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Abstract. 1t has long been known that increasing the number of tapes used by a Turing
machine does not provide the ability to compute any new functions. On the other hand, the
use of extra tapes does make it possible to speed up the computation of certain functions. It is
known that a square factor is sometimes required for a one-tape machine to behave as a two-
tape machine and that a square factor is always sufficient.

The purpose of this paper is to show that, if a given function requires computation time T'
for a k-tape realization, then it requires at most computation time 7' log T for a two-tape
realization. The proof of this fact is constructive; given any k-tape machine, it is shown how
to design an equivalent two-tape machine that operates within the stated time bounds. In
addition to being interesting in its own right, the trade-off relation between number of tapes
and speed of computation can be used in a diagonalization argument to show that if T'(n) and
U (n) are two time functions such that

T(n) log ’1‘(@ _

inf T =

then there exists a function that can be computed within the time bound U(n) but not within
the time bound T'(n).

1. Introduction

The study of computability by computer-like devices was initiated by Turing
[1], who postulated that the functions that can be mechanically evaluated are pre-
cisely those functions that can be computed by a finite-state device with a single
unbounded read-write tape. Such a device is commonly called a Turing machine.
When slight variations in input-output procedure are used, Turing machines may
be applied to other problems such as generating sequences or recognizing sets.
Thus functions, sequences and sets can be classified as “computable’’ or ‘“‘noncom-
putable’” depending on whether or not they can be defined by an appropriate
Turing machine.

With the advent of the modern high-speed computer, interest in computability
has spread to questions concerning the “‘difficulty” or “complexity’’ of a calculation.
One fruitful measure of the complexity of a computation is the number of time
units needed to carry out that computation. For any function T'(n) of integers into
integers, we say that a given function, sequence or set is T'(n)-computable if and
only if there is some (appropriately modified) Turing machine which, depending on
the context, either computes the nth term of a sequence in T'(n) operations or proc-
esses an input sequence of length » within T'(n) operations. Three modifications of
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the Turing machine for which this complexity criterion has been studied are dis-
cussed later. The common feature of these models is that they all contain a finite-
state device which controls one or more unbounded tapes. The use of more than one
tape does not give a machine any extra power, but it does enable some calculations
to be completed in fewer operations, and is a step toward making the Turing ma-
chine model more like present computers.

A central problem in the theory of computational complexity is to determine
how much faster a problem can be done on a ki-tape machine than on a ky-tape ma-
chine. Not only is this problem interesting in its own right, but certain proofs based
on Cantor diagonal techniques depend on the speed with which one is able to simu-
late a sequence of machines with arbitrary numbers of tapes by a single machine
that must have a fixed number of tapes. Such applications are discussed in later
sections where the specific models are discussed.

Hartmanis and Stearns [2] have shown that any k-tape machine can be simu-
lated by a one-tape machine whose computation time is no greater than the square
of the computation time of the k-tape machine. Hennie [3] has shown that there
are cases in which reducing the number of tapes from two to one actually requires a
squaring of the computation time. Thus more efficient simulation techniques can
only be obtained by using more than one tape.

The object of this paper is to describe a scheme whereby 7 operations of a many-
tape Turing machine can be simulated by n log n operations of a two-tape Turing
machine. This improvement over the one-tape ease allows a corresponding improve-
ment in results proved by diagonal techniques. These applications are discussed in
later sections. '

2. Preliminary Considerations

The purpose of this section is to describe our objectives more explicitly. However,
the definitions and proofs must of necessity be somewhat informal because a com-
pletely rigorous treatment would require a prohibitive amount of space and would
obscure the simple principles upon which the construction is based.

The basic multitape Turing machine model we are trying to simulate may be de-
scribed as a computing device that has a finite automaton as a control unit. At-
tached to this control unit is a fixed number of tapes which are linear, unbounded
at both ends and ruled into an infinite sequence of squares. The control unit has one
reading head assigned to each tape, and each head rests on a single square of the
assigned tape. There are a finite number of distinct symbols which can appear on the
tape squares. Each combination of symbols under the reading heads, together with
the state of the control unit, determines a unique machine operation. A machine
operation consists of overprinting a symbol on each tape square under the heads,
shifting each tape independently either one square left, one square right or no
squares and changing the state of the control unit. The machine is then ready to
perform its next operation as determined by the tapes and control state. If a given
operation does not call for any tape shift, change of tape symbol or change of state,
then the machine is said to have stopped.

