
Algorithms
Jeff Erickson

January 4, 2015

http://www.cs.illinois.edu/~jeffe/teaching/algorithms/

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cs.illinois.edu/~jeffe/teaching/algorithms/


© Copyright 1999–2015 Jeff Erickson. Last update January 4, 2015.

This work may be freely copied and distributed in any medium.
It may not be sold for more than the actual cost of reproduction, storage, or transmittal.

This work is available under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
For license details, see http://creativecommons.org/licenses/by-nc-sa/4.0/.

For the most recent edition, see http://www.cs.illinois.edu/~jeffe/teaching/algorithms/.

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cs.illinois.edu/~jeffe/teaching/algorithms/


Shall I tell you, my friend, how you will come to understand it?
Go and write a book on it.

— Henry Home, Lord Kames (1696–1782), to Sir Gilbert Elliot

The individual is always mistaken. He designed many things, and drew in other
persons as coadjutors, quarrelled with some or all, blundered much, and some-
thing is done; all are a little advanced, but the individual is always mistaken. It
turns out somewhat new and very unlike what he promised himself.

— Ralph Waldo Emerson, “Experience”, Essays, Second Series (1844)

Theoretical lectures should neither be a reproduction of
nor a comment upon any text-book, however satisfactory.
The student’s notebook should be his principal text-book.

— André Weil, “Mathematical Teaching in Universities” (1954)

About These Notes

These are lecture notes that I wrote for various algorithms classes at the University of
Illinois at Urbana-Champaign, which I have taught on average once a year since January
1999. The most recent revision of these notes (or nearly so) is available online at http:
//www.cs.illinois.edu/~jeffe/teaching/algorithms/, along with a near-complete archive of all
my past homeworks and exams. Whenever I teach an algorithms class, I revise, update, and
sometimes cull these notes as the course progresses, so you may find more recent versions on the
web page of whatever course I am currently teaching.

With few exceptions, each of these “lecture notes” contains far too much material to cover in
a single lecture. In a typical 75-minute class period, I cover about 4 or 5 pages of material—a
bit more if I’m teaching graduate students than undergraduates. Moreover, I can only cover at
most two-thirds of these notes in any capacity in a single 15-week semester. Your mileage may
vary! (Arguably, that means that as I continue to add material, the label “lecture notes” becomes
less and less accurate.) I teach algorithms at multiple leaves; different courses cover different
but overlapping subsets of this material. The ordering of the notes is mostly consistent with my
lower-level classes, with more advanced material (indicated by ∗stars) inserted near the more
basic material it builds on. The actual material doesn’t permit a strict linear ordering, but I’ve
tried to keep forward references to a minimum.

About the Exercises

Each note ends with several exercises, most of which have been used at least once in a
homework assignment, discussion section, or exam. ?Stars indicate more challenging problems;
many of these starred problems appeared on qualifying exams for the algorithms PhD students
at UIUC. A small number of really hard problems are marked with a Ælarger star; one or two
open problems are indicated byÆenormous stars. Many of these exercises were contributed by
my amazing teaching assistants:

Aditya Ramani, Akash Gautam, Alex Steiger, Alina Ene, Amir Nayyeri, Asha
Seetharam, Ashish Vulimiri, Ben Moseley, Brad Sturt, Brian Ensink, Chao Xu,
Chris Neihengen, Connor Clark, Dan Bullok, Dan Cranston, Daniel Khashabi, David
Morrison, Johnathon Fischer, Junqing Deng, Ekta Manaktala, Erin Wolf Chambers,
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Gail Steitz, Gio Kao, Grant Czajkowski, Hsien-Chih Chang, Igor Gammer, John Lee,
Kent Quanrud, Kevin Milans, Kevin Small, Kyle Fox, Kyle Jao, Lan Chen, Michael
Bond, Mitch Harris, Naveen Arivazhagen, Nick Bachmair, Nick Hurlburt, Nirman Ku-
mar, Nitish Korula, Rachit Agarwal, Reza Zamani-Nasab, Rishi Talreja, Rob McCann,
Shripad Thite, Subhro Roy, Tana Wattanawaroon, and Yasu Furakawa.

Please do not ask me for solutions to the exercises. If you are a student, seeing the
solution will rob you of the experience of solving the problem yourself, which is the only way to
learn the material. If you are an instructor, you shouldn’t assign problems that you can’t solve
yourself! (Because I don’t always follow my own advice, I sometimes assign buggy problems, but
I’ve tried to keep these out of the lecture notes themselves.)

“Johnny’s” multi-colored crayon homework was found under the TA office door among the
other Fall 2000 Homework 1 submissions.
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“al-Khwārizmı̄” on the cover is my own.

ii



Prerequisites

These notes assume the reader has mastered the material covered in the first two years
of a strong undergraduate computer science curriculum, and that they have the intellectual
maturity to recognize and repair any remaining gaps in their mastery. In particular, for most
students, these notes are not suitable for a first course in data structures and algorithms. Specific
prerequisites include the following:

• Discretemathematics: High-school algebra, logarithm identities, naive set theory, Boolean
algebra, first-order predicate logic, sets, functions, equivalences, partial orders, modular
arithmetic, recursive definitions, trees (as abstract objects, not data structures), graphs.

• Proof techniques: direct, indirect, contradiction, exhaustive case analysis, and induction
(especially “strong” and “structural” induction). Lecture 0 requires induction, and whenever
Lecture n− 1 requires induction, so does Lecture n.

• Elementary discrete probability: uniform vs non-uniform distributions, expectation,
conditional probability, linearity of expectation, independence.

• Iterative programming concepts: variables, conditionals, loops, indirection (addresses/
pointers/references), subroutines, recursion. I do not assume fluency in any particular
programming language, but I do assume experience with at least one language that
supports indirection and recursion.

• Fundamental abstract data types: scalars, sequences, vectors, sets, stacks, queues,
priority queues, dictionaries.

• Fundamental data structures: arrays, linked lists (single and double, linear and circular),
binary search trees, at least one balanced binary search tree (AVL trees, red-black trees,
treaps, skip lists, splay trees, etc.), binary heaps, hash tables, and most importantly, the
difference between this list and the previous list.

• Fundamental algorithmic problems: sorting, searching, enumeration.

• Fundamental algorithms: elementary arithmetic, sequential search, binary search,
comparison-based sorting (selection, insertion, merge-, heap-, quick-), radix sort, pre-
/post-/inorder tree traversal, breadth- and depth-first search (at least in trees), and most
importantly, the difference between this list and the previous list.

• Basic algorithm analysis: Asymptotic notation (o, O, Θ, Ω, ω), translating loops into
sums and recursive calls into recurrences, evaluating simple sums and recurrences.

• Mathematical maturity: facility with abstraction, formal (especially recursive) defini-
tions, and (especially inductive) proofs; writing and following mathematical arguments;
recognizing and avoiding syntactic, semantic, and/or logical nonsense.

Two notes on prerequisite material appear as an appendix to the main lecture notes: one
on proofs by induction, and one on solving recurrences. The main lecture notes also briefly
cover some prerequisite material, but more as a reminder than a good introduction. For a more
thorough overview, I strongly recommend the following:

• Margaret M. Fleck. Building Blocks for Theoretical Computer Science, unpublished textbook,
most recently revised January 2013.

• Eric Lehman, F. Thomson Leighton, and Albert R. Meyer. Mathematics for Computer Science,
unpublished lecture notes, most recent (public) revision January 2013.
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• Pat Morin. Open Data Structures, most recently revised June 2014 (edition 0.1G). A
permanently free open-source textbook, which Pat maintains and regularly updates.

Additional References

I strongly encourage students (and other readers) not to restrict themselves to my notes
or any other single textual reference. Authors and readers bring their own perspectives to the
material; no instructor “clicks” with every student, or even every very strong student. Finding the
author that most effectively gets their intuition into your head take some effort, but that effort
pays off handsomely in the long run. The following references have been particularly valuable to
me as sources of inspiration, intuition, examples, and problems.

• Alfred V. Aho, John E. Hopcroft, and Jeffrey D. Ullman. The Design and Analysis of Computer
Algorithms. Addison-Wesley, 1974. (I used this textbook as an undergraduate at Rice and
again as a masters student at UC Irvine.)

• Thomas Cormen, Charles Leiserson, Ron Rivest, and Cliff Stein. Introduction to Algorithms,
third edition. MIT Press/McGraw-Hill, 2009. (I used the first edition as a teaching assistant
at Berkeley.)

• Sanjoy Dasgupta, Christos H. Papadimitriou, and Umesh V. Vazirani. Algorithms. McGraw-
Hill, 2006.

• Jeff Edmonds. How to Think about Algorithms. Cambridge University Press, 2008.

• Michael R. Garey and David S. Johnson. Computers and Intractability: A Guide to the
Theory of NP-Completeness. W. H. Freeman, 1979.

• Michael T. Goodrich and Roberto Tamassia. Algorithm Design: Foundations, Analysis, and
Internet Examples. John Wiley & Sons, 2002.

• John E. Hopcroft and Jeffrey D. Ullman. Introduction to Automata Theory, Languages, and
Computation, first edition. Addison-Wesley, 1979. (I used this textbook as an undergraduate
at Rice. Don’t bother with the later editions.)

• Jon Kleinberg and Éva Tardos. Algorithm Design. Addison-Wesley, 2005.

• Donald Knuth. The Art of Computer Programming, volumes 1–4A. Addison-Wesley, 1997 and
2011. (My parents gave me the first three volumes for Christmas when I was 14, but I didn’t
actually read them until much later.)

• Udi Manber. Introduction to Algorithms: A Creative Approach. Addison-Wesley, 1989. (I used
this textbook as a teaching assistant at Berkeley.)

• Rajeev Motwani and Prabhakar Raghavan. Randomized Algorithms. Cambridge University
Press, 1995.

• Ian Parberry. Problems on Algorithms. Prentice-Hall, 1995 (out of print). Available from
http://www.eng.unt.edu/ian/books/free/license.html after promising to make a small
charitable donation. Please honor your promise.

• Alexander Schrijver. Combinatorial Optimization: Polyhedra and Efficiency. Springer, 2003.
(Just in case you thought Knuth was the only author who could stun oxen.)

• Robert Sedgewick and Kevin Wayne. Algorithms. Addison-Wesley, 2011.

iv

http://opendatastructures.org/
http://www.eng.unt.edu/ian/books/free/license.html
http://www.eng.unt.edu/ian/books/free/license.html


• Jeffrey O. Shallit. A Second Course in Formal Languages and Automata Theory. Cambridge
University Press, 2008.

• Michael Sipser. Introduction to the Theory of Computation, third edition. Cengage Learning,
2012. Recommended if and only if you don’t have to pay for it.

• Robert Endre Tarjan. Data Structures and Network Algorithms. SIAM, 1983.

• Robert J. Vanderbei. Linear Programming: Foundations and Extensions. Springer, 2001.

• Class notes from my own algorithms classes at Berkeley, especially those taught by Dick
Karp and Raimund Seidel.

• Lecture notes, slides, homeworks, exams, video lectures, research papers, blog posts, and
full-fledged MOOCs made freely available on the web by innumerable colleagues around
the world.

Caveat Lector!

Despite several rounds of revision, these notes still contain mnay mistakes, errors, bugs,
gaffes, omissions, snafus, kludges, typos, mathos, grammaros, thinkos, brain farts, nonsense,
garbage, cruft, junk, and outright lies, all of which are entirely Steve Skiena’s fault. I revise
and update these notes every time I teach an algorithms class, so please let me know if you find a
bug. (Steve is unlikely to care.) I regularly award extra credit to students who post explanations
and/or corrections of errors in the lecture notes. If I’m not teaching your class, encourage your
instructor to set up a similar extra-credit scheme, and forward the bug reports to Steve me!

Of course, any other feedback is also welcome!

Enjoy!

— Jeff

It is traditional for the author to magnanimously accept the blame for whatever deficien-
cies remain. I don’t. Any errors, deficiencies, or problems in this book are somebody
else’s fault, but I would appreciate knowing about them so as to determine who is to
blame.

— Steven S. Skiena, The Algorithm Design Manual (1997)
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Algorithms Lecture 0: Introduction [Sp’14]

Hinc incipit algorismus.
Haec algorismus ars praesens dicitur in qua
talibus indorum fruimur bis quinque figuris
0. 9. 8. 7. 6. 5. 4. 3. 2. 1.

— Friar Alexander de Villa Dei, Carmen de Algorismo, (c. 1220)

We should explain, before proceeding, that it is not our object to consider this program with
reference to the actual arrangement of the data on the Variables of the engine, but simply as
an abstract question of the nature and number of the operations required to be perfomed
during its complete solution.

— Ada Augusta Byron King, Countess of Lovelace, translator’s notes for Luigi F. Menabrea,
“Sketch of the Analytical Engine invented by Charles Babbage, Esq.” (1843)

You are right to demand that an artist engage his work consciously, but you confuse two
different things: solving the problem and correctly posing the question.

— Anton Chekhov, in a letter to A. S. Suvorin (October 27, 1888)

The moment a man begins to talk about technique
that’s proof that he is fresh out of ideas.

— Raymond Chandler

0 Introduction

0.1 What is an algorithm?

An algorithm is an explicit, precise, unambiguous, mechanically-executable sequence of elemen-
tary instructions. For example, here is an algorithm for singing that annoying song “99 Bottles of
Beer on the Wall”, for arbitrary values of 99:

BottlesOfBeer(n):
For i← n down to 1

Sing “i bottles of beer on the wall, i bottles of beer,”
Sing “Take one down, pass it around, i − 1 bottles of beer on the wall.”

Sing “No bottles of beer on the wall, no bottles of beer,”
Sing “Go to the store, buy some more, n bottles of beer on the wall.”

The word “algorithm” does not derive, as algorithmophobic classicists might guess, from
the Greek roots arithmos (αριθµoς), meaning “number”, and algos (αλγoς), meaning “pain”.
Rather, it is a corruption of the name of the 9th century Persian mathematician Abū ’Abd Allāh
Muh. ammad ibn Mūsā al-Khwārizmı̄.¹ Al-Khwārizmı̄ is perhaps best known as the writer of
the treatise Al-Kitāb al-mukhtas.ar f̄ıh̄ısāb al-abr wa’l-muqābala², from which the modern word
algebra derives. In another treatise, al-Khwārizmı̄ popularized the modern decimal system for
writing and manipulating numbers—in particular, the use of a small circle or s. ifr to represent
a missing quantity—which had originated in India several centuries earlier. This system later
became known in Europe as algorism, and its figures became known in English as ciphers.³

¹‘Mohammad, father of Adbdulla, son of Moses, the Kwārizmian’. Kwārizm is an ancient city, now called Khiva, in
the Khorezm Province of Uzbekistan.

²“The Compendious Book on Calculation by Completion and Balancing”
³The Italians transliterated s. ifr as zefiro, which later evolved into the modern zero.

© Copyright 2014 Jeff Erickson.
This work is licensed under a Creative Commons License (http://creativecommons.org/licenses/by-nc-sa/4.0/).
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Algorithms Lecture 0: Introduction [Sp’14]

Thanks to the efforts of the medieval Italian mathematician Leonardo of Pisa, better known as
Fibonacci, algorism began to replace the abacus as the preferred system of commercial calculation
in Europe in the late 12th century. (Indeed, the word calculate derives from the Latin word
calculus, meaning “small rock”, referring to the stones on a counting board, or abacus.) Ciphers
became truly ubiquitous in Western Europe only after the French revolution 600 years after
Fibonacci. The more modern word algorithm is a false cognate with the Greek word arithmos
(αριθµoς), meaning ‘number’ (and perhaps the previously mentioned αλγoς).⁴ Thus, until
very recently, the word algorithm referred exclusively to pencil-and-paper methods for numerical
calculations. People trained in the reliable execution of these methods were called—you guessed
it—computers.⁵

0.2 A Few Simple Examples

Multiplication by compass and straightedge

Although they have only been an object of formal study for a few decades, algorithms have
been with us since the dawn of civilization, for centuries before Al-Khwārizmı̄ and Fibonacci
popularized the cypher. Here is an algorithm, popularized (but almost certainly not discovered)
by Euclid about 2500 years ago, for multiplying or dividing numbers using a ruler and compass.
The Greek geometers represented numbers using line segments of the appropriate length. In the
pseudo-code below, Circle(p, q) represents the circle centered at a point p and passing through
another point q. Hopefully the other instructions are obvious.⁶

〈〈Construct the line perpendicular to ` and passing through P.〉〉
RightAngle(`, P):
Choose a point A∈ `
A, B← Intersect(Circle(P, A),`)
C , D← Intersect(Circle(A, B),Circle(B, A))
return Line(C , D)

〈〈Construct a point Z such that |AZ |= |AC ||AD|/|AB|.〉〉
MultiplyOrDivide(A, B, C , D):
α← RightAngle(Line(A, C), A)
E← Intersect(Circle(A, B),α)
F ← Intersect(Circle(A, D),α)
β ← RightAngle(Line(E, C), F)
γ← RightAngle(β , F)
return Intersect(γ,Line(A, C))

A

B

C

Z

D

E
F α

β

γ
Multiplying or dividing using a compass and straightedge.

⁴In fact, some medieval English sources claim the Greek prefix “algo-” meant “art” or “introduction”. Other
sources claimed that algorithms was invented by a Greek philosopher, or a king of India, or perhaps a king of Spain,
named “Algus” or “Algor” or “Argus”. A few, possibly including Dante Alighieri, even identified the inventor with
the mythological Greek shipbuilder and eponymous argonaut. I don’t think any serious medieval scholars made the
connection to the Greek work for pain, although I’m quite certain their students did.

⁵From the Latin verb putāre, which variously means “to trim/prune”, “to clean”, “to arrange”, “to value”, “to judge”,
and “to consider/suppose”; also the source of the English words “dispute”, “reputation”, and “amputate”.

⁶Euclid and his students almost certainly drew their constructions on an abax (αβαξ), a table covered in dust
or sand (or perhaps very small rocks). Over the next several centuries, the Greek abax evolved into the medieval
European abacus.
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Algorithms Lecture 0: Introduction [Sp’14]

This algorithm breaks down the difficult task of multiplication into a series of simple primitive
operations: drawing a line between two points, drawing a circle with a given center and boundary
point, and so on. These primitive steps are quite non-trivial to execute on a modern digital
computer, but this algorithm wasn’t designed for a digital computer; it was designed for the
Platonic Ideal Classical Greek Mathematician, wielding the Platonic Ideal Compass and the
Platonic Ideal Straightedge. In this example, Euclid first defines a new primitive operation,
constructing a right angle, by (as modern programmers would put it) writing a subroutine.

Multiplication by duplation and mediation

Here is an even older algorithm for multiplying large numbers, sometimes called (Russian)
peasant multiplication. A variant of this method was copied into the Rhind papyrus by the
Egyptian scribe Ahmes around 1650 BC, from a document he claimed was (then) about 350
years old. This was the most common method of calculation by Europeans before Fibonacci’s
introduction of Arabic numerals; it was still taught in elementary schools in Eastern Europe in
the late 20th century. This algorithm was also commonly used by early digital computers that did
not implement integer multiplication directly in hardware.

PeasantMultiply(x , y):
prod← 0
while x > 0

if x is odd
prod← prod+ y

x ← bx/2c
y ← y + y

return p

x y prod
0

123 + 456 = 456
61 + 912 = 1368
30 1824
15 + 3648 = 5016

7 + 7296 = 12312
3 + 14592 = 26904
1 + 29184 = 56088

The peasant multiplication algorithm breaks the difficult task of general multiplication into
four simpler operations: (1) determining parity (even or odd), (2) addition, (3) duplation
(doubling a number), and (4) mediation (halving a number, rounding down).⁷ Of course a full
specification of this algorithm requires describing how to perform those four ‘primitive’ operations.
Peasant multiplication requires (a constant factor!) more paperwork to execute by hand, but the
necessary operations are easier (for humans) to remember than the 10× 10 multiplication table
required by the American grade school algorithm.⁸

The correctness of peasant multiplication follows from the following recursive identity, which
holds for any non-negative integers x and y:

x · y =





0 if x = 0

bx/2c · (y + y) if x is even

bx/2c · (y + y) + y if x is odd

⁷The version of this algorithm actually used in ancient Egypt does not use mediation or parity, but it does use
comparisons. To avoid halving, the algorithm pre-computes two tables by repeated doubling: one containing all the
powers of 2 not exceeding x , the other containing the same powers of 2 multiplied by y . The powers of 2 that sum
to x are then found by greedy subtraction, and the corresponding entries in the other table are added together to
form the product.

⁸American school kids learn a variant of the lattice multiplication algorithm developed by Indian mathematicians
and described by Fibonacci in Liber Abaci. The two algorithms are equivalent if the input numbers are represented in
binary.
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Congressional Apportionment

Here is another good example of an algorithm that comes from outside the world of computing.
Article I, Section 2 of the United States Constitution requires that

Representatives and direct Taxes shall be apportioned among the several States which may
be included within this Union, according to their respective Numbers. . . . The Number of
Representatives shall not exceed one for every thirty Thousand, but each State shall have at
Least one Representative. . . .

Since there are a limited number of seats available in the House of Representatives, exact
proportional representation is impossible without either shared or fractional representatives,
neither of which are legal. As a result, several different apportionment algorithms have been
proposed and used to round the fractional solution fairly. The algorithm actually used today, called
the Huntington-Hill method or the method of equal proportions, was first suggested by Census
Bureau statistician Joseph Hill in 1911, refined by Harvard mathematician Edward Huntington in
1920, adopted into Federal law (2 U.S.C. §§2a and 2b) in 1941, and survived a Supreme Court
challenge in 1992.⁹ The input array Pop[1 .. n] stores the populations of the n states, and R is the
total number of representatives. Currently, n = 50 and R = 435. The output array Rep[1 .. n]
stores the number of representatives assigned to each state.

ApportionCongress(Pop[1 .. n], R):
PQ← NewPriorityQueue
for i← 1 to n

Rep[i]← 1
Insert

�
PQ, i, Pop[i]/

p
2
�

R← R− 1

while R> 0
s← ExtractMax(PQ)
Rep[s]← Rep[s] + 1

Insert
�
PQ, s, Pop[s]

À p
Rep[s] (Rep[s] + 1)

�

R← R− 1

return Rep[1 .. n]

This pseudocode description assumes that you know how to implement a priority queue
that supports the operations NewPriorityQueue, Insert, and ExtractMax. (The actual law
doesn’t assume that, of course.) The output of the algorithm, and therefore its correctness,
does not depend at all on how the priority queue is implemented. The Census Bureau uses an
unsorted array, stored in a column of an Excel spreadsheet; you should have learned a more
efficient solution in your undergraduate data structures class.

⁹Overruling an earlier ruling by a federal district court, the Supreme Court unanimously held that any apportionment
method adopted in good faith by Congress is constitutional (United States Department of Commerce v. Montana). The
current congressional apportionment algorithm is described in gruesome detail at the U.S. Census Department web
site http://www.census.gov/population/www/censusdata/apportionment/computing.html. A good history of the
apportionment problem can be found at http://www.thirty-thousand.org/pages/Apportionment.htm. A report by the
Congressional Research Service describing various apportionment methods is available at http://www.rules.house.
gov/archives/RL31074.pdf.
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A bad example

As a prototypical example of a sequence of instructions that is not actually an algorithm, consider
“Martin’s algorithm”:¹⁰

BecomeAMillionaireAndNeverPayTaxes:
Get a million dollars.
If the tax man comes to the door and says, “You have never paid taxes!”

Say “I forgot.”

Pretty simple, except for that first step; it’s a doozy. A group of billionaire CEOs might
consider this an algorithm, since for them the first step is both unambiguous and trivial, but for
the rest of us poor slobs, Martin’s procedure is too vague to be considered an actual algorithm.
On the other hand, this is a perfect example of a reduction—it reduces the problem of being a
millionaire and never paying taxes to the ‘easier’ problem of acquiring a million dollars. We’ll see
reductions over and over again in this class. As hundreds of businessmen and politicians have
demonstrated, if you know how to solve the easier problem, a reduction tells you how to solve
the harder one.

Martin’s algorithm, like many of our previous examples, is not the kind of algorithm that
computer scientists are used to thinking about, because it is phrased in terms of operations that
are difficult for computers to perform. In this class, we’ll focus (almost!) exclusively on algorithms
that can be reasonably implemented on a standard digital computer. In other words, each step
in the algorithm must be something that either is directly supported by common programming
languages (such as arithmetic, assignments, loops, or recursion) or is something that you’ve
already learned how to do in an earlier class (like sorting, binary search, or depth first search).

0.3 Writing down algorithms

Computer programs are concrete representations of algorithms, but algorithms are not programs;
they should not be described in a particular programming language. The whole point of this
course is to develop computational techniques that can be used in any programming language.
The idiosyncratic syntactic details of C, C++, C#, Java, Python, Ruby, Erlang, Haskell, OcaML,
Scheme, Scala, Clojure, Visual Basic, Smalltalk, Javascript, Processing, Squeak, Forth, TEX,
Fortran, COBOL, INTERCAL, MMIX, LOLCODE, Befunge, Parseltongue, Whitespace, or Brainfuck
are of little or no importance in algorithm design, and focusing on them will only distract you
from what’s really going on.¹¹ What we really want is closer to what you’d write in the comments
of a real program than the code itself.

On the other hand, a plain English prose description is usually not a good idea either. Algo-
rithms have lots of structure—especially conditionals, loops, and recursion—that are far too easily
hidden by unstructured prose. Natural languages like English are full of ambiguities, subtleties,

¹⁰Steve Martin, “You Can Be A Millionaire”, Saturday Night Live, January 21, 1978. Also appears on Comedy Is Not
Pretty, Warner Bros. Records, 1979.

¹¹This is, of course, a matter of religious conviction. Linguists argue incessantly over the Sapir-Whorf hypothesis,
which states (more or less) that people think only in the categories imposed by their languages. According to an
extreme formulation of this principle, some concepts in one language simply cannot be understood by speakers of
other languages, not just because of technological advancement—How would you translate ‘jump the shark’ or ‘blog’
into Aramaic?—but because of inherent structural differences between languages and cultures. For a more skeptical
view, see Steven Pinker’s The Language Instinct. There is admittedly some strength to this idea when applied to
different programming paradigms. (What’s the Y combinator, again? How do templates work? What’s an Abstract
Factory?) Fortunately, those differences are generally too subtle to have much impact in this class. For a compelling
counterexample, see Chris Okasaki’s thesis/monograph Functional Data Structures and its more recent descendants.
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and shades of meaning, but algorithms must be described as precisely and unambiguously as
possible. Finally and more seriously, in non-technical writing, there is natural tendency to
describe repeated operations informally: “Do this first, then do this second, and so on.” But as
anyone who has taken one of those ‘What comes next in this sequence?’ tests already knows,
specifying what happens in the first few iterations of a loop says very little, of anything, about
what happens later iterations. To make the description unambiguous, we must explicitly specify
the behavior of every iteration. The stupid joke about the programmer dying in the shower has a
grain of truth—“Lather, rinse, repeat” is ambiguous; what exactly do we repeat, and until when?

In my opinion, the clearest way to present an algorithm is using pseudocode. Pseudocode
uses the structure of formal programming languages and mathematics to break algorithms into
primitive steps; but the primitive steps themselves may be written using mathematics, pure
English, or an appropriate mixture of the two. Well-written pseudocode reveals the internal
structure of the algorithm but hides irrelevant implementation details, making the algorithm
much easier to understand, analyze, debug, and implement.

The precise syntax of pseudocode is a personal choice, but the overriding goal should be
clarity and precision. Ideally, pseudocode should allow any competent programmer to implement
the underlying algorithm, quickly and correctly, in their favorite programming language, without
understanding why the algorithm works. Here are the guidelines I follow and strongly recommend:

• Be consistent!

• Use standard imperative programming keywords (if/then/else, while, for, repeat/until,
case, return) and notation (variable← value, Array[index], function(argument), bigger>
smaller, etc.). Keywords should be standard English words: write ‘else if’ instead of ‘elif’.

• Indent everything carefully and consistently; the block structure should be visible from
across the room. This rule is especially important for nested loops and conditionals. Don’t
add unnecessary syntactic sugar like braces or begin/end tags; careful indentation is almost
always enough.

• Usemnemonic algorithm and variable names. Short variable names are good, but readability
is more important than concision; except for idioms like loop indices, short but complete
words are better than single letters. Absolutely never use pronouns!

• Use standard mathematical notation for standard mathematical things. For example, write
x · y instead of x ∗ y for multiplication; write x mod y instead of x % y for remainder; writep

x instead of sqrt(x) for square roots; write ab instead of power(a, b) for exponentiation;
and write φ instead of phi for the golden ratio.

• Avoid mathematical notation if English is clearer. For example, ‘Insert a into X ’ may be
preferable to Insert(X , a) or X ← X ∪ {a}.

• Each statement should fit on one line, and each line should contain either exactly one
statement or exactly one structuring element (for, while, if). (I sometimes make an
exception for short and similar statements like i← i + 1; j← j − 1; k← 0.)

• Don’t use a fixed-width typeface to typeset pseudocode; it’s much harder to read than
normal typeset text. Similarly, don’t typeset keywords like ‘for’ or ‘while’ in a different
style; the syntactic sugar is not what you want the reader to look at. On the other hand, I
do use italics for variables (following the standard mathematical typesetting convention),
Small Caps for algorithms and constants, and a different typeface for literal strings.
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0.4 Analyzing algorithms

It’s not enough just to write down an algorithm and say ‘Behold!’ We must also convince our
audience (and ourselves!) that the algorithm actually does what it’s supposed to do, and that it
does so efficiently.

Correctness

In some application settings, it is acceptable for programs to behave correctly most of the time,
on all ‘reasonable’ inputs. Not in this class; we require algorithms that are correct for all possible
inputs. Moreover, we must prove that our algorithms are correct; trusting our instincts, or trying
a few test cases, isn’t good enough. Sometimes correctness is fairly obvious, especially for
algorithms you’ve seen in earlier courses. On the other hand, ‘obvious’ is all too often a synonym
for ‘wrong’. Many of the algorithms we will discuss in this course will require extra work to prove
correct. Correctness proofs almost always involve induction. We like induction. Induction is our
friend.¹²

But before we can formally prove that our algorithm does what it’s supposed to do, we have
to formally state what it’s supposed to do! Algorithmic problems are usually presented using
standard English, in terms of real-world objects, not in terms of formal mathematical objects. It’s
up to us, the algorithm designers, to restate these problems in terms of mathematical objects
that we can prove things about—numbers, arrays, lists, graphs, trees, and so on. We must also
determine if the problem statement carries any hidden assumptions, and state those assumptions
explicitly. (For example, in the song “n Bottles of Beer on the Wall”, n is always a positive integer.)
Restating the problem formally is not only required for proofs; it is also one of the best ways to
really understand what a problem is asking for. The hardest part of answering any question is
figuring out the right way to ask it!

It is important to remember the distinction between a problem and an algorithm. A problem
is a task to perform, like “Compute the square root of x” or “Sort these n numbers” or “Keep n
algorithms students awake for t minutes”. An algorithm is a set of instructions for accomplishing
such a task. The same problem may have hundreds of different algorithms; the same algorithm
may solve hundreds of different problems.

Running time

The most common way of ranking different algorithms for the same problem is by how quickly
they run. Ideally, we want the fastest possible algorithm for any particular problem. In many
application settings, it is acceptable for programs to run efficiently most of the time, on all
‘reasonable’ inputs. Not in this class; we require algorithms that always run efficiently, even in
the worst case.

But how do we measure running time? As a specific example, how long does it take to
sing the song BottlesOfBeer(n)? This is obviously a function of the input value n, but it also
depends on how quickly you can sing. Some singers might take ten seconds to sing a verse;
others might take twenty. Technology widens the possibilities even further. Dictating the song
over a telegraph using Morse code might take a full minute per verse. Downloading an mp3 over
the Web might take a tenth of a second per verse. Duplicating the mp3 in a computer’s main
memory might take only a few microseconds per verse.

¹²If induction is not your friend, you will have a hard time in this course.
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What’s important here is how the singing time changes as n grows. Singing BottlesOf-
Beer(2n) takes about twice as long as singing BottlesOfBeer(n), no matter what technology
is being used. This is reflected in the asymptotic singing time Θ(n). We can measure time
by counting how many times the algorithm executes a certain instruction or reaches a certain
milestone in the ‘code’. For example, we might notice that the word ‘beer’ is sung three times in
every verse of BottlesOfBeer, so the number of times you sing ‘beer’ is a good indication of the
total singing time. For this question, we can give an exact answer: BottlesOfBeer(n) uses
exactly 3n+ 3 beers.

There are plenty of other songs that have non-trivial singing time. This one is probably
familiar to most English-speakers:

NDaysOfChristmas(gifts[2 .. n]):
for i← 1 to n

Sing “On the ith day of Christmas, my true love gave to me”
for j← i down to 2

Sing “ j gifts[ j]”
if i > 1

Sing “and”
Sing “a partridge in a pear tree.”

The input to NDaysOfChristmas is a list of n − 1 gifts. It’s quite easy to show that the
singing time is Θ(n2); in particular, the singer mentions the name of a gift

∑n
i=1 i = n(n+ 1)/2

times (counting the partridge in the pear tree). It’s also easy to see that during the first n days of
Christmas, my true love gave to me exactly

∑n
i=1

∑i
j=1 j = n(n+ 1)(n+ 2)/6= Θ(n3) gifts.

There are many other traditional songs that take quadratic time to sing; examples include
“Old MacDonald Had a Farm”, “There Was an Old Lady Who Swallowed a Fly”, “The House that
Jack Built”, “Hole in the Bottom of the Sea”, “Green Grow the Rushes O”, “The Rattlin’ Bog”, “The
Barley-Mow”, “Eh, Cumpari!”, “Alouette”, “Echad Mi Yode’a”, “Ist das nicht ein Schnitzelbank?”,
and “Minkurinn í hænsnakofanum”. For further details, consult your nearest preschooler.

OldMacDonald(animals[1 .. n], noise[1 .. n]):
for i← 1 to n

Sing “Old MacDonald had a farm, E I E I O”
Sing “And on this farm he had some animals[i], E I E I O”
Sing “With a noise[i] noise[i] here, and a noise[i] noise[i] there”
Sing “Here a noise[i], there a noise[i], everywhere a noise[i] noise[i]”
for j← i − 1 down to 1

Sing “noise[ j] noise[ j] here, noise[ j] noise[ j] there”
Sing “Here a noise[ j], there a noise[ j], everywhere a noise[ j] noise[ j]”

Sing “Old MacDonald had a farm, E I E I O.”

Alouette(lapart[1 .. n]):
Chantez « Alouette, gentille alouette, alouette, je te plumerais. »
pour tout i de 1 á n

Chantez « Je te plumerais lapart[i]. Je te plumerais lapart[i]. »
pour tout j de i − 1 á bas á 1

Chantez « Et lapart[ j] ! Et lapart[ j] ! »
Chantez « Ooooooo! »
Chantez « Alouette, gentille alluette, alouette, je te plumerais. »

A more modern example of the parametrized cumulative song is “The TELNET Song” by Guy
Steele, which takes O(2n) time to sing; Steele recommended n= 4.
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For a slightly less facetious example, consider the algorithm ApportionCongress. Here the
running time obviously depends on the implementation of the priority queue operations, but we
can certainly bound the running time as O(N + RI + (R− n)E), where N denotes the running
time of NewPriorityQueue, I denotes the running time of Insert, and E denotes the running
time of ExtractMax. Under the reasonable assumption that R > 2n (on average, each state
gets at least two representatives), we can simplify the bound to O(N + R(I + E)). The Census
Bureau implements the priority queue using an unsorted array of size n; this implementation
gives us N = I = Θ(1) and E = Θ(n), so the overall running time is O(Rn). This is good enough
for government work, but we can do better. Implementing the priority queue using a binary heap
(or a heap-ordered array) gives us N = Θ(1) and I = R = O(log n), which implies an overall
running time of O(R log n).

Sometimes we are also interested in other computational resources: space, randomness, page
faults, inter-process messages, and so forth. We can use the same techniques to analyze those
resources as we use to analyze running time.

0.5 A Longer Example: Stable Matching

Every year, thousands of new doctors must obtain internships at hospitals around the United
States. During the first half of the 20th century, competition among hospitals for the best doctors
led to earlier and earlier offers of internships, sometimes as early as the second year of medical
school, along with tighter deadlines for acceptance. In the 1940s, medical schools agreed not to
release information until a common date during their students’ fourth year. In response, hospitals
began demanding faster decisions. By 1950, hospitals would regularly call doctors, offer them
internships, and demand immediate responses. Interns were forced to gamble if their third-choice
hospital called first—accept and risk losing a better opportunity later, or reject and risk having
no position at all.¹³

Finally, a central clearinghouse for internship assignments, now called the National Resident
Matching Program, was established in the early 1950s. Each year, doctors submit a ranked list of
all hospitals where they would accept an internship, and each hospital submits a ranked list of
doctors they would accept as interns. The NRMP then computes an assignment of interns to
hospitals that satisfies the following stability requirement. For simplicity, let’s assume that there
are n doctors and n hospitals; each hospital offers exactly one internship; each doctor ranks all
hospitals and vice versa; and finally, there are no ties in the doctors’ and hospitals’ rankings.¹⁴
We say that a matching of doctors to hospitals is unstable if there are two doctors α and β and
two hospitals A and B, such that

• α is assigned to A, and β is assigned to B;

• α prefers B to A, and B prefers α to β .

In other words, α and B would both be happier with each other than with their current assignment.
The goal of the Resident Match is a stable matching, in which no doctor or hospital has an
incentive to cheat the system. At first glance, it is not clear that a stable matching exists!

In 1952, the NRMP adopted the “Boston Pool” algorithm to assign interns, so named because
it had been previously used by a regional clearinghouse in the Boston area. The algorithm is

¹³The academic job market involves similar gambles, at least in computer science. Some departments start making
offers in February with two-week decision deadlines; other departments don’t even start interviewing until late March;
MIT notoriously waits until May, when all its interviews are over, before making any faculty offers.

¹⁴In reality, most hospitals offer multiple internships, each doctor ranks only a subset of the hospitals and vice versa,
and there are typically more internships than interested doctors. And then it starts getting complicated.
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often misattributed to David Gale and Lloyd Shapley, who formally analyzed the algorithm and
first proved that it computes a stable matching in 1962; Gale and Shapley used the metaphor of
college admissions.¹⁵ Similar algorithms have since been adopted for other matching markets,
including faculty recruiting in France, university admission in Germany, public school admission
in New York and Boston, billet assignments for US Navy sailors, and kidney-matching programs.
Shapley was awarded the 2012 Nobel Prize in Economics for his research on stable matching,
together with Alvin Roth, who significantly extended Shapley’s work and used it to develop
several real-world exchanges.

The Boston Pool algorithm proceeds in rounds until every position has been filled. Each
round has two stages:

1. An arbitrary unassigned hospital A offers its position to the best doctor α (according to the
hospital’s preference list) who has not already rejected it.

2. Each doctor ultimately accepts the best offer that she receives, according to her preference
list. Thus, if α is currently unassigned, she (tentatively) accepts the offer from A. If α
already has an assignment but prefers A, she rejects her existing assignment and (tentatively)
accepts the new offer from A. Otherwise, α rejects the new offer.

For example, suppose four doctors (Dr. Quincy, Dr. Rotwang, Dr. Shephard, and Dr. Tam,
represented by lower-case letters) and four hospitals (Arkham Asylum, Bethlem Royal Hospital,
County General Hospital, and The Dharma Initiative, represented by upper-case letters) rank
each other as follows:

q r s t
A A B D
B D A B
C C C C
D B D A

A B C D
t r t s
s t r r
r q s q
q s q t

Given these preferences as input, the Boston Pool algorithm might proceed as follows:

1. Arkham makes an offer to Dr. Tam.

2. Bedlam makes an offer to Dr. Rotwang.

3. County makes an offer to Dr. Tam, who rejects her earlier offer from Arkham.

4. Dharma makes an offer to Dr. Shephard. (From this point on, because there is only one
unmatched hospital, the algorithm has no more choices.)

