-CLIQUE so that anO(poly(b)nδk) algorithm
for F -WEIGHT k-CLIQUE translates to anO(poly(m, n)|F |δn) algorithm for MQS. Briefly, the reduction works by

• splitting the set of variables intok parts and listing the|F |n/k partial assignments for each part,

• building a completek-partite graph onk|F |n/k nodes, where the nodes correspond to partial assignments, and

• putting weights (from the fieldK) on edges{u, v} corresponding to the sum of those monomials inP whose
variable are assigned by the partial assignmentsu andv. Here we need to assign degree-one terms via some
convention so that we do not overcount the degree-one terms of P .

Find ak-clique with0 edge weight, when evaluated overK. Note|K| ≤ |F |mpoly(n), so the hypothesis entails that
this clique problem is inO(poly(m, n)|F |δn) time.

5 Open Problems

We conclude with three interesting open problems related tothis work.

• Is there af(k)·nk(1/2−ε)poly(n) time algorithm for#k-MATCHING for some constantε > 0 and some function
f only depending onk?

• Can one use a fast distance product algorithm to obtain a fastalgorithm for finding a0-edge-weight triangle?

• Is there any way to find triangles fast without recourse to matrix multiplication?
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A Appendix: Large 3-Sum-Free Sets With Easy Membership

We briefly describe a 3-sum-free set of Moser [32], whereS ⊂ [2n], |S| ≥ Ω(2n−c
√

n) for some fixedc > 0, and we
can determine if ann-bit numberx ∈ S in poly(n) time.

The following procedure decides ifx ∈ S. Assume the most significant bit (msb) ofx is 1. We bracket the bits ofx
going from right to left: the least significant bit (lsb) is put in the first bracket, the next two are in the next bracket, the
next three in the third,etc. If the last bracket (containing the most significant bit) does not have the maximum number
of bits, it is padded with zeroes. For example, we would bracket 10101101 as(0010)(101)(10)(1), and1011011100
as(1011)(011)(10)(0).

Let xi be the number in theith bracket (counting from right to left). Suppose there arer brackets. Lety be the
number obtained by concatenatingxr andxr−1, with the msb ofxr omitted. Finally,x ∈ S if and only if (a) the
msb ofxr is 1, (b) for all xi, i = 1, . . . , r − 2, the lsb ofxi is 0, and (c)

∑r−2
i=1 x2

i = y. It is easy to see that all the
requirements can be determined in poly(n) time.

Theorem A.1 (Moser) The setS defined by the above procedure is3-sum-free.
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