In order to use a machine for calculations, one must add some means of supply-
ing input data to the machine and obtaining output data from it. In later sections
several ways of doing this are considered. However, for the purposes of simulation,
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the particular input output convention used is irrelevant; only the basic machine
operations are important. Thus the first concern is with the simulation of the basie
model; the problem of supplying input data and obtaining output data is ignored.
Asusual, by “simulation” we mean simply a process of imitating, one after the other,
the operations performed by a given machine.

3. The Simulation Method

The Approach Used. The purpose of this section is to describe a fast method of
simulating the behavior of a given k-tape machine M, with an appropriate two-
tape machine M, . The basic unit of the simulation precess, called a step, consists
in imitating the actions that M, performs during a single move. At the beginning of
each step in its simulation, M s must have on its tapes an up-to-date record of the
patterns currently appearing on M}’s tapes, and of the locations of these patterns
with respect to M,’s reading heads. During the course of a typical step, M+ must
not only update its record of M,’s tape pattern, but in general it must also re-
arrange its record of these patterns so as to provide easy access to the symbols
that M, will scan next.

One of My’s tapes will be called the storage tape. We imagine that this tape is
divided lengthwise into k tracks, one for each of My’s tapes. Each track is in turn
divided into an upper and lower level, as shown in Figure 1. Each of the resulting
small squares may contain any one of M,’s tape symbols, together with some special
“marking symbols.” The head that scans the storage tape is assumed to read all
the squares in one column in one operation. This specialized way of viewing the
storage tape is in keeping with the traditional Turing machine model, for the vector
of symbols that appears in a given column of this tape may be regarded as a single
symbol in an expanded tape alphabet.

One column of the storage tape is designated the home column. The columns to
the left and right of the home column are grouped into a number of storage areas,
as indicated in Figure 1. The ith storage area on each side of the home column con-
sists of exactly 2+ columns. Thus the number of columns in the 7th left (or right)
storage ares is exactly one greater than the total number of columns in the first
i—1 left (or right) storage areas. At the beginning of a simulation the boundaries
of the storage areas are not marked in any way; special symbols marking these
boundaries are supplied by M as needed during the course of the simulation.

Although this organization of the storage tape may appear strange at first, it
provides a framework within which the behavior of M, can be simulated efficiently.
The lower level of each track serves as the primary means of storing the symbols
that appear on My’s tapes. In particular, at the beginning of a simulation, all of
M)’s tape symbols are recorded in the lower levels of M,’s storage tracks, with the
initially scanned symbols appearing in the home column. After each step in its
simulation, M ; realigns its recorded patterns so that the next symbols to be seanned
by M are placed in the home column. This realignment is accomplished by copying
the symbols in question onto My’s second tape, and then copying them back into
the desired locations on the storage tape.

If M, were to shift all of the symbols in each of its patterns at each step in the
simulation, the time needed to simulate n steps of My’s computation might be as
large as n?. In order for the simulation time to be decreased, M, will be designed so
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that during a typical step in the simulation it leaves the bulk of each recorded pat-
tern in place and shifts only a small segment near the home column. Such limited
shifts would require that certain shifted segments of the tape be placed on top of
certain unshifted segments. These excess symbols are accommodated in the upper
level of the track in question until such time as they can be reincorporated into the
lower level by a more extensive realignment. For each segment of excess symbols,
there must also be a corresponding gap on the other side of the home square. These
gaps remain until refilled by a more extensive realignment.

The number of symbols to be shifted at each step is determined by the sizes of
the storage areas and by the number and locations of the excess symbols currently
being stored in the upper level. The sizes of the storage areas have been chosen
s0 that the 7th upper storage area will just hold the overflow resulting from a re-
alignment of the symbols in the first — 1 storage areas. In this way the number of
steps needed to perform each realignment is kept to a minimum, and the simulation
can be accomplished quite efficiently. In particular, it will be shown that n opera-
tions of M’s computation require at most n log n operations to simulate on M.