5. Arkham makes an offer to Dr. Shephard, who rejects her earlier offer from Dharma.

6. Dharma makes an offer to Dr. Rotwang, who rejects her earlier offer from Bedlam.

7. Bedlam makes an offer to Dr. Tam, who rejects her earlier offer from County.

8. County makes an offer to Dr. Rotwang, who rejects it.

¹⁵The “Gale-Shapley algorithm” is a prime instance of Stigler’s Law of Eponymy: No scientific discovery is named
after its original discoverer. In his 1980 paper that gives the law its name, the statistician Stephen Stigler claimed that
this law was first proposed by sociologist Robert K. Merton. However, similar statements were previously made by
Vladimir Arnol’d in the 1970’s (“Discoveries are rarely attributed to the correct person.”), Carl Boyer in 1968 (“Clio,
the muse of history, often is fickle in attaching names to theorems!”), Alfred North Whitehead in 1917 (“Everything of
importance has been said before by someone who did not discover it.”), and even Stephen’s father George Stigler in
1966 (“If we should ever encounter a case where a theory is named for the correct man, it will be noted.”). We will
see many other examples of Stigler’s law in this class.
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9. County makes an offer to Dr. Shephard, who rejects it.

10. County makes an offer to Dr. Quincy.

At this point, all pending offers are accepted, and the algorithm terminates with a matching:
(A, s), (B, t), (C , q), (D, r). You can (and should) verify by brute force that this matching is stable,
even though no doctor was hired by her favorite hospital, and no hospital hired its favorite doctor;
in fact, County was forced to hire their least favorite doctor. This is not the only stable matching
for this list of preferences; the matching (A, r), (B, s), (C , q), (D, t) is also stable.

Running Time

Analyzing the algorithm’s running time is relatively straightforward. Each hospital makes an
offer to each doctor at most once, so the algorithm requires at most n2 rounds. In an actual
implementation, each doctor and hospital can be identified by a unique integer between 1
and n, and the preference lists can be represented as two arrays DocPref[1 .. n][1 .. n] and
HosPref[1 .. n][1 .. n], where DocPref[α][r] represents the rth hospital in doctor α’s preference
list, and HosPref[A][r] represents the rth doctor in hospital A’s preference list. With the input in
this form, the Boston Pool algorithm can be implemented to run in O(n2) time; we leave the
details as an easy exercise.

A somewhat harder exercise is to prove that there are inputs (and choices of who makes
offers when) that force Ω(n2) rounds before the algorithm terminates. Thus, the O(n2) upper
bound on the worst-case running time cannot be improved; in this case, we say our analysis is
tight.

Correctness

But why is the algorithm correct? How do we know that the Boston Pool algorithm always
computes a stable matching? Gale and Shapley proved correctness as follows. The algorithm
continues as long as there is at least one unfilled position; conversely, when the algorithm
terminates (after at most n2 rounds), every position is filled. No doctor can accept more than one
position, and no hospital can hire more than one doctor. Thus, the algorithm always computes a
matching; it remains only to prove that the matching is stable.

Suppose doctor α is assigned to hospital A in the final matching, but prefers B. Because every
doctor accepts the best offer she receives, α received no offer she liked more than A. In particular,
B never made an offer to α. On the other hand, B made offers to every doctor they like more
than β . Thus, B prefers β to α, and so there is no instability.

Surprisingly, the correctness of the algorithm does not depend on which hospital makes
its offer in which round. In fact, there is a stronger sense in which the order of offers doesn’t
matter—no matter which unassigned hospital makes an offer in each round, the algorithm always
computes the same matching! Let’s say that α is a feasible doctor for A if there is a stable matching
that assigns doctor α to hospital A.

Lemma 0.1. During the Boston Pool algorithm, each hospital A is rejected only by doctors that are
infeasible for A.

Proof: We prove the lemma by induction. Consider an arbitrary round of the Boston Pool
algorithm, in which doctor α rejects one hospital A for another hospital B. The rejection implies
that α prefers B to A. Every doctor that appears higher than α in B’s preference list has already
rejected B and therefore, by the inductive hypothesis, is infeasible for B.
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Now consider an arbitrary matching that assigns α to A. We already established that α prefers
B to A. If B prefers α to its partner, the matching is unstable. On the other hand, if B prefers its
partner to α, then (by our earlier argument) its partner is infeasible, and again the matching is
unstable. We conclude that there is no stable matching that assigns α to A. �

Now let best(A) denote the highest-ranked feasible doctor on A’s preference list. Lemma 0.1
implies that every doctor that A prefers to its final assignment is infeasible for A. On the other
hand, the final matching is stable, so the doctor assigned to A is feasible for A. The following
result is now immediate:

Corollary 0.2. The Boston Pool algorithm assigns best(A) to A, for every hospital A.

Thus, from the hospitals’ point of view, the Boston Pool algorithm computes the best possible
stable matching. It turns out that this matching is also the worst possible from the doctors’
viewpoint! Let worst(α) denote the lowest-ranked feasible hospital on doctor α’s preference list.

Corollary 0.3. The Boston Pool algorithm assigns α to worst(α), for every doctor α.

Proof: Suppose the Boston Pool algorithm assigns doctor α to hospital A; we need to show that
A= worst(α). Consider an arbitrary stable matching where A is not matched with α but with
another doctor β . The previous corollary implies that A prefers α = best(A) to β . Because the
matching is stable, αmust therefore prefer her assigned hopital to A. This argument works for any
stable assignment, so α prefers every other feasible match to A; in other words, A= worst(α). �

A subtle consequence of these two corollaries, discovered by Dubins and Freeman in 1981,
is that a doctor can potentially improve her assignment by lying about her preferences, but
a hospital cannot. (However, a set of hospitals can collude so that some of their assignments
improve.) Partly for this reason, the National Residency Matching Program reversed its matching
algorithm in 1998, so that potential residents offer to work for hospitals in preference order, and
each hospital accepts its best offer. Thus, the new algorithm computes the best possible stable
matching for the doctors, and the worst possible stable matching for the hospitals. In practice,
however, this modification affected less than 1% of the resident’s assignments. As far as I know,
the precise effect of this change on the patients is an open problem.

0.6 Why are we here, anyway?

This class is ultimately about learning two skills that are crucial for all computer scientists.

1. Intuition: How to think about abstract computation.

2. Language: How to talk about abstract computation.

The first goal of this course is to help you develop algorithmic intuition. How do various
algorithms really work? When you see a problem for the first time, how should you attack it?
How do you tell which techniques will work at all, and which ones will work best? How do you
judge whether one algorithm is better than another? How do you tell whether you have the best
possible solution? These are not easy questions; anyone who says differently is selling something.

Our second main goal is to help you develop algorithmic language. It’s not enough just to
understand how to solve a problem; you also have to be able to explain your solution to somebody
else. I don’t mean just how to turn your algorithms into working code—despite what many
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students (and inexperienced programmers) think, ‘somebody else’ is not just a computer. Nobody
programs alone. Code is read far more often than it is written, or even compiled. Perhaps more
importantly in the short term, explaining something to somebody else is one of the best ways to
clarify your own understanding. As Albert Einstein (or was it Richard Feynman?) apocryphally
put it, “You do not really understand something unless you can explain it to your grandmother.”

Along the way, you’ll pick up a bunch of algorithmic facts—mergesort runs in Θ(n log n) time;
the amortized time to search in a splay tree is O(log n); greedy algorithms usually don’t produce
optimal solutions; the traveling salesman problem is NP-hard—but these aren’t the point of the
course. You can always look up mere facts in a textbook or on the web, provided you have
enough intuition and experience to know what to look for. That’s why we let you bring cheat
sheets to the exams; we don’t want you wasting your study time trying to memorize all the facts
you’ve seen.

You’ll also practice a lot of algorithm design and analysis skills—finding useful examples
and counterexamples, developing induction proofs, solving recurrences, using big-Oh notation,
using probability, giving problems crisp mathematical descriptions, and so on. These skills are
incredibly useful, and it’s impossible to develop good intuition and good communication skills
without them, but they aren’t the main point of the course either. At this point in your educational
career, you should be able to pick up most of those skills on your own, once you know what you’re
trying to do.

Unfortunately, there is no systematic procedure—no algorithm—to determine which algorith-
mic techniques are most effective at solving a given problem, or finding good ways to explain,
analyze, optimize, or implement a given algorithm. Like many other activities (music, writing,
juggling, acting, martial arts, sports, cooking, programming, teaching, etc.), the only way to
master these skills is to make them your own, through practice, practice, and more practice. You
can only develop good problem-solving skills by solving problems. You can only develop good
communication skills by communicating. Good intuition is the product of experience, not its
replacement. We can’t teach you how to do well in this class. All we can do (and what we will
do) is lay out some fundamental tools, show you how to use them, create opportunities for you
to practice with them, and give you honest feedback, based on our own hard-won experience and
intuition. The rest is up to you.

Good algorithms are extremely useful, elegant, surprising, deep, even beautiful, but most
importantly, algorithms are fun! I hope you will enjoy playing with them as much as I do.

13
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Boethius the algorist versus Pythagoras the abacist.
from Margarita Philosophica by Gregor Reisch (1503)
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Exercises

0. Describe and analyze an efficient algorithm that determines, given a legal arrangement of
standard pieces on a standard chess board, which player will win at chess from the given
starting position if both players play perfectly. [Hint: There is a trivial one-line solution!]

1. “The Barley Mow” is a cumulative drinking song which has been sung throughout the
British Isles for centuries. (An early version entitled “Giue vs once a drinke” appears
in Thomas Ravenscroft’s song collection Deuteromelia, which was published in 1609, but
the song is almost certainly much older.) The song has many variants, but one version
traditionally sung in Devon and Cornwall has the following pseudolyrics, where vessel[i] is
the name of a vessel that holds 2i ounces of beer. The traditional song uses the following
vessels: nipperkin, gill pot, half-pint, pint, quart, pottle, gallon, half-anker, anker, firkin,
half-barrel, barrel, hogshead, pipe, well, river, and ocean. (Every vessel in this list is twice
as big as its predecessor, except that a firkin is actually 2.25 ankers, and the last three units
are just silly.)

BarleyMow(n):
“Here’s a health to the barley-mow, my brave boys,”
“Here’s a health to the barley-mow!”

“We’ll drink it out of the jolly brown bowl,”
“Here’s a health to the barley-mow!”
“Here’s a health to the barley-mow, my brave boys,”
“Here’s a health to the barley-mow!”

for i← 1 to n
“We’ll drink it out of the vessel[i], boys,”
“Here’s a health to the barley-mow!”
for j← i downto 1

“The vessel[ j],”
“And the jolly brown bowl!”
“Here’s a health to the barley-mow!”
“Here’s a health to the barley-mow, my brave boys,”
“Here’s a health to the barley-mow!”

(a) Suppose each name vessel[i] is a single word, and you can sing four words a second.
How long would it take you to sing BarleyMow(n)? (Give a tight asymptotic bound.)

(b) If you want to sing this song for arbitrarily large values of n, you’ll have to make up
your own vessel names. To avoid repetition, these names must become progressively
longer as n increases. (“We’ll drink it out of the hemisemidemiyottapint, boys!”)
Suppose vessel[n] has Θ(log n) syllables, and you can sing six syllables per second.
Now how long would it take you to sing BarleyMow(n)? (Give a tight asymptotic
bound.)

(c) Suppose each time you mention the name of a vessel, you actually drink the corre-
sponding amount of beer: one ounce for the jolly brown bowl, and 2i ounces for each
vessel[i]. Assuming for purposes of this problem that you are at least 21 years old,
exactly how many ounces of beer would you drink if you sang BarleyMow(n)? (Give
an exact answer, not just an asymptotic bound.)
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2. Describe and analyze the Boston Pool stable matching algorithm in more detail, so that the
worst-case running time is O(n2), as claimed earlier in the notes.

3. Prove that it is possible for the Boston Pool algorithm to execute Ω(n2) rounds. (You need
to describe both a suitable input and a sequence of Ω(n2) valid proposals.)

4. Describe and analyze an efficient algorithm to determine whether a given set of hospital
and doctor preferences has to a unique stable matching.

5. Consider a generalization of the stable matching problem, where some doctors do not rank
all hospitals and some hospitals do not rank all doctors, and a doctor can be assigned to
a hospital only if each appears in the other’s preference list. In this case, there are three
additional unstable situations:

• A hospital prefers an unmatched doctor to its assigned match.

• A doctor prefers an unmatched hospital to her assigned match.

• An unmatched doctor and an unmatched hospital appear in each other’s preference
lists.

Describe and analyze an efficient algorithm that computes a stable matching in this setting.

Note that a stable matching may leave some doctors and hospitals unmatched, even
though their preference lists are non-empty. For example, if every doctor lists Harvard as
their only acceptable hospital, and every hospital lists Dr. House as their only acceptable
intern, then only House and Harvard will be matched.

6. Recall that the input to the Huntington-Hill apportionment algorithm ApportionCongress
is an array P[1 .. n], where P[i] is the population of the ith state, and an integer R, the
total number of representatives to be allotted. The output is an array r[1 .. n], where r[i]
is the number of representatives allotted to the ith state by the algorithm.

Let P =
∑n

i=1 P[i] denote the total population of the country, and let r∗i = R · P[i]/P
denote the ideal number of representatives for the ith state.

(a) Prove that r[i]≥ br∗i c for all i.

(b) Describe and analyze an algorithm that computes exactly the same congressional
apportionment as ApportionCongress in O(n log n) time. (Recall that the running
time of ApportionCongress depends on R, which could be arbitrarily larger than
n.)

?(c) If a state’s population is small relative to the other states, its ideal number r∗i of
representatives could be close to zero; thus, tiny states are over-represented by the
Huntington-Hill apportionment process. Surprisingly, this can also be true of very
large states. Let α= (1+

p
2)/2≈ 1.20710678119. Prove that for any ε > 0, there is

an input to ApportionCongress with maxi P[i] = P[1], such that r[1]> (α− ε) r∗1 .
Æ(d) Can you improve the constant α in the previous question?

© Copyright 2014 Jeff Erickson.
This work is licensed under a Creative Commons License (http://creativecommons.org/licenses/by-nc-sa/4.0/).

Free distribution is strongly encouraged; commercial distribution is expressly forbidden.
See http://www.cs.uiuc.edu/~jeffe/teaching/algorithms/ for the most recent revision.
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Algorithms Lecture 1: Recursion [Fa’14]

The control of a large force is the same principle as the control of a few men:
it is merely a question of dividing up their numbers.

— Sun Zi, The Art of War (c. 400 C.E.), translated by Lionel Giles (1910)

Our life is frittered away by detail. . . . Simplify, simplify.

— Henry David Thoreau, Walden (1854)

Nothing is particularly hard if you divide it into small jobs.

— Henry Ford

Do the hard jobs first. The easy jobs will take care of themselves.

— Dale Carnegie

1 Recursion

1.1 Reductions

Reduction is the single most common technique used in designing algorithms. Reducing one
problem X to another problem Y means to write an algorithm for X that uses an algorithm for Y
as a black box or subroutine. Crucially, the correctness of the resulting algorithm cannot depend
in any way on how the algorithm for Y works. The only thing we can assume is that the black
box solves Y correctly. The inner workings of the black box are simply none of our business;
they’re somebody else’s problem. It’s often best to literally think of the black box as functioning
by magic.

For example, the Huntington-Hill algorithm described in Lecture 0 reduces the problem
of apportioning Congress to the problem of maintaining a priority queue that supports the
operations Insert and ExtractMax. The abstract data type “priority queue” is a black box; the
correctness of the apportionment algorithm does not depend on any specific priority queue data
structure. Of course, the running time of the apportionment algorithm depends on the running
time of the Insert and ExtractMax algorithms, but that’s a separate issue from the correctness of
the algorithm. The beauty of the reduction is that we can create a more efficient apportionment
algorithm by simply swapping in a new priority queue data structure. Moreover, the designer of
that data structure does not need to know or care that it will be used to apportion Congress.

Similarly, if we want to design an algorithm to compute the smallest deterministic finite-state
machine equivalent to a given regular expression, we don’t have to start from scratch. Instead
we can reduce the problem to three subproblems for which algorithms can be found in earlier
lecture notes: (1) build an NFA from the regular expression, using either Thompson’s algorithm
or Glushkov’s algorithm; (2) transform the NFA into an equivalent DFA, using the (incremental)
subset construction; and (3) transform the DFA into the smallest equivalent DFA, using Moore’s
algorithm, for example. Even if your class skipped over the automata notes, merely knowing that
those component algorithms exist (Trust me!) allows you to combine them into more complex
algorithms; you don’t need to know the details. (But you should, because they’re totally cool.
Trust me!) Again swapping in a more efficient algorithm for any of those three subproblems
automatically yields a more efficient algorithm for the problem as a whole.

When we design algorithms, we may not know exactly how the basic building blocks we use
are implemented, or how our algorithms might be used as building blocks to solve even bigger
problems. Even when you do know precisely how your components work, it is often extremely
useful to pretend that you don’t. (Trust yourself !)

© Copyright 2014 Jeff Erickson.
This work is licensed under a Creative Commons License (http://creativecommons.org/licenses/by-nc-sa/4.0/).

Free distribution is strongly encouraged; commercial distribution is expressly forbidden.
See http://www.cs.uiuc.edu/~jeffe/teaching/algorithms/ for the most recent revision.
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1.2 Simplify and Delegate

Recursion is a particularly powerful kind of reduction, which can be described loosely as follows:

• If the given instance of the problem is small or simple enough, just solve it.

• Otherwise, reduce the problem to one or more simpler instances of the same problem.

If the self-reference is confusing, it’s helpful to imagine that someone else is going to solve
the simpler problems, just as you would assume for other types of reductions. I like to call
that someone else the Recursion Fairy. Your only task is to simplify the original problem, or to
solve it directly when simplification is either unnecessary or impossible; the Recursion Fairy will
magically take care of all the simpler subproblems for you, using Methods That Are None Of Your
Business So Butt Out.¹ Mathematically sophisticated readers might recognize the Recursion Fairy
by its more formal name, the Induction Hypothesis.

There is one mild technical condition that must be satisfied in order for any recursive method
to work correctly: There must be no infinite sequence of reductions to ‘simpler’ and ‘simpler’
subproblems. Eventually, the recursive reductions must stop with an elementary base case that
can be solved by some other method; otherwise, the recursive algorithm will loop forever. This
finiteness condition is almost always satisfied trivially, but we should always be wary of “obvious”
recursive algorithms that actually recurse forever. (All too often, “obvious” is a synonym for
“false”.)

1.3 Tower of Hanoi

The Tower of Hanoi puzzle was first published by the mathematician François Éduoard Anatole
Lucas in 1883, under the pseudonym “N. Claus (de Siam)” (an anagram of “Lucas d’Amiens”).
The following year, Henri de Parville described the puzzle with the following remarkable story:²

In the great temple at Benares beneath the dome which marks the centre of the world, rests a brass
plate in which are fixed three diamond needles, each a cubit high and as thick as the body of a bee.
On one of these needles, at the creation, God placed sixty-four discs of pure gold, the largest disc
resting on the brass plate, and the others getting smaller and smaller up to the top one. This is the
Tower of Bramah. Day and night unceasingly the priests transfer the discs from one diamond needle
to another according to the fixed and immutable laws of Bramah, which require that the priest on
duty must not move more than one disc at a time and that he must place this disc on a needle so that
there is no smaller disc below it. When the sixty-four discs shall have been thus transferred from the
needle on which at the creation God placed them to one of the other needles, tower, temple, and
Brahmins alike will crumble into dust, and with a thunderclap the world will vanish.

Of course, as good computer scientists, our first instinct on reading this story is to substitute the
variable n for the hardwired constant 64. And following standard practice (since most physical
instances of the puzzle are made of wood instead of diamonds and gold), we will refer to the
three possible locations for the disks as “pegs” instead of “needles”. How can we move a tower
of n disks from one peg to another, using a third peg as an occasional placeholder, without ever
placing a disk on top of a smaller disk?

The trick to solving this puzzle is to think recursively. Instead of trying to solve the entire
puzzle all at once, let’s concentrate on moving just the largest disk. We can’t move it at the

¹When I was a student, I used to attribute recursion to “elves” instead of the Recursion Fairy, referring to the
Brothers Grimm story about an old shoemaker who leaves his work unfinished when he goes to bed, only to discover
upon waking that elves (“Wichtelmänner”) have finished everything overnight. Someone more entheogenically
experienced than I might recognize them as Terence McKenna’s “self-transforming machine elves”.

²This English translation is from W. W. Rouse Ball and H. S. M. Coxeter’s book Mathematical Recreations and Essays.
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The Tower of Hanoi puzzle

beginning, because all the other disks are covering it; we have to move those n− 1 disks to the
third peg before we can move the nth disk. And then after we move the nth disk, we have to
move those n− 1 disks back on top of it. So now all we have to figure out is how to. . .

STOP!! That’s it! We’re done! We’ve successfully reduced the n-disk Tower of Hanoi
problem to two instances of the (n− 1)-disk Tower of Hanoi problem, which we can gleefully
hand off to the Recursion Fairy (or, to carry the original story further, to the junior monks at the
temple).

recursion

recursion

The Tower of Hanoi algorithm; ignore everything but the bottom disk

Our recursive reduction does make one subtle but important assumption: There is a largest
disk. In other words, our recursive algorithm works for any n ≥ 1, but it breaks down when
n= 0. We must handle that base case directly. Fortunately, the monks at Benares, being good
Buddhists, are quite adept at moving zero disks from one peg to another in no time at all.

The base case for the Tower of Hanoi algorithm. There is no spoon.

While it’s tempting to think about how all those smaller disks get moved—or more generally,
what happens when the recursion is unrolled—it’s not necessary. For even slightly more
complicated algorithms, unrolling the recursion is far more confusing than illuminating. Our
only task is to reduce the problem to one or more simpler instances, or to solve the problem
directly if such a reduction is impossible. Our algorithm is trivially correct when n= 0. For any
n≥ 1, the Recursion Fairy correctly moves (or more formally, the inductive hypothesis implies

3
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that our recursive algorithm correctly moves) the top n−1 disks, so (by induction) our algorithm
must be correct.

Here’s the recursive Hanoi algorithm in more typical pseudocode. This algorithm moves a
stack of n disks from a source peg (src) to a destination peg (dst) using a third temporary peg
(tmp) as a placeholder.

Hanoi(n, src,dst, tmp):
if n> 0

Hanoi(n− 1, src, tmp,dst)
move disk n from src to dst
Hanoi(n− 1, tmp,dst, src)

Let T (n) denote the number of moves required to transfer n disks—the running time of
our algorithm. Our vacuous base case implies that T (0) = 0, and the more general recursive
algorithm implies that T (n) = 2T (n− 1) + 1 for any n≥ 1. The annihilator method (or guessing
and checking by induction) quickly gives us the closed form solution T(n) = 2n −1. In particular,
moving a tower of 64 disks requires 264−1= 18,446,744,073,709,551,615 individual moves. Thus,
even at the impressive rate of one move per second, the monks at Benares will be at work for
approximately 585 billion years before tower, temple, and Brahmins alike will crumble into dust,
and with a thunderclap the world will vanish.

1.4 Mergesort

Mergesort is one of the earliest algorithms proposed for sorting. According to Donald Knuth, it
was proposed by John von Neumann as early as 1945.

1. Divide the input array into two subarrays of roughly equal size.

2. Recursively mergesort each of the subarrays.

3. Merge the newly-sorted subarrays into a single sorted array.

Input: S O R T I N G E X A M P L
Divide: S O R T I N G E X A M P L

Recurse: I N O S R T A E G L M P X
Merge: A E G I L M N O P R S T X

A mergesort example.

The first step is completely trivial—we only need to compute the median array index—and
we can delegate the second step to the Recursion Fairy. All the real work is done in the final step;
the two sorted subarrays can be merged using a simple linear-time algorithm. Here’s a complete
description of the algorithm; to keep the recursive structure clear, we separate out the merge
step as an independent subroutine.
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MergeSort(A[1 .. n]):
if n> 1

m← bn/2c
MergeSort(A[1 .. m])
MergeSort(A[m+ 1 .. n])
Merge(A[1 .. n], m)

Merge(A[1 .. n], m):
i← 1; j← m+ 1
for k← 1 to n

if j > n
B[k]← A[i]; i← i + 1

else if i > m
B[k]← A[ j]; j← j + 1

else if A[i]< A[ j]
B[k]← A[i]; i← i + 1

else
B[k]← A[ j]; j← j + 1

for k← 1 to n
A[k]← B[k]

To prove that this algorithm is correct, we apply our old friend induction twice, first to the
Merge subroutine then to the top-level Mergesort algorithm.

• We prove Merge is correct by induction on n− k + 1, which is the total size of the two
sorted subarrays A[i .. m] and A[ j .. n] that remain to be merged into B[k .. n] when the kth
iteration of the main loop begins. There are five cases to consider. Yes, five.

– If k > n, the algorithm correctly merges the two empty subarrays by doing absolutely
nothing. (This is the base case of the inductive proof.)

– If i ≤ m and j > n, the subarray A[ j .. n] is empty. Because both subarrays are sorted,
the smallest element in the union of the two subarrays is A[i]. So the assignment
B[k]← A[i] is correct. The inductive hypothesis implies that the remaining subarrays
A[i + 1 .. m] and A[ j .. n] are correctly merged into B[k+ 1 .. n].

– Similarly, if i > m and j ≤ n, the assignment B[k] ← A[ j] is correct, and The
Recursion Fairy correctly merges—sorry, I mean the inductive hypothesis implies
that the Merge algorithm correctly merges—the remaining subarrays A[i .. m] and
A[ j + 1 .. n] into B[k+ 1 .. n].

– If i ≤ m and j ≤ n and A[i]< A[ j], then the smallest remaining element is A[i]. So
B[k] is assigned correctly, and the Recursion Fairy correctly merges the rest of the
subarrays.

– Finally, if i ≤ m and j ≤ n and A[i] ≥ A[ j], then the smallest remaining element is
A[ j]. So B[k] is assigned correctly, and the Recursion Fairy correctly does the rest.

• Now we prove MergeSort correct by induction; there are two cases to consider. Yes, two.

– If n≤ 1, the algorithm correctly does nothing.

– Otherwise, the Recursion Fairy correctly sorts—sorry, I mean the induction hypothesis
implies that our algorithm correctly sorts—the two smaller subarrays A[1 .. m] and
A[m+1 .. n], after which they are correctly Merged into a single sorted array (by the
previous argument).

What’s the running time? Because the MergeSort algorithm is recursive, its running
time will be expressed by a recurrence. Merge clearly takes linear time, because it’s a simple
for-loop with constant work per iteration. We immediately obtain the following recurrence for
MergeSort:

T (n) = T
�dn/2e�+ T

�bn/2c�+O(n).
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As in most divide-and-conquer recurrences, we can safely strip out the floors and ceilings using a
domain transformation,³ giving us the simpler recurrence

T (n) = 2T (n/2) +O(n).

The “all levels equal” case of the recursion tree method now immediately implies the closed-form
solution T(n) = O(n logn). (Recursion trees and domain transformations are described in detail
in a separate note on solving recurrences.)

1.5 Quicksort

Quicksort is another recursive sorting algorithm, discovered by Tony Hoare in 1962. In this
algorithm, the hard work is splitting the array into subsets so that merging the final result is
trivial.

1. Choose a pivot element from the array.

2. Partition the array into three subarrays containing the elements smaller than the pivot, the
pivot element itself, and the elements larger than the pivot.

3. Recursively quicksort the first and last subarray.

Input: S O R T I N G E X A M P L
Choose a pivot: S O R T I N G E X A M P L

Partition: A G E I L N R O X S M P T
Recurse: A E G I L M N O P R S T X

A quicksort example.

Here’s a more detailed description of the algorithm. In the separate Partition subroutine, the
input parameter p is index of the pivot element in the unsorted array; the subroutine partitions
the array and returns the new index of the pivot.

QuickSort(A[1 .. n]):
if (n> 1)

Choose a pivot element A[p]
r ← Partition(A, p)
QuickSort(A[1 .. r − 1])
QuickSort(A[r + 1 .. n])

Partition(A[1 .. n], p):
swap A[p]↔ A[n]
i← 0
j← n
while (i < j)

repeat i← i + 1 until (i ≥ j or A[i]≥ A[n])
repeat j← j − 1 until (i ≥ j or A[ j]≤ A[n])
if (i < j)

swap A[i]↔ A[ j]
swap A[i]↔ A[n]
return i

Just like mergesort, proving QuickSort is correct requires two separate induction proofs:
one to prove that Partition correctly partitions the array, and the other to prove that QuickSort
correctly sorts assuming Partition is correct. I’ll leave the gory details as an exercise for the
reader.

The analysis is also similar to mergesort. Partition runs in O(n) time: j − i = n at the
beginning, j − i = 0 at the end, and we do a constant amount of work each time we increment i

³See the course notes on solving recurrences for more details.

6



Algorithms Lecture 1: Recursion [Fa’14]

or decrement j. For QuickSort, we get a recurrence that depends on r, the rank of the chosen
pivot element:

T (n) = T (r − 1) + T (n− r) +O(n)

If we could somehow choose the pivot to be the median element of the array A, we would have
r = dn/2e, the two subproblems would be as close to the same size as possible, the recurrence
would become

T (n) = 2T
�dn/2e − 1

�
+ T

�bn/2c�+O(n)≤ 2T (n/2) +O(n),

and we’d have T (n) = O(n log n) by the recursion tree method.
In fact, as we will see shortly, we can locate the median element in an unsorted array in

linear time. However, the algorithm is fairly complicated, and the hidden constant in the O(·)
notation is large enough to make the resulting sorting algorithm impractical. In practice, most
programmers settle for something simple, like choosing the first or last element of the array. In
this case, r take any value between 1 and n, so we have

T (n) = max
1≤r≤n

�
T (r − 1) + T (n− r) +O(n)

�
.

In the worst case, the two subproblems are completely unbalanced—either r = 1 or r = n—and
the recurrence becomes T (n)≤ T (n− 1) +O(n). The solution is T(n) = O(n2).

Another common heuristic is called “median of three”—choose three elements (usually at
the beginning, middle, and end of the array), and take the median of those three elements
the pivot. Although this heuristic is somewhat more efficient in practice than just choosing
one element, especially when the array is already (nearly) sorted, we can still have r = 2
or r = n − 1 in the worst case. With the median-of-three heuristic, the recurrence becomes
T (n)≤ T (1) + T (n− 2) +O(n), whose solution is still T (n) = O(n2).

Intuitively, the pivot element will ‘usually’ fall somewhere in the middle of the array,
say between n/10 and 9n/10. This observation suggests that the average-case running time is
O(n log n). Although this intuition is actually correct (at least under the right formal assumptions),
we are still far from a proof that quicksort is usually efficient. We will formalize this intuition
about average-case behavior in a later lecture.

1.6 The Pattern

Both mergesort and and quicksort follow a general three-step pattern shared by all divide and
conquer algorithms:

1. Divide the given instance of the problem into several independent smaller instances.

2. Delegate each smaller instance to the Recursion Fairy.

3. Combine the solutions for the smaller instances into the final solution for the given
instance.

If the size of any subproblem falls below some constant threshold, the recursion bottoms out.
Hopefully, at that point, the problem is trivial, but if not, we switch to a different algorithm
instead.

Proving a divide-and-conquer algorithm correct almost always requires induction. Analyzing
the running time requires setting up and solving a recurrence, which usually (but unfortunately
not always!) can be solved using recursion trees, perhaps after a simple domain transformation.
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1.7 Median Selection

So how do we find the median element of an array in linear time? The following algorithm was
discovered by Manuel Blum, Bob Floyd, Vaughan Pratt, Ron Rivest, and Bob Tarjan in the early
1970s. Their algorithm actually solves the more general problem of selecting the kth largest
element in an n-element array, given the array and the integer g as input, using a variant of an
algorithm called either “quickselect” or “one-armed quicksort”. The basic quickselect algorithm
chooses a pivot element, partitions the array using the Partition subroutine from QuickSort,
and then recursively searches only one of the two subarrays.

QuickSelect(A[1 .. n], k):
if n= 1

return A[1]
else

Choose a pivot element A[p]
r ← Partition(A[1 .. n], p)

if k < r
return QuickSelect(A[1 .. r − 1], k)

else if k > r
return QuickSelect(A[r + 1 .. n], k− r)

else
return A[r]

The worst-case running time of QuickSelect obeys a recurrence similar to the quicksort
recurrence. We don’t know the value of r or which subarray we’ll recursively search, so we’ll just
assume the worst.

T (n) ≤ max
1≤r≤n

(max{T (r − 1), T (n− r)}+O(n))

We can simplify the recurrence by using ` to denote the length of the recursive subproblem:

T (n) ≤ max
0≤`≤n−1

T (`) +O(n) ≤ T (n− 1) +O(n)

As with quicksort, we get the solution T (n) = O(n2) when `= n− 1, which happens when the
chosen pivot element is either the smallest element or largest element of the array.

On the other hand, we could avoid this quadratic behavior if we could somehow magically
choose a good pivot, where `≤ αn for some constant α < 1. In this case, the recurrence would
simplify to

T (n)≤ T (αn) +O(n).

This recurrence expands into a descending geometric series, which is dominated by its largest
term, so T (n) = O(n).

The Blum-Floyd-Pratt-Rivest-Tarjan algorithm chooses a good pivot for one-armed quicksort
by recursively computing the median of a carefully-selected subset of the input array.
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Mom5Select(A[1 .. n], k):
if n≤ 25

use brute force
else

m← dn/5e
for i ← 1 to m

M[i]←MedianOfFive(A[5i − 4 .. 5i]) 〈〈Brute force!〉〉
mom←MomSelect(M[1 .. m], bm/2c) 〈〈Recursion!〉〉
r ← Partition(A[1 .. n],mom)

if k < r
return MomSelect(A[1 .. r − 1], k) 〈〈Recursion!〉〉

else if k > r
return MomSelect(A[r + 1 .. n], k− r) 〈〈Recursion!〉〉

else
return mom

The recursive structure of the algorithm requires a slightly larger base case. There’s absolutely
nothing special about the constant 25 in the pseudocode; for theoretical purposes, any other
constant like 42 or 666 or 8765309 would work just as well.

If the input array is too large to handle by brute force, we divide it into dn/5e blocks, each
containing exactly 5 elements, except possibly the last. (If the last block isn’t full, just throw in a
few∞s.) We find the median of each block by brute force and collect those medians into a new
array M[1 .. dn/5e]. Then we recursively compute the median of this new array. Finally we use
the median of medians — hence ‘mom’ — as the pivot in one-armed quicksort.

The key insight is that neither of these two subarrays can be too large. The median of
medians is larger than ddn/5e/2e − 1≈ n/10 block medians, and each of those medians is larger
than two other elements in its block. Thus, mom is larger than at least 3n/10 elements in the
input array, and symmetrically, mom is smaller than at least 3n/10 input elements. Thus, in the
worst case, the final recursive call searches an array of size 7n/10.

We can visualize the algorithm’s behavior by drawing the input array as a 5× dn/5e grid,
which each column represents five consecutive elements. For purposes of illustration, imagine
that we sort every column from top down, and then we sort the columns by their middle element.
(Let me emphasize that the algorithm does not actually do this!) In this arrangement, the
median-of-medians is the element closest to the center of the grid.

Visualizing the median of medians

The left half of the first three rows of the grid contains 3n/10 elements, each of which is
smaller than the median-of-medians. If the element we’re looking for is larger than the median-of-
medians, our algorithm will throw away everything smaller than the median-of-median, including
those 3n/10 elements, before recursing. Thus, the input to the recursive subproblem contains at
most 7n/10 elements. A symmetric argument applies when our target element is smaller than
the median-of-medians.

9
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Discarding approximately 3/10 of the array

We conclude that the worst-case running time of the algorithm obeys the following recurrence:

T (n)≤ O(n) + T (n/5) + T (7n/10).

The recursion tree method implies the solution T (n) = O(n).

Finer analysis reveals that the constant hidden by the O() is quite large, even if we count
only comparisons; this is not a practical algorithm for small inputs. (In particular, mergesort uses
fewer comparisons in the worst case when n< 4,000,000.) Selecting the median of 5 elements
requires at most 6 comparisons, so we need at most 6n/5 comparisons to set up the recursive
subproblem. We need another n− 1 comparisons to partition the array after the recursive call
returns. So a more accurate recurrence for the total number of comparisons is

T (n)≤ 11n/5+ T (n/5) + T (7n/10).

The recursion tree method implies the upper bound

T (n)≤ 11n
5

∑
i≥0

�
9
10

�i

=
11n

5
· 10= 22n.

1.8 Multiplication

Adding two n-digit numbers takes O(n) time by the standard iterative ‘ripple-carry’ algorithm,
using a lookup table for each one-digit addition. Similarly, multiplying an n-digit number by a
one-digit number takes O(n) time, using essentially the same algorithm.

What about multiplying two n-digit numbers? In most of the world, grade school students
(supposedly) learn to multiply by breaking the problem into n one-digit multiplications and n
additions:

31415962
× 27182818
251327696
31415962

251327696
62831924

251327696
31415962

219911734
62831924
853974377340916

We could easily formalize this algorithm as a pair of nested for-loops. The algorithm runs in
Θ(n2) time—altogether, there are Θ(n2) digits in the partial products, and for each digit, we

10
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spend constant time. The Egyptian/Russian peasant multiplication algorithm described in the
first lecture also runs in Θ(n2) time.

Perhaps we can get a more efficient algorithm by exploiting the following identity:

(10ma+ b)(10mc + d) = 102mac + 10m(bc + ad) + bd

Here is a divide-and-conquer algorithm that computes the product of two n-digit numbers x
and y, based on this formula. Each of the four sub-products e, f , g, h is computed recursively.
The last line does not involve any multiplications, however; to multiply by a power of ten, we just
shift the digits and fill in the right number of zeros.

Multiply(x , y, n):
if n= 1

return x · y
else

m← dn/2e
a← bx/10mc; b← x mod 10m

d ← by/10mc; c← y mod 10m

e←Multiply(a, c, m)
f ←Multiply(b, d, m)
g ←Multiply(b, c, m)
h←Multiply(a, d, m)
return 102me+ 10m(g + h) + f

You can easily prove by induction that this algorithm is correct. The running time for this
algorithm is given by the recurrence

T (n) = 4T (dn/2e) +Θ(n), T (1) = 1,

which solves to T (n) = Θ(n2) by the recursion treemethod (after a simple domain transformation).
Hmm. . . I guess this didn’t help after all.

In the mid-1950s, the famous Russian mathematician Andrey Kolmogorov conjectured that
there is no algorithm to multiply two n-digit numbers in o(n2) time. However, in 1960, after
Kolmogorov posed his conjecture at a seminar at Moscow University, Anatolĭı Karatsuba, one of
the students in the seminar, discovered a remarkable counterexample. According to Karastuba
himself,

After the seminar I told Kolmogorov about the new algorithm and about the disproof of the
n2 conjecture. Kolmogorov was very agitated because this contradicted his very plausible
conjecture. At the next meeting of the seminar, Kolmogorov himself told the participants
about my method, and at that point the seminar was terminated.

Karastuba observed that the middle coefficient bc + ad can be computed from the other two
coefficients ac and bd using only one more recursive multiplication, via the following algebraic
identity:

ac + bd − (a− b)(c − d) = bc + ad

This trick lets us replace the last three lines in the previous algorithm as follows:

11
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FastMultiply(x , y, n):
if n= 1

return x · y
else

m← dn/2e
a← bx/10mc; b← x mod 10m

d ← by/10mc; c← y mod 10m

e← FastMultiply(a, c, m)
f ← FastMultiply(b, d, m)
g ← FastMultiply(a− b, c − d, m)
return 102me+ 10m(e+ f − g) + f

The running time of Karatsuba’s FastMultiply algorithm is given by the recurrence

T (n)≤ 3T (dn/2e) +O(n), T (1) = 1.

After a domain transformation, we can plug this into a recursion tree to get the solution
T (n) = O(nlg3) = O(n1.585), a significant improvement over our earlier quadratic-time algorithm.⁴
Karastuba’s algorithm arguably launched the design and analysis of algorithms as a formal field
of study.

Of course, in practice, all this is done in binary instead of decimal.
We can take this idea even further, splitting the numbers into more pieces and combining

them in more complicated ways, to obtain even faster multiplication algorithms. Andrei Toom
and Stephen Cook discovered an infinite family of algorithms that split any integer into k parts,
each with n/k digits, and then compute the product using only 2k− 1 recursive multiplications.
For any fixed k, the resulting algorithm runs in O(n1+1/(lg k)) time, where the hidden constant in
the O(·) notation depends on k.