Description of the Simulation. At the beginning of each step in the simulation
the current tape patterns of M) are to be arranged within their respective tracks
on the storage tape of M, so that the symbols currently scanned by M are all
within the home column. Thus M, needs only to examine the home column to make
all the symbol changes required by the current step in the simulation, and to deter-
mine the directions in which M will move its various tapes. To prepare for the fol-
lowing step in the simulation, however, M s must rearrange its recorded tape pat-
terns so that the next symbols to be scanned by M, are all in the home column.
This rearrangement lies at the heart of the simulation procedure, and will be dis-
cussed in considerable detail. Because the process is basically the same for each of
the k-tape patterns, the discussion that follows is restricted to one of M}’s tapes and
to the corresponding track on M’s storage tape.

At any given time, only some of the squares within a typical track will be used to
store symbols from the corresponding tape pattern of M) . Squares that do store
symbols from M,’s tape pattern will be called full; squares that do not will be called
empty. At the beginning of each step in a simulation, each of M}’s tape patterns is
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to be recorded within the corresponding track on the storage tape of M in aceord-
ance with the following rules.

1. Within any given level of any given storage avea, either every square is full
or every square is empty. Note that a distinetion must be made between empty
squares and squares that are being used to store blanks from M}’s tape. If the tapes
of M} are initially blank, then M .'s storage tape is also initially blank, but these
blanks must represent the situation in which the lower level of each track stores
blanks from M ,’s tapes, while the upper level of each track is empty.

2. Within any given track, if the upper level of the ith left (right) storage
area is full, then the lower level of the same area must also be full, and both levels
of the 7th right (left) area must be empty. Conversely, if the lower level of the ith
left (right) area is empty, then the upper level of the same area must also be empty,
and both levels of the ith right (left) area must be full. The upper level of the home
column is always empty; the lower level, bereafter referred to as the home square,
is always full. At the beginning of a simulation, the upper level of every area will
be empty, and the lower level of every area will be full.

3. The symbols stored within any given track must be arranged in such a way
that the corresponding patiern on M}’s tape can be obtained as follows. Starting
with the leftmost nonblank symbol in the given track, read through the various
storage areas from left, to right, ignoring empty areas. To the left of the home square,
all the symbols stored in the lower level of a given area are to be read before those
in the upper level. To the right of the home square this order is reversed.

As an example, Figure 2a shows a typical configuration of symbols that might
appear within one track of the storage tape. Here the letters represent symbols
from M)’s tape alphabet, while blanks represent empty squares. The reader may
verify that this configuration satisfies rules 1 and 2. According to rule 3, it represents
the pattern...thequickgrayfoxjump...on My’s tape, with the sym-
bol “y’” under M}’s reading head.

Suppose that at the beginning of some step in its simulation, one of the tracks on
M y’s storage tape contains the configuration of symbols shown in Figure 2a, and
that during its next move M, overprints its scanned symbol with an “m” and shifts
the tape in question to the right. In order to imitate this action, M must change the
symbol in the home square to an “m’” and then rearrange the entire configuration
of symbols so that the symbol “a’ appears in the home square and rules 1 through 3
are satisfied. This can be done quickly by simply shifting the symbol “a” into the
home square and putting the displaced symbol “m” in the upper level of the first
right-hand storage area, as shown in Figure 2b.

Now suppose that the next step in M,’s computation requires overprinting the
scanned symbol with an “i” and shifting the tape one more square t0 the right.
In this case, the rearrangement of the symbols on M,’s tape is not quite so simple.
The symbol that must be moved into the home square currently appears in the
upper level of the third left-hand storage area. It is not possible simply to shift
this symbol into the home square and leave the rest of the third storage area intact,
for each level of a storage area must be either completely full or completely empty
(rule 1). The quickest way to restore proper order is to remove all of the symbols
from the upper level of the third storage area and relocate them in the lower levels
of the first and second left-hand storage areas. Because of the way in which the
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Fig. 24~c. Two successive cleanups

lengths of the storage areas have been chosen, three of these symbols will just fill
up the first and second areas, leaving the fourth symbol “r” for the home square.

In order to satisfy rule 2, the upper levels of the first two right-hand storage areas
must now be emptied out and the lower level of the third right-hand storage area
must be filled in. Fortunately, the number of symbols that appears in the upper level
of the first two areas, together with the syrabol “i” displaced from the home square,
just matches the number of available squares in the lower level of the third right-
hand storage area. Thus the symbols can be reshuffled as shown in Figure 2¢ to
create a new pattern that satisfies rules 1 and 2 and aceurately reflects My's new
tape pattern.

With the examples of Figure 2 in mind, we shall now state general rules for re-
arranging symbols within one of M y’s storage tracks. If it is assumed that the appro-
priate overprinting has already been done, and that M, is to imitate a shift of M,'s
tape toward the right, the procedure is as follows,

4. Search to the left from the home square until the first nonempty square is
found. Let < be the number of the left-hand storage area that contains this square.

4. If the upper track of the ith left-hand storage area is full, collect all the
symbols in that level and relocate them (in the proper order) in the lower levels
of the first ¢—1 left-hand storage areas, with the rightmost symbol going in the
home square. If the upper level of the ith left-hand storage area is empty, collect
the symbols in the lower level and relocate them in the same way.

6. Collect all the symbols in both levels of the first ¢—1 right-hand storage
areas, together with the one symbol displaced from the home square, and relocate
them (in the proper order) in the lower levels of the first — 1 right-hand storage
areas, with the excess symbols going in the ith storage area. The lower level of this
area is to be used if it is available; otherwise the upper level is to be used.

If M, should shift its tape to the left instead of to the right, it is only necessary to
interchange the words “left”” and “right” in these three rules. In either case the
process of rearranging the symbols will be referred to as a cleanup of order 7. The
transition from Figure 2b to Figure 2¢ represented a third-order cleanup. In this
case, the upper level of the third left-hand storage area was full, so the first part of
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rule 5 was applied. The transition from Figure 2a 1o Figure 2b represented a first
order cleanup in which the second part of rule B was applied. To illustrate o less
trivial application of rule 5 to the case when the upper level is empty, Figure 3 has
been provided; it shows a third-order cleanup of this type. We take it ps soll-ovident
that the procedure works; Le., that each clesnup results in a configuration that
satisfies rules 1 through 3 and that is suitable for a subsequent applieation of rales
4 through 6. The reader may easily verify this himself by experimentation with a
{ow examples.

1t must be romembered that we have been covsidering only one of My's tapes
and the corresponding track on M ¢'s storage tape. At each step in its simulation M.,
st in fact clean up each track on its storage tape, each clesnup being governed
by the rules given above. Of course, the cleanups performed on the various tracks
at any given step in the simulation need not be of the same order. In general they
will not be, since the tapes of M, may experience quite different sequences of left
aral right shifts,

Implementation of the Cleanup Procedure, Having explained the principles of
our cleanup scheme, we shall now indicate how this scheme can be secorplished by a
suitable two-tape Turing machine, M. Again suppose that the current operstion
of M, calls for the shifting of some particulsr tape to the right. After overprinting
the symbol originally in the home square, the machine My moves its storage-tape
head toward the left until it comes to the first squsre vontaining s symbol from the
tape alphabet of M, . For each square that the storage-tape head moves over, M
marks off one square on s second or copy lape. Thus when the storage-tape head
reaches the desired symbol, the number of syuares marked off on the copy tape
will just equal 2, where i is the mumber of the storage ares containing the syrabol,

M now proceeds to transfer the symbols from the appropriate level of the ith
storage area onto the marked portion of the copy tape. When the marked portion
of the copy tape is filled, the left end of the #th area will have been renched, If this
end of the storage area has not previously been marked, s special marking symbol
is now placed there, The machine then retraces its steps until its storage head has
returned to the left end of the (i—1)-st storage area, and procesds to transfer the
copied symbols into the lower levels of the first i~ 1 arcas. When the home square
is reached there will be one symbol left over; this symbol s interchanged with the
symbol currently in the home square.

M, next transfers the contents of the first 1~ 1 right-hand storage arens onto the
copy tape. Of course, in order for M, to transfer these symbols in their proper
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order, it must have some way of identifying the ends of the various storage areas.
As will be seen, the boundaries of the first 1—1 storage areas on each side of the
home square must already have been marked as the result of previous lower order
cleanups. Once the contents of the first i—1 right-hand storage areas have been
placed on the copy tape, M, proceeds to transfer them back into the lower levels
of the first +—1 right-hand storage areas, and into the appropriate level of the ith
area. The machine can identify the 7th area as being the first one that has an empty
upper level. When all the symbols have been transferred, the right-hand end of the
ith storage area will have been reached, and M. marks that point if it has not al-
ready been marked. Note that at the end of the ¢th-order cleanup M, is guaranteed
to have the ends of the 7th storage area marked. Since an ¢th-order cleanup must
always be preceded by cleanups of all smaller orders (see Lemma 2), the corre-
sponding area end markers required to locate the lesser storage areas must already
be on the tape, and so the transfers can indeed be carried out as advertised.