Ultimately, this divide-and-conquer strategy led Gauss (yes, really) to the discovery of the Fast
Fourier transform, which we discuss in detail in the next lecture note. The fastest multiplication
algorithm known, published by Martin Fürer in 2007 and based on FFTs, runs in n log n2O(log∗ n)

time. Here, log∗ n is the slowly growing iterated logarithm of n, which is the number of times one
must take the logarithm of n before the value is less than 1:

lg∗ n=

¨
1 if n≤ 2,

1+ lg∗(lg n) otherwise.

(For all practical purposes, log∗ n≤ 6.) It is widely conjectured that the best possible algorithm
for multiply two n-digit numbers runs in Θ(n log n) time.

1.9 Exponentiation

Given a number a and a positive integer n, suppose we want to compute an. The standard naïve
method is a simple for-loop that does n− 1 multiplications by a:

SlowPower(a, n):
x ← a
for i← 2 to n

x ← x · a
return x

⁴Karatsuba actually proposed an algorithm based on the formula (a+ c)(b+d)−ac− bd = bc+ad. This algorithm
also runs in O(nlg 3) time, but the actual recurrence is a bit messier: a− b and c− d are still m-digit numbers, but a+ b
and c+ d might have m+1 digits. The simplification presented here is due to Donald Knuth. The same technique was
used by Gauss in the 1800s to multiply two complex numbers using only three real mutliplications.

12
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This iterative algorithm requires n multiplications.
Notice that the input a could be an integer, or a rational, or a floating point number. In fact,

it doesn’t need to be a number at all, as long as it’s something that we know how to multiply. For
example, the same algorithm can be used to compute powers modulo some finite number (an
operation commonly used in cryptography algorithms) or to compute powers of matrices (an
operation used to evaluate recurrences and to compute shortest paths in graphs). All we really
require is that a belong to a multiplicative group.⁵ Since we don’t know what kind of things
we’re multiplying, we can’t know how long a multiplication takes, so we’re forced analyze the
running time in terms of the number of multiplications.

There is a much faster divide-and-conquer method, using the following simple recursive
formula:

an = abn/2c · adn/2e.
What makes this approach more efficient is that once we compute the first factor abn/2c, we can
compute the second factor adn/2e using at most one more multiplication.

FastPower(a, n):
if n= 1

return a
else

x ← FastPower(a, bn/2c)
if n is even

return x · x
else

return x · x · a
The total number of multiplications satisfies the recurrence T (n) ≤ T (bn/2c) + 2, with

the base case T (1) = 0. After a domain transformation, recursion trees give us the solution
T (n) = O(log n).

Incidentally, this algorithm is asymptotically optimal—any algorithm for computing an must
perform at least Ω(log n) multiplications. In fact, when n is a power of two, this algorithm is
exactly optimal. However, there are slightly faster methods for other values of n. For example, our
divide-and-conquer algorithm computes a15 in six multiplications (a15 = a7 ·a7 ·a; a7 = a3 ·a3 ·a;
a3 = a · a · a), but only five multiplications are necessary (a→ a2→ a3→ a5→ a10→ a15). It is
an open question whether the absolute minimum number of multiplications for a given exponent
n can be computed efficiently.

Exercises

1. Prove that the Russian peasant multiplication algorithm runs in Θ(n2) time, where n is the
total number of input digits.

2. (a) Professor George O’Jungle has a 27-node binary tree, in which every node is labeled
with a unique letter of the Roman alphabet or the character &. Preorder and postorder
traversals of the tree visit the nodes in the following order:

⁵A multiplicative group (G,⊗) is a set G and a function ⊗ : G × G→ G, satisfying three axioms:
1. There is a unit element 1 ∈ G such that 1⊗ g = g ⊗ 1 for any element g ∈ G.
2. Any element g ∈ G has a inverse element g−1 ∈ G such that g ⊗ g−1 = g−1 ⊗ g = 1
3. The function is associative: for any elements f , g, h ∈ G, we have f ⊗ (g ⊗ h) = ( f ⊗ g)⊗ h.
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• Preorder: I Q J H L E M V O T S B R G Y Z K C A & F P N U D W X

• Postorder: H E M L J V Q S G Y R Z B T C P U D N F W & X A K O I

Draw George’s binary tree.

(b) Prove that there is no algorithm to reconstruct an arbtirary binary tree from its
preorder and postorder node sequences.

(c) Recall that a binary tree is full if every non-leaf node has exactly two children.
Describe and analyze a recursive algorithm to reconstruct an arbitrary full binary tree,
given its preorder and postorder node sequences as input.

(d) Describe and analyze a recursive algorithm to reconstruct an arbtirary binary tree,
given its preorder and inorder node sequences as input.

(e) Describe and analyze a recursive algorithm to reconstruct an arbitrary binary search
tree, given only its preorder node sequence. Assume all input keys are distinct. For
extra credit, describe an algorithm that runs in O(n) time.

In parts (b), (c), and (d), assume that all keys are distinct and that the input is consistent
with at least one binary tree.

3. Consider a 2n × 2n chessboard with one (arbitrarily chosen) square removed.

(a) Prove that any such chessboard can be tiled without gaps or overlaps by L-shaped
pieces, each composed of 3 squares.

(b) Describe and analyze an algorithm to compute such a tiling, given the integer n and
two n-bit integers representing the row and column of the missing square. The output
is a list of the positions and orientations of (4n − 1)/3 tiles. Your algorithm should
run in O(4n) time.

4. Suppose you are given a stack of n pancakes of different sizes. You want to sort the
pancakes so that smaller pancakes are on top of larger pancakes. The only operation
you can perform is a flip—insert a spatula under the top k pancakes, for some integer k
between 1 and n, and flip them all over.

Flipping the top four pancakes.

(a) Describe an algorithm to sort an arbitrary stack of n pancakes using as few flips as
possible. Exactly how many flips does your algorithm perform in the worst case?

(b) Now suppose one side of each pancake is burned. Describe an algorithm to sort an
arbitrary stack of n pancakes, so that the burned side of every pancake is facing down,
using as few flips as possible. Exactly how many flips does your algorithm perform in
the worst case?
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5. Prove that the original recursive Tower of Hanoi algorithm is exactly equivalent to each of
the following non-recursive algorithms. In other words, prove that all three algorithms
move exactly the same sequence of disks, to and from the same pegs, in the same order.
The pegs are labeled 0, 1, and 2, and our problem is to move a stack of n disks from peg 0
to peg 2 (as shown on page ??).

(a) Repeatedly make the only legal move that satisfies the following constraints:

• Never move the same disk twice in a row.
• If n is even, always move the smallest disk forward (· · · → 0→ 1→ 2→ 0→ ·· ·).
• If n is odd, always move the smallest disk backward (· · · → 0→ 2→ 1→ 0→ ·· ·).

If there is no move that satisfies these three constraints, the puzzle is solved.

(b) Start by putting your finger on the top of peg 0. Then repeat the following steps:

i. If n is odd, move your finger to the next peg (· · · → 0→ 1→ 2→ 0→ ·· ·).
ii. If n is even, move your finger to the previous peg (· · · → 0→ 2→ 1→ 0→ ·· ·).
iii. Make the only legal move that does not require you to lift your finger. If there is

no such move, the puzzle is solved.

(c) Let ρ(n) denote the smallest integer k such that n/2k is not an integer. For example,
ρ(42) = 2, because 42/21 is an integer but 42/22 is not. (Equivalently, ρ(n) is one
more than the position of the least significant 1 in the binary representation of n.)
Because its behavior resembles the marks on a ruler, ρ(n) is sometimes called the
ruler function:

1,2, 1,3, 1,2, 1,4, 1,2, 1,3, 1,2, 1,5, 1,2, 1,3, 1, 2, 1, 4, 1, 2, 1, 3, 1, 2, 1, 6, 1, 2, 1,3, 1, . . .

Here’s the non-recursive algorithm in one line:

In step i, move disk ρ(i) forward if n − i is even, backward if n − i is odd.

When this rule requires us to move disk n+ 1, the puzzle is solved.

6. A less familiar chapter in the Tower of Hanoi’s history is its brief relocation of the temple
from Benares to Pisa in the early 13th century. The relocation was organized by the
wealthy merchant-mathematician Leonardo Fibonacci, at the request of the Holy Roman
Emperor Frederick II, who had heard reports of the temple from soldiers returning from
the Crusades. The Towers of Pisa and their attendant monks became famous, helping to
establish Pisa as a dominant trading center on the Italian peninsula.

Unfortunately, almost as soon as the temple was moved, one of the diamond needles
began to lean to one side. To avoid the possibility of the leaning tower falling over from too
much use, Fibonacci convinced the priests to adopt a more relaxed rule: Any number of
disks on the leaning needle can be moved together to another needle in a single move.
It was still forbidden to place a larger disk on top of a smaller disk, and disks had to be
moved one at a time onto the leaning needle or between the two vertical needles.
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The Towers of Pisa. In the fifth move, two disks are taken off the leaning needle.

Thanks to Fibonacci’s new rule, the priests could bring about the end of the universe
somewhat faster from Pisa then they could than could from Benares. Fortunately, the
temple was moved from Pisa back to Benares after the newly crowned Pope Gregory IX
excommunicated Frederick II, making the local priests less sympathetic to hosting foreign
heretics with strange mathematical habits. Soon afterward, a bell tower was erected on
the spot where the temple once stood; it too began to lean almost immediately.

Describe an algorithm to transfer a stack of n disks from one vertical needle to the other
vertical needle, using the smallest possible number of moves. Exactly how many moves
does your algorithm perform?

7. Consider the following restricted variants of the Tower of Hanoi puzzle. In each problem,
the pegs are numbered 0, 1, and 2, as in problem ??, and your task is to move a stack of n
disks from peg 1 to peg 2.

(a) Suppose you are forbidden to move any disk directly between peg 1 and peg 2; every
move must involve peg 0. Describe an algorithm to solve this version of the puzzle in
as few moves as possible. Exactly how many moves does your algorithm make?

(b) Suppose you are only allowed to move disks from peg 0 to peg 2, from peg 2 to
peg 1, or from peg 1 to peg 0. Equivalently, suppose the pegs are arranged in a
circle and numbered in clockwise order, and you are only allowed to move disks
counterclockwise. Describe an algorithm to solve this version of the puzzle in as few
moves as possible. How many moves does your algorithm make?

10 32 4

65 87

A top view of the first eight moves in a counterclockwise Towers of Hanoi solution

Æ(c) Finally, suppose your only restriction is that you may never move a disk directly from
peg 1 to peg 2. Describe an algorithm to solve this version of the puzzle in as few
moves as possible. How many moves does your algorithm make? [Hint: This variant
is considerably harder to analyze than the other two.]
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8. A German mathematician developed a new variant of the Towers of Hanoi game, known in
the US literature as the “Liberty Towers” game.⁶ In this variant, there is a row of k pegs,
numbered from 1 to k. In a single turn, you are allowed to move the smallest disk on peg i
to either peg i − 1 or peg i + 1, for any index i; as usual, you are not allowed to place a
bigger disk on a smaller disk. Your mission is to move a stack of n disks from peg 1 to peg k.

(a) Describe a recursive algorithm for the case k = 3. Exactly how many moves does your
algorithm make? (This is the same as part (a) of the previous question.)

(b) Describe a recursive algorithm for the case k = n+ 1 that requires at most O(n3)
moves. [Hint: Use part (a).]

(c) Describe a recursive algorithm for the case k = n+ 1 that requires at most O(n2)
moves. [Hint: Don’t use part (a).]

(d) Describe a recursive algorithm for the case k =
p

n that requires at most a polynomial
number of moves. (What polynomial??)

?(e) Describe and analyze a recursive algorithm for arbitrary n and k. How small must k
be (as a function of n) so that the number of moves is bounded by a polynomial in n?

9. Most graphics hardware includes support for a low-level operation called blit, or block
transfer, which quickly copies a rectangular chunk of a pixel map (a two-dimensional array
of pixel values) from one location to another. This is a two-dimensional version of the
standard C library function memcpy().

Suppose we want to rotate an n× n pixel map 90◦ clockwise. One way to do this, at
least when n is a power of two, is to split the pixel map into four n/2× n/2 blocks, move
each block to its proper position using a sequence of five blits, and then recursively rotate
each block. (Why five? For the same reason the Tower of Hanoi puzzle needs a third peg.)
Alternately, we could first recursively rotate the blocks and then blit them into place.

C
A B

D

C A
BD

C A
BD

C
A B

D

Two algorithms for rotating a pixel map.
Black arrows indicate blitting the blocks into place; white arrows indicate recursively rotating the blocks.

(a) Prove that both versions of the algorithm are correct when n is a power of 2.

(b) Exactly how many blits does the algorithm perform when n is a power of 2?

(c) Describe how to modify the algorithm so that it works for arbitrary n, not just powers
of 2. How many blits does your modified algorithm perform?

(d) What is your algorithm’s running time if a k× k blit takes O(k2) time?

(e) What if a k× k blit takes only O(k) time?

⁶No it isn’t.
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The first rotation algorithm (blit then recurse) in action.

10. Prove that quicksort with the median-of-three heuristic requires Ω(n2) time to sort an
array of size n in the worst case. Specifically, for any integer n, describe a permutation of
the integers 1 through n, such that in every recursive call to median-of-three-quicksort,
the pivot is always the second smallest element of the array. Designing this permutation
requires intimate knowledge of the Partition subroutine.

(a) As a warm-up exercise, assume that the Partition subroutine is stable, meaning it
preserves the existing order of all elements smaller than the pivot, and it preserves
the existing order of all elements smaller than the pivot.

(b) Assume that the Partition subroutine uses the specific algorithm listed on page ?? of
this lecture note, which is not stable.

11. (a) Prove that the following algorithm actually sorts its input.

StoogeSort(A[0 .. n− 1]) :
if n= 2 and A[0]> A[1]

swap A[0]↔ A[1]
else if n> 2

m= d2n/3e
StoogeSort(A[0 .. m− 1])
StoogeSort(A[n−m .. n− 1])
StoogeSort(A[0 .. m− 1])

(b) Would StoogeSort still sort correctly if we replaced m= d2n/3e with m= b2n/3c?
Justify your answer.

(c) State a recurrence (including the base case(s)) for the number of comparisons
executed by StoogeSort.

(d) Solve the recurrence, and prove that your solution is correct. [Hint: Ignore the
ceiling.]

(e) Prove that the number of swaps executed by StoogeSort is at most
�n

2

�
.

12. Consider the following cruel and unusual sorting algorithm.
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Cruel(A[1 .. n]):
if n> 1

Cruel(A[1 .. n/2])
Cruel(A[n/2+ 1 .. n])
Unusual(A[1 .. n])

Unusual(A[1 .. n]):
if n= 2

if A[1]> A[2] 〈〈the only comparison!〉〉
swap A[1]↔ A[2]

else
for i← 1 to n/4 〈〈swap 2nd and 3rd quarters〉〉

swap A[i + n/4]↔ A[i + n/2]
Unusual(A[1 .. n/2]) 〈〈recurse on left half〉〉
Unusual(A[n/2+ 1 .. n]) 〈〈recurse on right half〉〉
Unusual(A[n/4+ 1 .. 3n/4]) 〈〈recurse on middle half〉〉

Notice that the comparisons performed by the algorithm do not depend at all on the values
in the input array; such a sorting algorithm is called oblivious. Assume for this problem
that the input size n is always a power of 2.

(a) Prove by induction that Cruel correctly sorts any input array. [Hint: Consider an
array that contains n/4 1s, n/4 2s, n/4 3s, and n/4 4s. Why is this special case
enough?]

(b) Prove that Cruel would not correctly sort if we removed the for-loop from Unusual.

(c) Prove that Cruelwould not correctly sort if we swapped the last two lines of Unusual.

(d) What is the running time of Unusual? Justify your answer.

(e) What is the running time of Cruel? Justify your answer.

13. You are a visitor at a political convention (or perhaps a faculty meeting) with n delegates;
each delegate is a member of exactly one political party. It is impossible to tell which
political party any delegate belongs to; in particular, you will be summarily ejected from
the convention if you ask. However, you can determine whether any pair of delegates
belong to the same party or not simply by introducing them to each other—members of
the same party always greet each other with smiles and friendly handshakes; members of
different parties always greet each other with angry stares and insults.

(a) Suppose more than half of the delegates belong to the same political party. Describe
an efficient algorithm that identifies all members of this majority party.

(b) Now suppose exactly k political parties are represented at the convention and one
party has a plurality: more delegates belong to that party than to any other. Present
a practical procedure to pick out the people from the plurality political party as
parsimoniously as possible. (Please.)
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14. An inversion in an array A[1 .. n] is a pair of indices (i, j) such that i < j and A[i] > A[ j].
The number of inversions in an n-element array is between 0 (if the array is sorted) and

�n
2

�
(if the array is sorted backward). Describe and analyze an algorithm to count the number
of inversions in an n-element array in O(n log n) time. [Hint: Modify mergesort.]

15. (a) Suppose you are given two sets of n points, one set {p1, p2, . . . , pn} on the line y = 0
and the other set {q1, q2, . . . , qn} on the line y = 1. Create a set of n line segments
by connect each point pi to the corresponding point qi. Describe and analyze a
divide-and-conquer algorithm to determine how many pairs of these line segments
intersect, in O(n log n) time.

(b) Now suppose you are given two sets {p1, p2, . . . , pn} and {q1, q2, . . . , qn} of n points
on the unit circle. Connect each point pi to the corresponding point qi . Describe and
analyze a divide-and-conquer algorithm to determine how many pairs of these line
segments intersect in O(n log2 n) time. [Hint: Use your solution to part (a).]

(c) Solve the previous problem in O(n log n) time.

q1 q4 q7 q3q5 q2 q6

p1 p4p7 p3 p5p2p6

q1

q4

q7

q3 q5
q2

q6

p1

p4

p7

p3

p5

p2

p6

Eleven intersecting pairs of segments with endpoints on parallel lines,
and ten intersecting pairs of segments with endpoints on a circle.

16. Suppose we are given a set S of n items, each with a value and a weight. For any element
x ∈ S, we define two subsets

• S<x is the set of all elements of S whose value is smaller than the value of x .

• S>x is the set of all elements of S whose value is larger than the value of x .

For any subset R ⊆ S, let w(R) denote the sum of the weights of elements in R. The
weighted median of R is any element x such that w(S<x)≤ w(S)/2 and w(S>x)≤ w(S)/2.

Describe and analyze an algorithm to compute the weighted median of a given weighted
set in O(n) time. Your input consists of two unsorted arrays S[1 .. n] and W [1 .. n], where
for each index i, the ith element has value S[i] and weight W [i]. You may assume that all
values are distinct and all weights are positive.

17. Describe an algorithm to compute the median of an array A[1 .. 5] of distinct numbers
using at most 6 comparisons. Instead of writing pseudocode, describe your algorithm using
a decision tree: A binary tree where each internal node contains a comparison of the form
“A[i]≷ A[ j]?” and each leaf contains an index into the array.
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A[1]:A[2]

A[1]:A[3]

< >

A[2]:A[3]

< >

A[2] A[3]

< >

A[1]

A[1]:A[3]

< >

A[2]:A[3]

A[3] A[2]

< >

A[1]

Finding the median of a 3-element array using at most 3 comparisons

18. Consider the following generalization of the Blum-Floyd-Pratt-Rivest-Tarjan Select algo-
rithm, which partitions the input array into dn/be blocks of size b, instead of dn/5e blocks
of size 5, but is otherwise identical. In the pseudocode below, the necessary modifications
are indicated in red.

MombSelect(A[1 .. n], k):
if n≤ b2

use brute force
else

m← dn/be
for i← 1 to m

M[i]←MedianOfB(A[b(i − 1) + 1 .. bi])
momb ←MombSelect(M[1 .. m], bm/2c)
r ← Partition(A[1 .. n],momb)

if k < r
return MombSelect(A[1 .. r − 1], k)

else if k > r
return MombSelect(A[r + 1 .. n], k− r)

else
return momb

(a) State a recurrence for the running time ofMombSelect, assuming that b is a constant
(so the subroutine MedianOfB runs in O(1) time). In particular, how do the sizes of
the recursive subproblems depend on the constant b? Consider even b and odd b
separately.

(b) What is the running time of Mom1Select? [Hint: This is a trick question.]
?(c) What is the running time of Mom2Select? [Hint: This is an unfair question.]

(d) What is the running time of Mom3Select?

(e) What is the running time of Mom4Select?

(f) For any constants b ≥ 5, the algorithm MombSelect runs in O(n) time, but different
values of b lead to different constant factors. Let M(b) denote the minimum number
of comparisons required to find the median of b numbers. The exact value of M(b) is
known only for b ≤ 13:

b 1 2 3 4 5 6 7 8 9 10 11 12 13
M(b) 0 1 3 4 6 8 10 12 14 16 18 20 23
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For each b between 5 and 13, find an upper bound on the running time ofMombSelect
of the form T (n)≤ αbn for some explicit constant αb. (For example, on page 8 we
showed that α5 ≤ 22.)

(g) Which value of b yields the smallest constant αb? [Hint: This is a trick question.]

19. An array A[0 .. n− 1] of n distinct numbers is bitonic if there are unique indices i and
j such that A[(i − 1)mod n] < A[i] > A[(i + 1)mod n] and A[( j − 1)mod n] > A[ j] <
A[( j + 1)mod n]. In other words, a bitonic sequence either consists of an increasing
sequence followed by a decreasing sequence, or can be circularly shifted to become so. For
example,

4 6 9 8 7 5 1 2 3 is bitonic, but

3 6 9 8 7 5 1 2 4 is not bitonic.

Describe and analyze an algorithm to find the smallest element in an n-element bitonic
array in O(log n) time. You may assume that the numbers in the input array are distinct.

20. Suppose we are given an array A[1 .. n] with the special property that A[1] ≥ A[2] and
A[n − 1] ≤ A[n]. We say that an element A[x] is a local minimum if it is less than or
equal to both its neighbors, or more formally, if A[x − 1]≥ A[x] and A[x]≤ A[x + 1]. For
example, there are six local minima in the following array:

9 7 7 2 1 3 7 5 4 7 3 3 4 8 6 9

We can obviously find a local minimum in O(n) time by scanning through the array.
Describe and analyze an algorithm that finds a local minimum in O(log n) time. [Hint:
With the given boundary conditions, the arraymust have at least one local minimum. Why?]

21. Suppose you are given a sorted array of n distinct numbers that has been rotated k steps,
for some unknown integer k between 1 and n− 1. That is, you are given an array A[1 .. n]
such that the prefix A[1 .. k] is sorted in increasing order, the suffix A[k+ 1 .. n] is sorted in
increasing order, and A[n]< A[1].

For example, you might be given the following 16-element array (where k = 10):

9 13 16 18 19 23 28 31 37 42 −4 0 2 5 7 8

(a) Describe and analyze an algorithm to compute the unknown integer k.

(b) Describe and analyze an algorithm to determine if the given array contains a given
number x .

22. You are a contestant on the hit game show “Beat Your Neighbors!” You are presented with
an m× n grid of boxes, each containing a unique number. It costs $100 to open a box. Your
goal is to find a box whose number is larger than its neighbors in the grid (above, below,
left, and right). If you spend less money than any of your opponents, you win a week-long
trip for two to Las Vegas and a year’s supply of Rice-A-Ronitm, to which you are hopelessly
addicted.
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(a) Suppose m= 1. Describe an algorithm that finds a number that is bigger than either
of its neighbors. How many boxes does your algorithm open in the worst case?

?(b) Suppose m= n. Describe an algorithm that finds a number that is bigger than any of
its neighbors. How many boxes does your algorithm open in the worst case?

?(c) Prove that your solution to part (b) is optimal up to a constant factor.

23. (a) Suppose we are given two sorted arrays A[1 .. n] and B[1 .. n] and an integer k.
Describe an algorithm to find the kth smallest element in the union of A and B in
Θ(log n) time. For example, if k = 1, your algorithm should return the smallest
element of A∪B; if k = n, your algorithm should return the median of A∪B.) You can
assume that the arrays contain no duplicate elements. [Hint: First solve the special
case k = n.]

(b) Now suppose we are given three sorted arrays A[1 .. n], B[1 .. n], and C[1 .. n], and
an integer k. Describe an algorithm to find the kth smallest element in A∪ B ∪ C in
O(log n) time.

(c) Finally, suppose we are given a two dimensional array A[1 .. m][1 .. n] in which every
row A[i][ ] is sorted, and an integer k. Describe an algorithm to find the kth smallest
element in A as quickly as possible. How does the running time of your algorithm
depend on m? [Hint: Use the linear-time Select algorithm as a subroutine.]

24. (a) Describe an algorithm that sorts an input array A[1 .. n] by calling a subroutine
SqrtSort(k), which sorts the subarray A

�
k+1 .. k+

p
n
�
in place, given an arbitrary

integer k between 0 and n−pn as input. (To simplify the problem, assume that
p

n
is an integer.) Your algorithm is only allowed to inspect or modify the input array
by calling SqrtSort; in particular, your algorithm must not directly compare, move,
or copy array elements. How many times does your algorithm call SqrtSort in the
worst case?

(b) Prove that your algorithm from part (a) is optimal up to constant factors. In other
words, if f (n) is the number of times your algorithm calls SqrtSort, prove that no
algorithm can sort using o( f (n)) calls to SqrtSort. [Hint: See Lecture 19.]

(c) Now suppose SqrtSort is implemented recursively, by calling your sorting algorithm
from part (a). For example, at the second level of recursion, the algorithm is sorting
arrays roughly of size n1/4. What is the worst-case running time of the resulting
sorting algorithm? (To simplify the analysis, assume that the array size n has the
form 22k

, so that repeated square roots are always integers.)

25. Suppose we have n points scattered inside a two-dimensional box. A kd-tree recursively
subdivides the points as follows. First we split the box into two smaller boxes with a vertical
line, then we split each of those boxes with horizontal lines, and so on, always alternating
between horizontal and vertical splits. Each time we split a box, the splitting line partitions
the rest of the interior points as evenly as possible by passing through a median point inside
the box (not on its boundary). If a box doesn’t contain any points, we don’t split it any
more; these final empty boxes are called cells.

(a) How many cells are there, as a function of n? Prove your answer is correct.
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A kd-tree for 15 points. The dashed line crosses the four shaded cells.

(b) In the worst case, exactly how many cells can a horizontal line cross, as a function
of n? Prove your answer is correct. Assume that n= 2k−1 for some integer k. [Hint:
There is more than one function f such that f (16) = 4.]

(c) Suppose we are given n points stored in a kd-tree. Describe and analyze an algorithm
that counts the number of points above a horizontal line (such as the dashed line in
the figure) as quickly as possible. [Hint: Use part (b).]

(d) Describe an analyze an efficient algorithm that counts, given a kd-tree storing n
points, the number of points that lie inside a rectangle R with horizontal and vertical
sides. [Hint: Use part (c).]

26. For this problem, a subtree of a binary tree means any connected subgraph. A binary tree is
complete if every internal node has two children, and every leaf has exactly the same depth.
Describe and analyze a recursive algorithm to compute the largest complete subtree of a
given binary tree. Your algorithm should return the root and the depth of this subtree.

The largest complete subtree of this binary tree has depth 2.

?27. Bob Ratenbur, a new student in CS 225, is trying to write code to perform preorder, inorder,
and postorder traversals of binary trees. Bob understands the basic idea behind the traversal
algorithms, but whenever he tries to implement them, he keeps mixing up the recursive
calls. Five minutes before the deadline, Bob frantically submits code with the following
structure:
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PreOrder(v):
if v = Null

return
else

print label(v)
Order(left(v))
Order(right(v))

InOrder(v):
if v = Null

return
else

Order(left(v))
print label(v)

Order(right(v))

PostOrder(v):
if v = Null

return
else

Order(left(v))
Order(right(v))

print label(v)

Each hides one of the prefixes Pre, In, or Post. Moreover, each of the following
function calls appears exactly once in Bob’s submitted code:

PreOrder(left(v)) PreOrder(right(v))
InOrder(left(v)) InOrder(right(v))
PostOrder(left(v)) PostOrder(right(v))

Thus, there are precisely 36 possibilities for Bob’s code. Unfortunately, Bob accidentally
deleted his source code after submitting the executable, so neither you nor he knows which
functions were called where.

Now suppose you are given the output of Bob’s traversal algorithms, executed on some
unknown binary tree T . Bob’s output has been helpfully parsed into three arrays Pre[1 .. n],
In[1 .. n], and Post[1 .. n]. You may assume that these traversal sequences are consistent
with exactly one binary tree T ; in particular, the vertex labels of the unknown tree T are
distinct, and every internal node in T has exactly two children.

(a) Describe an algorithm to reconstruct the unknown tree T from the given traversal
sequences.

(b) Describe an algorithm that either reconstruct Bob’s code from the given traversal
sequences, or correctly reports that the traversal sequences are consistent with more
than one set of algorithms.

For example, given the input

Pre[1 .. n] = [H A E C B I F G D]

In[1 .. n] = [A H D C E I F B G]

Post[1 .. n] = [A E I B F C D G H]

your first algorithm should return the following tree:

H

A D

GC

E B

FI

and your second algorithm should reconstruct the following code:
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PreOrder(v):
if v = Null

return
else

print label(v)
PreOrder(left(v))
PostOrder(right(v))

InOrder(v):
if v = Null

return
else

PostOrder(left(v))
print label(v)
PreOrder(right(v))

PostOrder(v):
if v = Null

return
else

InOrder(left(v))
InOrder(right(v))
print label(v)

28. Consider the following classical recursive algorithm for computing the factorial n! of a
non-negative integer n:

Factorial(n):
if n= 0

return 1
else

return n · Factorial(n− 1)

(a) How many multiplications does this algorithm perform?

(b) How many bits are required to write n! in binary? Express your answer in the form
Θ( f (n)), for some familiar function f (n). [Hint: (n/2)n/2 < n!< nn.]

(c) Your answer to (b) should convince you that the number of multiplications is not a
good estimate of the actual running time of Factorial. We can multiply any k-digit
number and any l-digit number in O(k · l) time using the grade-school algorithm (or
the Russian peasant algorithm). What is the running time of Factorial if we use this
multiplication algorithm as a subroutine?

?(d) The following algorithm also computes the factorial function, but using a different
grouping of the multiplications:

Factorial2(n, m): 〈〈Compute n!/(n−m)!〉〉
if m= 0

return 1
else if m= 1

return n
else

return Factorial2(n, bm/2c) · Factorial2(n− bm/2c, dm/2e)
What is the running time of Factorial2(n, n) if we use grade-school multiplication?
[Hint: Ignore the floors and ceilings.]

(e) Describe and analyze a variant of Karastuba’s algorithm that can multiply any k-digit
number and any l-digit number, where k ≥ l, in O(k · l lg 3−1) = O(k · l0.585) time.

?(f) What are the running times of Factorial(n) and Factorial2(n, n) if we use the
modified Karatsuba multiplication from part (e)?
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Ceterum in problematis natura fundatum est, ut methodi quaecunque continuo prolixiores
evadant, quo maiores sunt numeri, ad quos applicantur; attamen pro methodis sequentibus
difficultates perlente increscunt, numerique e septem, octos vel adeo adhuc pluribus figuris
constantes praesertim per secundam felici semper successu tractati fuerunt, omnique
celeritate, quam pro tantis numeris exspectare aequum est, qui secundum omnes methodos
hactenus notas laborem, etiam calculatori indefatigabili intolerabilem, requirerent.

[It is in the nature of the problem that any method will become more prolix as the
numbers to which it is applied grow larger. Nevertheless, in the following methods the
difficulties increase rather slowly, and numbers with seven, eight, or even more digits have
been handled with success and speed beyond expectation, especially by the second method.
The techniques that were previously known would require intolerable labor even for the most
indefatigable calculator.]

— Carl Friedrich Gauß, Disquisitiones Arithmeticae (1801)
English translation by A.A. Clarke (1965)

After much deliberation, the distinguished members of the international committee decided
unanimously (when the Russian members went out for a caviar break) that since the Chinese
emperor invented the method before anybody else had even been born, the method should
be named after him. The Chinese emperor’s name was Fast, so the method was called the
Fast Fourier Transform.

— Thomas S. Huang, “How the fast Fourier transform got its name” (1971)

2 Fast Fourier Transforms?

2.1 Polynomials

In this lecture we’ll talk about algorithms for manipulating polynomials: functions of one variable
built from additions, subtractions, and multiplications (but no divisions). The most common
representation for a polynomial p(x) is as a sum of weighted powers of the variable x:

p(x) =
n∑

j=0

a j x
j .

The numbers a j are called the coefficients of the polynomial. The degree of the polynomial is the
largest power of x whose coefficient is not equal to zero; in the example above, the degree is at
most n. Any polynomial of degree n can be represented by an array P[0 .. n] of n+ 1 coefficients,
where P[ j] is the coefficient of the x j term, and where P[n] 6= 0.

Here are three of the most common operations that are performed with polynomials:

• Evaluate: Give a polynomial p and a number x , compute the number p(x).

• Add: Give two polynomials p and q, compute a polynomial r = p + q, so that r(x) =
p(x)+q(x) for all x . If p and q both have degree n, then their sum p+q also has degree n.

• Multiply: Give two polynomials p and q, compute a polynomial r = p · q, so that
r(x) = p(x) · q(x) for all x . If p and q both have degree n, then their product p · q has
degree 2n.

We learned simple algorithms for all three of these operations in high-school algebra:

© Copyright 2014 Jeff Erickson.
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Evaluate(P[0 .. n], x):
X ← 1 〈〈X = x j〉〉
y ← 0
for j← 0 to n

y ← y + P[ j] · X
X ← X · x

return y

Add(P[0 .. n],Q[0 .. n]):
for j← 0 to n

R[ j]← P[ j] +Q[ j]
return R[0 .. n]

Multiply(P[0 .. n],Q[0 .. m]):
for j← 0 to n+m

R[ j]← 0
for j← 0 to n

for k← 0 to m
R[ j + k]← R[ j + k] + P[ j] ·Q[k]

return R[0 .. n+m]

Evaluate uses O(n) arithmetic operations.¹ This is the best we can hope for, but we can cut
the number of multiplications in half using Horner’s rule:

p(x) = a0 + x(a1 + x(a2 + . . .+ xan)).

Horner(P[0 .. n], x):
y ← P[n]
for i← n− 1 downto 0

y ← x · y + P[i]
return y

The addition algorithm also runs in O(n) time, and this is clearly the best we can do.
The multiplication algorithm, however, runs in O(n2) time. In the previous lecture, we saw

a divide and conquer algorithm (due to Karatsuba) for multiplying two n-bit integers in only
O(nlg3) steps; precisely the same algorithm can be applied here. Even cleverer divide-and-
conquer strategies lead to multiplication algorithms whose running times are arbitrarily close to
linear—O(n1+ε) for your favorite value e > 0—but with great cleverness comes great confusion.
These algorithms are difficult to understand, even more difficult to implement correctly, and not
worth the trouble in practice thanks to large constant factors.

2.2 Alternate Representations

Part of what makes multiplication so much harder than the other two operations is our input
representation. Coefficients vectors are the most common representation for polynomials, but
there are at least two other useful representations.

2.2.1 Roots

The Fundamental Theorem of Algebra states that every polynomial p of degree n has exactly n
roots r1, r2, . . . rn such that p(r j) = 0 for all j. Some of these roots may be irrational; some of these
roots may by complex; and some of these roots may be repeated. Despite these complications,

¹I’m going to assume in this lecture that each arithmetic operation takes O(1) time. This may not be true
in practice; in fact, one of the most powerful applications of fast Fourier transforms is fast integer multiplication.
The fastest algorithm currently known for multiplying two n-bit integers, published by Martin Fürer in 2007, uses
O(n log n 2O(log∗ n)) bit operations and is based on fast Fourier transforms.
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this theorem implies a unique representation of any polynomial of the form

p(x) = s
n∏

j=1

(x − r j)

where the r j ’s are the roots and s is a scale factor. Once again, to represent a polynomial of
degree n, we need a list of n+ 1 numbers: one scale factor and n roots.

Given a polynomial in this root representation, we can clearly evaluate it in O(n) time. Given
two polynomials in root representation, we can easily multiply them in O(n) time by multiplying
their scale factors and just concatenating the two root sequences.

Unfortunately, if we want to add two polynomials in root representation, we’re out of luck.
There’s essentially no correlation between the roots of p, the roots of q, and the roots of p+ q.
We could convert the polynomials to the more familiar coefficient representation first—this takes
O(n2) time using the high-school algorithms—but there’s no easy way to convert the answer
back. In fact, for most polynomials of degree 5 or more in coefficient form, it’s impossible to
compute roots exactly.²

2.2.2 Samples

Our third representation for polynomials comes from a different consequence of the Fundamental
Theorem of Algebra. Given a list of n+ 1 pairs {(x0, y0), (x1, y1), . . . , (xn, yn) }, there is exactly
one polynomial p of degree n such that p(x j) = y j for all j. This is just a generalization of the
fact that any two points determine a unique line, because a line is the graph of a polynomial of
degree 1. We say that the polynomial p interpolates the points (x j , y j). As long as we agree on
the sample locations x j in advance, we once again need exactly n+ 1 numbers to represent a
polynomial of degree n.

Adding or multiplying two polynomials in this sample representation is easy, as long as they
use the same sample locations x j. To add the polynomials, just add their sample values. To
multiply two polynomials, just multiply their sample values; however, if we’re multiplying two
polynomials of degree n, we must start with 2n+ 1 sample values for each polynomial, because
that’s how many we need to uniquely represent their product. Both algorithms run in O(n) time.

Unfortunately, evaluating a polynomial in this representation is no longer straightforward.
The following formula, due to Lagrange, allows us to compute the value of any polynomial of
degree n at any point, given a set of n+ 1 samples.

p(x) =
n−1∑
j=0

 
y j∏

k 6= j(x j − xk)

∏
k 6= j

(x − xk)

!

Hopefully it’s clear that formula actually describes a polynomial function of x , since each term in
the sum is a scaled product of monomials. It’s also not hard to verify that p(x j) = y j for every
index j; most of the terms of the sum vanish. As I mentioned earlier, the Fundamental Theorem
of Algebra implies that p is the only polynomial that interpolates the points {(x j , y j)}. Lagrange’s
formula can be translated mechanically into an O(n2)-time algorithm.

2.2.3 Summary

We find ourselves in the following frustrating situation. We have three representations for
polynomials and three basic operations. Each representation allows us to almost trivially perform

²This is where numerical analysis comes from.
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a different pair of operations in linear time, but the third takes at least quadratic time, if it can
be done at all!

evaluate add multiply

coefficients O(n) O(n) O(n2)
roots + scale O(n) ∞ O(n)

samples O(n2) O(n) O(n)

2.3 Converting Between Representations

What we need are fast algorithms to convert quickly from one representation to another. That way,
when we need to perform an operation that’s hard for our default representation, we can switch
to a different representation that makes the operation easy, perform that operation, and then
switch back. This strategy immediately rules out the root representation, since (as I mentioned
earlier) finding roots of polynomials is impossible in general, at least if we’re interested in exact
results.

So how do we convert from coefficients to samples and back? Clearly, once we choose
our sample positions x j, we can compute each sample value y j = p(x j) in O(n) time from the
coefficients using Horner’s rule. So we can convert a polynomial of degree n from coefficients to
samples in O(n2) time. Lagrange’s formula can be used to convert the sample representation back
to the more familiar coefficient form. If we use the naïve algorithms for adding and multiplying
polynomials (in coefficient form), this conversion takes O(n3) time.

We can improve the cubic running time by observing that both conversion problems boil
down to computing the product of a matrix and a vector. The explanation will be slightly simpler
if we assume the polynomial has degree n− 1, so that n is the number of coefficients or samples.
Fix a sequence x0, x1, . . . , xn−1 of sample positions, and let V be the n× n matrix where vi j = x j

i
(indexing rows and columns from 0 to n− 1):

V =




1 x0 x2
0 · · · xn−1

0

1 x1 x2
1 · · · xn−1

1

1 x2 x2
2 · · · xn−1

2
...

...
...

. . .
...

1 xn−1 x2
n−1 · · · xn−1

n−1




.