M ; now returns to the home square and erases the marks from its copy tape. The
cleanup has beén completed, and the machine can go on to clean up the next tape
track, or to begin the next step in the simulation. Note that in the process of per-
forming a single ith-order cleanup, M, need not visit any tape squares outside the
ith storage areas. Furthermore, the entire process consists of making a small,
fixed nmumber of passes over each of the storage areas involved, and over an equiv-
alent segment of the copy tape. Therefore, the number of moves needed to perform
an tth-order cleanup is proportional to the number of squares contained within the
first ¢ storage areas on each side of the home square.

The Time Required for Stmulation. We shall now turn to the problem of de-
termining the amount of time that M. needs in order to simulate the first n moves
in a computation performed by M, . In particular, it will be shown that this time
is proportional to n log n. This will be done through a series of easy lemmas, each
of which, refers to the cleanup operations performed on a single track.

Lemma 1. The number of operations of M needed to perform an i-th-order cleanup
1s less than B2°, where B 1s a constant independent of 1.

Proor. It was noted earlier that the number of operations needed to perform
an tth-order cleanup is at most proportional to the number of squares contained
within the first ¢ storage areas on both sides of the home square. But this number of
squares is just

142292/ =242 — 1 < 4.5,
i=t

and the total time is thus proportional to 2°.

LEMMA 2. Prior to the first cleanup of order greater than i, and between any two
cleanups of order greater than t, there must be at least one cleanup of order 7.

Proor. Any cleanup of order greater than ¢ must empty out the upper levels of
each of the two 7th storage areas. These areas will also be empty at the beginning
of a simulation. Before a subsequent cleanup of order greater than ¢ can occur, the
upper level of one of the two ¢th areas must be full, for otherwise a cleanup of order
% or less would be performed according to rules 4 and 2. But the upper level of an
ith storage area can only be filled by a cleanup of order 7.

LemMA 3. Prior to the first cleanup of order greater than i, and between any two
cleanups of order greater than 1, there must be at least 21— 1 cleanups of order less
than or equal to <.
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Proor. The proof is by induetion on 4. If 7 = 1, the statement of the lemma is
trivially true. Assume, thercfore, that the statement is true for all @ less than some
integer 7. Then eonsider two eleanups ¢; and ¢; of ovder grealer than . By Lemma
2, there must be at least one mth-order eleanup ¢; belween ¢, and c. . But by as-
snmplion there wre at least 272 — 1 cleanups between ¢, and ¢; , and at least
97* — 1 cleanups between ¢; and 2. Thus the total number of cleanups botween
¢, and cx (exclusive) is at least 271 — 1. Sinec a similar argument applies if ¢2
is the first cleanup of order greater than m, the lemma follows by induetion.

Lpvma 4, Lef n; denole the number of cleanups of order © performed in the process
of stmulating the first n steps of the computation of My . Then ny < n/252

Proor. Prior to the first cleanup of order 7, and between any two successive
deanups of order 7, there are by Lemma 3 at least 22 — 1 cleanups of lesser order.
Therefore, at most one cleanup out of any 2+2 consecutive cleanups can be of order
i, and out of n consecutive cleanups at most »/25? can be of order :.

Levaa b, ny = Ofor1 > 2 4+ logan

Proor. 1< > 2 + log:n, then by Temma 4

n n
migﬂ< Iog.,;;“ 1
Because n; must be an integer, n; = 0.

LemmMa 6. The total number of operations that My reeds to perform all the cleanups
m o single traclk @i the process of simulating the first n operations of My is ab most
18n(2 - loga m).

Proor. The time in question is equal to T = ZT=1 {m:, where {; is the time
required for an zth-order cleanup. But according to Lemina 5, the summation need
only be extended to © = logen + 2. Then applying Lemmas 1 and 4, one has

logn+2 logn-+2 X logn+2 4);’,
T = Zl Lin < ZI a2n; < Zl B‘?ﬁ_n = 4gn(log n 4 2),
P = =
which completes the proof.