The matrix V is called a Vandermonde matrix. The vector of coefficients ~a = (a0, a1, . . . , an−1)
and the vector of sample values ~y = (y0, y1, . . . , yn−1) are related by the matrix equation

V ~a = ~y ,

or in more detail, 


1 x0 x2
0 · · · xn−1

0

1 x1 x2
1 · · · xn−1

1

1 x2 x2
2 · · · xn−1

2
...

...
...

. . .
...

1 xn−1 x2
n−1 · · · xn−1

n−1







a0

a1

a2
...

an−1



=




y0

y1

y2
...

yn−1




.
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Given this formulation, we can clearly transform any coefficient vector ~a into the corresponding
sample vector ~y in O(n2) time.

Conversely, if we know the sample values ~y, we can recover the coefficients by solving a
system of n linear equations in n unknowns, which can be done in O(n3) time using Gaussian
elimination.³ But we can speed this up by implicitly hard-coding the sample positions into the
algorithm, To convert from samples to coefficients, we can simply multiply the sample vector by
the inverse of V , again in O(n2) time.

~a = V−1 ~y

Computing V−1 would take O(n3) time if we had to do it from scratch using Gaussian elimination,
but because we fixed the set of sample positions in advance, the matrix V−1 can be hard-coded
directly into the algorithm.⁴

So we can convert from coefficients to samples and back in O(n2) time. At first lance, this
result seems pointless; we can already add, multiply, or evaluate directly in either representation
in O(n2) time, so why bother? But there’s a degree of freedom we haven’t exploited—We get to
choose the sample positions! Our conversion algorithm is slow only because we’re trying to be
too general. If we choose a set of sample positions with the right recursive structure, we can
perform this conversion more quickly.

2.4 Divide and Conquer

Any polynomial of degree at most n− 1 can be expressed as a combination of two polynomials of
degree at most (n/2)− 1 as follows:

p(x) = peven(x
2) + x · podd(x2).

The coefficients of peven are just the even-degree coefficients of p, and the coefficients of podd
are just the odd-degree coefficients of p. Thus, we can evaluate p(x) by recursively evaluating
peven(x2) and podd(x2) and performing O(1) additional arithmetic operations.

Now call a set X of n values collapsing if either of the following conditions holds:

• X has one element.

• The set X 2 =
�

x2
�� x ∈ X

	
has exactly n/2 elements and is (recursively) collapsing.

Clearly the size of any collapsing set is a power of 2. Given a polynomial p of degree n−1, and a
collapsing set X of size n, we can compute the set {p(x) | x ∈ X } of sample values as follows:

1. Recursively compute
�

peven(x2)
�� x ∈ X

	
=
�

peven(y)
�� y ∈ X 2

	
.

2. Recursively compute
�

podd(x2)
�� x ∈ X

	
=
�

podd(y)
�� y ∈ X 2

	
.

3. For each x ∈ X , compute p(x) = peven(x2) + x · podd(x2).

The running time of this algorithm satisfies the familiar recurrence T (n) = 2T (n/2) + Θ(n),
which as we all know solves to T (n) = Θ(n log n).

³In fact, Lagrange’s formula is just a special case of Cramer’s rule for solving linear systems.
⁴Actually, it is possible to invert an n× n matrix in o(n3) time, using fast matrix multiplication algorithms that

closely resemble Karatsuba’s sub-quadratic divide-and-conquer algorithm for integer/polynomial multiplication. On
the other hand, my numerical-analysis colleagues have reasonable cause to shoot me in the face for daring to suggest,
even in passing, that anyone actually invert a matrix at all, ever.
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Great! Now all we need is a sequence of arbitrarily large collapsing sets. The simplest method
to construct such sets is just to invert the recursive definition: If X is a collapsible set of size n
that does not contain the number 0, then

p
X = {±px | x ∈ X } is a collapsible set of size 2n. This

observation gives us an infinite sequence of collapsible sets, starting as follows:⁵

X1 := {1}
X2 := {1, −1}
X4 := {1, −1, i, −i}

X8 :=

�
1, −1, i, −i,

p
2

2
+
p

2
2

i, −
p

2
2
−
p

2
2

i,

p
2

2
−
p

2
2

i, −
p

2
2
+
p

2
2

i

�

2.5 The Discrete Fourier Transform

For any n, the elements of Xn are called the complex nth roots of unity; these are the roots of
the polynomial xn − 1= 0. These n complex values are spaced exactly evenly around the unit
circle in the complex plane. Every nth root of unity is a power of the primitive nth root

ωn = e2πi/n = cos
2π
n
+ i sin

2π
n

.

A typical nth root of unity has the form

ωk
n = e(2πi/n)k = cos

�
2π
n

k
�
+ i sin

�
2π
n

k
�

.

These complex numbers have several useful properties for any integers n and k:

• There are exactly n different nth roots of unity: ωk
n =ω

k mod n
n .

• If n is even, then ωk+n/2
n = −ωk

n; in particular, ωn/2
n = −ω0

n = −1.

• 1/ωk
n =ω

−k
n =ωk

n = (ωn)k, where the bar represents complex conjugation: a+ bi = a−bi

• ωn =ωk
kn. Thus, every nth root of unity is also a (kn)th root of unity.

These properties imply immediately that if n is a power of 2, then the set of all nth roots of unity
is collapsible!

If we sample a polynomial of degree n − 1 at the nth roots of unity, the resulting list of
sample values is called the discrete Fourier transform of the polynomial (or more formally, of its
coefficient vector). Thus, given an array P[0 .. n−1] of coefficients, its discrete Fourier transform
is the vector P∗[0 .. n− 1] defined as follows:

P∗[ j] := p(ω j
n) =

n−1∑
k=0

P[k] ·ω jk
n

⁵In this lecture, i always represents the square root of −1. Computer scientists are used to thinking of i as an
integer index into a sequence, an array, or a for-loop, but we obviously can’t do that here. The physicist’s habit of
using j =

p−1 just delays the problem (How do physicists write quaternions?), and typographical tricks like I or i or
Mathematica’s ıı◦ are just stupid.
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As we already observed, the fact that sets of roots of unity are collapsible implies that we can
compute the discrete Fourier transform in O(n log n) time. The resulting algorithm, called the
fast Fourier transform, was popularized by Cooley and Tukey in 1965.⁶ The algorithm assumes
that n is a power of two; if necessary, we can just pad the coefficient vector with zeros.

FFT(P[0 .. n− 1]):
if n= 1

return P

for j← 0 to n/2− 1
U[ j]← P[2 j]
V [ j]← P[2 j + 1]

U∗← FFT(U[0 .. n/2− 1])
V ∗← FFT(V [0 .. n/2− 1])

ωn← cos( 2π
n ) + i sin( 2π

n )
ω← 1

for j← 0 to n/2− 1
P∗[ j] ← U∗[ j] +ω · V ∗[ j]
P∗[ j + n/2]← U∗[ j]−ω · V ∗[ j]
ω←ω ·ωn

return P∗[0 .. n− 1]

Minor variants of this divide-and-conquer algorithm were previously described by Good
in 1958, by Thomas in 1948, by Danielson and Lánczos in 1942, by Stumpf in 1937, by Yates
in 1932, and by Runge in 1903; some special cases were published even earlier by Everett in
1860, by Smith in 1846, and by Carlini in 1828. But the algorithm, in its full modern recursive
generality, was first used by Gauss around 1805 for calculating the periodic orbits of asteroids
from a finite number of observations. In fact, Gauss’s recursive algorithm predates even Fourier’s
introduction of harmonic analysis by two years. So, of course, the algorithm is universally called
the Cooley-Tukey algorithm. Gauss’s work built on earlier research on trigonometric interpolation
by Bernoulli, Lagrange, Clairaut, and Euler; in particular, the first explicit description of the
discrete “Fourier” transform was published by Clairaut in 1754, more than half a century before
Fourier’s work. Hooray for Stigler’s Law!⁷

2.6 Inverting the FFT

We also need to recover the coefficients of the product from the new sample values. Recall that
the transformation from coefficients to sample values is linear; the sample vector is the product
of a Vandermonde matrix V and the coefficient vector. For the discrete Fourier transform, each

⁶Tukey apparently studied the algorithm to help detect Soviet nuclear tests without actually visiting Soviet nuclear
facilities, by interpolating off-shore seismic readings. Without his rediscovery, the nuclear test ban treaty would never
have been ratified, and we’d all be speaking Russian, or more likely, whatever language radioactive glass speaks.

⁷Lest anyone believe that Stigler’s Law has treated Gauss unfairly, remember that “Gaussian elimination” was not
discovered by Gauss; the algorithm was not even given that name until the mid-20th century! Elimination became
the standard method for solving systems of linear equations in Europe in the early 1700s, when it appeared in an
influential algebra textbook by Isaac Newton (published over his objections; he didn’t want anyone to think it was
his latest research). Although Newton apparently (and perhaps correctly) believed he had invented the elimination
method, it actually appears in several earlier works, the oldest of which the eighth chapter of the Chinese manuscript
The Nine Chapters of the Mathematical Art. The authors and precise age of the Nine Chapters are unknown, but
commentary written by Liu Hui in 263CE claims that the text was already several centuries old. It was almost certainly
not invented by a Chinese emperor named Fast.
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entry in V is an nth root of unity; specifically,

v jk =ω
jk
n

for all integers j and k. Thus,

V =




1 1 1 1 · · · 1

1 ωn ω2
n ω3

n · · · ωn−1
n

1 ω2
n ω4

n ω6
n · · · ω2(n−1)

n

1 ω3
n ω6

n ω9
n · · · ω3(n−1)

n
...

...
...

...
. . .

...

1 ωn−1
n ω2(n−1)

n ω3(n−1)
n · · · ω(n−1)2

n




To invert the discrete Fourier transform, converting sample values back to coefficients, we
just have to multiply P∗ by the inverse matrix V−1. The following amazing fact implies that this
is almost the same as multiplying by V itself:

Claim: V−1 = V/n

Proof: We just have to show that M = V V is the identity matrix scaled by a factor of n. We can
compute a single entry in M as follows:

m jk =
n−1∑
l=0

ω jl
n ·ωn

lk =
n−1∑
l=0

ω jl−lk
n =

n−1∑
l=0

(ω j−k
n )l

If j = k, then ω j−k
n =ω0

n = 1, so

m jk =
n−1∑
l=0

1= n,

and if j 6= k, we have a geometric series

m jk =
n−1∑
l=0

(ω j−k
n )l =

(ω j−k
n )n − 1

ω
j−k
n − 1

=
(ωn

n)
j−k − 1

ω
j−k
n − 1

=
1 j−k − 1

ω
j−k
n − 1

= 0. �

In other words, if W = V−1 then w jk = v jk/n = ω
jk
n /n = ω

− jk
n /n. What this means for us

computer scientists is that any algorithm for computing the discrete Fourier transform can be
easily modified to compute the inverse transform as well.
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InverseFFT(P∗[0 .. n− 1]):
if n= 1

return P

for j← 0 to n/2− 1
U∗[ j]← P∗[2 j]
V ∗[ j]← P∗[2 j + 1]

U ← InverseFFT(U[0 .. n/2− 1])
V ← InverseFFT(V [0 .. n/2− 1])

ωn← cos( 2π
n )− i sin( 2π

n )
ω← 1

for j← 0 to n/2− 1
P[ j] ← 2(U[ j] +ω · V [ j])
P[ j + n/2]← 2(U[ j]−ω · V [ j])
ω←ω ·ωn

return P[0 .. n− 1]

2.7 Fast Polynomial Multiplication

Finally, given two polynomials p and q, each represented by an array of coefficients, we can
multiply them in Θ(n log n) arithmetic operations as follows. First, pad the coefficient vectors
and with zeros until the size is a power of two greater than or equal to the sum of the degrees.
Then compute the DFTs of each coefficient vector, multiply the sample values one by one, and
compute the inverse DFT of the resulting sample vector.

FFTMultiply(P[0 .. n− 1],Q[0 .. m− 1]):
`← dlg(n+m)e
for j← n to 2` − 1

P[ j]← 0
for j← m to 2` − 1

Q[ j]← 0

P∗← F F T (P)
Q∗← F F T (Q)
for j← 0 to 2` − 1

R∗[ j]← P∗[ j] ·Q∗[ j]
return InverseFFT(R∗)

2.8 Inside the FFT

FFTs are often implemented in hardware as circuits. To see the recursive structure of the circuit,
let’s connect the top-level inputs and outputs to the inputs and outputs of the recursive calls. On
the left we split the input P into two recursive inputs U and V . On the right, we combine the
outputs U∗ and V ∗ to obtain the final output P∗.

If we expand this recursive structure completely, we see that the circuit splits naturally into
two parts. The left half computes the bit-reversal permutation of the input. To find the position
of P[k] in this permutation, write k in binary, and then read the bits backward. For example,
in an 8-element bit-reversal permutation, P[3] = P[0112] ends up in position 6 = 1102. The
right half of the FFT circuit is a butterfly network. Butterfly networks are often used to route
between processors in massively-parallel computers, because they allow any two processors to
communicate in only O(log n) steps.
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P

FFT

FFT

U U*

V V*

P*

0000

0001

0010

0011

0100

0101

0110

0111

1000

1001

1010

1011

1100

1101

1110

1111

0000

0010

0100

0110

1000

1010

1100

1110

0001

0011

0101

0111

1001

1011

1101

1111

0000

0100

1000

1100

0010

0110

1010

1110

0001

0101

1001

1101

0011

0111

1011

1111

0000

1000

0100

1100

0010

1010

0110

1110

0001

1001

0101

1101

0010

1011

0111

1111

Bit-reversal permutation Butterfly network

The recursive structure of the FFT algorithm.

Exercises

1. For any two sets X and Y of integers, the Minkowski sum X + Y is the set of all pairwise
sums {x + y | x ∈ X , y ∈ Y }.
(a) Describe an analyze and algorithm to compute the number of elements in X + Y in

O(n2 log n) time. [Hint: The answer is not always n2.]

(b) Describe and analyze an algorithm to compute the number of elements in X + Y in
O(M log M) time, where M is the largest absolute value of any element of X ∪ Y .
[Hint: What’s this lecture about?]

2. Suppose we are given a bit string B[1 .. n]. A triple of distinct indices 1≤ i < j < k ≤ n is
called a well-spaced triple in B if B[i] = B[ j] = B[k] = 1 and k− j = j − i.

(a) Describe a brute-force algorithm to determine whether B has a well-spaced triple in
O(n2) time.

(b) Describe an algorithm to determine whether B has a well-spaced triple in O(n log n)
time. [Hint: Hint.]

(c) Describe an algorithm to determine the number of well-spaced triples in B in O(n log n)
time.

3. (a) Describe an algorithm that determines whether a given set of n integers contains two
elements whose sum is zero, in O(n log n) time.

(b) Describe an algorithm that determines whether a given set of n integers contains
three elements whose sum is zero, in O(n2) time.

(c) Now suppose the input set X contains only integers between − 10000n and 10000n.
Describe an algorithm that determines whether X contains three elements whose
sum is zero, in O(n log n) time. [Hint: Hint.]
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4. Describe an algorithm that applies the bit-reversal permutation to an array A[1 .. n] in O(n)
time when n is a power of 2.

BIT- ⇐⇒ BTI-

REVERSAL ⇐⇒ RRVAESEL

BUTTERFLYNETWORK ⇐⇒ BYEWTEFRUNROTTLK

THISISTHEBITREVERSALPERMUTATION! ⇐⇒ TREUIPRIIAIATRVNHSBTSEEOSLTTHME!

5. The FFT algorithm we described in this lecture is limited to polynomials with 2k coefficients
for some integer k. Of course, we can always pad the coefficient vector with zeros to force
it into this form, but this padding artificially inflates the input size, leading to a slower
algorithm than necessary.

Describe and analyze a similar DFT algorithm that works for polynomials with 3k

coefficients, by splitting the coefficient vector into three smaller vectors of length 3k−1,
recursively computing the DFT of each smaller vector, and correctly combining the results.
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This work is licensed under a Creative Commons License (http://creativecommons.org/licenses/by-nc-sa/4.0/).
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’Tis a lesson you should heed,
Try, try again;

If at first you don’t succeed,
Try, try again;

Then your courage should appear,
For, if you will persevere,
You will conquer, never fear;

Try, try again.

— Thomas H. Palmer, The Teacher’s Manual: Being an Exposition
of an Efficient and Economical System of Education

Suited to the Wants of a Free People (1840)

I dropped my dinner, and ran back to the laboratory. There, in my excitement,
I tasted the contents of every beaker and evaporating dish on the table. Luckily
for me, none contained any corrosive or poisonous liquid.

— Constantine Fahlberg on his discovery of saccharin,
Scientific American (1886)

To resolve the question by a careful enumeration of solutions via trial and error,
continued Gauss, would take only an hour or two. Apparently such inelegant
work held little attraction for Gauss, for he does not seem to have carried it out,
despite outlining in detail how to go about it.

— Paul Campbell, “Gauss and the Eight Queens Problem:
A Study in Miniature of the Propagation of Historical Error” (1977)

3 Backtracking

In this lecture, I want to describe another recursive algorithm strategy called backtracking.
A backtracking algorithm tries to build a solution to a computational problem incrementally.
Whenever the algorithm needs to decide between multiple alternatives to the next component of
the solution, it simply tries all possible options recursively.

3.1 n Queens

The prototypical backtracking problem is the classical n Queens Problem, first proposed by
German chess enthusiast Max Bezzel in 1848 (under his pseudonym “Schachfreund”) for the
standard 8×8 board and by François-Joseph Eustache Lionnet in 1869 for the more general n× n
board. The problem is to place n queens on an n× n chessboard, so that no two queens can
attack each other. For readers not familiar with the rules of chess, this means that no two queens
are in the same row, column, or diagonal.

Obviously, in any solution to the n-Queens problem, there is exactly one queen in each row.
So we will represent our possible solutions using an array Q[1 .. n], where Q[i] indicates which
square in row i contains a queen, or 0 if no queen has yet been placed in row i. To find a
solution, we put queens on the board row by row, starting at the top. A partial solution is an
array Q[1 .. n] whose first r − 1 entries are positive and whose last n− r + 1 entries are all zeros,
for some integer r.

The following recursive algorithm, essentially due to Gauss (who called it “methodical
groping”), recursively enumerates all complete n-queens solutions that are consistent with a
given partial solution. The input parameter r is the first empty row. Thus, to compute all
n-queens solutions with no restrictions, we would call RecursiveNQueens(Q[1 .. n], 1).

© Copyright 2014 Jeff Erickson.
This work is licensed under a Creative Commons License (http://creativecommons.org/licenses/by-nc-sa/4.0/).

Free distribution is strongly encouraged; commercial distribution is expressly forbidden.
See http://www.cs.uiuc.edu/~jeffe/teaching/algorithms/ for the most recent revision.
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♕

♕

♕

♕

♛♕
♛♕

♛♕
♛♕

One solution to the 8 queens problem, represented by the array [4,7,3,8,2,5,1,6]

RecursiveNQueens(Q[1 .. n], r):
if r = n+ 1

print Q
else

for j← 1 to n
legal← True
for i← 1 to r − 1

if (Q[i] = j) or (Q[i] = j + r − i) or (Q[i] = j − r + i)
legal← False

if legal
Q[r]← j
RecursiveNQueens(Q[1 .. n], r + 1)

Like most recursive algorithms, the execution of a backtracking algorithm can be illustrated
using a recursion tree. The root of the recursion tree corresponds to the original invocation of
the algorithm; edges in the tree correspond to recursive calls. A path from the root down to
any node shows the history of a partial solution to the n-Queens problem, as queens are added
to successive rows. The leaves correspond to partial solutions that cannot be extended, either
because there is already a queen on every row, or because every position in the next empty row
is in the same row, column, or diagonal as an existing queen. The backtracking algorithm simply
performs a depth-first traversal of this tree.

3.2 Game Trees

Consider the following simple two-player game played on an n× n square grid with a border of
squares; let’s call the players Horatio Fahlberg-Remsen and Vera Rebaudi.¹ Each player has n
tokens that they move across the board from one side to the other. Horatio’s tokens start in the
left border, one in each row, and move to the right; symmetrically, Vera’s tokens start in the top
border, one in each column, and move down. The players alternate turns. In each of his turns,
Horatio either moves one of his tokens one step to the right into an empty square, or jumps one of
his tokens over exactly one of Vera’s tokens into an empty square two steps to the right. However,
if no legal moves or jumps are available, Horatio simply passes. Similarly, Vera either moves or
jumps one of her tokens downward in each of her turns, unless no moves or jumps are possible.
The first player to move all their tokens off the edge of the board wins.

¹I don’t know what this game is called, or even if I’m remembering the rules correctly; I learned it (or something
like it) from Lenny Pitt, who recommended playing it with fake-sugar packets at restaurants. Constantin Fahlberg and
Ira Remsen synthesized saccharin for the first time in 1878, while Fahlberg was a postdoc in Remsen’s lab investigating
coal tar derivatives. In 1900, Ovidio Rebaudi published the first chemical analysis of ka’a he’ê, a medicinal plant
cultivated by the Guaraní for more than 1500 years, now more commonly known as Stevia rebaudiana.
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The complete recursion tree for our algorithm for the 4 queens problem.
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Vera wins the 3× 3 fake-sugar-packet game.
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We can use a simple backtracking algorithm to determine the best move for each player at
each turn. The state of the game consists of the locations of all the pieces and the player whose
turn it is. We recursively define a game state to be good or bad as follows:

• A game state is bad if all the opposing player’s tokens have reached their goals.

• A game state is good if the current player can move to a state that is bad for the opposing
player.

• A configuration is bad if every move leads to a state that is good for the opposing player.

This recursive definition immediately suggests a recursive backtracking algorithm to determine
whether a given state of the game is good or bad. Moreover, for any good state, the backtracking
algorithm finds a move leading to a bad state for the opposing player. Thus, by induction, any
player that finds the game in a good state on their turn can win the game, even if their opponent
plays perfectly; on the other hand, starting from a bad state, a player can win only if their
opponent makes a mistake.
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→
→
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→
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→
→
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The first two levels of the fake-sugar-packet game tree.

All computer game players are ultimately based on this simple backtracking strategy. However,
since most games have an enormous number of states, it is not possible to traverse the entire
game tree in practice. Instead, game programs employ other heuristics² to prune the game tree,
by ignoring states that are obviously good or bad (or at least obviously better or worse that other
states), and/or by cutting off the tree at a certain depth (or ply) and using a more efficient
heuristic to evaluate the leaves.

3.3 Subset Sum

Let’s consider a more complicated problem, called SubsetSum: Given a set X of positive integers
and target integer T , is there a subset of elements in X that add up to T? Notice that there
can be more than one such subset. For example, if X = {8, 6, 7, 5, 3,10, 9} and T = 15, the
answer is True, thanks to the subsets {8, 7} or {7,5, 3} or {6, 9} or {5, 10}. On the other hand,
if X = {11, 6,5, 1,7, 13,12} and T = 15, the answer is False.

There are two trivial cases. If the target value T is zero, then we can immediately return
True, because empty set is a subset of every set X , and the elements of the empty set add up to
zero.³ On the other hand, if T < 0, or if T 6= 0 but the set X is empty, then we can immediately
return False.

²A heuristic is an algorithm that doesn’t work.
³There’s no base case like the vacuous base case!

4



Algorithms Lecture 3: Backtracking [Fa’14]

For the general case, consider an arbitrary element x ∈ X . (We’ve already handled the case
where X is empty.) There is a subset of X that sums to T if and only if one of the following
statements is true:

• There is a subset of X that includes x and whose sum is T .

• There is a subset of X that excludes x and whose sum is T .

In the first case, there must be a subset of X \ {x} that sums to T − x; in the second case, there
must be a subset of X \ {x} that sums to T . So we can solve SubsetSum(X , T ) by reducing it
to two simpler instances: SubsetSum(X \ {x}, T − x) and SubsetSum(X \ {x}, T ). Here’s how
the resulting recusive algorithm might look if X is stored in an array.

SubsetSum(X [1 .. n], T ):
if T = 0

return True
else if T < 0 or n= 0

return False
else

return
�
SubsetSum(X [1 .. n− 1], T ) ∨ SubsetSum(X [1 .. n− 1], T − X [n])

�

Proving this algorithm correct is a straightforward exercise in induction. If T = 0, then the
elements of the empty subset sum to T , so True is the correct output. Otherwise, if T is negative
or the set X is empty, then no subset of X sums to T , so False is the correct output. Otherwise, if
there is a subset that sums to T , then either it contains X [n] or it doesn’t, and the Recursion
Fairy correctly checks for each of those possibilities. Done.

The running time T (n) clearly satisfies the recurrence T (n)≤ 2T (n− 1) +O(1), which we
can solve using either recursion trees or annihilators (or just guessing) to obtain the upper bound
T (n) = O(2n). In the worst case, the recursion tree for this algorithm is a complete binary tree
with depth n.

Here is a similar recursive algorithm that actually constructs a subset of X that sums to T , if
one exists. This algorithm also runs in O(2n) time.

ConstructSubset(X [1 .. n], T ):
if T = 0

return ∅
if T < 0 or n= 0

return None

Y ← ConstructSubset(X [1 .. n− 1], T )
if Y 6= None

return Y

Y ← ConstructSubset(X [1 .. n− 1], T − X [n])
if Y 6= None

return Y ∪ {X [n]}
return None

3.4 The General Pattern

ÆÆÆ Find a small choice whose correct answer would reduce the problem size. For each possible
answer, temporarily adopt that choice and recurse. (Don’t try to be clever about which choices
to try; just try them all.) The recursive subproblem is often more general than the original
target problem; in each recursive subproblem, we must consider only solutions that are
consistent with the choices we have already made.
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3.5 NFA acceptance

Recall that a nondeterministic finite-state automaton, or NFA, can be described as a directed
graph, whose edges are called states and whose edges have labels drawn from a finite set Σ called
the alphabet. Every NFA has a designated start state and a subset of accepting states. Any walk in
this graph has a label, which is a string formed by concatenating the labels of the edges in the
walk. A string w is accepted by an NFA if and only if there is a walk from the start state to one of
the accepting states whose label is w.

More formally (or at least, more symbolically), an NFA consists of a finite set Q of states, a
start state s ∈ Q, a set of accepting states A⊆ Q, and a transition function δ : Q×Σ→ 2Q. We
recursively extend the transition function to strings by defining

δ∗(q, w) =




{q} if w= ε,
⋃

r∈δ(q,a)

δ∗(r, x) if w= ax .

The NFA accepts string w if and only if the set δ∗(s, w) contains at least one accepting state.
We can express this acceptance criterion more directly as follows. We define a boolean

function Accepts?(q, w), which is True if the NFA would accept string w if we started in state q,
and False otherwise. This function has the following recursive definition:

Accepts?(q, w) :=





True if w= ε and q ∈ A

False if w= ε and q ∈ A
∨

r∈δ(q,a)

Accepts?(r, x) if w= ax

The NFA accepts w if and only if Accepts?(s, w) = True.
In the magical world of non-determinism, we can imagine that the NFA always magically makes

the right decision when faces with multiple transitions, or perhaps spawns off an independent
parallel thread for each possible choice. Alas, real computers are neither clairvoyant nor (despite
the increasing use of multiple cores) infinitely parallel. To simulate the NFA’s behavior directly,
we must recursively explore the consequences of each choice explicitly.

The recursive definition of Accepts? translates directly into the following recursive backtracking
algorithm. Here, the transition function δ and the accepting states A are represented as global
boolean arrays, where δ[q, a, r] = True if and only if r ∈ δ(q, a), and A[q] = True if and only
if q ∈ A.

Accepts?(q, w[1 .. n]):
if n= 0

return A[q]
for all states r

if δ[q, w[1], r] and Accepts?(r, w[2 .. n])
return True

return False

To determine whether the NFA accepts a string w, we call Accepts?(δ, A, s, w).
The running time of this algorithm satisfies the recursive inequailty T (n)≤ O(|Q|) · T (n− 1),

which immediately implies that T (n) = O(|Q|n).
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3.6 Longest Increasing Subsequence

Now suppose we are given a sequence of integers, and we want to find the longest subsequence
whose elements are in increasing order. More concretely, the input is an array A[1 .. n] of
integers, and we want to find the longest sequence of indices 1≤ i1 < i2 < · · · ik ≤ n such that
A[i j]< A[i j+1] for all j.

To derive a recursive algorithm for this problem, we start with a recursive definition of the
kinds of objects we’re playing with: sequences and subsequences.

A sequence of integers is either empty
or an integer followed by a sequence of integers.

This definition suggests the following strategy for devising a recursive algorithm. If the input
sequence is empty, there’s nothing to do. Otherwise, we only need to figure out what to do with
the first element of the input sequence; the Recursion Fairy will take care of everything else. We
can formalize this strategy somewhat by giving a recursive definition of subsequence (using array
notation to represent sequences):

The only subsequence of the empty sequence is the empty sequence.

A subsequence of A[1 .. n] is either a subsequence of A[2 .. n]
or A[1] followed by a subsequence of A[2 .. n].

We’re not just looking for just any subsequence, but a longest subsequence with the property
that elements are in increasing order. So let’s try to add those two conditions to our definition.
(I’ll omit the familiar vacuous base case.)

The LIS of A[1 .. n] is
either the LIS of A[2 .. n]

or A[1] followed by the LIS of A[2 .. n] with elements larger than A[1],
whichever is longer.

This definition is correct, but it’s not quite recursive—we’re defining the object ‘longest
increasing subsequence’ in terms of the slightly different object ‘longest increasing subsequence
with elements larger than x ’, which we haven’t properly defined yet. Fortunately, this second
object has a very similar recursive definition. (Again, I’m omitting the vacuous base case.)

If A[1]≤ x , the LIS of A[1 .. n] with elements larger than x is
the LIS of A[2 .. n] with elements larger than x .

Otherwise, the LIS of A[1 .. n] with elements larger than x is
either the LIS of A[2 .. n] with elements larger than x

or A[1] followed by the LIS of A[2 .. n] with elements larger than A[1],
whichever is longer.

The longest increasing subsequence without restrictions can now be redefined as the longest
increasing subsequence with elements larger than −∞. Rewriting this recursive definition into
pseudocode gives us the following recursive algorithm.
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LIS(A[1 .. n]):
return LISbigger(−∞, A[1 .. n])

LISbigger(prev, A[1 .. n]):
if n= 0

return 0
else

max← LISbigger(prev, A[2 .. n])
if A[1]> prev

L← 1+ LISbigger(A[1], A[2 .. n])
if L >max

max← L
return max

The running time of this algorithm satisfies the recurrence T (n)≤ 2T (n− 1) +O(1), which as
usual implies that T (n) = O(2n). We really shouldn’t be surprised by this running time; in the
worst case, the algorithm examines each of the 2n subsequences of the input array.

The following alternative strategy avoids defining a new object with the “larger than x”
constraint. We still only have to decide whether to include or exclude the first element A[1]. We
consider the case where A[1] is excluded exactly the same way, but to consider the case where
A[1] is included, we remove any elements of A[2 .. n] that are larger than A[1] before we recurse.
This new strategy gives us the following algorithm:

Filter(A[1 .. n], x):
j← 1
for i← 1 to n

if A[i]> x
B[ j]← A[i]; j← j + 1

return B[1 .. j]

LIS(A[1 .. n]):
if n= 0

return 0
else

max← LIS(prev, A[2 .. n])
L← 1+ LIS(A[1],Filter(A[2 .. n], A[1]))
if L >max

max← L
return max

The Filter subroutine clearly runs in O(n) time, so the running time of LIS satisfies the
recurrence T (n)≤ 2T (n− 1) +O(n), which solves to T (n)≤ O(2n) by the annihilator method.
This upper bound pessimistically assumes that Filter never actually removes any elements;
indeed, if the input sequence is sorted in increasing order, this assumption is correct.

3.7 Optimal Binary Search Trees

ÆÆÆ Retire this example? It’s not a bad example, exactly—it’s infinitely better than the execrable
matrix-chain multiplication problem from Aho, Hopcroft, and Ullman—but it’s not the best first
example of tree-like backtracking. Minimum-ink triangulation of convex polygons is both more
intuitive (geometry FTW!) and structurally equivalent. CFG parsing and regular expression
matching (really just a special case of parsing) have similar recursive structure, but are a bit
more complicated.

Our next example combines recursive backtracking with the divide-and-conquer strategy.
Recall that the running time for a successful search in a binary search tree is proportional to the
number of ancestors of the target node.⁴ As a result, the worst-case search time is proportional
to the depth of the tree. Thus, to minimize the worst-case search time, the height of the tree
should be as small as possible; by this metric, the ideal tree is perfectly balanced.

⁴An ancestor of a node v is either the node itself or an ancestor of the parent of v. A proper ancestor of v is either
the parent of v or a proper ancestor of the parent of v.
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In many applications of binary search trees, however, it is more important to minimize the
total cost of several searches rather than the worst-case cost of a single search. If x is a more
‘popular’ search target than y , we can save time by building a tree where the depth of x is smaller
than the depth of y, even if that means increasing the overall depth of the tree. A perfectly
balanced tree is not the best choice if some items are significantly more popular than others. In
fact, a totally unbalanced tree of depth Ω(n) might actually be the best choice!

This situation suggests the following problem. Suppose we are given a sorted array of keys
A[1 .. n] and an array of corresponding access frequencies f [1 .. n]. Our task is to build the
binary search tree that minimizes the total search time, assuming that there will be exactly f [i]
searches for each key A[i].

Before we think about how to solve this problem, we should first come up with a good
recursive definition of the function we are trying to optimize! Suppose we are also given a binary
search tree T with n nodes. Let vi denote the node that stores A[i], and let r be the index of the
root node. Ignoring constant factors, the cost of searching for A[i] is the number of nodes on the
path from the root vr to vi . Thus, the total cost of performing all the binary searches is given by
the following expression:

Cost(T, f [1 .. n]) =
n∑

i=1

f [i] ·#nodes between vr and vi

Every search path includes the root node vr . If i < r, then all other nodes on the search path to
vi are in the left subtree; similarly, if i > r, all other nodes on the search path to vi are in the
right subtree. Thus, we can partition the cost function into three parts as follows:

Cost(T, f [1 .. n]) =
r−1∑
i=1

f [i] ·#nodes between left(vr) and vi

+
n∑

i=1

f [i]

+
n∑

i=r+1

f [i] ·#nodes between right(vr) and vi

Now the first and third summations look exactly like our original expression (*) forCost(T, f [1 .. n]).
Simple substitution gives us our recursive definition for Cost:

Cost(T, f [1 .. n]) = Cost(left(T ), f [1 .. r − 1]) +
n∑

i=1

f [i] + Cost(right(T ), f [r + 1 .. n])

The base case for this recurrence is, as usual, n = 0; the cost of performing no searches in the
empty tree is zero.

Now our task is to compute the tree Topt that minimizes this cost function. Suppose we
somehow magically knew that the root of Topt is vr . Then the recursive definition of Cost(T, f )
immediately implies that the left subtree left(Topt) must be the optimal search tree for the keys
A[1 .. r − 1] and access frequencies f [1 .. r − 1]. Similarly, the right subtree right(Topt) must be
the optimal search tree for the keys A[r + 1 .. n] and access frequencies f [r + 1 .. n]. Once we
choose the correct key to store at the root, the Recursion Fairy automatically constructs
the rest of the optimal tree. More formally, let OptCost( f [1 .. n]) denote the total cost of the
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optimal search tree for the given frequency counts. We immediately have the following recursive
definition.

OptCost( f [1 .. n]) = min
1≤r≤n

¨
OptCost( f [1 .. r − 1]) +

n∑
i=1

f [i] + OptCost( f [r + 1 .. n])

«

Again, the base case is OptCost( f [1 .. 0]) = 0; the best way to organize no keys, which we will
plan to search zero times, is by storing them in the empty tree!

This recursive definition can be translated mechanically into a recursive algorithm, whose
running time T (n) satisfies the recurrence

T (n) = Θ(n) +
n∑

k=1

�
T (k− 1) + T (n− k)

�
.

The Θ(n) term comes from computing the total number of searches
∑n

i=1 f [i].
Yeah, that’s one ugly recurrence, but it’s actually easier to solve than it looks. To transform it

into a more familiar form, we regroup and collect identical terms, subtract the recurrence for
T (n− 1) to get rid of the summation, and then regroup again.

T (n) = Θ(n) + 2
n−1∑
k=0

T (k)

T (n− 1) = Θ(n− 1) + 2
n−2∑
k=0

T (k)

T (n)− T (n− 1) = Θ(1) + 2T (n− 1)

T (n) = 3T (n− 1) +Θ(1)

The solution T(n) = Θ(3n) now follows from the annihilator method.
Let me emphasize that this recursive algorithm does not examine all possible binary search

trees. The number of binary search trees with n nodes satisfies the recurrence

N(n) =
n−1∑
r=1

�
N(r − 1) · N(n− r)

�
,

which has the closed-from solution N(n) = Θ(4n/
p

n). Our algorithm saves considerable time
by searching independently for the optimal left and right subtrees. A full enumeration of binary
search trees would consider all possible pairings of left and right subtrees; hence the product in
the recurrence for N(n).

3.8 CFG Parsing?

Our final example is the parsing problem for context-free languages. Given a string w and
a context-free grammar G, does w belong to the language generated by G? Recall that a
context-free grammar over the alphabet Σ consists of a finite set Γ of non-terminals (disjoint
from Σ) and a finite set of production rules of the form A→ w, where A is a nonterminal and w is
a string over Σ∪ Γ .

Real-world applications of parsing normally require more information than just a single bit.
For example, compilers require parsers that output a parse tree of the input code; some natural
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language applications require the number of distinct parse trees for a given string; others assign
probabilities to the production rules and then ask for the most likely parse tree for a given string.
However, once we have an algorithm for the decision problem, it it not hard to extend it to answer
these more general questions.

We define a boolean function Generates?: Σ∗ × Γ , where Generates?(A, x) = True if and
only if x can be derived from A. At first glance, it seems that the production rules of the CFL
immediately give us a (rather complicated) recursive definition for this function; unfortunately,
there are a few problems.

• Consider the context-free grammar S→ ε | SS | (S) that generates all properly balanced
strings of parentheses. The “obvious” recursive algorithm for Generates?(S, w) would
recursively check whether x ∈ L(S) and y ∈ L(S), for every possible partition w= x • y,
including the trivial partition w= ε • w. It follows that Generates?(S, w) calls itself, leading
to an infinite loop.

• Consider another grammar that includes the productions S → A, A → B, and B → S,
possibly among others. The “obvious” recursive algorithm for Generates?(S, w) must call
Generates?(A, w), which calls Generates?(B, w), which calls Generates?(S, w), and we are
again in an infinite loop.

To avoid these issues, we will make the simplifying assumption that our input grammar is in
Chomsky normal form. Recall that a CNF grammar has the following special structure:

• The starting non-terminal S does not appear on the right side of any production rule.

• The starting non-terminal S may have the production rule S→ ε.
• Every other production rule has the form A→ BC (two non-terminals) or A→ a (one

terminal).

In an earlier lecture note, I describe an algorithm to convert any context-free grammar into
Chomsky normal form. Unfortunately, I still haven’t introduced all the algorithmic tools you
might need to really understand that algorithm; fortunately, for purposes of this note, it’s enough
to know that such an algorithm exists.

With this simplifying assumption in place, the function Generates? now has a relatively
straightforward recursive definition.

Generates?(A, x) =





True if |x | ≤ 1 and A→ x

False if |x | ≤ 1 and A 6→ x
∨

A→BC

∨
y•z=x

Generates?(B, y)∧Generates?(C , z) otherwise

The first two cases take care of terminal productions A→ a and the ε-production S→ ε (if the
grammar contains it). The notation A 6→ x means that A→ x is not a production rule in the given
grammar. In the generic case, for all production rules A→ BC , and for all ways of splitting x
into a non-empty prefix y and a non-empty suffix z, we recursively check whether y ∈ L(B) and
z ∈ L(C). Because we pass strictly smaller strings in the second argument of these recursive calls,
every branch of the recursion tree eventually terminates.

This recursive definition translates mechanically into a recursive algorithm. To bound the
precise running time of this algorithm, we need to solve a system of mutually recursive functions,
one for each non-terminal, where the function for each non-terminal A depends on the number
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of production rules A→ BC . For the sake of illustration, suppose each non-terminal has at most `
non-terminating production rules. Then the running time can be bounded by the recurrence

T (n) = Θ(n) + ` ·
n−1∑
k=1

�
T (k) + T (n− k)

�
= Θ(n) + 2` ·

n−1∑
k=1

T (k)

where the Θ(n) term accounts for the overhead of splitting the input string in n different ways.
The same approach as our analysis of optimal binary search trees (difference transformation
followed by annihilators) implies the solution T(n) = Θ((2`+ 1)n).

Exercises

1. (a) Let A[1 .. m] and B[1 .. n] be two arbitrary arrays. A common subsequence of A and B
is both a subsequence of A and a subsequence of B. Give a simple recursive definition
for the function lcs(A, B), which gives the length of the longest common subsequence
of A and B.

(b) Let A[1 .. m] and B[1 .. n] be two arbitrary arrays. A common supersequence of A and
B is another sequence that contains both A and B as subsequences. Give a simple
recursive definition for the function scs(A, B), which gives the length of the shortest
common supersequence of A and B.

(c) Call a sequence X [1 .. n] oscillating if X [i]< X [i+1] for all even i, and X [i]> X [i+1]
for all odd i. Give a simple recursive definition for the function los(A), which gives
the length of the longest oscillating subsequence of an arbitrary array A of integers.

(d) Give a simple recursive definition for the function sos(A), which gives the length of
the shortest oscillating supersequence of an arbitrary array A of integers.

(e) Call a sequence X [1 .. n] accelerating if 2 · X [i] < X [i − 1] + X [i + 1] for all i. Give
a simple recursive definition for the function lxs(A), which gives the length of the
longest accelerating subsequence of an arbitrary array A of integers.

For more backtracking exercises, see the next two lecture notes!
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Wouldn’t the sentence “I want to put a hyphen between the words Fish and
And and And and Chips in my Fish-And-Chips sign.” have been clearer if
quotation marks had been placed before Fish, and between Fish and and,
and and and And, and And and and, and and and And, and And and and,
and and and Chips, as well as after Chips?1

— Martin Gardner, Aha! Insight (1978)

4 Efficient Exponential-Time Algorithms?

In another lecture note, we discuss the class of NP-hard problems. For every problem in this
class, the fastest algorithm anyone knows has an exponential running time. Moreover, there
is very strong evidence (but alas, no proof) that it is impossible to solve any NP-hard problem
in less than exponential time—it’s not that we’re all stupid; the problems really are that hard!
Unfortunately, an enormous number of problems that arise in practice are NP-hard; for some of
these problems, even approximating the right answer is NP-hard.

Suppose we absolutely have to find the exact solution to some NP-hard problem. A polynomial-
time algorithm is almost certainly out of the question; the best running time we can hope for is
exponential. But which exponential? An algorithm that runs in O(1.5n) time, while still unusable
for large problems, is still significantly better than an algorithm that runs in O(2n) time!

For most NP-hard problems, the only approach that is guaranteed to find an optimal solution
is recursive backtracking. The most straightforward version of this approach is to recursively
generate all possible solutions and check each one: all satisfying assignments, or all vertex
colorings, or all subsets, or all permutations, or whatever. However, most NP-hard problems have
some additional structure that allows us to prune away most of the branches of the recursion
tree, thereby drastically reducing the running time.

4.1 3SAT

Let’s consider the mother of all NP-hard problems: 3SAT. Given a boolean formula in conjunctive
normal form, with at most three literals in each clause, our task is to determine whether any
assignment of values of the variables makes the formula true. Yes, this problem is NP-hard, which
means that a polynomial algorithm is almost certainly impossible. Too bad; we have to solve the
problem anyway.

The trivial solution is to try every possible assignment. We’ll evaluate the running time of our
3SAT algorithms in terms of the number of variables in the formula, so let’s call that n. Provided
any clause appears in our input formula at most once—a condition that we can easily enforce in
polynomial time—the overall input size is O(n3). There are 2n possible assignments, and we can
evaluate each assignment in O(n3) time, so the overall running time is O(2nn3).

¹If you ever decide to read this sentence out loud, be sure to pause briefly between ‘Fish and and’ and ‘and and
and And’, ‘and and and And’ and ‘and And and and’, ‘and And and and’ and ‘and and and And’, ‘and and and And’
and ‘and And and and’, and ‘and And and and’ and ‘and and and Chips’!

Did you notice the punctuation I carefully inserted between ‘Fish and and’ and ‘and’, ’and’ and ’and and and And’,
‘and and and And’ and ’and and and And’, ‘and and and And’ and ’and’, ’and’ and ‘and And and and’, ‘and And and
and’ and ‘and And and and’, ‘and And and and’ and ’and’, ’and’ and ‘and and and And’, ‘and and and And’ and ‘and
and and And’, ‘and and and And’ and ‘and’, ‘and’ and ‘and And and and’, ‘and And and and’ and ‘and’, ‘and’ and ‘and
And and and’, ‘and And and and’ and ‘and’, and ‘and’ and ‘and and and Chips’?
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Since polynomial factors like n3 are essentially noise when the overall running time is
exponential, from now on I’ll use poly(n) to represent some arbitrary polynomial in n; in other
words, poly(n) = nO(1). For example, the trivial algorithm for 3SAT runs in time O(2n poly(n)).

We can make this algorithm smarter by exploiting the special recursive structure of 3CNF
formulas:

A 3CNF formula is either nothing
or a clause with three literals ∧ a 3CNF formula

Suppose we want to decide whether some 3CNF formula Φ with n variables is satisfiable. Of
course this is trivial if Φ is the empty formula, so suppose

Φ= (x ∨ y ∨ z)∧Φ′

for some literals x , y, z and some 3CNF formula Φ′. By distributing the ∧ across the ∨s, we can
rewrite Φ as follows:

Φ= (x ∧Φ′)∨ (y ∧Φ′)∨ (z ∧Φ′)
For any boolean formula Ψ and any literal x , let Ψ|x (pronounced “sigh given eks") denote the
simpler boolean formula obtained by assuming x is true. It’s not hard to prove by induction (hint,
hint) that x ∧Ψ = x ∧Ψ|x , which implies that

Φ= (x ∧Φ′|x)∨ (y ∧Φ′|y)∨ (z ∧Φ′|z).

Thus, in any satisfying assignment for Φ, either x is true and Φ′|x is satisfiable, or y is true and
Φ′|y is satisfiable, or z is true and Φ′|z is satisfiable. Each of the smaller formulas has at most
n− 1 variables. If we recursively check all three possibilities, we get the running time recurrence

T (n)≤ 3T (n− 1) + poly(n),

whose solution is O(3n poly(n)). So we’ve actually done worse!
But these three recursive cases are not mutually exclusive! If Φ′|x is not satisfiable, then x

must be false in any satisfying assignment for Φ. So instead of recursively checking Φ′|y in the
second step, we can check the even simpler formula Φ′| x̄ y . Similarly, if Φ′| x̄ y is not satisfiable,
then we know that y must be false in any satisfying assignment, so we can recursively check
Φ′| x̄ ȳz in the third step.

3sat(Φ):
if Φ=∅

return True

(x ∨ y ∨ z)∧Φ′← Φ
if 3sat(Φ|x)

return True
if 3sat(Φ| x̄ y)

return True
return 3sat(Φ| x̄ ȳz)

The running time off this algorithm obeys the recurrence

T (n) = T (n− 1) + T (n− 2) + T (n− 3) + poly(n),
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where poly(n) denotes the polynomial time required to simplify boolean formulas, handle control
flow, move stuff into and out of the recursion stack, and so on. The annihilator method gives us
the solution

T (n) = O(λn poly(n)) = O(1.83928675522n)

where λ≈ 1.83928675521 . . . is the largest root of the characteristic polynomial r3 − r2 − r − 1.
(Notice that we cleverly eliminated the polynomial noise by increasing the base of the exponent
ever so slightly.)

We can improve this algorithm further by eliminating pure literals from the formula before
recursing. A literal x is pure in if it appears in the formula Φ but its negation x̄ does not. It’s not
hard to prove (hint, hint) that if Φ has a satisfying assignment, then it has a satisfying assignment
where every pure literal is true. If Φ = (x ∨ y ∨ z) ∧ Φ′ has no pure literals, then some in Φ
contains the literal x̄ , so we can write

Φ= (x ∨ y ∨ z)∧ ( x̄ ∨ u∨ v)∧Φ′

for some literals u and v (each of which might be y , ȳ , z, or z̄). It follows that the first recursive
formula Φ|x has contains the clause (u∨ v). We can recursively eliminate the variables u and v
just as we tested the variables y and x in the second and third cases of our previous algorithm:

Φ|x = (u∨ v)∧Φ′|x = (u∧Φ′|xu)∨ (v ∧Φ′|xūv).

Here is our new faster algorithm:

3sat(Φ):
if Φ=∅

return True
if Φ has a pure literal x

return 3sat(Φ|x)
(x ∨ y ∨ z)∧ ( x̄ ∨ u∨ v)∧Φ′← Φ
if 3sat(Φ|xu)

return True
if 3sat(Φ|xūv)

return True
if 3sat(Φ| x̄ y)

return True
return 3sat(Φ| x̄ ȳz)

The running time T (n) of this new algorithm satisfies the recurrence

T (n) = 2T (n− 2) + 2T (n− 3) + poly(n),

and the annihilator method implies that

T (n) = O(µn poly(n)) = O(1.76929235425n)

where µ≈ 1.76929235424 . . . is the largest root of the characteristic polynomial r3 − 2r − 2.
Naturally, this approach can be extended much further; since 1998, at least fifteen different

3SAT algorithms have been published, each improving the running time by a small amount. As of
2010, the fastest deterministic algorithm for 3SAT runs in O(1.33334n) time², and the fastest

²Robin A. Moser and Dominik Scheder. A full derandomization of Schöning’s k-SAT algorithm. ArXiv:1008.4067,
2010.
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randomized algorithm runs in O(1.32113n) expected time³, but there is good reason to believe
that these are not the best possible.

4.2 Maximum Independent Set

Now suppose we are given an undirected graph G and are asked to find the size of the largest
independent set, that is, the largest subset of the vertices of G with no edges between them. Once
again, we have an obvious recursive algorithm: Try every subset of nodes, and return the largest
subset with no edges. Expressed recursively, the algorithm might look like this.

MaximumIndSetSize(G):
if G =∅

return 0
else

v← any node in G
withv← 1+MaximumIndSetSize(G \ N(v))
withoutv←MaximumIndSetSize(G \ {v})
return max{withv, withoutv}.

Here, N(v) denotes the neighborhood of v: The set containing v and all of its neighbors. Our
algorithm is exploiting the fact that if an independent set contains v, then by definition it contains
none of v’s neighbors. In the worst case, v has no neighbors, so G \ {v} = G \ N(v). Thus, the
running time of this algorithm satisfies the recurrence T (n) = 2T (n−1)+poly(n) = O(2n poly(n)).
Surprise, surprise.

This algorithm is mirroring a crude recursive upper bound for the number of maximal
independent sets in a graph; an independent set is maximal if every vertex in G is either
already in the set or a neighbor of a vertex in the set. If the graph is non-empty, then every
maximal independent set either includes or excludes each vertex. Thus, the number of maximal
independent sets satisfies the recurrence M(n) ≤ 2M(n− 1), with base case M(1) = 1. The
annihilator method gives us M(n)≤ 2n − 1. The only subset that we aren’t counting with this
upper bound is the empty set!

We can speed up our algorithm by making several careful modifications to avoid the worst
case of the running-time recurrence.

• If v has no neighbors, then N(v) = {v}, and both recursive calls consider a graph with
n−1 nodes. But in this case, v is in every maximal independent set, so one of the recursive
calls is redundant. On the other hand, if v has at least one neighbor, then G \ N(v) has at
most n− 2 nodes. So now we have the following recurrence.

T (n)≤ O(poly(n)) +max

�
T (n− 1)
T (n− 1) + T (n− 2)

�
= O(1.61803398875n)

The upper bound is derived by solving each case separately using the annihilator method
and taking the larger of the two solutions. The first case gives us T (n) = O(poly(n)); the
second case yields our old friends the Fibonacci numbers.

• We can improve this bound even more by examining the new worst case: v has exactly
one neighbor w. In this case, either v or w appears in every maximal independent set.

³Kazuo Iwama, Kazuhisa Seto, Tadashi Takai, and Suguru Tamaki. Improved randomized algorithms for 3-SAT. To
appear in Proc. STACS, 2010.
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However, given any independent set that includes w, removing w and adding v creates
another independent set of the same size. It follows that some maximum independent set
includes v, so we don’t need to search the graph G \ {v}, and the G \N(v) has at most n−2
nodes. On the other hand, if the degree of v is at least 2, then G \ N(v) has at most n− 3
nodes.

T (n)≤ O(poly(n)) +max





T (n− 1)
T (n− 2)
T (n− 1) + T (n− 3)



= O(1.46557123188n)

The base of the exponent is the largest root of the characteristic polynomial r3 − r2 − 1.

• Now the worst-case is a graph where every node has degree at least 2; we split this worst
case into two subcases. If G has a node v with degree 3 or more, then G \ N(v) has at
most n− 4 nodes. Otherwise (since we have already considered nodes of degree 0 and 1),
every node in G has degree 2. Let u, v, w be a path of three nodes in G (possibly with u
adjacent to w). In any maximal independent set, either v is present and u, w are absent, or
u is present and its two neighbors are absent, or w is present and its two neighbors are
absent. In all three cases, we recursively count maximal independent sets in a graph with
n− 3 nodes.

T (n)≤ O(poly(n))+max





T (n− 1)
T (n− 2)
T (n− 1) + T (n− 4)
3T (n− 3)




= O(3n/3 poly(n)) = O(1.44224957031n)

The base of the exponent is 3p3, the largest root of the characteristic polynomial r3 − 3.
The third case would give us a bound of O(1.3802775691n), where the base is the largest
root of the characteristic polynomial r4 − r3 − 1.

• Now the worst case for our algorithm is a graph with an extraordinarily special structure:
Every node has degree 2. In other words, every component of G is a cycle. But it is easy
to prove that the largest independent set in a cycle of length k has size bk/2c. So we can
handle this case directly in polynomial time, without no recursion at all!

T (n)≤ O(poly(n)) +max





T (n− 1)
T (n− 2)
T (n− 1) + T (n− 4)



= O(1.3802775691n)

Again, the base of the exponential running time is the largest root of the characteristic
polynomial r4 − r3 − 1.
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MaximumIndSetSize(G):
if G =∅

return 0

else if G has a node v with degree 0 or 1
return 1+MaximumIndSetSize(G \ N(v)) 〈〈≤ n− 1〉〉

else if G has a node v with degree greater than 2
withv← 1+MaximumIndSetSize(G \ N(v)) 〈〈≤ n− 4〉〉
withoutv←MaximumIndSetSize(G \ {v}) 〈〈≤ n− 1〉〉
return max{withv, withoutv}

else 〈〈every node in G has degree 2〉〉
total← 0
for each component of G

k← number of vertices in the component
total← total+ bk/2c

return total

As with 3SAT, further improvements are possible but increasingly complex. As of 2010, the
fastest published algorithm for computing maximum independent sets runs in O(1.2210n) time⁴.
However, in an unpublished technical report, Robson describes a computer-generated algorithm
that runs in O(2n/4 poly(n)) = O(1.1889n) time; just the description of this algorithm requires
more than 15 pages.⁵

Exercises

1. (a) Prove that any n-vertex graph has at most 3n/3 maximal independent sets. [Hint:
Modify the MaximumIndSetSize algorithm so that it lists all maximal independent
sets.]

(b) Describe an n-vertex graph with exactly 3n/3 maximal independent sets, for every
integer n that is a multiple of 3.

?2. Describe an algorithm to solve 3SAT in time O(φn poly(n)), where φ = (1 +
p

5)/2 ≈
1.618034. [Hint: Prove that in each recursive call, either you have just eliminated a pure
literal, or the formula has a clause with at most two literals. What recurrence leads to this
running time?]

⁴Fedor V. Fomin, Fabrizio Grandoni, and Dieter Kratsch. Measure and conquer: A simple O(20.288n) independent
set algorithm. Proc. SODA, 18–25, 2006.

⁵Mike Robson. Finding a maximum independent set in time O(2n/4). Technical report 1251-01, LaBRI, 2001.
〈http://www.labri.fr/perso/robson/mis/techrep.ps〉.
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Those who cannot remember the past are doomed to repeat it.

— George Santayana, The Life of Reason, Book I:
Introduction and Reason in Common Sense (1905)

The 1950s were not good years for mathematical research. We had a very interesting
gentleman in Washington named Wilson. He was secretary of Defense, and he actually had a
pathological fear and hatred of the word ‘research’. I’m not using the term lightly; I’m using
it precisely. His face would suffuse, he would turn red, and he would get violent if people
used the term ‘research’ in his presence. You can imagine how he felt, then, about the term
‘mathematical’. The RAND Corporation was employed by the Air Force, and the Air Force had
Wilson as its boss, essentially. Hence, I felt I had to do something to shield Wilson and the Air
Force from the fact that I was really doing mathematics inside the RAND Corporation. What
title, what name, could I choose?

— Richard Bellman, on the origin of his term ‘dynamic programming’ (1984)

If we all listened to the professor, we may be all looking for professor jobs.

— Pittsburgh Steelers’ head coach Bill Cowher, responding to
David Romer’s dynamic-programming analysis of football strategy (2003)

5 Dynamic Programming

5.1 Fibonacci Numbers

5.1.1 Recursive Definitions Are Recursive Algorithms

The Fibonacci numbers Fn, named after Leonardo Fibonacci Pisano¹, the mathematician who
popularized ‘algorism’ in Europe in the 13th century, are defined as follows: F0 = 0, F1 = 1, and
Fn = Fn−1 + Fn−2 for all n≥ 2. The recursive definition of Fibonacci numbers immediately gives
us a recursive algorithm for computing them:

RecFibo(n):
if (n< 2)

return n
else

return RecFibo(n− 1) +RecFibo(n− 2)

How long does this algorithm take? Except for the recursive calls, the entire algorithm
requires only a constant number of steps: one comparison and possibly one addition. If T (n)
represents the number of recursive calls to RecFibo, we have the recurrence

T (0) = 1, T (1) = 1, T (n) = T (n− 1) + T (n− 2) + 1.

This looks an awful lot like the recurrence for Fibonacci numbers! The annihilator method
gives us an asymptotic bound of Θ(φn), where φ = (

p
5+ 1)/2≈ 1.61803398875, the so-called

golden ratio, is the largest root of the polynomial r2 − r − 1. But it’s fairly easy to prove (hint,
hint) the exact solution T(n) = 2Fn+1 − 1. In other words, computing Fn using this algorithm
takes more than twice as many steps as just counting to Fn!

Another way to see this is that the RecFibo is building a big binary tree of additions, with
nothing but zeros and ones at the leaves. Since the eventual output is Fn, our algorithm must

¹literally, “Leonardo, son of Bonacci, of Pisa”
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call RecRibo(1) (which returns 1) exactly Fn times. A quick inductive argument implies that
RecFibo(0) is called exactly Fn−1 times. Thus, the recursion tree has Fn + Fn−1 = Fn+1 leaves,
and therefore, because it’s a full binary tree, it must have 2Fn+1 − 1 nodes.

5.1.2 Memo(r)ization: Remember Everything

The obvious reason for the recursive algorithm’s lack of speed is that it computes the same
Fibonacci numbers over and over and over. A single call to RecFibo(n) results in one recursive call
to RecFibo(n−1), two recursive calls to RecFibo(n−2), three recursive calls to RecFibo(n− 3),
five recursive calls to RecFibo(n− 4), and in general Fk−1 recursive calls to RecFibo(n− k) for
any integer 0≤ k < n. Each call is recomputing some Fibonacci number from scratch.

We can speed up our recursive algorithm considerably just by writing down the results of
our recursive calls and looking them up again if we need them later. This process was dubbed
memoization by Richard Michie in the late 1960s.²

MemFibo(n):
if (n< 2)

return n
else

if F[n] is undefined
F[n]←MemFibo(n− 1) +MemFibo(n− 2)

return F[n]

Memoization clearly decreases the running time of the algorithm, but by how much? If we
actually trace through the recursive calls made by MemFibo, we find that the array F[ ] is filled
from the bottom up: first F[2], then F[3], and so on, up to F[n]. This pattern can be verified by
induction: Each entry F[i] is filled only after its predecessor F[i−1]. If we ignore the time spent
in recursive calls, it requires only constant time to evaluate the recurrence for each Fibonacci
number Fi. But by design, the recurrence for Fi is evaluated only once for each index i! We
conclude that MemFibo performs only O(n) additions, an exponential improvement over the
naïve recursive algorithm!

5.1.3 Dynamic Programming: Fill Deliberately

But once we see how the array F[ ] is filled, we can replace the recursion with a simple loop that
intentionally fills the array in order, instead of relying on the complicated recursion to do it for
us ‘accidentally’.

IterFibo(n):
F[0]← 0
F[1]← 1
for i← 2 to n

F[i]← F[i − 1] + F[i − 2]
return F[n]

Now the time analysis is immediate: IterFibo clearly uses O(n) additions and stores O(n)
integers.

This gives us our first explicit dynamic programming algorithm. The dynamic programming
paradigm was developed by Richard Bellman in the mid-1950s, while working at the RAND

²“My name is Elmer J. Fudd, millionaire. I own a mansion and a yacht.”
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Corporation. Bellman deliberately chose the name ‘dynamic programming’ to hide the mathe-
matical character of his work from his military bosses, who were actively hostile toward anything
resembling mathematical research. Here, the word ‘programming’ does not refer to writing code,
but rather to the older sense of planning or scheduling, typically by filling in a table. For example,
sports programs and theater programs are schedules of important events (with ads); television
programming involves filling each available time slot with a show (and ads); degree programs are
schedules of classes to be taken (with ads). The Air Force funded Bellman and others to develop
methods for constructing training and logistics schedules, or as they called them, ‘programs’. The
word ‘dynamic’ is meant to suggest that the table is filled in over time, rather than all at once (as
in ‘linear programming’, which we will see later in the semester).³

5.1.4 Don’t Remember Everything After All

In many dynamic programming algorithms, it is not necessary to retain all intermediate results
through the entire computation. For example, we can significantly reduce the space requirements
of our algorithm IterFibo by maintaining only the two newest elements of the array:

IterFibo2(n):
prev← 1
curr← 0
for i← 1 to n

next← curr+ prev
prev← curr
curr← next

return curr

(This algorithm uses the non-standard but perfectly consistent base case F−1 = 1 so that
IterFibo2(0) returns the correct value 0.)

5.1.5 Faster! Faster!

Even this algorithm can be improved further, using the following wonderful fact:
�
0 1
1 1

��
x
y

�
=

�
y

x + y

�

In other words, multiplying a two-dimensional vector by the matrix
�

0 1
1 1

�
does exactly the

same thing as one iteration of the inner loop of IterFibo2. This might lead us to believe that
multiplying by the matrix n times is the same as iterating the loop n times:

�
0 1
1 1

�n �
1
0

�
=

�
Fn−1
Fn

�
.

A quick inductive argument proves this fact. So if we want the nth Fibonacci number, we just have
to compute the nth power of the matrix

�
0 1
1 1

�
. If we use repeated squaring, computing the nth

power of something requires only O(log n)multiplications. In this case, that means O(log n) 2×2
matrix multiplications, each of which reduces to a constant number of integer multiplications
and additions. Thus, we can compute Fn in only O(logn) integer arithmetic operations.

This is an exponential speedup over the standard iterative algorithm, which was already an
exponential speedup over our original recursive algorithm. Right?

³“I thought dynamic programming was a good name. It was something not even a Congressman could object to.
So I used it as an umbrella for my activities.”
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5.1.6 Whoa! Not so fast!

Well, not exactly. Fibonacci numbers grow exponentially fast. The nth Fibonacci number is
approximately n log10φ ≈ n/5 decimal digits long, or n log2φ ≈ 2n/3 bits. So we can’t possibly
compute Fn in logarithmic time — we need Ω(n) time just to write down the answer!

The way out of this apparent paradox is to observe thatwe can’t perform arbitrary-precision
arithmetic in constant time. Let M(n) denote the time required to multiply two n-digit numbers.
The matrix-based algorithm’s actual running time obeys the recurrence T (n) = T (bn/2c)+M(n),
which solves to T (n) = O(M(n)) using recursion trees. The fastest known multiplication
algorithm runs in time O(n log n2O(log∗ n)), so that is also the running time of the fastest algorithm
known to compute Fibonacci numbers.

Is this algorithm slower than our initial “linear-time” iterative algorithm? No! Addition isn’t
free, either. Adding two n-digit numbers takes O(n) time, so the running time of the iterative
algorithm is O(n2). (Do you see why?) The matrix-squaring algorithm really is faster than the
iterative addition algorithm, but not exponentially faster.

In the original recursive algorithm, the extra cost of arbitrary-precision arithmetic is
overwhelmed by the huge number of recursive calls. The correct recurrence is T (n) =
T (n − 1) + T (n − 2) + O(n), for which the annihilator method still implies the solution
T (n) = O(φn).

5.2 Longest Increasing Subsequence

In a previous lecture, we developed a recursive algorithm to find the length of the longest
increasing subsequence of a given sequence of numbers. Given an array A[1 .. n], the length of
the longest increasing subsequence is computed by the function call LISbigger(−∞, A[1 .. n]),
where LISbigger is the following recursive algorithm:

LISbigger(prev, A[1 .. n]):
if n= 0

return 0
else

max← LISbigger(prev, A[2 .. n])
if A[1]> prev

L← 1+ LISbigger(A[1], A[2 .. n])
if L >max

max← L
return max

We can simplify our notation slightly with two simple observations. First, the input variable
prev is always either −∞ or an element of the input array. Second, the second argument of
LISbigger is always a suffix of the original input array. If we add a new sentinel value A[0] = −∞
to the input array, we can identify any recursive subproblem with two array indices.

Thus, we can rewrite the recursive algorithm as follows. Add the sentinel value A[0] = −∞.
Let LIS(i, j) denote the length of the longest increasing subsequence of A[ j .. n] with all elements
larger than A[i]. Our goal is to compute LIS(0, 1). For all i < j, we have

LIS(i, j) =





0 if j > n

LIS(i, j + 1) if A[i]≥ A[ j]
max{LIS(i, j + 1), 1+ LIS( j, j + 1)} otherwise
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Because each recursive subproblem can be identified by two indices i and j, we can store the
intermediate values in a two-dimensional array LIS[0 ..n, 1 .. n].⁴ Since there are O(n2) entries
in the table, our memoized algorithm uses O(n2) space. Each entry in the table can be computed
in O(1) time once we know its predecessors, so our memoized algorithm runs in O(n2) time.

It’s not immediately clear what order the recursive algorithm fills the rest of the table; all we
can tell from the recurrence is that each entry LIS[i, j] is filled in after the entries LIS[i, j + 1]
and LIS[ j, j + 1] in the next columns. But just this partial information is enough to give us an
explicit evaluation order. If we fill in our table one column at a time, from right to left, then
whenever we reach an entry in the table, the entries it depends on are already available.

i

j

Dependencies in the memoization table for longest increasing subsequence, and a legal evaluation order

Finally, putting everything together, we obtain the following dynamic programming algorithm:

LIS(A[1 .. n]):
A[0]←−∞ 〈〈Add a sentinel〉〉
for i← 0 to n 〈〈Base cases〉〉

LIS[i, n+ 1]← 0

for j← n downto 1
for i← 0 to j − 1

if A[i]≥ A[ j]
LIS[i, j]← LIS[i, j + 1]

else
LIS[i, j]←max{LIS[i, j + 1], 1+ LIS[ j, j + 1]}

return LIS[0, 1]

As expected, the algorithm clearly uses O(n2) time and space. However, we can reduce the space
to O(n) by only maintaining the two most recent columns of the table, LIS[·, j] and LIS[·, j+1].⁵

This is not the only recursive strategy we could use for computing longest increasing
subsequences efficiently. Here is another recurrence that gives us the O(n) space bound for
free. Let LIS′(i) denote the length of the longest increasing subsequence of A[i .. n] that starts
with A[i]. Our goal is to compute LIS′(0)− 1; we subtract 1 to ignore the sentinel value −∞.
To define LIS′(i) recursively, we only need to specify the second element in subsequence; the
Recursion Fairy will do the rest.

LIS′(i) = 1+max
�

LIS′( j) | j > i and A[ j]> A[i]
	

Here, I’m assuming that max∅= 0, so that the base case is L′(n) = 1 falls out of the recurrence
automatically. Memoizing this recurrence requires only O(n) space, and the resulting algorithm

⁴In fact, we only need half of this array, because we always have i < j. But even if we cared about constant factors
in this class (we don’t), this would be the wrong time to worry about them. The first order of business is to find an
algorithm that actually works; once we have that, then we can think about optimizing it.

⁵See, I told you not to worry about constant factors yet!
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runs in O(n2) time. To transform this memoized recurrence into a dynamic programming
algorithm, we only need to guarantee that LIS′( j) is computed before LIS′(i) whenever i < j.

LIS2(A[1 .. n]):
A[0] = −∞ 〈〈Add a sentinel〉〉
for i← n downto 0

LIS′[i]← 1
for j← i + 1 to n

if A[ j]> A[i] and 1+ LIS′[ j]> LIS′[i]
LIS′[i]← 1+ LIS′[ j]

return LIS′[0]− 1 〈〈Don’t count the sentinel〉〉

5.3 The Pattern: Smart Recursion

In a nutshell, dynamic programming is recursion without repetition. Dynamic programming
algorithms store the solutions of intermediate subproblems, often but not always in some kind of
array or table. Many algorithms students make the mistake of focusing on the table (because
tables are easy and familiar) instead of the much more important (and difficult) task of finding a
correct recurrence. As long as we memoize the correct recurrence, an explicit table isn’t really
necessary, but if the recursion is incorrect, nothing works.

Dynamic programming is not about filling in tables.
It’s about smart recursion!

Dynamic programming algorithms are almost always developed in two distinct stages.

1. Formulate the problem recursively. Write down a recursive formula or algorithm for the
whole problem in terms of the answers to smaller subproblems. This is the hard part. It
generally helps to think in terms of a recursive definition of the object you’re trying to
construct. A complete recursive formulation has two parts:

(a) Describe the precise function you want to evaluate, in coherent English. Without this
specification, it is impossible, even in principle, to determine whether your solution is
correct.

(b) Give a formal recursive definition of that function.

2. Build solutions to your recurrence from the bottom up. Write an algorithm that starts
with the base cases of your recurrence and works its way up to the final solution, by
considering intermediate subproblems in the correct order. This stage can be broken down
into several smaller, relatively mechanical steps:

(a) Identify the subproblems. What are all the different ways can your recursive
algorithm call itself, starting with some initial input? For example, the argument to
RecFibo is always an integer between 0 and n.

(b) Analyze space and running time. The number of possible distinct subproblems
determines the space complexity of your memoized algorithm. To compute the
time complexity, add up the running times of all possible subproblems, ignoring the
recursive calls. For example, if we already know Fi−1 and Fi−2, we can compute Fi in
O(1) time, so computing the first n Fibonacci numbers takes O(n) time.
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(c) Choose a data structure to memoize intermediate results. For most problems,
each recursive subproblem can be identified by a few integers, so you can use a
multidimensional array. For some problems, however, a more complicated data
structure is required.

(d) Identify dependencies between subproblems. Except for the base cases, every
recursive subproblem depends on other subproblems—which ones? Draw a picture of
your data structure, pick a generic element, and draw arrows from each of the other
elements it depends on. Then formalize your picture.

(e) Find a good evaluation order. Order the subproblems so that each subproblem
comes after the subproblems it depends on. Typically, this means you should consider
the base cases first, then the subproblems that depends only on base cases, and so on.
More formally, the dependencies you identified in the previous step define a partial
order over the subproblems; in this step, you need to find a linear extension of that
partial order. Be careful!

(f) Write down the algorithm. You know what order to consider the subproblems, and
you know how to solve each subproblem. So do that! If your data structure is an array,
this usually means writing a few nested for-loops around your original recurrence.
You don’t need to do this on homework or exams.

Of course, you have to prove that each of these steps is correct. If your recurrence is wrong, or if
you try to build up answers in the wrong order, your algorithm won’t work!

5.4 Warning: Greed is Stupid

If we’re very very very very lucky, we can bypass all the recurrences and tables and so forth, and
solve the problem using a greedy algorithm. The general greedy strategy is look for the best
first step, take it, and then continue. While this approach seems very natural, it almost never
works; optimization problems that can be solved correctly by a greedy algorithm are very rare.
Nevertheless, for many problems that should be solved by dynamic programming, many students’
first intuition is to apply a greedy strategy.

For example, a greedy algorithm for the edit distance problem might look for the longest
common substring of the two strings, match up those substrings (since those substitutions don’t
cost anything), and then recursively look for the edit distances between the left halves and
right halves of the strings. If there is no common substring—that is, if the two strings have no
characters in common—the edit distance is clearly the length of the larger string. If this sounds
like a stupid hack to you, pat yourself on the back. It isn’t even close to the correct solution.

Everyone should tattoo the following sentence on the back of their hands, right under all the
rules about logarithms and big-Oh notation:

Greedy algorithms never work!
Use dynamic programming instead!

What, never?
No, never!
What, never?
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Well. . . hardly ever.⁶
A different lecture note describes the effort required to prove that greedy algorithms are

correct, in the rare instances when they are. You will not receive any credit for any greedy
algorithm for any problem in this class without a formal proof of correctness. We’ll push
through the formal proofs for several greedy algorithms later in the semester.

5.5 Edit Distance

The edit distance between two words—sometimes also called the Levenshtein distance—is the
minimum number of letter insertions, letter deletions, and letter substitutions required to
transform one word into another. For example, the edit distance between FOOD and MONEY is at
most four:

FOOD→ MOOD→ MON∧D→ MONED→ MONEY

A better way to display this editing process is to place the words one above the other, with a gap
in the first word for every insertion, and a gap in the second word for every deletion. Columns
with two different characters correspond to substitutions. Thus, the number of editing steps is
just the number of columns that don’t contain the same character twice.

F O O D

M O N E Y

It’s fairly obvious that you can’t get from FOOD to MONEY in three steps, so their edit distance
is exactly four. Unfortunately, this is not so easy in general. Here’s a longer example, showing
that the distance between ALGORITHM and ALTRUISTIC is at most six. Is this optimal?

A L G O R I T H M

A L T R U I S T I C

To develop a dynamic programming algorithm to compute the edit distance between two
strings, we first need to develop a recursive definition. Our gap representation for edit sequences
has a crucial “optimal substructure” property. Suppose we have the gap representation for the
shortest edit sequence for two strings. If we remove the last column, the remaining columns
must represent the shortest edit sequence for the remaining substrings. We can easily prove
this by contradiction. If the substrings had a shorter edit sequence, we could just glue the last
column back on and get a shorter edit sequence for the original strings. Once we figure out what
should go in the last column, the Recursion Fairy will magically give us the rest of the optimal
gap representation.

So let’s recursively define the edit distance between two strings A[1 .. m] and B[1 .. n], which
we denote by Edit(A[1 .. m], B[1 .. n]). If neither string is empty, there are three possibilities for
the last column in the shortest edit sequence:

• Insertion: The last entry in the bottom row is empty. In this case, the edit distance is
equal to Edit(A[1 .. m− 1], B[1 .. n]) + 1. The +1 is the cost of the final insertion, and the
recursive expression gives the minimum cost for the other columns.

⁶Greedy methods hardly ever work!
So give three cheers, and one cheer more,

for the careful Captain of the Pinafore!
Then give three cheers, and one cheer more,

for the Captain of the Pinafore!
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• Deletion: The last entry in the top row is empty. In this case, the edit distance is equal to
Edit(A[1 .. m], B[1 .. n− 1]) + 1. The +1 is the cost of the final deletion, and the recursive
expression gives the minimum cost for the other columns.

• Substitution: Both rows have characters in the last column. If the characters are the same,
the substitution is free, so the edit distance is equal to Edit(A[1 .. m−1], B[1 .. n−1]). If the
characters are different, then the edit distance is equal to Edit(A[1 .. m−1], B[1 .. n−1])+1.

The edit distance between A and B is the smallest of these three possibilities:⁷

Edit(A[1 .. m], B[1 .. n]) =min





Edit(A[1 .. m− 1], B[1 .. n]) + 1

Edit(A[1 .. m], B[1 .. n− 1]) + 1

Edit(A[1 .. m− 1], B[1 .. n− 1]) +
�
A[m] 6= B[n]

�





This recurrence has two easy base cases. The only way to convert the empty string into a
string of n characters is by performing n insertions. Similarly, the only way to convert a string of
m characters into the empty string is with m deletions, Thus, if ε denotes the empty string, we
have

Edit(A[1 .. m],ε) = m, Edit(ε, B[1 .. n]) = n.

Both of these expressions imply the trivial base case Edit(ε,ε) = 0.
Now notice that the arguments to our recursive subproblems are always prefixes of the original

strings A and B. We can simplify our notation by using the lengths of the prefixes, instead of the
prefixes themselves, as the arguments to our recursive function.

Let Edit(i, j) denote the edit distance between the prefixes A[1 .. i] and B[1 .. j].

This function satisfies the following recurrence:

Edit(i, j) =





i if j = 0

j if i = 0

min





Edit(i − 1, j) + 1,

Edit(i, j − 1) + 1,

Edit(i − 1, j − 1) +
�
A[i] 6= B[ j]

�





otherwise

The edit distance between the original strings A and B is just Edit(m, n). This recurrence
translates directly into a recursive algorithm; the precise running time is not obvious, but it’s
clearly exponential in m and n. Fortunately, we don’t care about the precise running time
of the recursive algorithm. The recursive running time wouldn’t tell us anything about our
eventual dynamic programming algorithm, so we’re just not going to bother computing it.⁸

Because each recursive subproblem can be identified by two indices i and j, we can memoize
intermediate values in a two-dimensional array Edit[0 .. m, 0 .. n]. Note that the index ranges
start at zero to accommodate the base cases. Since there are Θ(mn) entries in the table, our
memoized algorithm uses Θ(mn) space. Since each entry in the table can be computed in Θ(1)
time once we know its predecessors, our memoized algorithm runs in Θ(mn) time.

⁷Once again, I’m using Iverson’s bracket notation
�
P
�
to denote the indicator variable for the logical proposition P,

which has value 1 if P is true and 0 if P is false.
⁸In case you’re curious, the running time of the unmemoized recursive algorithm obeys the following recurrence:

T (m, n) =

¨
O(1) if n= 0 or m= 0,

T (m, n− 1) + T (m− 1, n) + T (n− 1, m− 1) +O(1) otherwise.
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i

j

Dependencies in the memoization table for edit distance, and a legal evaluation order

Each entry Edit[i, j] depends only on its three neighboring entries Edit[i−1, j], Edit[i, j − 1],
and Edit[i − 1, j − 1]. If we fill in our table in the standard row-major order—row by row from
top down, each row from left to right—then whenever we reach an entry in the table, the entries
it depends on are already available. Putting everything together, we obtain the following dynamic
programming algorithm:

EditDistance(A[1 .. m], B[1 .. n]):
for j← 1 to n

Edit[0, j]← j

for i← 1 to m
Edit[i, 0]← i
for j← 1 to n

if A[i] = B[ j]
Edit[i, j]←min {Edit[i − 1, j] + 1, Edit[i, j − 1] + 1, Edit[i − 1, j − 1]}

else
Edit[i, j]←min {Edit[i − 1, j] + 1, Edit[i, j − 1] + 1, Edit[i − 1, j − 1] + 1}

return Edit[m, n]

The resulting table for ALGORITHM→ ALTRUISTIC is shown on the next page. Bold numbers
indicate places where characters in the two strings are equal. The arrows represent the
predecessor(s) that actually define each entry. Each direction of arrow corresponds to a different
edit operation: horizontal=deletion, vertical=insertion, and diagonal=substitution. Bold
diagonal arrows indicate “free” substitutions of a letter for itself. Any path of arrows from the top
left corner to the bottom right corner of this table represents an optimal edit sequence between
the two strings. (There can be many such paths.) Moreover, since we can compute these arrows
in a post-processing phase from the values stored in the table, we can reconstruct the actual
optimal editing sequence in O(n+m) additional time.