Finally, considering the cleanups performed on all tracks, we have:

Tuwonesm 1. The number of operations of Ms needed to stmulate n operations of
M, is at most an logs n for 5 > 1, where o 1s o constant independent of n.

Proor. Multiplying the maximum number of operations needed for cach track
by the total number of (racks gives

4knllog: n + 2} < 128kn loge n = an logs n.

Tt can also be shown that there is a constant o such that, in the worst case, the
number of operations of M needed to simulale n operations of M, is at least o'n
logz n. Thus the bound of Theorem 1 is the best that can he obtained for the simu-
lation method being considered here. The interested reader may verify that this
worst-case situation oceurs when some tape of M), is shifted in the same direction
at every step in the computation.

4. Application to Sequence Generators

A sequence generator is u basic multitape Turing machine that has output values
ass;gned to certain of the stafes in its control unit. It begins its computation in a
T4 e ddeda weith o114 tanes hlank As a result of its subsequent
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operations, it will from time to time visit states to which output values have been
assigned. The (infinite) sequence of these output values is called the sequence that
the machine generates. A particular infinite sequence w is called T'(n)-computuble
if and only if there is some sequence generator M that produces the nth member of
w within T'(n) or fewer operations. This machine M is then said to operate within
time T{n).

Tarorem 2. If a sequence w can be generated by a k-tape machine within time
T(n), and T(n) = n, then it can be generated by a two-tape machine within time
T(n) log: T(n).

Proor. " From Theorem 1 we know that the given k-tape machine can be simu-
lated by a two-tape machine M, within time aT'(n) loge T(n), for an appropriately
chosen- constant «. Machine M, can then be modified to form a new machine M/
that in each operation performs o or more consecutive operations from the com-
putation of M, . Such a speed-up construction is detailed by Hartmanis and Stearns
[2], and leads to a computation time

T'(n) < max [n, T(n) log T(n)].
But if T(n) > nand n > 1, one has
T'(n) < T(n) log T'(n),

which completes the proof.

A function U(n) is called real-time countable [4] if and only if it is monotone in-
creasing and there exists some sequence generator whose output on the jth opera-
tion is 1 if j = U(z) for some integer 7, and whose output is 0 otherwise. In other
words, U(n) is real-time countable if its characteristic sequence is n-computable.
It is now possible to state our first tape-independent result.

Taeorem 3. If U(n) is a real-time countable function and if T'(n) is ¢ computable
Sfunction, then

A T R 0
implies that there is a binary sequence w that is U(n)-computable but not T(n)-com-
pulable.

Proor. The proof is basically the same as the proof of Theorem 9 in Hartmanis.
and Stearns [2], except that the “Square Law’ used in that theorem is now replaced
by our Theorem 2. The basic idea is to generate the desired sequence w with a
sequence generator that operates within time U(n) and computes enough of each
T(n)-computable binary sequence «’ to ensure that at least one symbol of  differs
from the corresponding symbol of «'. Only the key ideas of the construction are
mentioned here.

Let M denote the ith two-tape, binary-output sequence generator, according to
some (computable) method of ordering all such Turing machines. It is then desired
to design a ‘‘diagonal” sequence generator D whose operation really comprises
three simultaneous computations. One of these computations consists of simulat-
ing, one after the other, appropriate initial portions of the computations performed
by M1, M., -+, and so on. The second computation consists of the generation,
in real time, of the characteristic sequence of U(n). The third consists of the genera-
tion, not necessarily in real time, of the characteristic sequence of T(n) log T'(n).

As D simulates any particular machine M , it keeps track of the numbers of basic
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operations that M; needs to generate its various output symbols. These numbers
are compared with the computed values of T'(n) log T(n) in order to check whether
or not M; has been operating within the time bound T'(n) log T'(n). The fact that
this determination cannot in general keep up with the simulation of M; is unimpor-
tant. The important point is that each M, that does not operate within the time
T(n) log T(n) can eventually be identified and eliminated from further considera-
tion.