The edit distance between ALGORITHM and ALTRUISTIC is indeed six. There are three paths
through this table from the top left to the bottom right, so there are three optimal edit sequences:

A L G O R I T H M

A L T R U I S T I C

A L G O R I T H M

A L T R U I S T I C

I don’t know of a general closed-form solution for this mess, but we can derive an upper bound by defining a new
function

T ′(N) = max
n+m=N

T (n, m) =

¨
O(1) if N = 0,

2T (N − 1) + T (N − 2) +O(1) otherwise.

The annihilator method implies that T ′(N) = O((1+
p

2)N ). Thus, the running time of our recursive edit-distance
algorithm is at most T ′(n+m) = O((1+

p
2)n+m).
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A L G O R I T H M

0→1→2→3→4→5→6→7→8→9
↓↘↘↘↘↘↘↘↘↘

A 1 0→1→2→3→4→5→6→7→8
↓ ↓↘↘↘↘↘↘↘↘↘

L 2 1 0→1→2→3→4→5→6→7
↓ ↓ ↓↘ ↘ ↘ ↘ ↘↘↘↘↘↘↘↘↘

T 3 2 1 1→2→3→4→4→5→6
↓ ↓ ↓ ↓↘ ↘↘↘↘↘↘↘↘↘ ↘ ↘

R 4 3 2 2 2 2→3→4→5→6
↓ ↓ ↓↘↓↘↓↘↓↘ ↘ ↘ ↘

U 5 4 3 3 3 3 3→4→5→6
↓ ↓ ↓↘↓↘↓↘↓↘↘↘↘↘↘↘↘↘ ↘ ↘ ↘

I 6 5 4 4 4 4 3→4→5→6
↓ ↓ ↓↘↓↘↓↘↓ ↓↘ ↘ ↘

S 7 6 5 5 5 5 4 4 5 6
↓ ↓ ↓↘↓↘↓↘↓ ↓↘↘↘↘↘↘↘↘↘ ↘ ↘

T 8 7 6 6 6 6 5 4→5→6
↓ ↓ ↓↘↓↘↓↘↓↘↘↘↘↘↘↘↘↘↓ ↓↘ ↘

I 9 8 7 7 7 7 6 5 5→6
↓ ↓ ↓↘↓↘↓↘↓ ↓ ↓↘↓↘

C 10 9 8 8 8 8 7 6 6 6

The memoization table for Edit(ALGORITHM,ALTRUISTIC)

A L G O R I T H M

A L T R U I S T I C

5.6 More Examples

In the previous note on backtracking algorithms, we saw two other examples of recursive
algorithms that we can significantly speed up via dynamic programming.

5.6.1 Subset Sum

Recall that the Subset Sum problem asks, given a set X of positive integers (represented as an array
X [1 .. n] and an integer T , whether any subset of X sums to T . In that lecture, we developed a
recursive algorithm which can be reformulated as follows. Fix the original input array X [1 .. n]
and the original target sum T , and define the boolean function

SS(i, t) = some subset of X [i .. n] sums to t.

Our goal is to compute S(1, T ), using the recurrence

SS(i, t) =





True if t = 0,

False if t < 0 or i > n,

SS(i + 1, t) ∨ SS(i + 1, t − X [i]) otherwise.

There are only nT possible values for the input parameters that lead to the interesting case
of this recurrence, and we can memoize all such values in an n × T array. If S(i + 1, t) and
S(i + 1, t − X [i]) are already known, we can compute S(i, t) in constant time, so memoizing
this recurrence gives us and algorithm that runs in O(nT) time.⁹ To turn this into an explicit
dynamic programming algorithm, we only need to consider the subproblems S(i, t) in the proper
order:

⁹Even though SubsetSum is NP-complete, this bound does not imply that P=NP, because T is not necessary
bounded by a polynomial function of the input size.
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SubsetSum(X [1 .. n], T ):
S[n+ 1, 0]← True
for t ← 1 to T

S[n+ 1, t]← False

for i← n downto 1
S[i, 0] = True
for t ← 1 to X [i]− 1

S[i, t]← S[i + 1, t] 〈〈Avoid the case t < 0〉〉
for t ← X [i] to T

S[i, t]← S[i + 1, t]∨ S[i + 1, t − X [i]]

return S[1, T]

This iterative algorithm clearly always uses O(nT) time and space. In particular, if T is
significantly larger than 2n, this algorithm is actually slower than our naïve recursive algorithm.
Dynamic programming isn’t always an improvement!

5.6.2 NFA acceptance

The other problem we considered in the previous lecture note was determining whether a
given NFA M = (Σ,Q, s, A,δ) accepts a given string w ∈ Σ∗. To make the problem concrete, we
can assume without loss of generality that the alphabet is Σ = {1,2, . . . , |Σ|}, the state set is
Q = {1, 2, . . . , |Q|}, the start state is state 1, and our input consists of three arrays:

• A boolean array A[1 .. |Q|], where A[q] = True if and only if q ∈ A.

• A boolean array δ[1 .. |Q|, 1 .. |Σ|, 1 .. |Q|], where δ[p, a, q] = True if and only if p ∈ δ(q, a).

• An array w[1 .. n] of symbols, representing the input string.

Now consider the boolean function

Accepts?(q, i) = True if and only if M accepts the suffix w[i .. n] starting in state q,

or equivalently,

Accepts?(q, i) = True if and only if δ∗(q, w[i .. n]) contains at least one state in A.

We need to compute Accepts(1,1). The recursive definition of the string transition function δ∗

implies the following recurrence for Accepts?:

Accepts?(q, i) :=





True if i > n and q ∈ A

False if i > n and q ∈ A
∨

r∈δ(q,a)

Accepts?(r, x) if w= ax

Rewriting this recurrence in terms of our input representation gives us the following:

Accepts?(q, i) :=





True if i > n and A[q] = True

False if i > n and A[q] = False

|Q|∨
r=1

�
δ[q, w[i], r] ∧ Accepts?(r, i + 1)

�
otherwise
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We can memoize this function into a two-dimensional array Accepts?[1 .. |Q|, 1 .. n+ 1]. Each
entry Accepts?[q, i] depends on some subset of entries of the form Accepts?[r, i+1]. So we can fill
the memoization table by considering the possible indices i in decreasing order in the outer loop,
and consider states q in arbitrary order in the inner loop. Evaluating each entry Accepts?[q, i]
requires O(|Q|) time, using an even deeper loop over all states r, and there are O(n|Q|) such
entries. Thus, the entire dynamic programming algorithm requires O(n|Q|2) time.

NFAaccepts?(A[1 .. |Q|], δ[1 .. |Q|, 1 .. |Σ|, 1 .. |Q|], w[1 .. n]):
for q← 1 to |Q|

Accepts?[q, n+ 1]← A[q]
for i← n down to 1

for q← 1 to |Q|
Accepts?[q, i]← False
for r ← 1 to |Q|

if δ[q, w[i], r] and Accepts?[r, i + 1]
Accepts?[q, i]← True

return Accepts?[1, 1]

5.7 Optimal Binary Search Trees

In an earlier lecture, we developed a recursive algorithm for the optimal binary search tree
problem. We are given a sorted array A[1 .. n] of search keys and an array f [1 .. n] of frequency
counts, where f [i] is the number of searches to A[i]. Our task is to construct a binary search
tree for that set such that the total cost of all the searches is as small as possible. We developed
the following recurrence for this problem:

OptCost( f [1 .. n]) = min
1≤r≤n

¨
OptCost( f [1 .. r − 1]) +

n∑
i=1

f [i] + OptCost( f [r + 1 .. n])

«

To put this recurrence in more standard form, fix the frequency array f , and let OptCost(i, j)
denote the total search time in the optimal search tree for the subarray A[i .. j]. To simplify
notation a bit, let F(i, j) denote the total frequency count for all the keys in the interval A[i .. j]:

F(i, j) :=
j∑

k=i

f [k]

We can now write

OptCost(i, j) =

¨
0 if j < i

F(i, j) + min
i≤r≤ j

�
OptCost(i, r − 1) +OptCost(r + 1, j)

�
otherwise

The base case might look a little weird, but all it means is that the total cost for searching an
empty set of keys is zero.

The algorithm will be somewhat simpler and more efficient if we precompute all possible
values of F(i, j) and store them in an array. Computing each value F(i, j) using a separate
for-loop would O(n3) time. A better approach is to turn the recurrence

F(i, j) =

¨
f [i] if i = j

F(i, j − 1) + f [ j] otherwise

into the following O(n2)-time dynamic programming algorithm:
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InitF( f [1 .. n]):
for i← 1 to n

F[i, i − 1]← 0
for j← i to n

F[i, j]← F[i, j − 1] + f [ j]

This will be used as an initialization subroutine in our final algorithm.
So now let’s compute the optimal search tree cost OptCost(1, n) from the bottom up. We can

store all intermediate results in a table OptCost[1 .. n, 0 .. n]. Only the entries OptCost[i, j] with
j ≥ i − 1 will actually be used. The base case of the recurrence tells us that any entry of the form
OptCost[i, i − 1] can immediately be set to 0. For any other entry OptCost[i, j], we can use the
following algorithm fragment, which comes directly from the recurrence:

ComputeOptCost(i, j):
OptCost[i, j]←∞
for r ← i to j

tmp← OptCost[i, r − 1] +OptCost[r + 1, j]
if OptCost[i, j]> tmp

OptCost[i, j]← tmp
OptCost[i, j]← OptCost[i, j] + F[i, j]

The only question left is what order to fill in the table.
Each entry OptCost[i, j] depends on all entries OptCost[i, r − 1] and OptCost[r + 1, j] with

i ≤ k ≤ j. In other words, every entry in the table depends on all the entries directly to the left
or directly below. In order to fill the table efficiently, we must choose an order that computes
all those entries before OptCost[i, j]. There are at least three different orders that satisfy this
constraint. The one that occurs to most people first is to scan through the table one diagonal at a
time, starting with the trivial base cases OptCost[i, i − 1]. The complete algorithm looks like this:

OptimalSearchTree( f [1 .. n]):
InitF( f [1 .. n])
for i← 1 to n

OptCost[i, i − 1]← 0
for d ← 0 to n− 1

for i← 1 to n− d
ComputeOptCost(i, i + d)

return OptCost[1, n]

We could also traverse the array row by row from the bottom up, traversing each row from
left to right, or column by column from left to right, traversing each columns from the bottom up.

OptimalSearchTree2( f [1 .. n]):
InitF( f [1 .. n])
for i← n downto 1

OptCost[i, i − 1]← 0
for j← i to n

ComputeOptCost(i, j)
return OptCost[1, n]

OptimalSearchTree3( f [1 .. n]):
InitF( f [1 .. n])
for j← 0 to n

OptCost[ j + 1, j]← 0
for i← j downto 1

ComputeOptCost(i, j)
return OptCost[1, n]

No matter which of these orders we actually use, the resulting algorithm runs in Θ(n3) time
and uses Θ(n2) space. We could have predicted these space and time bounds directly from the
original recurrence.

OptCost(i, j) =

¨
0 if j = i − i

F(i, j) + min
i≤r≤ j

�
OptCost(i, r − 1) +OptCost(r + 1, j)

�
otherwise
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Three different evaluation orders for the table OptCost[i, j].

First, the function has two arguments, each of which can take on any value between 1 and n, so
we probably need a table of size O(n2). Next, there are three variables in the recurrence (i, j,
and r), each of which can take any value between 1 and n, so it should take us O(n3) time to fill
the table.

5.8 The CYK Parsing Algorithm

In the same earlier lecture, we developed a recursive backtracking algorithm for parsing context-
free languages. The input consists of a string w and a context-free grammar G in Chomsky
normal form—meaning every production has the form A→ a, for some symbol a, or A→ BC , for
some non-terminals B and C . Our task is to determine whether w is in the language generated
by G.

Our backtracking algorithm recursively evaluates the boolean function Generates?(A, x),
which equals True if and only if string x can be derived from non-terminal A, using the following
recurrence:

Generates?(A, x) =





True if |x |= 1 and A→ x

False if |x |= 1 and A 6→ x
∨

A→BC

∨
y•z=x

Generates?(B, y)∧Generates?(C , z) otherwise

This recurrence was transformed into a dynamic programming algorithm by Tadao Kasami in
1965, and again independently by Daniel Younger in 1967, and again independently by John
Cocke in 1970, so naturally the resulting algorithm is known as “Cocke-Younger-Kasami”, or more
commonly the CYK algorithm.

We can derive the CYK algorithm from the previous recurrence as follows. As usual for
recurrences involving strings, we need to modify the function slightly to ease memoization. Fix
the input string w, and then let Generates?(A, i, j) = True if and only if the substring w[i .. j] can
be derived from non-terminal A. Now our earlier recurrence can be rewritten as follows:

Generates?(A, i, j) =





True if i = j and A→ w[i]
False if i = j and A 6→ w[i]

∨
A→BC

j−1∨
k=i

Generates?(B, i, k)∧Generates?(C , k+ 1, j) otherwise

This recurrence can be memoized into a three-dimensional boolean array Gen[1 .. |Γ |, 1 .. n, 1 .. n],
where the first dimension is indexed by the non-terminals Γ in the input grammar. Each
entry Gen[A, i, j] in this array depends on entries of the form Gen[ · , i, k] for some k < j, or
Gen[ · , k + 1, j] for some k ≥ i. Thus, we can fill the array by increasing j in the outer loop,
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decreasing i in the middle loop, and considering non-terminals A in arbitrary order in the inner
loop. The resulting dynamic programming algorithm runs in O(n3 · |Γ |) time.

CYK(w, G):
for i← 1 to n

for all non-terminals A
if G contains the production A→ w[i]

Gen[A, i, i]← True
else

Gen[A, i, i]← False
for j← 1 to n

for i← n down to j + 1
for all non-terminals A

Gen[A, i, j]← False
for all production rules A→ BC

for k← i to j − 1
if Gen[B, i, k] and Gen[C , k+ 1, j]

Gen[A, i, j]← True
return Gen[S, 1, n]

5.9 Dynamic Programming on Trees

So far, all of our dynamic programming example use a multidimensional array to store the results
of recursive subproblems. However, as the next example shows, this is not always the most
appropriate date structure to use.

A independent set in a graph is a subset of the vertices that have no edges between them.
Finding the largest independent set in an arbitrary graph is extremely hard; in fact, this is one of
the canonical NP-hard problems described in another lecture note. But from some special cases of
graphs, we can find the largest independent set efficiently. In particular, when the input graph is
a tree (a connected and acyclic graph) with n vertices, we can compute the largest independent
set in O(n) time.

In the recursion notes, we saw a recursive algorithm for computing the size of the largest
independent set in an arbitrary graph:

MaximumIndSetSize(G):
if G =∅

return 0

v← any node in G
withv← 1+MaximumIndSetSize(G \ N(v))
withoutv←MaximumIndSetSize(G \ {v})
return max{withv, withoutv}.

Here, N(v) denotes the neighborhood of v: the set containing v and all of its neighbors. As we
observed in the other lecture notes, this algorithm has a worst-case running time of O(2n poly(n)),
where n is the number of vertices in the input graph.

Now suppose we require that the input graph is a tree; we will call this tree T instead of G
from now on. We need to make a slight change to the algorithm to make it truly recursive. The
subgraphs T \ {v} and T \ N(v) are forests, which may have more than one component. But the
largest independent set in a disconnected graph is just the union of the largest independent sets
in its components, so we can separately consider each tree in these forests. Fortunately, this has
the added benefit of making the recursive algorithm more efficient, especially if we can choose
the node v such that the trees are all significantly smaller than T . Here is the modified algorithm:
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MaximumIndSetSize(T ):
if T =∅

return 0
v← any node in T
withv← 1
for each tree T ′ in T \ N(v)

withv← withv+MaximumIndSetSize(T ′)
withoutv← 0
for each tree T ′ in T \ {v}

withoutv← withoutv+MaximumIndSetSize(T ′)
return max{withv, withoutv}.

Now let’s try to memoize this algorithm. Each recursive subproblem considers a subtree
(that is, a connected subgraph) of the original tree T . Unfortunately, a single tree T can have
exponentially many subtrees, so we seem to be doomed from the start!

Fortunately, there’s a degree of freedom that we have not yet exploited: We get to choose
the vertex v. We need a recipe—an algorithm!—for choosing v in each subproblem that limits
the number of different subproblems the algorithm considers. To make this work, we impose
some additional structure on the original input tree. Specifically, we declare one of the vertices
of T to be the root, and we orient all the edges of T away from that root. Then we let v be the
root of the input tree; this choice guarantees that each recursive subproblem considers a rooted
subtree of T . Each vertex in T is the root of exactly one subtree, so now the number of distinct
subproblems is exactly n. We can further simplify the algorithm by only passing a single node
instead of the entire subtree:

MaximumIndSetSize(v):
withv← 1
for each grandchild x of v

withv← withv+MaximumIndSetSize(x)
withoutv← 0
for each child w of v

withoutv← withoutv+MaximumIndSetSize(w)
return max{withv, withoutv}.

What data structure should we use to store intermediate results? The most natural choice is
the tree itself! Specifically, for each node v, we store the result of MaximumIndSetSize(v) in a
new field v.MIS. (We could use an array, but then we’d have to add a new field to each node
anyway, pointing to the corresponding array entry. Why bother?)

What’s the running time of the algorithm? The non-recursive time associated with each
node v is proportional to the number of children and grandchildren of v; this number can be
very different from one vertex to the next. But we can turn the analysis around: Each vertex
contributes a constant amount of time to its parent and its grandparent! Since each vertex has at
most one parent and at most one grandparent, the total running time is O(n).

What’s a good order to consider the subproblems? The subproblem associated with any
node v depends on the subproblems associated with the children and grandchildren of v. So we
can visit the nodes in any order, provided that all children are visited before their parent. In
particular, we can use a straightforward post-order traversal.

Here is the resulting dynamic programming algorithm. Yes, it’s still recursive. I’ve swapped
the evaluation of the with-v and without-v cases; we need to visit the kids first anyway, so why
not consider the subproblem that depends directly on the kids first?
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MaximumIndSetSize(v):
withoutv← 0
for each child w of v

withoutv← withoutv+MaximumIndSetSize(w)
withv← 1
for each grandchild x of v

withv← withv+ x .MIS
v.MIS←max{withv, withoutv}
return v.MIS

Another option is to store two values for each rooted subtree: the size of the largest
independent set that includes the root, and the size of the largest independent set that excludes
the root. This gives us an even simpler algorithm, with the same O(n) running time.

MaximumIndSetSize(v):
v.MISno← 0
v.MISyes← 1
for each child w of v

v.MISno← v.MISno+MaximumIndSetSize(w)
v.MISyes← v.MISyes+w.MISno

return max{v.MISyes, v.MISno}

Exercises

Sequences/Arrays

1. In a previous life, you worked as a cashier in the lost Antarctican colony of Nadira, spending
the better part of your day giving change to your customers. Because paper is a very rare
and valuable resource in Antarctica, cashiers were required by law to use the fewest bills
possible whenever they gave change. Thanks to the numerological predilections of one of
its founders, the currency of Nadira, called Dream Dollars, was available in the following
denominations: $1, $4, $7, $13, $28, $52, $91, $365.¹⁰

(a) The greedy change algorithm repeatedly takes the largest bill that does not exceed
the target amount. For example, to make $122 using the greedy algorithm, we first
take a $91 bill, then a $28 bill, and finally three $1 bills. Give an example where this
greedy algorithm uses more Dream Dollar bills than the minimum possible.

(b) Describe and analyze a recursive algorithm that computes, given an integer k, the
minimum number of bills needed to make k Dream Dollars. (Don’t worry about
making your algorithm fast; just make sure it’s correct.)

(c) Describe a dynamic programming algorithm that computes, given an integer k, the
minimum number of bills needed to make k Dream Dollars. (This one needs to be
fast.)

2. Suppose you are given an array A[1 .. n] of numbers, which may be positive, negative, or
zero, and which are not necessarily integers.

¹⁰For more details on the history and culture of Nadira, including images of the various denominations of Dream
Dollars, see http://moneyart.biz/dd/.
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(a) Describe and analyze an algorithm that finds the largest sum of of elements in a
contiguous subarray A[i .. j].

(b) Describe and analyze an algorithm that finds the largest product of of elements in a
contiguous subarray A[i .. j].

For example, given the array [−6, 12,−7, 0,14,−7, 5] as input, your first algorithm should
return the integer 19, and your second algorithm should return the integer 504.

sum=19︷ ︸︸ ︷
−6 12 −7 0 14 −7 5︸ ︷︷ ︸

product=504

For the sake of analysis, assume that comparing, adding, or multiplying any pair of numbers
takes O(1) time.

[Hint: Problem (a) has been a standard computer science interview question since at least
the mid-1980s. You can find many correct solutions on the web; the problem even has its own
Wikipedia page! But at least in 2013, the few solutions I found on the web for problem (b)
were all either slower than necessary or incorrect.]

3. This series of exercises asks you to develop efficient algorithms to find optimal subsequences
of various kinds. A subsequence is anything obtained from a sequence by extracting a
subset of elements, but keeping them in the same order; the elements of the subsequence
need not be contiguous in the original sequence. For example, the strings C, DAMN, YAIOAI,
and DYNAMICPROGRAMMING are all subsequences of the string DYNAMICPROGRAMMING.

(a) Let A[1 .. m] and B[1 .. n] be two arbitrary arrays. A common subsequence of A and
B is another sequence that is a subsequence of both A and B. Describe an efficient
algorithm to compute the length of the longest common subsequence of A and B.

(b) Let A[1 .. m] and B[1 .. n] be two arbitrary arrays. A common supersequence of A
and B is another sequence that contains both A and B as subsequences. Describe an
efficient algorithm to compute the length of the shortest common supersequence of A
and B.

(c) Call a sequence X [1 .. n] of numbers bitonic if there is an index i with 1< i < n, such
that the prefix X [1 .. i] is increasing and the suffix X [i .. n] is decreasing. Describe an
efficient algorithm to compute the length of the longest bitonic subsequence of an
arbitrary array A of integers.

(d) Call a sequence X [1 .. n] of numbers oscillating if X [i]< X [i + 1] for all even i, and
X [i]> X [i + 1] for all odd i. Describe an efficient algorithm to compute the length
of the longest oscillating subsequence of an arbitrary array A of integers.

(e) Describe an efficient algorithm to compute the length of the shortest oscillating
supersequence of an arbitrary array A of integers.

(f) Call a sequence X [1 .. n] of numbers convex if 2 · X [i] < X [i − 1] + X [i + 1] for
all i. Describe an efficient algorithm to compute the length of the longest convex
subsequence of an arbitrary array A of integers.

(g) Call a sequence X [1 .. n] of numbers weakly increasing if each element is larger than
the average of the two previous elements; that is, 2 · X [i]> X [i−1]+ X [i−2] for all
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i > 2. Describe an efficient algorithm to compute the length of the longest weakly
increasing subsequence of an arbitrary array A of integers.

(h) Call a sequence X [1 .. n] of numbers double-increasing if X [i]> X [i−2] for all i > 2.
(In other words, a semi-increasing sequence is a perfect shuffle of two increasing
sequences.) Describe an efficient algorithm to compute the length of the longest
double-increasing subsequence of an arbitrary array A of integers.

?(i) Recall that a sequence X [1 .. n] of numbers is increasing if X [i] < X [i + 1] for all i.
Describe an efficient algorithm to compute the length of the longest common increasing
subsequence of two given arrays of integers. For example, 〈1,4, 5,6, 7,9〉 is the longest
common increasing subsequence of the sequences 〈3, 1, 4, 1,5, 9,2,6, 5,3, 5,8, 9,7, 9,3〉
and 〈1, 4,1, 4,2, 1,3, 5,6, 2,3, 7,3,0, 9,5〉.

4. Describe an algorithm to compute the number of times that one given array X [1 .. k]
appears as a subsequence of another given array Y [1 .. n]. For example, if all characters in
X and Y are equal, your algorithm should return

�n
k

�
. For purposes of analysis, assume that

adding two `-bit integers requires Θ(`) time.

5. You and your eight-year-old nephew Elmo decide to play a simple card game. At the
beginning of the game, the cards are dealt face up in a long row. Each card is worth a
different number of points. After all the cards are dealt, you and Elmo take turns removing
either the leftmost or rightmost card from the row, until all the cards are gone. At each
turn, you can decide which of the two cards to take. The winner of the game is the player
that has collected the most points when the game ends.

Having never taken an algorithms class, Elmo follows the obvious greedy strategy—
when it’s his turn, Elmo always takes the card with the higher point value. Your task is to
find a strategy that will beat Elmo whenever possible. (It might seem mean to beat up on a
little kid like this, but Elmo absolutely hates it when grown-ups let him win.)

(a) Prove that you should not also use the greedy strategy. That is, show that there is
a game that you can win, but only if you do not follow the same greedy strategy as
Elmo.

(b) Describe and analyze an algorithm to determine, given the initial sequence of cards,
the maximum number of points that you can collect playing against Elmo.

(c) Five years later, Elmo has become a much stronger player. Describe and analyze an
algorithm to determine, given the initial sequence of cards, the maximum number of
points that you can collect playing against a perfect opponent.

6. It’s almost time to show off your flippin’ sweet dancing skills! Tomorrow is the big dance
contest you’ve been training for your entire life, except for that summer you spent with
your uncle in Alaska hunting wolverines. You’ve obtained an advance copy of the the list of
n songs that the judges will play during the contest, in chronological order.

You know all the songs, all the judges, and your own dancing ability extremely well.
For each integer k, you know that if you dance to the kth song on the schedule, you will be
awarded exactly Score[k] points, but then you will be physically unable to dance for the
next Wait[k] songs (that is, you cannot dance to songs k+ 1 through k+Wait[k]). The
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dancer with the highest total score at the end of the night wins the contest, so you want
your total score to be as high as possible.

Describe and analyze an efficient algorithm to compute the maximum total score you
can achieve. The input to your sweet algorithm is the pair of arrays Score[1 .. n] and
Wait[1 .. n].

7. You are driving a bus along a highway, full of rowdy, hyper, thirsty students and a soda
fountain machine. Each minute that a student is on your bus, that student drinks one
ounce of soda. Your goal is to drop the students off quickly, so that the total amount of
soda consumed by all students is as small as possible.

You know how many students will get off of the bus at each exit. Your bus begins
somewhere along the highway (probably not at either end) and move s at a constant speed
of 37.4 miles per hour. You must drive the bus along the highway; however, you may drive
forward to one exit then backward to an exit in the opposite direction, switching as often
as you like. (You can stop the bus, drop off students, and turn around instantaneously.)

Describe an efficient algorithm to drop the students off so that they drink as little soda
as possible. Your input consists of the bus route (a list of the exits, together with the travel
time between successive exits), the number of students you will drop off at each exit, and
the current location of your bus (which you may assume is an exit).

8. A palindrome is any string that is exactly the same as its reversal, like I, or DEED, or
RACECAR, or AMANAPLANACATACANALPANAMA.

(a) Describe and analyze an algorithm to find the length of the longest subsequence
of a given string that is also a palindrome. For example, the longest palindrome
subsequence of MAHDYNAMICPROGRAMZLETMESHOWYOUTHEM is MHYMRORMYHM, so given
that string as input, your algorithm should output the number 11.

(b) Describe and analyze an algorithm to find the length of the shortest supersequence
of a given string that is also a palindrome. For example, the shortest palindrome
supersequence of TWENTYONE is TWENTOYOTNEWT, so given the string TWENTYONE as
input, your algorithm should output the number 13.

(c) Any string can be decomposed into a sequence of palindromes. For example, the
string BUBBASEESABANANA (“Bubba sees a banana.”) can be broken into palindromes
in the following ways (and many others):

BUB • BASEESAB • ANANA

B • U • BB • A • SEES • ABA • NAN • A

B • U • BB • A • SEES • A • B • ANANA

B • U • B • B • A • S • E • E • S • A • B • A • N • ANA

Describe and analyze an efficient algorithm to find the smallest number of palin-
dromes that make up a given input string. For example, given the input string
BUBBASEESABANANA, your algorithm would return the integer 3.
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9. Suppose you have a black-box subroutine Quality that can compute the ‘quality’ of any
given string A[1 .. k] in O(k) time. For example, the quality of a string might be 1 if the
string is a Québecois curse word, and 0 otherwise.

Given an arbitrary input string T[1 .. n], we would like to break it into contiguous
substrings, such that the total quality of all the substrings is as large as possible. For
example, the string SAINTCIBOIREDESACRAMENTDECRISSE can be decomposed into the
substrings SAINT • CIBOIRE • DE • SACRAMENT • DE • CRISSE, of which three (or possibly
four) are sacres.

Describe an algorithm that breaks a string into substrings of maximum total quality,
using the Quality subroutine.

10. (a) Suppose we are given a set L of n line segments in the plane, where each segment
has one endpoint on the line y = 0 and one endpoint on the line y = 1, and all 2n
endpoints are distinct. Describe and analyze an algorithm to compute the largest
subset of L in which no pair of segments intersects.

(b) Suppose we are given a set L of n line segments in the plane, where each segment
has one endpoint on the line y = 0 and one endpoint on the line y = 1, and all 2n
endpoints are distinct. Describe and analyze an algorithm to compute the largest
subset of L in which every pair of segments intersects.

(c) Suppose we are given a set L of n line segments in the plane, where the endpoints
of each segment lie on the unit circle x2 + y2 = 1, and all 2n endpoints are distinct.
Describe and analyze an algorithm to compute the largest subset of L in which no
pair of segments intersects.

(d) Suppose we are given a set L of n line segments in the plane, where the endpoints
of each segment lie on the unit circle x2 + y2 = 1, and all 2n endpoints are distinct.
Describe and analyze an algorithm to compute the largest subset of L in which every
pair of segments intersects.

11. Let P be a set of n points evenly distributed on the unit circle, and let S be a set of m
line segments with endpoints in P. The endpoints of the m segments are not necessarily
distinct; n could be significantly smaller than 2m.

(a) Describe an algorithm to find the size of the largest subset of segments in S such that
every pair is disjoint. Two segments are disjoint if they do not intersect even at their
endpoints.

(b) Describe an algorithm to find the size of the largest subset of segments in S such that
every pair is interior-disjoint. Two segments are interior-disjoint if their intersection
is either empty or an endpoint of both segments.

(c) Describe an algorithm to find the size of the largest subset of segments in S such that
every pair intersects.

(d) Describe an algorithm to find the size of the largest subset of segments in S such that
every pair crosses. Two segments cross if they intersect but not at their endpoints.

For full credit, all four algorithms should run in O(mn) time.
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12. A shuffle of two strings X and Y is formed by interspersing the characters into a new
string, keeping the characters of X and Y in the same order. For example, the string
BANANAANANAS is a shuffle of the strings BANANA and ANANAS in several different ways.

BANANAANANAS BANANAANANAS BANANAANANAS

Similarly, the strings PRODGYRNAMAMMIINCG and DYPRONGARMAMMICING are both shuffles of
DYNAMIC and PROGRAMMING:

PRODGYRNAMAMMIINCG DYPRONGARMAMMICING

Given three strings A[1 .. m], B[1 .. n], and C[1 .. m+n], describe and analyze an algorithm
to determine whether C is a shuffle of A and B.

13. Describe and analyze an efficient algorithm to find the length of the longest contiguous
substring that appears both forward and backward in an input string T[1 .. n]. The forward
and backward substrings must not overlap. Here are several examples:

• Given the input string ALGORITHM, your algorithm should return 0.

• Given the input string RECURSION, your algorithm should return 1, for the substring R.

• Given the input string REDIVIDE, your algorithm should return 3, for the substring
EDI. (The forward and backward substrings must not overlap!)

• Given the input string DYNAMICPROGRAMMINGMANYTIMES, your algorithm should re-
turn 4, for the substring YNAM. (In particular, it should not return 6, for the subsequence
YNAMIR).

14. Dance Dance Revolution is a dance video game, first introduced in Japan by Konami in
1998. Players stand on a platform marked with four arrows, pointing forward, back, left,
and right, arranged in a cross pattern. During play, the game plays a song and scrolls a
sequence of n arrows (

Ü

, Ü,

Ü

, or Ü) from the bottom to the top of the screen. At the
precise moment each arrow reaches the top of the screen, the player must step on the
corresponding arrow on the dance platform. (The arrows are timed so that you’ll step with
the beat of the song.)

You are playing a variant of this game called “Vogue Vogue Revolution”, where the goal
is to play perfectly but move as little as possible. When an arrow reaches the top of the
screen, if one of your feet is already on the correct arrow, you are awarded one style point
for maintaining your current pose. If neither foot is on the right arrow, you must move one
(and only one) of your feet from its current location to the correct arrow on the platform.
If you ever step on the wrong arrow, or fail to step on the correct arrow, or move more
than one foot at a time, or move either foot when you are already standing on the correct
arrow, all your style points are taken away and you lose the game.

How should you move your feet to maximize your total number of style points? For
purposes of this problem, assume you always start with you left foot on

Ü

and you right
foot on Ü, and that you’ve memorized the entire sequence of arrows. For example, if the
sequence is Ü Ü

Ü Ü Ü

Ü

Ü

Ü, you can earn 5 style points by moving you feet as shown
below:
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(a) Prove that for any sequence of n arrows, it is possible to earn at least n/4− 1 style
points.

(b) Describe an efficient algorithm to find the maximum number of style points you can
earn during a given VVR routine. The input to your algorithm is an array Arrow[1 .. n]
containing the sequence of arrows.

15. Consider the following solitaire form of Scrabble. We begin with a fixed, finite sequence
of tiles; each tile contains a letter and a numerical value. At the start of the game, we
draw the seven tiles from the sequence and put them into our hand. In each turn, we form
an English word from some or all of the tiles in our hand, place those tiles on the table,
and receive the total value of those tiles as points. If no English word can be formed from
the tiles in our hand, the game immediately ends. Then we repeatedly draw the next tile
from the start of the sequence until either (a) we have seven tiles in our hand, or (b) the
sequence is empty. (Sorry, no double/triple word/letter scores, bingos, blanks, or passing.)
Our goal is to obtain as many points as possible.

For example, suppose we are given the tile sequence

I2 N2 X8 A1 N2 A1 D3 U5 D3 I2 D3 K8 U5 B4 L2 A1 K8 H5 A1 N2 .

Then we can earn 68 points as follows:

• We initially draw I2 N2 X8 A1 N2 A1 D3 .

• Play the word N2 A1 I2 A1 D3 for 9 points, leaving N2 X8 in our hand.

• Draw the next five tiles U5 D3 I2 D3 K8 .

• Play the word U5 N2 D3 I2 D3 for 15 points, leaving K8 X8 in our hand.

• Draw the next five tiles U5 B4 L2 A1 K8 .

• Play the word B4 U5 L2 K8 for 19 points, leaving K8 X8 A1 in our hand.

• Draw the next three tiles H5 A1 N2 , emptying the list.

• Play the word A1 N2 K8 H5 for 16 points, leaving X8 A1 in our hand.

• Play the word A1 X8 for 9 points, emptying our hand and ending the game.

(a) Suppose you are given as input two arrays Letter[1 .. n], containing a sequence of
letters between A and Z, and Value[A ..Z], where Value[`] is the value of letter `.
Design and analyze an efficient algorithm to compute the maximum number of points
that can be earned from the given sequence of tiles.
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(b) Now suppose two tiles with the same letter can have different values; you are given
two arrays Letter[1 .. n] and Value[1 .. n]. Design and analyze an efficient algorithm to
compute the maximum number of points that can be earned from the given sequence
of tiles.

In both problems, the output is a single number: the maximum possible score. Assume
that you can find all English words that can be made from any set of at most seven tiles,
along with the point values of those words, in O(1) time.

16. Suppose you are given a DFA M = ({0,1},Q, s, A,δ) and a binary string w ∈ {0,1}∗.
(a) Describe and analyze an algorithm that computes the longest subsequence of w that

is accepted by M , or correctly reports that M does not accept any subsequence of w.
?(b) Describe and analyze an algorithm that computes the shortest supersequence of w that

is accepted by M , or correctly reports that M does not accept any supersequence of w.
[Hint: Careful!]

Analyze both of your algorithms in terms of the parameters n= |w| and k = |Q|.

17. Vankin’s Mile is an American solitaire game played on an n× n square grid. The player
starts by placing a token on any square of the grid. Then on each turn, the player moves
the token either one square to the right or one square down. The game ends when player
moves the token off the edge of the board. Each square of the grid has a numerical value,
which could be positive, negative, or zero. The player starts with a score of zero; whenever
the token lands on a square, the player adds its value to his score. The object of the game
is to score as many points as possible.

For example, given the grid below, the player can score 8−6+7−3+4= 10 points by
placing the initial token on the 8 in the second row, and then moving down, down, right,
down, down. (This is not the best possible score for these values.)

−1 7 −8 10 −5

−4 −9 8⇓ −6 0

5 −2 −6⇓ −6 7

−7 4 7⇒−3⇓ −3

7 1 −6 4⇓ −9

(a) Describe and analyze an efficient algorithm to compute the maximum possible score
for a game of Vankin’s Mile, given the n× n array of values as input.

(b) In the European version of this game, appropriately called Vankin’s Kilometer, the
player can move the token either one square down, one square right, or one square
left in each turn. However, to prevent infinite scores, the token cannot land on the
same square more than once. Describe and analyze an efficient algorithm to compute
the maximum possible score for a game of Vankin’s Kilometer, given the n× n array
of values as input.¹¹

¹¹If we also allowed upward movement, the resulting game (Vankin’s Fathom?) would be Ebay-hard.
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18. Suppose you are given an m× n bitmap, represented by an array M[1 .. n, 1 .. n] of 0s and
1s. A solid block in M is a subarray of the form M[i .. i′, j .. j′] containing only 1-bits. A
solid block is square if it has the same number of rows and columns.

(a) Describe an algorithm to find the maximum area of a solid square block in M in O(n2)
time.

(b) Describe an algorithm to find the maximum area of a solid block in M in O(n3) time.
?(c) Describe an algorithm to find the maximum area of a solid block in M in O(n2) time.

?19. Describe and analyze an algorithm to solve the traveling salesman problem in O(2n poly(n))
time. Given an undirected n-vertex graph G with weighted edges, your algorithm should
return the weight of the lightest cycle in G that visits every vertex exactly once, or∞ if G
has no such cycles. [Hint: The obvious recursive algorithm takes O(n!) time.]

— Randall Munroe, xkcd (http://xkcd.com/399/)
Reproduced under a Creative Commons Attribution-NonCommercial 2.5 License

?20. Let A = {A1, A2, . . . , An} be a finite set of strings over some fixed alphabet Σ. An edit
center forA is a string C ∈ Σ∗ such that the maximum edit distance from C to any string
inA is as small as possible. The edit radius ofA is the maximum edit distance from an
edit center to a string in A . A set of strings may have several edit centers, but its edit
radius is unique.

EditRadius(A ) = min
C∈Σ∗ max

A∈A Edit(A, C) EditCenter(A ) = arg min
C∈Σ∗

max
A∈A Edit(A, C)

(a) Describe and analyze an efficient algorithm to compute the edit radius of three given
strings.

(b) Describe and analyze an efficient algorithm to approximate the edit radius of an
arbitrary set of strings within a factor of 2. (Computing the exact edit radius is
NP-hard unless the number of strings is fixed.)

Æ21. Let D[1 .. n] be an array of digits, each an integer between 0 and 9. An digital subsequence
of D is a sequence of positive integers composed in the usual way from disjoint substrings
of D. For example, 3, 4,5,6, 8,9, 32, 38, 46, 64, 83, 279 is a digital subsequence of the first
several digits of π:

3 , 1, 4 ,1, 5 ,9, 2, 6 , 5,3, 5, 8 , 9 , 7,9, 3, 2 , 3, 8 , 4, 6 , 2, 6, 4 , 3, 3, 8, 3 , 2, 7, 9
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The length of a digital subsequence is the number of integers it contains, not the number of
digits; the preceding example has length 12. As usual, a digital subsequence is increasing
if each number is larger than its predecessor.

Describe and analyze an efficient algorithm to compute the longest increasing digital
subsequence of D. [Hint: Be careful about your computational assumptions. How long does
it take to compare two k-digit numbers?]

For full credit, your algorithm should run in O(n4) time; faster algorithms are worth
extra credit. The fastest algorithm I know for this problem runs in O(n2 log n) time;
achieving this bound requires several tricks, both in the algorithm and in its analysis.