Since the machine D must operate within the time U(n), it will be designed to
produce an output symbol coincident with each of the 1’s in the characteristic se-
quence of U(n). Two situations may arise at the time at which the jth such 1 is
generated. First, D may not yet have had time to determine the jth output of the
machine that it is currently simulating. In this case, D will produce some arbitrary
output symbol, say 0. On the other hand, D may already have determined the jth
output symbol of the machine that it is currently simulating. In this case, D will
produce as its own output the complement of the symbol produced by the simu-
lated machine.

The simulation of each machine M; is continued until one of the following situa-
tions arises:

(a) D determines that M; does not operate within the time T'(n) log T'(n).

(b) D is able to determine the jth output of machine M, at or before time U(j),
where U(j) is measured from the very beginning of D’s computation.

Note that if M; does operate within the bound T(n) log T'(n), then situation (b)
must eventually arise. For suppose that the simulation of machine M; is begun
after D has executed a total of B; basic operations, and that at most C; operations
are required to simulate one of M,’s operations. Then because

. o T(n) log T(n)
SO

there must be a finite value of j for which
B; 4+ C,T() log T(7) < U®).

Once either of the situations (a) or (b) arises, D stops its simulation of M, and be-
gins to simulate the computation of My .

Now let " be any binary sequence that can be generated within time 7'(n).
By virtue of Theorem 2, &’ can be generated by some two-tape machine M within
time T'(n) log T(n). But in the course of its computation, D eventually simulates
machine M and produces as its 7th output symbol the complement of the jth symbol
produced by M. Therefore, the sequence w produced by D differs in at least one
symbol from the sequence «’, and the proof is completed.

=0,

5. Application to On-Line Turing Machines

Like a sequence generator, an on-line Turing machine is a basic multitape Turing
machine with output values assigned to certain of the states of its control unit.
In addition, however, an on-line machine is provided with a special terminal at
which input symbols can be supplied. Such a machine begins its computation in a
designated starting state, with all of its tapes blank. Upon being supplied with an
input symbol, it goes through a number of basic operations leading to a state to
which an output symbol has been assigned. Once such a state is reached, the ma-
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chi,ne 15 ready for a new input symbol, at which point the process is repeated. Any
finite sequence of input symbols that leads the machine to a state with output 1 is
said to be accepted by the machine. A set R of finite sequences is said to be T{n)-
recognizable (by an on-line machine) if and only if there is an on-line Turing machine
M that processes any input sequence of length n within 7'(n) operations and such
that R is precisely the set of finite sequences accepted by M.
TrrorEM 4. If a set R can be recognized by a k-tape on-line Turing machine within
t;ﬂ;rgze) T(n), then it can be recognized by a two-tape on-line machine within time T(n) log
n).
Proor. The proof is substantially the same as that of Theorem 2.
TueorEM 5. If U(n) is a real-time countable function and if T(n) is a computable
Sfunction, then
ing L) log T(n) _
o U(n)
tmplies that there is a set R which is U(n)-recognizable but not T(n)-recognizable.
Proor. Let w be the infinite sequence of Theorem 3. Then define R to be the set
of all input sequences of length n for all n such that the nth bit of w is one. R is
obviously U(n) recognizable. 1t is easy to see that a T(n)-recognizer for B could
easily be converted into a sequence generator for w, contrary to Theorem 3.

0

6. Application to Off-Line Turing Machines

An off-line Turing machine is a basic multitape Turing machine that has binary
outputs associated with some of its states. In addition, one of the machine’s tapes
is designated as the npul tape. The machine begins its computation in a specified
starting state, and with a finite pattern of symbols written on its input tape. This
pattern is surrounded by blank squares, and is positioned so that its leftmost sym-
bol is under the reading head. For any given input pattern, the ensuing machine
operations are guaranteed to lead to a (stopping) state to which an output is
assigned. The input pattern is said to be accepted if and only if this output value is 1.
A set R of finite patterns is said to be T'(n)-recognizable (by an off-line machine)
if and only if there exists an off-line Turing machine that processes any input pat-
tern of length n within 7'(n) operations and that accepts precisely the members of E.

THEOREM 6. If a set R can be recognized by a k-tape off-line Turing machine
within time T(n), then it can be recognized by a two-tape off-line machine within time
T(n) log T(n).

Proor. Again the proof is substantially the same as that of Theorem 2.

Turorem 7. If U(n) is a real-time countable function, then there is a set of finite
sequences R that is U(n)-recognizable by an off-line machine and is not T (n)-recogniz-
able for any function T(n) such that

inf T(n) log T@ _
n->% U(n)

Proor. We shall describe the construction of an off-line machine I that has a
binary input alphabet {0, 1} and recognizes the desired set B within time U(n).
This machine interprets any input pattern with which it is presented as Tepresent-
ing the binary expansion of an integer, 7, in the obvious manner. The major portion
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of D’s computation consists in simulating the computation that the ith two-tape
ofi-line Turing machine would perform when presented with the given input pat-
tern. For this purpose, two of I)’s tapes are set aside for use in recording the tape
patterns of the simulated machines A7 .

Upon being presented with an input pattern, D first measures off the length of
that pattern onto an auxiliary tape. It then copies the pattern, in suitably encoded
form, onto the tape being used to record the input pattern of the simulated machine.
It next examines the input pattern in detail, and prepares itself to simulate the ma-
chine M, which that pattern describes. Finally, it proceeds to simulate the com-
putation that M. would perform when presented with the given input pattern,

As it is doing all of this, D simultancously generates the characteristic sequence
of U(n), and matches the number of 1’s in that sequence against the length marked
off on the auxiliary tape. As soon as the number of 1’s in the generated sequence
equals the length of the given input pattern, D halts, thereby ensuring that it
operates within the time U{n). If at this time D has already simulated the entire
computation of M, , and determined whether M, accepts the given input pattern,
it now produces an output complementary to that of M, . If D has not yet com-
pleted the simulation of M’s computation (as would be the case if M does not
operate within the time U{n)), D now produces some arbitrary output, say, 0.

Because D is guaranieed to halt, regardless of its input patiern, it must recognize
some set of input patterns—call it B. By construction, B is U(n)-recognizable. It
rmust now be shown that B is not T{n)-recograzable. Suppose that, to the contrary,
R is T(n)-recognizable by some multitape Turing machine. According to Theorem
6, it must then be T(n) log T{n)-recognizable by some two-tape machine M, . If
the integer k is represented in binary form within an input pattern of length n,
and presented to the machine M, , the resulting computation will require at most
T{n) log T{n) operations.

Now consider the number of steps needed to simulate that same computation
with machine D. Marking off the length of the input pattern requires at most n
operations, and recoding the input pattern requires at most an operations, where «
is some constant. Let Bi denote the number of operstions needed to prepare for the
simulation proper, and let Ci denote the maximaum number of operations needed
to simulate one of M’s operations. Then the total number of operations that D
would need to get through sl of the computation performed by M, is

n -+ an + By + CT(n) log T{n}.

Now D will actually complete the simulation only if this quantity is less than or
equal to U(n). But because of the assumed relationship between Ty and Un),
it is always possible to choose & value of n sufficiently large that

n + an + By + CT0) log Tn) < Uln).

An input pattern whose length equals or exceeds this critical value of n is easily
obtained by adding a sufficient number of 0% at the left end of the binary repre-
sentation of k. The resulting pattern is one for which D and M behave differently;
hence D and M, cannot recognize the same set. This contradiction establishes the
act that R is not recognizable within the time T'(n), and completes the proof.
The import of Theorems 3, 5 and 7 can be summarized briefly as follows. As long
as the function T(n) is computable, and U(n) is real-time countable, and Un)
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grows faster than some constant times T'(n) log T(n), then there is some computing
operation that can be carried out within the bound U(n) but not within the bound
T(n).

REecEIVED AuGusTt, 1965; rEVISED FEBRUARY, 1966

REFERENCES

1. TuriNg,A.M. On computable numbers, with an application to the Entscheidungsproblem-
Proc. London Math. Soc. {2}, 42 (1936-37), 230-265; Correction, ibid., 43 (1937), 544-546-

2. HartMants, J., AND Stearns, R. E. On the computational complexity of algorithms.
Trans. Amer. Math. Soc. 117 (May 1965), 285-306.

3. Hennig, F. C. One-tape, off-line Turing machine computations. Inform. and Conlr. 8,
6 (Dec. 1965), 553-578.

4. Yamapa, H. Real-time computation and recursive functions not real-time computable.
IRE Trans. EC-11 (1962), 753-760.