Splitting Sequences/Arrays

22. Every year, as part of its annual meeting, the Antarctican Snail Lovers of Upper Glacierville
hold a Round Table Mating Race. Several high-quality breeding snails are placed at the
edge of a round table. The snails are numbered in order around the table from 1 to n.
During the race, each snail wanders around the table, leaving a trail of slime behind it.
The snails have been specially trained never to fall off the edge of the table or to cross a
slime trail, even their own. If two snails meet, they are declared a breeding pair, removed
from the table, and whisked away to a romantic hole in the ground to make little baby
snails. Note that some snails may never find a mate, even if the race goes on forever.
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The end of a typical Antarctican SLUG race. Snails 6 and 8 never find mates.
The organizers must pay M[3,4] +M[2,5] +M[1, 7].

For every pair of snails, the Antarctican SLUG race organizers have posted a monetary
reward, to be paid to the owners if that pair of snails meets during the Mating Race.
Specifically, there is a two-dimensional array M[1 .. n, 1 .. n] posted on the wall behind the
Round Table, where M[i, j] = M[ j, i] is the reward to be paid if snails i and j meet.

Describe and analyze an algorithm to compute the maximum total reward that the
organizers could be forced to pay, given the array M as input.

23. Suppose you are given a sequence of integers separated by + and × signs; for example:

1+ 3× 2× 0+ 1× 6+ 7
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You can change the value of this expression by adding parentheses in different places. For
example:

(1+ (3× 2))× 0+ (1× 6) + 7= 13

((1+ (3× 2× 0) + 1)× 6) + 7= 19

(1+ 3)× 2× (0+ 1)× (6+ 7) = 208

(a) Describe and analyze an algorithm to compute the maximum possible value the given
expression can take by adding parentheses, assuming all integers in the input are
positive. [Hint: This is easy.]

(b) Describe and analyze an algorithm to compute the maximum possible value the given
expression can take by adding parentheses, assuming all integers in the input are
non-negative.

(c) Describe and analyze an algorithm to compute the maximum possible value the given
expression can take by adding parentheses, with no further restrictions on the input.

Assume any arithmetic operation takes O(1) time.

24. Suppose you are given a sequence of integers separated by + and − signs; for example:

1+ 3− 2− 5+ 1− 6+ 7

You can change the value of this expression by adding parentheses in different places. For
example:

1+ 3− 2− 5+ 1− 6+ 7= −1

(1+ 3− (2− 5)) + (1− 6) + 7= 9

(1+ (3− 2))− (5+ 1)− (6+ 7) = −17

Describe and analyze an algorithm to compute, given a list of integers separated by + and
− signs, the maximum possible value the expression can take by adding parentheses.

You may only use parentheses to group additions and subtractions; in particular, you
are not allowed to create implicit multiplication as in 1+ 3(−2)(−5) + 1− 6+ 7= 33.

25. A basic arithmetic expression is composed of characters from the set {1,+,×} and
parentheses. Almost every integer can be represented by more than one basic arithmetic
expression. For example, all of the following basic arithmetic expression represent the
integer 14:

1+ 1+ 1+ 1+ 1+ 1+ 1+ 1+ 1+ 1+ 1+ 1+ 1+ 1+ 1+ 1

((1+ 1)× (1+ 1+ 1+ 1+ 1)) + ((1+ 1)× (1+ 1))

(1+ 1)× (1+ 1+ 1+ 1+ 1+ 1+ 1)

(1+ 1)× (((1+ 1+ 1)× (1+ 1)) + 1)

Describe and analyze an algorithm to compute, given an integer n as input, the minimum
number of 1’s in a basic arithmetic expression whose value is n. The number of parentheses
doesn’t matter, just the number of 1’s. For example, when n= 14, your algorithm should
return 8, for the final expression above. For full credit, the running time of your algorithm
should be bounded by a small polynomial function of n.

28



Algorithms Lecture 5: Dynamic Programming [Fa’14]

26. After graduating from UIUC, you have decided to join the Wall Street Bank Long Live
Boole. The managing director of the bank, Eloob Egroeg, is a genius mathematician who
worships George Boole (the inventor of Boolean Logic) every morning before leaving for
the office. The first day of every hired employee is a ’solve-or-die’ day where s/he has to
solve one of the problems posed by Eloob within 24 hours. Those who fail to solve the
problem are fired immediately!

Entering into the bank for the first time, you notice that the offices of the employees
are organized in a straight row, with a large T or F printed on the door of each office.
Furthermore, between each adjacent pair of offices, there is a board marked by one of
the symbols ∧,∨, or ⊕. When you ask about these arcane symbols, Eloob confirms that
T and F represent the boolean values True and False, and the symbols on the boards
represent the standard boolean operators And, Or, and Xor. He also explains that these
letters and symbols describe whether certain combinations of employees can work together
successfully. At the start of any new project, Eloob hierarchically clusters his employees
by adding parentheses to the sequence of symbols, to obtain an unambiguous boolean
expression. The project is successful if this parenthesized boolean expression evaluates
to T .

For example, if the bank has three employees, and the sequence of symbols on and
between their doors is T ∧ F ⊕ T , there is exactly one successful parenthesization scheme:
(T ∧ (F ⊕ T )). However, if the list of door symbols is F ∧ T ⊕ F , there is no way to add
parentheses to make the project successful.

Eloob finally poses your solve-or-die question: Describe and algorithm to decide whether
a given sequence of symbols can be parenthesized so that the resulting boolean expression
evaluates to T . The input to your algorithm is an array S[0 .. 2n], where S[i] ∈ {T, F}
when i is even, and S[i] ∈ {∨,∧,⊕} when i is odd.

27. Suppose we want to display a paragraph of text on a computer screen. The text consists of
n words, where the ith word is pi pixels wide. We want to break the paragraph into several
lines, each exactly P pixels long. Depending on which words we put on each line, we must
insert different amounts of white space between the words. The paragraph should be fully
justified, meaning that the first word on each line starts at its leftmost pixel, and except
for the last line, the last character on each line ends at its rightmost pixel. There must be
at least one pixel of white-space between any two words on the same line. For example,
the width of the paragraph you are reading right now is exactly 6 4

33 inches or (assuming a
display resolution of 600 pixels per inch) exactly 3672 8

11 pixels. (Sometimes TEX is weird.
But thanks to anti-aliasing, fractional pixel widths are fine.)

Define the slop of a paragraph layout as the sum over all lines, except the last, of the cube
of the number of extra white-space pixels in each line, not counting the one pixel required
between every adjacent pair of words. Specifically, if a line contains words i through j,
then the slop of that line is

�
P − j + i −∑ j

k=i pk

�3
. Describe a dynamic programming

algorithm to print the paragraph with minimum slop.

28. You have mined a large slab of marble from your quarry. For simplicity, suppose the marble
slab is a rectangle measuring n inches in height and m inches in width. You want to cut the
slab into smaller rectangles of various sizes—some for kitchen countertops, some for large
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sculpture projects, others for memorial headstones. You have a marble saw that can make
either horizontal or vertical cuts across any rectangular slab. At any time, you can query
the spot price P[x , y] of an x-inch by y-inch marble rectangle, for any positive integers x
and y . These prices will vary with demand, so do not make any assumptions about them;
in particular, larger rectangles may have much smaller spot prices. Given the spot prices,
describe an algorithm to compute how to subdivide an n×m marble slab to maximize your
profit.

29. A string w of parentheses (( and )) and brackets [[ and ]] is balanced if it satisfies one of
the following conditions:

• w is the empty string.

• w= ((x)) for some balanced string x

• w= [[x]] for some balanced string x

• w= x y for some balanced strings x and y

For example, the string
w= (([[(())]][[]](())))[[(())(())]](())

is balanced, because w= x y , where

x = (( [[(())]] [[]] (()) )) and y = [[ (()) (()) ]] (()).

(a) Describe and analyze an algorithm to determine whether a given string of parentheses
and brackets is balanced.

(b) Describe and analyze an algorithm to compute the length of a longest balanced
subsequence of a given string of parentheses and brackets.

(c) Describe and analyze an algorithm to compute the length of a shortest balanced
supersequence of a given string of parentheses and brackets.

(d) Describe and analyze an algorithm to compute the minimum edit distance from a
given string of parentheses and brackets to a balanced string of parentheses and
brackets.

For each problem, your input is an array w[1 .. n], where w[i] ∈ {((,)),[[,]]} for every
index i.

30. Congratulations! Your research team has just been awarded a $50M multi-year project,
jointly funded by DARPA, Google, and McDonald’s, to produce DWIM: The first compiler
to read programmers’ minds! Your proposal and your numerous press releases all promise
that DWIM will automatically correct errors in any given piece of code, while modifying
that code as little as possible. Unfortunately, now it’s time to start actually making the
damn thing work.

As a warmup exercise, you decide to tackle the following necessary subproblem. Recall
that the edit distance between two strings is the minimum number of single-character
insertions, deletions, and replacements required to transform one string into the other. An
arithmetic expression is a string w such that

• w is a string of one or more decimal digits,
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• w= (x) for some arithmetic expression x , or

• w= x � y for some arithmetic expressions x and y and some binary operator �.
Suppose you are given a string of tokens from the alphabet {#,�,(,)}, where # represents

a decimal digit and � represents a binary operator. Describe an algorithm to compute the
minimum edit distance from the given string to an arithmetic expression.

31. Let P be a set of points in the plane in convex position. Intuitively, if a rubber band were
wrapped around the points, then every point would touch the rubber band. More formally,
for any point p in P, there is a line that separates p from the other points in P. Moreover,
suppose the points are indexed P[1], P[2], . . . , P[n] in counterclockwise order around the
‘rubber band’, starting with the leftmost point P[1].

This problem asks you to solve a special case of the traveling salesman problem, where
the salesman must visit every point in P, and the cost of moving from one point p ∈ P to
another point q ∈ P is the Euclidean distance |pq|.
(a) Describe a simple algorithm to compute the shortest cyclic tour of P.

(b) A simple tour is one that never crosses itself. Prove that the shortest tour of P must be
simple.

(c) Describe and analyze an efficient algorithm to compute the shortest tour of P that
starts at the leftmost point P[1] and ends at the rightmost point P[r].

(d) Describe and analyze an efficient algorithm to compute the shortest tour of P, with
no restrictions on the endpoints.

32. (a) Describe and analyze an efficient algorithm to determine, given a string w and a
regular expression R, whether w ∈ L(R).

(b) Generalized regular expressions allow the binary operator ∩ (intersection) and the
unary operator ¬ (complement), in addition to the usual concatenation, + (or), and
∗ (Kleene closure) operators. NFA constructions and Kleene’s theorem imply that any
generalized regular expression E represents a regular language L(E).

Describe and analyze an efficient algorithm to determine, given a string w and a
generalized regular expression E, whether w ∈ L(E).

In both problems, assume that you are actually given a parse tree for the (generalized)
regular expression, not just a string.

33. Ribonucleic acid (RNA) molecules are long chains of millions of nucleotides or bases of four
different types: adenine (A), cytosine (C), guanine (G), and uracil (U). The sequence of an
RNA molecule is a string b[1 .. n], where each character b[i] ∈ {A, C , G, U} corresponds
to a base. In addition to the chemical bonds between adjacent bases in the sequence,
hydrogen bonds can form between certain pairs of bases. The set of bonded base pairs is
called the secondary structure of the RNA molecule.

We say that two base pairs (i, j) and (i′, j′)with i < j and i′ < j′ overlap if i < i′ < j < j′

or i′ < i < j′ < j. In practice, most base pairs are non-overlapping. Overlapping base pairs
create so-called pseudoknots in the secondary structure, which are essential for some RNA
functions, but are more difficult to predict.
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Suppose we want to predict the best possible secondary structure for a given RNA
sequence. We will adopt a drastically simplified model of secondary structure:

• Each base can be paired with at most one other base.
• Only A-U pairs and C-G pairs can bond.
• Pairs of the form (i, i + 1) and (i, i + 2) cannot bond.
• Overlapping base pairs cannot bond.

The last restriction allows us to visualize RNA secondary structure as a sort of fat tree.
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Example RNA secondary structure with 21 base pairs, indicated by heavy red lines.
Gaps are indicated by dotted curves. This structure has score 22 + 22 + 82 + 12 + 72 + 42 + 72 = 187

(a) Describe and analyze an algorithm that computes the maximum possible number of
bonded base pairs in a secondary structure for a given RNA sequence.

(b) A gap in a secondary structure is a maximal substring of unpaired bases. Large gaps
lead to chemical instabilities, so secondary structures with smaller gaps are more
likely. To account for this preference, let’s define the score of a secondary structure to
be the sum of the squares of the gap lengths. (This score function is utterly fictional;
real RNA structure prediction requires much more complicated scoring functions.)
Describe and analyze an algorithm that computes the minimum possible score of a
secondary structure for a given RNA sequence.

34. A standard method to improve the cache performance of search trees is to pack more
search keys and subtrees into each node. A B-tree is a rooted tree in which each internal
node stores up to B keys and pointers to up to B + 1 children, each the root of a smaller
B-tree. Specifically, each node v stores three fields:

• a positive integer v.d ≤ B,

• a sorted array v.key[1 .. v.d], and

• an array v.child[0 .. v.d] of child pointers.
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In particular, the number of child pointers is always exactly one more than the number of
keys.

Each pointer v.child[i] is either Null or a pointer to the root of a B-tree whose keys
are all larger than v.key[i] and smaller than v.key[i + 1]. In particular, all keys in the
leftmost subtree v.child[0] are smaller than v.key[1], and all keys in the rightmost subtree
v.child[v.d] are larger than v.key[v.d].

Intuitively, you should have the following picture in mind:

[ ·•

��

< key[1]< ·•

��

< key[2]< ·•

��

· · · ·•

��

< key[d]< ·•

��

]

T0 T1 T2 · · · Td−1 Td

Here Ti is the subtree pointed to by child[i].

The cost of searching for a key x in a B-tree is the number of nodes in the path from
the root to the node containing x as one of its keys. A 1-tree is just a standard binary
search tree.

Fix an arbitrary positive integer B > 0. (I suggest B = 8.) Suppose your are given a
sorted array A[1, . . . , n] of search keys and a corresponding array F[1, . . . , n] of frequency
counts, where F[i] is the number of times that we will search for A[i]. Your task is to
describe and analyze an efficient algorithm to find a B-tree that minimizes the total cost of
searching for the given keys with the given frequencies.

(a) Describe a polynomial-time algorithm for the special case B = 2.
(b) Describe an algorithm for arbitrary B that runs in O(nB+c) time for some fixed

integer c.
(c) Describe an algorithm for arbitrary B that runs in O(nc) time for some fixed integer c

that does not depend on B.

A few comments about B-trees. Normally, B-trees are required to satisfy two additional
constraints, which guarantee a worst-case search cost of O(logB n): Every leaf must
have exactly the same depth, and every node except possibly the root must contain
at least B/2 keys. However, in this problem, we are not interested in optimizing the
worst-case search cost, but rather the total cost of a sequence of searches, so we will not
impose these additional constraints.

In most large database systems, the parameter B is chosen so that each node exactly
fits in a cache line. Since the entire cache line is loaded into cache anyway, and the
cost of loading a cache line exceeds the cost of searching within the cache, the running
time is dominated by the number of cache faults. This effect is even more noticeable
if the data is too big to fit in RAM; then the cost is dominated by the number of page
faults, and B should be roughly the size of a page. In extreme cases, the data is too
large even to fit on disk (or flash-memory “disk”) and is instead distributed on a bank of
magnetic tape cartridges, in which case the cost is dominated by the number of tape
faults. (I invite anyone who thinks tape is dead to visit a supercomputing center like
Blue Waters.) In principle, your data might be so large that the cost of searching is
actually dominated by the number of FedEx faults. (See https://what-if.xkcd.com/31/.)

Don’t worry about the cache/disk/tape/FedEx performance in your solutions; just
analyze the CPU time as usual. Designing algorithms with few cache misses or page
faults is a interesting pastime; simultaneously optimizing CPU time and cache misses
and page faults and FedEx faults is a topic of active research. Sadly, this kind of design
and analysis requires tools we won’t see in this class.
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Trees and Subtrees

35. Suppose we need to distribute a message to all the nodes in a rooted tree. Initially, only
the root node knows the message. In a single round, any node that knows the message can
forward it to at most one of its children. Design an algorithm to compute the minimum
number of rounds required for the message to be delivered to all nodes in a given tree.

A message being distributed through a tree in five rounds.

36. Oh, no! You have been appointed as the organizer of Giggle, Inc.’s annual mandatory
holiday party! The employees at Giggle are organized into a strict hierarchy, that is, a tree
with the company president at the root. The all-knowing oracles in Human Resources have
assigned a real number to each employee measuring how “fun” the employee is. In order
to keep things social, there is one restriction on the guest list: an employee cannot attend
the party if their immediate supervisor is also present. On the other hand, the president
of the company must attend the party, even though she has a negative fun rating; it’s her
company, after all. Give an algorithm that makes a guest list for the party that maximizes
the sum of the “fun” ratings of the guests.

37. Since so few people came to last year’s holiday party, the president of Giggle, Inc. decides
to give each employee a present instead this year. Specifically, each employee must receive
on the three gifts: (1) an all-expenses-paid six-week vacation anywhere in the world, (2) an
all-the-pancakes-you-can-eat breakfast for two at Jumping Jack Flash’s Flapjack Stack
Shack, or (3) a burning paper bag full of dog poop. Corporate regulations prohibit any
employee from receiving exactly the same gift as his/her direct supervisor. Any employee
who receives a better gift than his/her direct supervisor will almost certainly be fired in a
fit of jealousy.

As Giggle, Inc.’s official party czar, it’s your job to decide which gift each employee
receives. Describe an algorithm to distribute gifts so that the minimum number of people
are fired. Yes, you may send the president a flaming bag of dog poop.

More formally, you are given a rooted tree T , representing the company hierarchy, and
you want to label each node in T with an integer 1, 2, or 3, so that every node has a
different label from its parent. The cost of an labeling is the number of nodes that have
smaller labels than their parents. Describe and analyze an algorithm to compute the
minimum cost of any labeling of the given tree T .

38. After losing so many employees to last year’s Flaming Dog Poop Holiday Debacle, the
president of Giggle, Inc. has declared that once again there will be a holiday party this
year. Recall that the employees are organized into a strict hierarchy, that is, a tree with the
company president at the root. The president demands that you invite exactly k employees,
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A tree labeling with cost 9.
Bold nodes have smaller labels than their parents.

This is not the optimal labeling for this tree.

including the president herself. Moreover, everyone who is invited is required to attend.
Yeah, that’ll be fun.

The all-knowing oracles in Human Resources have assigned a real number to each
employee indicating the awkwardness of inviting both that employee and their immediate
supervisor; a negative value indicates that the employee and their supervisor actually
like each other. Your goal is to choose a subset k employees to invite, so that the total
awkwardness of the resulting party is as small as possible. For example, if the guest list
does not include both an employee and their immediate supervisor, the total awkwardness
is zero.

(a) Describe an algorithm that computes the total awkwardness of the least awkward
subset of k employees, assuming the company hierarchy is described by a binary tree.
That is, assume that each employee directly supervises at most two others.

?(b) Describe an algorithm that computes the total awkwardness of the least awkward
subset of k employees, with no restrictions on the company hierarchy.

39. Let T be a rooted binary tree with n vertices, and let k ≤ n be a positive integer. We would
like to mark k vertices in T so that every vertex has a nearby marked ancestor. More
formally, we define the clustering cost of any subset K of vertices as

cost(K) =max
v

cost(v, K),

where the maximum is taken over all vertices v in the tree, and

cost(v, K) =





0 if v ∈ K

∞ if v is the root of T and v 6∈ K

1+ cost(parent(v)) otherwise

Describe and analyze a dynamic-programming algorithm to compute the minimum
clustering cost of any subset of k vertices in T . For full credit, your algorithm should run in
O(n2k2) time.
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The next several questions ask for algorithms to find various optimal subtrees in trees. To
make the problem statements precise, we must distinguish between several different types of
trees and subtrees:

• By default, a tree is just a connected, acyclic, undirected graph.
• A rooted tree has a distinguished vertex, called the root. A tree without a distinguished

root vertex is called an unrooted tree or a free tree.
• In an ordered tree, the neighbors of every vertex have a well-defined cyclic order. A tree

without these orders is called an unordered tree.
• A binary tree is a rooted tree in which every node has a (possibly empty) left subtree

and a (possibly empty) right subtree. Two binary trees are isomorphic if they are both
empty, or if their left subtrees are isomorphic and their right subtrees are isomorphic.

• A (rooted) subtree of a rooted tree consists of a node and all its descendants. A (free)
subtree of an unrooted tree is any connected subgraph. Subtrees of ordered rooted
trees are themselves ordered trees.

40. This question asks you to find efficient algorithms to compute the largest common rooted
subtree of two given rooted trees. A rooted subtree consists of an arbitrary node and all
its descendants. However, the precise definition of “common” depends on which rooted
trees we consider to be isomorphic.

(a) Describe an algorithm to find the largest common binary subtree of two given binary
trees.

Two binary trees, with their largest common (rooted) subtree emphasized

(b) An ordered tree is either empty or a node with a sequence of children, which are
themselves the roots of (possibly empty) ordered trees. Two ordered trees are
isomorphic if they are both empty, or if their ith subtrees are isomorphic for all i.
Describe an algorithm to find the largest common ordered subtree of two ordered
trees T1 and T2.
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(c) An unordered tree is either empty or a node with a set of children, which are themselves
the roots of (possibly empty) ordered trees. Two unordered trees are isomorphic
if they are both empty, or the subtrees or each tree can be ordered so that their ith
subtrees are isomorphic for all i. Describe an algorithm to find the largest common
unordered subtree of two unordered trees T1 and T2.

41. This question asks you to find efficient algorithms to compute optimal subtrees in unrooted
trees. A subtree of an unrooted tree is any connected subgraph.

(a) Suppose you are given an unrooted tree T with weights on its edges, which may be
positive, negative, or zero. Describe an algorithm to find a path in T with maximum
total weight.

(b) Suppose you are given an unrooted tree T with weights on its vertices, which may
be positive, negative, or zero. Describe an algorithm to find a subtree of T with
maximum total weight.

(c) Let T1 and T2 be ordered trees, meaning that the neighbors of every node have a
well-defined cyclic order. Describe an algorithm to find the largest common ordered
subtree of T1 and T2.

?(d) Let T1 and T2 be unordered trees. Describe an algorithm to find the largest common
unordered subtree of T1 and T2.

42. Sub-branchings of a rooted tree are a generalization of subsequences of a sequence. A
sub-branching of a tree is a subset S of the nodes such that exactly one node in S that does
not have a proper ancestor in S. Any sub-branching S implicitly defines a tree T (S), in
which the parent of a node x ∈ S is the closest proper ancestor (in T) of x that is also in S.

A sub-branching S and its associated tree T (S).

(a) Let T be a rooted tree with labeled nodes. We say that T is boring if, for each node x ,
all children of x have the same label; children of different nodes may have different
labels. A sub-branching S of a labeled rooted tree T is boring if its associated tree
T (S) is boring; nodes in T (S) inherit their labels from T . Describe an algorithm to
find the largest boring sub-branching S of a given labeled rooted tree.

(b) Suppose we are given a rooted tree T whose nodes are labeled with numbers.
Describe an algorithm to find the largest heap-ordered sub-branching of T . That is,
your algorithm should return the largest sub-branching S such that every node in
T (S) has a smaller label than its children in T (S).
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(c) Suppose we are given a binary tree T whose nodes are labeled with numbers. Describe
an algorithm to find the largest binary-search-ordered sub-branching of T . That is,
your algorithm should return a sub-branching S such that every node in T (S) has at
most two children, and an inorder traversal of T (S) is an increasing subsequence of
an inorder traversal of T .

(d) Recall that a rooted tree is ordered if the children of each node have a well-defined
left-to-right order. Describe an algorithm to find the largest binary-search-ordered
sub-branching S of an arbitrary ordered tree T whose nodes are labeled with numbers.
Again, the order of nodes in T (S) should be consistent with their order in T .

?(e) Describe an algorithm to find the largest common ordered sub-branching of two
ordered labeled rooted trees.

Æ(f) Describe an algorithm to find the largest common unordered sub-branching of two
unordered labeled rooted trees. [Hint: This problem will be much easier after you’ve
seen flows.]
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It is a very sad thing that nowadays there is so little
useless information.

— Oscar Wilde, “A Few Maxims for the Instruction
Of The Over-Educated” (1894)

Ninety percent of science fiction is crud.
But then, ninety percent of everything is crud,
and it’s the ten percent that isn’t crud that is important.

— [Theodore] Sturgeon’s Law (1953)

6 Advanced Dynamic Programming?

Dynamic programming is a powerful technique for efficiently solving recursive problems, but
it’s hardly the end of the story. In many cases, once we have a basic dynamic programming
algorithm in place, we can make further improvements to bring down the running time or the
space usage. We saw one example in the Fibonacci number algorithm. Buried inside the naïve
iterative Fibonacci algorithm is a recursive problem—computing a power of a matrix—that can
be solved more efficiently by dynamic programming techniques—in this case, repeated squaring.

6.1 Saving Space: Divide and Conquer

Just as we did for the Fibonacci recurrence, we can reduce the space complexity of our edit
distance algorithm from O(mn) to O(m+ n) by only storing the current and previous rows of
the memoization table. This ‘sliding window’ technique provides an easy space improvement for
most (but not all) dynamic programming algorithm.

Unfortunately, this technique seems to be useful only if we are interested in the cost of the
optimal edit sequence, not if we want the optimal edit sequence itself. By throwing away most
of the table, we apparently lose the ability to walk backward through the table to recover the
optimal sequence.

Fortunately for memory-misers, in 1975 Dan Hirshberg discovered a simple divide-and-conquer
strategy that allows us to compute the optimal edit sequence in O(mn) time, using just O(m+ n)
space. The trick is to record not just the edit distance for each pair of prefixes, but also a single
position in the middle of the optimal editing sequence for that prefix. Specifically, any optimal
editing sequence that transforms A[1 .. m] into B[1 .. n] can be split into two smaller editing
sequences, one transforming A[1 .. m/2] into B[1 .. h] for some integer h, the other transforming
A[m/2+ 1 .. m] into B[h+ 1 .. n].

To compute this breakpoint h, we define a second function Half(i, j) such that some optimal
edit sequence from A[1 .. i] into B[1 .. j] contains an optimal edit sequence from A[1 .. m/2] to
B[1 ..Half(i, j)]. We can define this function recursively as follows:

Half(i, j) =





∞ if i < m/2

j if i = m/2

Half(i − 1, j) if i > m/2 and Edit(i, j) = Edit(i − 1, j) + 1

Half(i, j − 1) if i > m/2 and Edit(i, j) = Edit(i, j − 1) + 1

Half(i − 1, j − 1) otherwise

© Copyright 2014 Jeff Erickson.
This work is licensed under a Creative Commons License (http://creativecommons.org/licenses/by-nc-sa/4.0/).

Free distribution is strongly encouraged; commercial distribution is expressly forbidden.
See http://www.cs.uiuc.edu/~jeffe/teaching/algorithms/ for the most recent revision.

1



Algorithms Lecture 6: Advanced Dynamic Programming [Sp’14]

(Because there there may be more than one optimal edit sequence, this is not the only correct
definition.) A simple inductive argument implies that Half(m, n) is indeed the correct value of h.
We can easily modify our earlier algorithm so that it computes Half(m, n) at the same time as the
edit distance Edit(m, n), all in O(mn) time, using only O(m) space.

Edit A L G O R I T H M

0 1 2 3 4 5 6 7 8 9
A 1 0 1 2 3 4 5 6 7 8
L 2 1 0 1 2 3 4 5 6 7
T 3 2 1 1 2 3 4 4 5 6
R 4 3 2 2 2 2 3 4 5 6
U 5 4 3 3 3 3 3 4 5 6
I 6 5 4 4 4 4 3 4 5 6
S 7 6 5 5 5 5 4 4 5 6
T 8 7 6 6 6 6 5 4 5 6
I 9 8 7 7 7 7 6 5 5 6
C 10 9 8 8 8 8 7 6 6 6

Half A L G O R I T H M

∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞
A ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞
L ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞
T ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞
R ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞
U 0 1 2 3 4 5 6 7 8 9

I 0 1 2 3 4 5 5 5 5 5
S 0 1 2 3 4 5 5 5 5 5
T 0 1 2 3 4 5 5 5 5 5
I 0 1 2 3 4 5 5 5 5 5
C 0 1 2 3 4 5 5 5 5 5

Finally, to compute the optimal editing sequence that transforms A into B, we recursively
compute the optimal sequences transforming A[1 .. m/2] into B[1 ..Half(m, n)] and transforming
A[m/2+ 1 .. m] into B[Half(m, n) + 1 .. n]. The recursion bottoms out when one string has only
constant length, in which case we can determine the optimal editing sequence in linear time
using our old dynamic programming algorithm. The running time of the resulting algorithm
satisfies the following recurrence:

T (m, n) =





O(n) if m≤ 1

O(m) if n≤ 1

O(mn) + T (m/2, h) + T (m/2, n− h) otherwise

It’s easy to prove inductively that T (m, n) = O(mn), no matter what the value of h is. Specifically,
the entire algorithm’s running time is at most twice the time for the initial dynamic programming
phase.

T (m, n)≤ αmn+ T (m/2, h) + T (m/2, n− h)

≤ αmn+ 2αmh/2+ 2αm(n− h)/2 [inductive hypothesis]

= 2αmn

A similar inductive argument implies that the algorithm uses only O(n+m) space.
Hirschberg’s divide-and-conquer trick can be applied to almost any dynamic programming

problem to obtain an algorithm to construct an optimal structure (in this case, the cheapest edit
sequence) within the same space and time bounds as computing the cost of that optimal structure
(in this case, edit distance). For this reason, we will almost always ask you for algorithms to
compute the cost of some optimal structure, not the optimal structure itself.

6.2 Saving Time: Sparseness

In many applications of dynamic programming, we are faced with instances where almost every
recursive subproblem will be resolved exactly the same way. We call such instances sparse.
For example, we might want to compute the edit distance between two strings that have few
characters in common, which means there are few “free” substitutions anywhere in the table.
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Most of the table has exactly the same structure. If we can reconstruct the entire table from just
a few key entries, then why compute the entire table?

To better illustrate how to exploit sparseness, let’s consider a simplification of the edit distance
problem, in which substitutions are not allowed (or equivalently, where a substitution counts as
two operations instead of one). Now our goal is to maximize the number of “free” substitutions,
or equivalently, to find the longest common subsequence of the two input strings.

Fix the two input strings A[1 .. n] and B[1 .. m]. For any indices i and j, let LCS(i, j) denote
the length of the longest common subsequence of the prefixes A[1 .. i] and B[1 .. j]. This function
can be defined recursively as follows:

LCS(i, j) =





0 if i = 0 or j = 0

LCS(i − 1, j − 1) + 1 if A[i] = B[ j]
max {LCS(i, j − 1), LCS(i − 1, j)} otherwise

This recursive definition directly translates into an O(mn)-time dynamic programming algorithm.
Call an index pair (i, j) a match point if A[i] = B[ j]. In some sense, match points are the

only ‘interesting’ locations in the memoization table; given a list of the match points, we could
easily reconstruct the entire table.

C

A
L
T
R
U
I
S
T
I

«
A L G O R I T H M« S

0
1
2

3

5

4

4

5

3

0 0 0 0 0 0 0 0 0 0
0
0
0
0
0
0
0
0
0
0

1 1 1 1 1 1 1 1 1
1
1
1
1
1
1
1
1
1

2 2 2 2 2 2 2 2
2 2 2 2 2
2 2 2
2 2 2
2 2 2
2 2 2
2 2 2
2 2 2
2 2 2

3 3 3
3 3 3 3 3

3 3 3 3 3 3
3
3
3
3
3

4 4 4 4
4 4 4 4
4

4

5 5 5
5 5 5
5 5 5

5
5

0
1
2
3
3
3
4

5
5
5

5

0 1 2 2 2 3 4 5 5 5 5 6

»

»

The LCS memoization table for ALGORITHMS and ALTRUISTIC; the brackets « and » are sentinel characters.

More importantly, we can compute the LCS function directly from the list of match points
using the following recurrence:

LCS(i, j) =





0 if i = j = 0

max
�
LCS(i′, j′) | A[i′] = B[ j′] and i′ < i and j′ < j

	
+ 1 if A[i] = B[ j]

max
�
LCS(i′, j′) | A[i′] = B[ j′] and i′ ≤ i and j′ ≤ j

	
otherwise

(Notice that the inequalities are strict in the second case, but not in the third.) To simplify
boundary issues, we add unique sentinel characters A[0] = B[0] and A[m+1] = B[n+1] to both
strings. This ensures that the sets on the right side of the recurrence equation are non-empty,
and that we only have to consider match points to compute LCS(m, n) = LCS(m+ 1, n+ 1)− 1.

If there are K match points, we can actually compute them all in O(m log m+ n log n+ K)
time. Sort the characters in each input string, but remembering the original index of each
character, and then essentially merge the two sorted arrays, as follows:
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FindMatches(A[1 .. m], B[1 .. n]):
for i← 1 to m: I[i]← i
for j← 1 to n: J[ j]← j

sort A and permute I to match
sort B and permute J to match

i← 1; j← 1
while i < m and j < n

if A[i]< B[ j]
i← i + 1

else if A[i]> B[ j]
j← j + 1

else 〈〈Found a match!〉〉
ii← i
while A[ii] = A[i]

j j← j
while B[ j j] = B[ j]

report (I[i i], J[ j j])
j j← j j + 1

ii← i + 1
i← ii; j← j j

To efficiently evaluate our modified recurrence, we once again turn to dynamic programming.
We consider the match points in lexicographic order—the order they would be encountered in a
standard row-major traversal of the m× n table—so that when we need to evaluate LCS(i, j), all
match points (i′, j′) with i′ < i and j′ < j have already been evaluated.

SparseLCS(A[1 .. m], B[1 .. n]):
Match[1 .. K]← FindMatches(A, B)
Match[K + 1]← (m+ 1, n+ 1) 〈〈Add end sentinel〉〉
Sort M lexicographically
for k← 1 to K

(i, j)←Match[k]
LCS[k]← 1 〈〈From start sentinel〉〉
for `← 1 to k− 1

(i′, j′)←Match[`]
if i′ < i and j′ < j

LCS[k]←min{LCS[k], 1+ LCS[`]}
return LCS[K + 1]− 1

The overall running time of this algorithm is O(m log m + n log n + K2). So as long as
K = o(

p
mn), this algorithm is actually faster than naïve dynamic programming.

6.3 Saving Time: Monotonicity

The SMAWK matrix-searching algorithm is a better example here; the problem is more general,
the algorithm is simpler, and the proof is self-contained. Next time!

Recall the optimal binary search tree problem from the previous lecture. Given an array
F[1 .. n] of access frequencies for n items, the problem it to compute the binary search tree that
minimizes the cost of all accesses. A relatively straightforward dynamic programming algorithm
solves this problem in O(n3) time.

As for longest common subsequence problem, the algorithm can be improved by exploiting
some structure in the memoization table. In this case, however, the relevant structure isn’t in the
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table of costs, but rather in the table used to reconstruct the actual optimal tree. Let OptRoot[i, j]
denote the index of the root of the optimal search tree for the frequencies F[i .. j]; this is always
an integer between i and j. Donald Knuth proved the following nice monotonicity property for
optimal subtrees: If we move either end of the subarray, the optimal root moves in the same
direction or not at all. More formally:

OptRoot[i, j − 1]≤ OptRoot[i, j]≤ OptRoot[i + 1, j] for all i and j.

This (nontrivial!) observation leads to the following more efficient algorithm:

FasterOptimalSearchTree( f [1 .. n]):
InitF( f [1 .. n])
for i← 1 downto n

OptCost[i, i − 1]← 0
OptRoot[i, i − 1]← i

for d ← 0 to n
for i← 1 to n

ComputeCostAndRoot(i, i + d)
return OptCost[1, n]

ComputeCostAndRoot(i, j):
OptCost[i, j]←∞
for r ← OptRoot[i, j − 1] to OptRoot[i + 1, j]

tmp← OptCost[i, r − 1] +OptCost[r + 1, j]
if OptCost[i, j]> tmp

OptCost[i, j]← tmp
OptRoot[i, j]← r

OptCost[i, j]← OptCost[i, j] + F[i, j]

It’s not hard to see that the loop index r increases monotonically from 1 to n during each
iteration of the outermost for loop of FasterOptimalSearchTree. Consequently, the total cost
of all calls to ComputeCostAndRoot is only O(n2).

If we formulate the problem slightly differently, this algorithm can be improved even further.
Suppose we require the optimum external binary tree, where the keys A[1 .. n] are all stored at the
leaves, and intermediate pivot values are stored at the internal nodes. An algorithm discovered
by Ching Hu and Alan Tucker¹ computes the optimal binary search tree in this setting in only
O(n log n) time!

6.4 Saving Time: Four Russians

Some day.

Exercises

1. Describe an algorithm to compute the edit distance between two strings A[1 .. m] and
B[1 ... n] in O(m log m+ n log n+ K2) time, where K is the number of match points. [Hint:
Use the FindMatches algorithm on page 3 as a subroutine.]

2. (a) Describe an algorithm to compute the longest increasing subsequence of a string
X [1 .. n] in O(n log n) time.

(b) Using your solution to part (a) as a subroutine, describe an algorithm to compute the
longest common subsequence of two strings A[1 .. m] and B[1 ... n] in O(m log m+
n log n+ K log K) time, where K is the number of match points.

¹T. C. Hu and A. C. Tucker, Optimal computer search trees and variable length alphabetic codes, SIAM J. Applied
Math. 21:514–532, 1971. For a slightly simpler algorithm with the same running time, see A. M. Garsia and M. L. Wachs,
A new algorithms for minimal binary search trees, SIAM J. Comput. 6:622–642, 1977. The original correctness proofs
for both algorithms are rather intricate; for simpler proofs, see Marek Karpinski, Lawrence L. Larmore, and Wojciech
Rytter, Correctness of constructing optimal alphabetic trees revisited, Theoretical Computer Science, 180:309-324, 1997.
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3. Describe an algorithm to compute the edit distance between two strings A[1 .. m] and
B[1 ... n] in O(m log m+ n log n+ K log K) time, where K is the number of match points.
[Hint: Combine your answers for problems 1 and 2(b).]

4. Let T be an arbitrary rooted tree, where each vertex is labeled with a positive integer. A
subset S of the nodes of T is heap-ordered if it satisfies two properties:

• S contains a node that is an ancestor of every other node in S.

• For any node v in S, the label of v is larger than the labels of any ancestor of v in S.

3

1 4 1 5

65

7 9 3

2

8 9

8

5

9

4

3

2 3

2 7 9

6

A heap-ordered subset of nodes in a tree.

(a) Describe an algorithm to find the largest heap-ordered subset S of nodes in T that
has the heap property in O(n2) time.

(b) Modify your algorithm from part (a) so that it runs in O(n log n) time when T is a
linked list. [Hint: This special case is equivalent to a problem you’ve seen before.]

?(c) Describe an algorithm to find the largest subset S of nodes in T that has the heap
property, in O(n log n) time. [Hint: Find an algorithm to merge two sorted lists of
lengths k and ` in O(log

�k+`
k

�
) time.]
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The point is, ladies and gentleman, greed is good. Greed works, greed is right.
Greed clarifies, cuts through, and captures the essence of the evolutionary spirit.
Greed in all its forms, greed for life, money, love, knowledge has marked the
upward surge in mankind. And greed—mark my words—will save not only Teldar
Paper but the other malfunctioning corporation called the USA.

— Gordon Gekko [Michael Douglas], Wall Street (1987)

There is always an easy solution to every human problem—
neat, plausible, and wrong.

— H. L. Mencken, “The Divine Afflatus”,
New York Evening Mail (November 16, 1917)

7 Greedy Algorithms

7.1 Storing Files on Tape

Suppose we have a set of n files that we want to store on a tape. In the future, users will want to
read those files from the tape. Reading a file from tape isn’t like reading a file from disk; first
we have to fast-forward past all the other files, and that takes a significant amount of time. Let
L[1 .. n] be an array listing the lengths of each file; specifically, file i has length L[i]. If the files
are stored in order from 1 to n, then the cost of accessing the kth file is

cost(k) =
k∑

i=1

L[i].

The cost reflects the fact that before we read file k we must first scan past all the earlier files on
the tape. If we assume for the moment that each file is equally likely to be accessed, then the
expected cost of searching for a random file is

E[cost] =
n∑

k=1

cost(k)
n

=
n∑

k=1

k∑
i=1

L[i]
n

.

If we change the order of the files on the tape, we change the cost of accessing the files; some
files become more expensive to read, but others become cheaper. Different file orders are likely
to result in different expected costs. Specifically, let π(i) denote the index of the file stored at
position i on the tape. Then the expected cost of the permutation π is

E[cost(π)] =
n∑

k=1

k∑
i=1

L[π(i)]
n

.

Which order should we use if we want the expected cost to be as small as possible? The
answer is intuitively clear; we should store the files in order from shortest to longest. So let’s
prove this.

Lemma 1. E[cost(π)] is minimized when L[π(i)]≤ L[π(i + 1)] for all i.

Proof: Suppose L[π(i)] > L[π(i + 1)] for some i. To simplify notation, let a = π(i) and
b = π(i+1). If we swap files a and b, then the cost of accessing a increases by L[b], and the cost
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of accessing b decreases by L[a]. Overall, the swap changes the expected cost by (L[b]− L[a])/n.
But this change is an improvement, because L[b]< L[a]. Thus, if the files are out of order, we
can improve the expected cost by swapping some mis-ordered adjacent pair. �

This example gives us our first greedy algorithm. To minimize the total expected cost of
accessing the files, we put the file that is cheapest to access first, and then recursively write
everything else; no backtracking, no dynamic programming, just make the best local choice
and blindly plow ahead. If we use an efficient sorting algorithm, the running time is clearly
O(n log n), plus the time required to actually write the files. To prove the greedy algorithm is
actually correct, we simply prove that the output of any other algorithm can be improved by
some sort of swap.

Let’s generalize this idea further. Suppose we are also given an array F[1 .. n] of access
frequencies for each file; file i will be accessed exactly F[i] times over the lifetime of the tape.
Now the total cost of accessing all the files on the tape is

Σcost(π) =
n∑

k=1

�
F[π(k)] ·

k∑
i=1

L[π(i)]

�
=

n∑
k=1

k∑
i=1

�
F[π(k)] · L[π(i)]�.

Now what order should store the files if we want to minimize the total cost?
We’ve already proved that if all the frequencies are equal, then we should sort the files by

increasing size. If the frequencies are all different but the file lengths L[i] are all equal, then
intuitively, we should sort the files by decreasing access frequency, with the most-accessed file
first. In fact, this is not hard to prove by modifying the proof of Lemma 1. But what if the sizes
and the frequencies are both different? In this case, we should sort the files by the ratio L/F .

Lemma 2. Σcost(π) is minimized when
L[π(i)]
F[π(i)]

≤ L[π(i + 1)]
F[π(i + 1)]

for all i.

Proof: Suppose L[π(i)]/F[π(i)]> L[π(i + 1)]/F[π(i + i)] for some i. To simplify notation, let
a = π(i) and b = π(i + 1). If we swap files a and b, then the cost of accessing a increases by
L[b], and the cost of accessing b decreases by L[a]. Overall, the swap changes the total cost by
L[b]F[a]− L[a]F[b]. But this change is an improvement, since

L[a]
F[a]

>
L[b]
F[b]

=⇒ L[b]F[a]− L[a]F[b]< 0.

Thus, if two adjacent files are out of order, we can improve the total cost by swapping them. �

7.2 Scheduling Classes

The next example is slightly less trivial. Suppose you decide to drop out of computer science at the
last minute and change your major to Applied Chaos. The Applied Chaos department offers all of
its classes on the same day every week, called ‘Soberday’ by the students (but interestingly, not
by the faculty). Every class has a different start time and a different ending time: AC 101 (‘Toilet
Paper Landscape Architecture’) starts at 10:27pm and ends at 11:51pm; AC 666 (‘Immanentizing
the Eschaton’) starts at 4:18pm and ends at 7:06pm, and so on. In the interest of graduating as
quickly as possible, you want to register for as many classes as you can. (Applied Chaos classes
don’t require any actual work.) The university’s registration computer won’t let you register for
overlapping classes, and no one in the department knows how to override this ‘feature’. Which
classes should you take?
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More formally, suppose you are given two arrays S[1 .. n] and F[1 .. n] listing the start and
finish times of each class; to be concrete, we can assume that 0≤ S[i]< F[i]≤ M for each i, for
some value M (for example, the number of picoseconds in Soberday). Your task is to choose
the largest possible subset X ∈ {1, 2, . . . , n} so that for any pair i, j ∈ X , either S[i] > F[ j] or
S[ j] > F[i]. We can illustrate the problem by drawing each class as a rectangle whose left
and right x-coordinates show the start and finish times. The goal is to find a largest subset of
rectangles that do not overlap vertically.

A maximal conflict-free schedule for a set of classes.

This problem has a fairly simple recursive solution, based on the observation that either you
take class 1 or you don’t. Let B4 denote the set of classes that end before class 1 starts, and let L8
denote the set of classes that start later than class 1 ends:

B4 = {i | 2≤ i ≤ n and F[i]< S[1]} L8 = {i | 2≤ i ≤ n and S[i]> F[1]}

If class 1 is in the optimal schedule, then so are the optimal schedules for B4 and L8, which we
can find recursively. If not, we can find the optimal schedule for {2,3, . . . , n} recursively. So
we should try both choices and take whichever one gives the better schedule. Evaluating this
recursive algorithm from the bottom up gives us a dynamic programming algorithm that runs in
O(n2) time. I won’t bother to go through the details, because we can do better.¹

Intuitively, we’d like the first class to finish as early as possible, because that leaves us with
the most remaining classes. If this greedy strategy works, it suggests the following very simple
algorithm. Scan through the classes in order of finish time; whenever you encounter a class that
doesn’t conflict with your latest class so far, take it!

The same classes sorted by finish times and the greedy schedule.

We can write the greedy algorithm somewhat more formally as follows. (Hopefully the first
line is understandable.) The algorithm clearly runs in O(n log n) time.

¹But you should still work out the details yourself. The dynamic programming algorithm can be used to find the
“best” schedule for several different definitions of “best”, but the greedy algorithm I’m about to describe only works
when “best” means “biggest”. Also, you need the practice.
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GreedySchedule(S[1 .. n], F[1 .. n]):
sort F and permute S to match
count← 1
X [count]← 1
for i← 2 to n

if S[i]> F[X [count]]
count← count+ 1
X [count]← i

return X [1 .. count]

To prove that this algorithm actually gives us a maximal conflict-free schedule, we use an
exchange argument, similar to the one we used for tape sorting. We are not claiming that the
greedy schedule is the only maximal schedule; there could be others. (See the figures on the
previous page.) All we can claim is that at least one of the maximal schedules is the one that the
greedy algorithm produces.

Lemma 3. At least one maximal conflict-free schedule includes the class that finishes first.

Proof: Let f be the class that finishes first. Suppose we have a maximal conflict-free schedule X
that does not include f . Let g be the first class in X to finish. Since f finishes before g does, f
cannot conflict with any class in the set S \ {g}. Thus, the schedule X ′ = X ∪ { f } \ {g} is also
conflict-free. Since X ′ has the same size as X , it is also maximal. �

To finish the proof, we call on our old friend, induction.

Theorem 4. The greedy schedule is an optimal schedule.

Proof: Let f be the class that finishes first, and let L be the subset of classes the start after
f finishes. The previous lemma implies that some optimal schedule contains f , so the best
schedule that contains f is an optimal schedule. The best schedule that includes f must contain
an optimal schedule for the classes that do not conflict with f , that is, an optimal schedule for L.
The greedy algorithm chooses f and then, by the inductive hypothesis, computes an optimal
schedule of classes from L. �

The proof might be easier to understand if we unroll the induction slightly.

Proof: Let 〈g1, g2, . . . , gk〉 be the sequence of classes chosen by the greedy algorithm. Suppose
we have a maximal conflict-free schedule of the form

〈g1, g2, . . . , g j−1, c j , c j+1, . . . , cm〉,
where class c j is different from the class g j that would be chosen by the greedy algorithm. (We
may have j = 1, in which case this schedule starts with a non-greedy choice c1.) By construction,
the jth greedy choice g j does not conflict with any earlier class g1, g2, . . . , g j−1, and since our
schedule is conflict-free, neither does c j. Moreover, g j has the earliest finish time among all
classes that don’t conflict with the earlier classes; in particular, g j finishes before c j . This implies
that g j does not conflict with any of the later classes c j+1, . . . , cm. Thus, the schedule

〈g1, g2, . . . , g j−1, g j , c j+1, . . . , cm〉,
is conflict-free. (This is just a generalization of Lemma 3, which considers the case j = 1.)

By induction, it now follows that there is an optimal schedule 〈g1, g2, . . . , gk, ck+1, . . . , cm〉
that includes every class chosen by the greedy algorithm. But this is impossible unless k = m; if
there were a class ck+1 that does not conflict with gk, the greedy algorithm would choose more
than k classes. �
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7.3 General Structure

The basic structure of this correctness proof is exactly the same as for the tape-sorting problem:
an inductive exchange argument.

• Assume that there is an optimal solution that is different from the greedy solution.

• Find the “first” difference between the two solutions.

• Argue that we can exchange the optimal choice for the greedy choice without degrading
the solution.

This argument implies by induction that some optimal solution that contains the entire greedy
solution, and therefore equals the greedy solution. Sometimes, as in the scheduling problem, an
additional step is required to show no optimal solution strictly improves the greedy solution.

7.4 Huffman Codes

A binary code assigns a string of 0s and 1s to each character in the alphabet. A binary code is
prefix-free if no code is a prefix of any other. 7-bit ASCII and Unicode’s UTF-8 are both prefix-free
binary codes. Morse code is a binary code, but it is not prefix-free; for example, the code for S

(· · ·) includes the code for E (·) as a prefix. Any prefix-free binary code can be visualized as a
binary tree with the encoded characters stored at the leaves. The code word for any symbol is
given by the path from the root to the corresponding leaf; 0 for left, 1 for right. The length of a
codeword for a symbol is the depth of the corresponding leaf.

Let me emphasize that binary code trees are not binary search trees; we don’t care at all
about the order of symbols at the leaves.

Suppose we want to encode messages in an n-character alphabet so that the encoded message
is as short as possible. Specifically, given an array frequency counts f [1 .. n], we want to compute
a prefix-free binary code that minimizes the total encoded length of the message:²

n∑
i=1

f [i] · depth(i).

In 1951, as a PhD student at MIT, David Huffman developed the following greedy algorithm to
produce such an optimal code:³

Huffman: Merge the two least frequent letters and recurse.

For example, suppose we want to encode the following helpfully self-descriptive sentence,
discovered by Lee Sallows:⁴

²This looks almost exactly like the cost of a binary search tree, but the optimization problem is very different: code
trees are not required to keep the keys in any particular order.

³Huffman was a student in an information theory class taught by Robert Fano, who was a close colleague of Claude
Shannon, the father of information theory. Fano and Shannon had previously developed a different greedy algorithm
for producing prefix codes—split the frequency array into two subarrays as evenly as possible, and then recursively
build a code for each subarray—but these Fano-Shannon codes were known not to be optimal. Fano posed the (then
open) problem of finding an optimal encoding to his class; Huffman solved the problem as a class project, in lieu of
taking a final exam.

⁴A. K. Dewdney. Computer recreations. Scientific American, October 1984. Douglas Hofstadter published a few
earlier examples of Lee Sallows’ self-descriptive sentences in his Scientific American column in January 1982.
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This sentence contains three a’s, three c’s, two d’s, twenty-six e’s, five f’s, three

g’s, eight h’s, thirteen i’s, two l’s, sixteen n’s, nine o’s, six r’s, twenty-seven s’s,

twenty-two t’s, two u’s, five v’s, eight w’s, four x’s, five y’s, and only one z.

To keep things simple, let’s forget about the forty-four spaces, nineteen apostrophes, nineteen
commas, three hyphens, and only one period, and just encode the letters. Here’s the frequency
table:

A C D E F G H I L N O R S T U V W X Y Z

3 3 2 26 5 3 8 13 2 16 9 6 27 22 2 5 8 4 5 1

Huffman’s algorithm picks out the two least frequent letters, breaking ties arbitrarily—in this
case, say, Z and D—and merges them together into a single new character DZ with frequency 3.
This new character becomes an internal node in the code tree we are constructing, with Z and D

as its children; it doesn’t matter which child is which. The algorithm then recursively constructs
a Huffman code for the new frequency table

A C E F G H I L N O R S T U V W X Y DZ

3 3 26 5 3 8 13 2 16 9 6 27 22 2 5 8 4 5 3

After 19 merges, all 20 characters have been merged together. The record of merges gives us our
code tree. The algorithm makes a number of arbitrary choices; as a result, there are actually
several different Huffman codes. One such code is shown below. For example, the code for A is
110000, and the code for S is 00.

170

59 111

32 60 51

25

12

6 6

3

39 21

17 10 11

8

4

16

S
27

N
16

W
8

H
8

X
4

O
9

T
22

F
5

V
5

Y
5

R
6

A
3

C
3

G
3

D
2

Z
1

I
13

E
26

U
2

L
2

A Huffman code for Lee Sallows’ self-descriptive sentence; the numbers are frequencies for merged characters

If we use this code, the encoded message starts like this:

1001
T

0100
H

1101
I

00
S

00
S

111
E

011
N

1001
T

111
E

011
N

110001
C

111
E

110001
C

10001
O

011
N

1001
T

110000
A

· · ·
Here is the list of costs for encoding each character in the example message, along with that
character’s contribution to the total length of the encoded message:

char. A C D E F G H I L N O R S T U V W X Y Z

freq. 3 3 2 26 5 3 8 13 2 16 9 6 27 22 2 5 8 4 5 1

depth 6 6 7 3 5 6 4 4 7 3 4 4 2 4 7 5 4 6 5 7

total 18 18 14 78 25 18 32 52 14 48 36 24 54 88 14 25 32 24 25 7
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Altogether, the encoded message is 646 bits long. Different Huffman codes would assign different
codes, possibly with different lengths, to various characters, but the overall length of the encoded
message is the same for any Huffman code: 646 bits.

Given the simple structure of Huffman’s algorithm, it’s rather surprising that it produces
an optimal prefix-free binary code. Encoding Lee Sallows’ sentence using any prefix-free code
requires at least 646 bits! Fortunately, the recursive structure makes this claim easy to prove
using an exchange argument, similar to our earlier optimality proofs. We start by proving that
the algorithm’s very first choice is correct.

Lemma 5. Let x and y be the two least frequent characters (breaking ties between equally frequent
characters arbitrarily). There is an optimal code tree in which x and y are siblings.

Proof: I’ll actually prove a stronger statement: There is an optimal code in which x and y are
siblings and have the largest depth of any leaf.

Let T be an optimal code tree, and suppose this tree has depth d. Since T is a full binary
tree, it has at least two leaves at depth d that are siblings. (Verify this by induction!) Suppose
those two leaves are not x and y , but some other characters a and b.

Let T ′ be the code tree obtained by swapping x and a. The depth of x increases by some
amount ∆, and the depth of a decreases by the same amount. Thus,

cost(T ′) = cost(T )− ( f [a]− f [x])∆.

By assumption, x is one of the two least frequent characters, but a is not, which implies that
f [a]≥ f [x]. Thus, swapping x and a does not increase the total cost of the code. Since T was
an optimal code tree, swapping x and a does not decrease the cost, either. Thus, T ′ is also an
optimal code tree (and incidentally, f [a] actually equals f [x]).

Similarly, swapping y and b must give yet another optimal code tree. In this final optimal
code tree, x and y are maximum-depth siblings, as required. �

Now optimality is guaranteed by our dear friend the Recursion Fairy! Essentially we’re relying
on the following recursive definition for a full binary tree: either a single node, or a full binary
tree where some leaf has been replaced by an internal node with two leaf children.

Theorem 6. Huffman codes are optimal prefix-free binary codes.

Proof: If the message has only one or two different characters, the theorem is trivial.
Otherwise, let f [1 .. n] be the original input frequencies, where without loss of generality,

f [1] and f [2] are the two smallest. To keep things simple, let f [n+ 1] = f [1] + f [2]. By the
previous lemma, we know that some optimal code for f [1 .. n] has characters 1 and 2 as siblings.

Let T ′ be the Huffman code tree for f [3 .. n+ 1]; the inductive hypothesis implies that T ′

is an optimal code tree for the smaller set of frequencies. To obtain the final code tree T , we
replace the leaf labeled n+ 1 with an internal node with two children, labelled 1 and 2. I claim
that T is optimal for the original frequency array f [1 .. n].

To prove this claim, we can express the cost of T in terms of the cost of T ′ as follows. (In
these equations, depth(i) denotes the depth of the leaf labelled i in either T or T ′; if the leaf
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appears in both T and T ′, it has the same depth in both trees.)

cost(T ) =
n∑

i=1

f [i] · depth(i)

=
n+1∑
i=3

f [i] · depth(i) + f [1] · depth(1) + f [2] · depth(2)− f [n+ 1] · depth(n+ 1)

= cost(T ′) + f [1] · depth(1) + f [2] · depth(2)− f [n+ 1] · depth(n+ 1)

= cost(T ′) + ( f [1] + f [2]) · depth(T )− f [n+ 1] · (depth(T )− 1)

= cost(T ′) + f [1] + f [2]

This equation implies that minimizing the cost of T is equivalent to minimizing the cost of T ′; in
particular, attaching leaves labeled 1 and 2 to the leaf in T ′ labeled n+ 1 gives an optimal code
tree for the original frequencies. �

To actually implement Huffman codes efficiently, we keep the characters in a min-heap,
where the priority of each character is its frequency. We can construct the code tree by keeping
three arrays of indices, listing the left and right children and the parent of each node. The root
of the tree is the node with index 2n− 1.

BuildHuffman( f [1 .. n]):
for i← 1 to n

L[i]← 0; R[i]← 0
Insert(i, f [i])

for i← n to 2n− 1
x ← ExtractMin( )
y ← ExtractMin( )
f [i]← f [x] + f [y]
L[i]← x; R[i]← y
P[x]← i; P[y]← i
Insert(i, f [i])

P[2n− 1]← 0

The algorithm performs O(n) min-heap operations. If we use a balanced binary tree as the heap,
each operation requires O(log n) time, so the total running time of BuildHuffman is O(n log n).

Finally, here are simple algorithms to encode and decode messages:

HuffmanEncode(A[1 .. k]):
m← 1
for i← 1 to k

HuffmanEncodeOne(A[i])

HuffmanEncodeOne(x):
if x < 2n− 1

HuffmanEncodeOne(P[x])
if x = L[P[x]]

B[m]← 0
else

B[m]← 1
m← m+ 1

HuffmanDecode(B[1 .. m]):
k← 1
v← 2n− 1
for i← 1 to m

if B[i] = 0
v← L[v]

else
v← R[v]

if L[v] = 0
A[k]← v
k← k+ 1
v← 2n− 1

8
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Exercises

1. For each of the following alternative greedy algorithms for the class scheduling problem,
either prove that the algorithm always constructs an optimal schedule, or describe a small
input example for which the algorithm does not produce an optimal schedule. Assume
that all algorithms break ties arbitrarily (that is, in a manner that is completely out of your
control).

(a) Choose the course x that ends last, discard classes that conflict with x , and recurse.

(b) Choose the course x that starts first, discard all classes that conflict with x , and
recurse.

(c) Choose the course x that starts last, discard all classes that conflict with x , and
recurse.

(d) Choose the course x with shortest duration, discard all classes that conflict with x ,
and recurse.

(e) Choose a course x that conflicts with the fewest other courses, discard all classes that
conflict with x , and recurse.

(f) If no classes conflict, choose them all. Otherwise, discard the course with longest
duration and recurse.

(g) If no classes conflict, choose them all. Otherwise, discard a course that conflicts with
the most other courses and recurse.

(h) Let x be the class with the earliest start time, and let y be the class with the second
earliest start time.

• If x and y are disjoint, choose x and recurse on everything but x .
• If x completely contains y , discard x and recurse.
• Otherwise, discard y and recurse.

(i) If any course x completely contains another course, discard x and recurse. Otherwise,
choose the course y that ends last, discard all classes that conflict with y , and recurse.

2. Now consider a weighted version of the class scheduling problem, where different classes
offer different number of credit hours (totally unrelated to the duration of the class lectures).
Your goal is now to choose a set of non-conflicting classes that give you the largest possible
number of credit hours, given an array of start times, end times, and credit hours as input.

(a) Prove that the greedy algorithm described in the notes — Choose the class that ends
first and recurse — does not always return an optimal schedule.

(b) Describe an algorithm to compute the optimal schedule in O(n2) time.

3. Let X be a set of n intervals on the real line. A subset of intervals Y ⊆ X is called a tiling
path if the intervals in Y cover the intervals in X , that is, any real value that is contained in
some interval in X is also contained in some interval in Y . The size of a tiling cover is just
the number of intervals.

Describe and analyze an algorithm to compute the smallest tiling path of X as quickly as
possible. Assume that your input consists of two arrays X L[1 .. n] and XR[1 .. n], representing
the left and right endpoints of the intervals in X . If you use a greedy algorithm, you must
prove that it is correct.

9
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A set of intervals. The seven shaded intervals form a tiling path.

4. Let X be a set of n intervals on the real line. We say that a set P of points stabs X if every
interval in X contains at least one point in P. Describe and analyze an efficient algorithm
to compute the smallest set of points that stabs X . Assume that your input consists of two
arrays X L[1 .. n] and XR[1 .. n], representing the left and right endpoints of the intervals in
X . As usual, If you use a greedy algorithm, you must prove that it is correct.

A set of intervals stabbed by four points (shown here as vertical segments)

5. Let X be a set of n intervals on the real line. A proper coloring of X assigns a color to
each interval, so that any two overlapping intervals are assigned different colors. Describe
and analyze an efficient algorithm to compute the minimum number of colors needed
to properly color X . Assume that your input consists of two arrays L[1 .. n] and R[1 .. n],
where L[i] and R[i] are the left and right endpoints of the ith interval. As usual, if you use
a greedy algorithm, you must prove that it is correct.

1
2

5
1

44

2

5

3
4

1
3

5

3 3 2

A proper coloring of a set of intervals using five colors.

6. Suppose you are given an array A[1 .. n] of integers, each of which may be positive, negative,
or zero. A contiguous subarray A[i .. j] is called a positive interval if the sum of its entries
is greater than zero. Describe and analyze an algorithm to compute the minimum number
of positive intervals that cover every positive entry in A. For example, given the following
array as input, your algorithm should output the number 3.

sum=2︷ ︸︸ ︷ sum=1︷ ︸︸ ︷ sum=7︷ ︸︸ ︷
+3 −5 +7 −4 +1 −8 +3 −7 +5 −9 +5 −2 +4

7. Suppose you are a simple shopkeeper living in a country with n different types of coins,
with values 1= c[1]< c[2]< · · ·< c[n]. (In the U.S., for example, n= 6 and the values
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are 1, 5, 10, 25, 50 and 100 cents.) Your beloved and benevolent dictator, El Generalissimo,
has decreed that whenever you give a customer change, you must use the smallest possible
number of coins, so as not to wear out the image of El Generalissimo lovingly engraved on
each coin by servants of the Royal Treasury.

(a) In the United States, there is a simple greedy algorithm that always results in the
smallest number of coins: subtract the largest coin and recursively give change for
the remainder. El Generalissimo does not approve of American capitalist greed. Show
that there is a set of coin values for which the greedy algorithm does not always give
the smallest possible of coins.

(b) Now suppose El Generalissimo decides to impose a currency system where the coin
denominations are consecutive powers b0, b1, b2, . . . , bk of some integer b ≥ 2. Prove
that despite El Generalissimo’s disapproval, the greedy algorithm described in part
(a) does make optimal change in this currency system.

(c) Describe and analyze an efficient algorithm to determine, given a target amount
A and a sorted array c[1 .. n] of coin denominations, the smallest number of coins
needed to make A cents in change. Assume that c[1] = 1, so that it is possible to
make change for any amount A.

8. Suppose you have just purchased a new type of hybrid car that uses fuel extremely
efficiently, but can only travel 100 miles on a single battery. The car’s fuel is stored in
a single-use battery, which must be replaced after at most 100 miles. The actual fuel
is virtually free, but the batteries are expensive and can only be installed by licensed
battery-replacement technicians. Thus, even if you decide to replace your battery early,
you must still pay full price for the new battery to be installed. Moreover, because these
batteries are in high demand, no one can afford to own more than one battery at a time.

Suppose you are trying to get from San Francisco to New York City on the new Inter-
Continental Super-Highway, which runs in a direct line between these two cities. There are
several fueling stations along the way; each station charges a different price for installing a
new battery. Before you start your trip, you carefully print the Wikipedia page listing the
locations and prices of every fueling station on the ICSH. Given this information, how do
you decide the best places to stop for fuel?

More formally, suppose you are given two arrays D[1 .. n] and C[1 .. n], where D[i] is
the distance from the start of the highway to the ith station, and C[i] is the cost to replace
your battery at the ith station. Assume that your trip starts and ends at fueling stations (so
D[1] = 0 and D[n] is the total length of your trip), and that your car starts with an empty
battery (so you must install a new battery at station 1).

(a) Describe and analyze a greedy algorithm to find the minimum number of refueling
stops needed to complete your trip. Don’t forget to prove that your algorithm is
correct.

(b) But what you really want to minimize is the total cost of travel. Show that your greedy
algorithm in part (a) does not produce an optimal solution when extended to this
setting.

(c) Describe an efficient algorithm to compute the locations of the fuel stations you
should stop at to minimize the total cost of travel.
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9. Recall that a string w of parentheses (( and )) is balanced if it satisfies one of the following
conditions:

• w is the empty string.

• w= ((x)) for some balanced string x

• w= x y for some balanced strings x and y

For example, the string
w= (((((())))(())(())))(((())(())))(())

is balanced, because w= x y , where

x = (( (((()))) (()) (()) )) and y = (( (()) (()) )) (()).

(a) Describe and analyze an algorithm to determine whether a given string of parentheses
is balanced.

(b) Describe and analyze a greedy algorithm to compute the length of a longest balanced
subsequence of a given string of parentheses. As usual, don’t forget to prove your
algorithm is correct.

For both problems, your input is an array w[1 .. n], where for each i, either w[i] = (( or
w[i] = )). Both of your algorithms should run in O(n) time.

10. Congratulations! You have successfully conquered Camelot, transforming the former
battle-scarred kingdom with an anarcho-syndicalist commune, where citizens take turns
to act as a sort of executive-officer-for-the-week, but with all the decisions of that officer
ratified at a special bi-weekly meeting, by a simple majority in the case of purely internal
affairs, but by a two-thirds majority in the case of more major. . . .

As a final symbolic act, you order the Round Table (surprisingly, an actual circular table)
to be split into pizza-like wedges and distributed to the citizens of Camelot as trophies.
Each citizen has submitted a request for an angular wedge of the table, specified by two
angles—for example: Sir Robin the Brave might request the wedge from 17.23◦ to 42◦,
and Sir Lancelot the Pure might request the 2◦ wedge from 359◦ to 1◦. Each citizen will
be happy if and only if they receive precisely the wedge that they requested. Unfortunately,
some of these ranges overlap, so satisfying all the citizens’ requests is simply impossible.
Welcome to politics.

Describe and analyze an algorithm to find the maximum number of requests that can
be satisfied. [Hint: Careful! The output of your algorithm must not change if you rotate the
table. Do not assume that angles are integers.]

11. Suppose you are standing in a field surrounded by several large balloons. You want to use
your brand new Acme Brand Zap-O-MaticTM to pop all the balloons, without moving from
your current location. The Zap-O-MaticTM shoots a high-powered laser beam, which pops
all the balloons it hits. Since each shot requires enough energy to power a small country
for a year, you want to fire as few shots as possible.

The minimum zap problem can be stated more formally as follows. Given a set C of n
circles in the plane, each specified by its radius and the (x , y) coordinates of its center,
compute the minimum number of rays from the origin that intersect every circle in C . Your
goal is to find an efficient algorithm for this problem.
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Nine balloons popped by 4 shots of the Zap-O-MaticTM

(a) Suppose it is possible to shoot a ray that does not intersect any balloons. Describe
and analyze a greedy algorithm that solves the minimum zap problem in this special
case. [Hint: See Exercise 2.]

(b) Describe and analyze a greedy algorithm whose output is within 1 of optimal. That is,
if m is the minimum number of rays required to hit every balloon, then your greedy
algorithm must output either m or m+ 1. (Of course, you must prove this fact.)

(c) Describe an algorithm that solves the minimum zap problem in O(n2) time.
?(d) Describe an algorithm that solves the minimum zap problem in O(n log n) time.

Assume you have a subroutine Intersects(r, c) that determines whether an arbitrary
ray r intersects an arbitrary circle c in O(1) time. This subroutine is not difficult to write,
but it’s not the interesting part of the problem.

© Copyright 2014 Jeff Erickson.
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The problem is that we attempt to solve the simplest questions cleverly,
thereby rendering them unusually complex.
One should seek the simple solution.

— Anton Pavlovich Chekhov (c. 1890)

I love deadlines. I like the whooshing sound they make as they fly by.

— Douglas Adams

8 Matroids?

8.1 Definitions

Many problems that can be correctly solved by greedy algorithms can be described in terms
of an abstract combinatorial object called a matroid. Matroids were first described in 1935 by
the mathematician Hassler Whitney as a combinatorial generalization of linear independence of
vectors—‘matroid’ means ‘something sort of like a matrix’.

A matroid M is a finite collection of finite sets that satisfies three axioms:

• Non-emptiness: The empty set is in M. (Thus, M is not itself empty.)

• Heredity: If a set X is an element of M, then every subset of X is also in M.

• Exchange: If X and Y are two sets in M where |X | > |Y |, then there is an element
x ∈ X \ Y such that Y ∪ {x} is in M.

The sets in M are typically called independent sets; for example, we would say that any subset
of an independent set is independent. The union of all sets in M is called the ground set. An
independent set is called a basis if it is not a proper subset of another independent set. The
exchange property implies that every basis of a matroid has the same cardinality. The rank of a
subset X of the ground set is the size of the largest independent subset of X . A subset of the
ground set that is not in M is called dependent (surprise, surprise). Finally, a dependent set is
called a circuit if every proper subset is independent.

Most of this terminology is justified by Whitney’s original example:

• Linear matroid: Let A be any n×m matrix. A subset I ⊆ {1, 2, . . . , n} is independent if
and only if the corresponding subset of columns of A is linearly independent.

The heredity property follows directly from the definition of linear independence; the exchange
property is implied by an easy dimensionality argument. A basis in any linear matroid is also a
basis (in the linear-algebra sense) of the vector space spanned by the columns of A. Similarly, the
rank of a set of indices is precisely the rank (in the linear-algebra sense) of the corresponding set
of column vectors.

Here are several other examples of matroids; some of these we will see again later. I will
leave the proofs that these are actually matroids as exercises for the reader.

• Uniform matroid Uk,n: A subset X ⊆ {1, 2, . . . , n} is independent if and only if |X | ≤ k.
Any subset of {1, 2, . . . , n} of size k is a basis; any subset of size k+ 1 is a circuit.

© Copyright 2014 Jeff Erickson.
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• Graphic/cycle matroid M(G): Let G = (V, E) be an arbitrary undirected graph. A subset
of E is independent if it defines an acyclic subgraph of G. A basis in the graphic matroid is
a spanning tree of G; a circuit in this matroid is a cycle in G.

• Cographic/cocycle matroid M∗(G): Let G = (V, E) be an arbitrary undirected graph. A
subset I ⊆ E is independent if the complementary subgraph (V, E \ I) of G is connected. A
basis in this matroid is the complement of a spanning tree; a circuit in this matroid is a
cocycle—a minimal set of edges that disconnects the graph.

• Matching matroid: Let G = (V, E) be an arbitrary undirected graph. A subset I ⊆ V is
independent if there is a matching in G that covers I .

• Disjoint path matroid: Let G = (V, E) be an arbitrary directed graph, and let s be a fixed
vertex of G. A subset I ⊆ V is independent if and only if there are edge-disjoint paths from
s to each vertex in I .

Now suppose each element of the ground set of a matroidM is given an arbitrary non-negative
weight. The matroid optimization problem is to compute a basis with maximum total weight.
For example, if M is the cycle matroid for a graph G, the matroid optimization problem asks us to
find the maximum spanning tree of G. Similarly, if M is the cocycle matroid for G, the matroid
optimization problem seeks (the complement of) the minimum spanning tree.

The following natural greedy strategy computes a basis for any weighted matroid:

GreedyBasis(M, w):
X [1 .. n]←⋃

M 〈〈the ground set〉〉
sort X in decreasing order of weight w
G←∅
for i← 1 to n

if G ∪ {X [i]} ∈M

add X [i] to G
return G

Suppose we can test in F(n) whether a given subset of the ground set is independent. Then this
algorithm runs in O(n log n+ n · F(n)) time.

Theorem 1. For anymatroidM and anyweight function w,GreedyBasis(M, w) returns amaximum-
weight basis of M.

Proof: We use a standard exchange argument. Let G = {g1, g2, . . . , gk} be the independent set
returned by GreedyBasis(M, w). If any other element could be added to G to obtain a larger
independent set, the greedy algorithm would have added it. Thus, G is a basis.

For purposes of deriving a contradiction, suppose there is an independent set H = {h1, h2, . . . , h`}
such that

k∑
i=1

w(gi)<
∑̀
j=1

w(hi).

Without loss of generality, we assume that H is a basis. The exchange property now implies that
k = `.

Now suppose the elements of G and H are indexed in order of decreasing weight. Let i be
the smallest index such that w(gi)< w(hi), and consider the independent sets

Gi−1 = {g1, g2, . . . , gi−1} and Hi = {h1, h2, . . . , hi−1, hi}.
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By the exchange property, there is some element h j ∈ Hi such that Gi−1 ∪ {h j} is an independent
set. We have w(h j) ≥ w(hi) > w(gi). Thus, the greedy algorithm considers and rejects the
heavier element h j before it considers the lighter element gi . But this is impossible—the greedy
algorithm accepts elements in decreasing order of weight. �

We now immediately have a correct greedy optimization algorithm for anymatroid. Returning
to our examples:

• Linear matroid: Given a matrix A, compute a subset of vectors of maximum total weight
that span the column space of A.

• Uniform matroid: Given a set of weighted objects, compute its k largest elements.

• Cycle matroid: Given a graph with weighted edges, compute its maximum spanning tree.
In this setting, the greedy algorithm is better known as Kruskal’s algorithm.

• Cocycle matroid: Given a graph with weighted edges, compute its minimum spanning tree.

• Matching matroid: Given a graph, determine whether it has a perfect matching.

• Disjoint path matroid: Given a directed graph with a special vertex s, find the largest set of
edge-disjoint paths from s to other vertices.

The exchange condition for matroids turns out to be crucial for the success of this algorithm.
A subset system is a finite collection S of finite sets that satisfies the heredity condition—If X ∈ S

and Y ⊆ X , then Y ∈ S—but not necessarily the exchange condition.

Theorem 2. For any subset system S that is not a matroid, there is a weight function w such that
GreedyBasis(S, w) does not return a maximum-weight set in S.

Proof: Let X and Y be two sets in S that violate the exchange property—|X |> |Y |, but for any
element x ∈ X \ Y , the set Y ∪ {x} is not in S. Let m = |Y |. We define a weight function as
follows:

• Every element of Y has weight m+ 2.

• Every element of X \ Y has weight m+ 1.

• Every other element of the ground set has weight zero.

With these weights, the greedy algorithm will consider and accept every element of Y , then
consider and reject every element of X , and finally consider all the other elements. The algorithm
returns a set with total weight m(m + 2) = m2 + 2m. But the total weight of X is at least
(m+ 1)2 = m2 + 2m+ 1. Thus, the output of the greedy algorithm is not the maximum-weight
set in S. �

Recall the Applied Chaos scheduling problem considered in the previous lecture note. There
is a natural subset system associated with this problem: A set of classes is independent if and only
if not two classes overlap. (This is just the graph-theory notion of ‘independent set’!) This subset
system is not a matroid, because there can be maximal independent sets of different sizes, which
violates the exchange property. If we consider a weighted version of the class scheduling problem,
say where each class is worth a different number of hours, Theorem 2 implies that the greedy
algorithm will not always find the optimal schedule. (In fact, there’s an easy counterexample
with only two classes!) However, Theorem 2 does not contradict the correctness of the greedy
algorithm for the original unweighted problem, however; that problem uses a particularly lucky
choice of weights (all equal).
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8.2 Scheduling with Deadlines

Suppose you have n tasks to complete in n days; each task requires your attention for a full
day. Each task comes with a deadline, the last day by which the job should be completed, and a
penalty that you must pay if you do not complete each task by its assigned deadline. What order
should you perform your tasks in to minimize the total penalty you must pay?

More formally, you are given an array D[1 .. n] of deadlines an array P[1 .. n] of penalties.
Each deadline D[i] is an integer between 1 and n, and each penalty P[i] is a non-negative real
number. A schedule is a permutation of the integers {1, 2, . . . , n}. The scheduling problem asks
you to find a schedule π that minimizes the following cost:

cost(π) :=
n∑

i=1

P[i] · [π(i)> D[i]].

This doesn’t look anything like a matroid optimization problem. For one thing, matroid
optimization problems ask us to find an optimal set; this problem asks us to find an optimal
permutation. Surprisingly, however, this scheduling problem is actually a matroid optimization
in disguise! For any schedule π, call tasks i such that π(i) > D[i] late, and all other tasks on
time. The following trivial observation is the key to revealing the underlying matroid structure.

The cost of a schedule is determined by the subset of tasks that are on time.

Call a subset X of the tasks realistic if there is a schedule π in which every task in X is on
time. We can precisely characterize the realistic subsets as follows. Let X (t) denote the subset of
tasks in X whose deadline is on or before t:

X (t) := {i ∈ X | D[i]≤ t}.

In particular, X (0) =∅ and X (n) = X .

Lemma 3. Let X ⊆ {1, 2, . . . , n} be an arbitrary subset of the n tasks. X is realistic if and only if
|X (t)| ≤ t for every integer t.

Proof: Let π be a schedule in which every task in X is on time. Let it be the tth task in X to be
completed. On the one hand, we have π(it)≥ t, since otherwise, we could not have completed
t − 1 other jobs in X before it . On the other hand, π(it) ≤ D[i], because it is on time. We
conclude that D[it]≥ t, which immediately implies that |X (t)| ≤ t.

Now suppose |X (t)| ≤ t for every integer t. If we perform the tasks in X in increasing order
of deadline, then we complete all tasks in X with deadlines t or less by day t. In particular, for
any i ∈ X , we perform task i on or before its deadline D[i]. Thus, X is realistic. �

We can define a canonical schedule for any set X as follows: execute the tasks in X in increasing
deadline order, and then execute the remaining tasks in any order. The previous proof implies
that a set X is realistic if and only if every task in X is on time in the canonical schedule for X .
Thus, our scheduling problem can be rephrased as follows:

Find a realistic subset X such that
∑

i∈X P[i] is maximized.

So we’re looking for optimal subsets after all.
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Lemma 4. The collection of realistic sets of jobs forms a matroid.

Proof: The empty set is vacuously realistic, and any subset of a realistic set is clearly realistic.
Thus, to prove the lemma, it suffices to show that the exchange property holds. Let X and Y be
realistic sets of jobs with |X |> |Y |.

Let t∗ be the largest integer such that |X (t∗)| ≤ |Y (t∗)|. This integer must exist, because
|X (0)| = 0 ≤ 0 = |Y (0)| and |X (n)| = |X | > |Y | = |Y (n)|. By definition of t∗, there are more
tasks with deadline t∗ + 1 in X than in Y . Thus, we can choose a task j in X \ Y with deadline
t∗ + 1; let Z = Y ∪ { j}.

Let t be an arbitrary integer. If t ≤ t∗, then |Z(t)| = |Y (t)| ≤ t, because Y is realistic. On
the other hand, if t > t∗, then |Z(t)|= |Y (t)|+ 1≤ |X (t)|< t by definition of t∗ and because X
is realistic. The previous lemma now implies that Z is realistic. This completes the proof of the
exchange property. �

This lemma implies that our scheduling problem is a matroid optimization problem, so the
greedy algorithm finds the optimal schedule.

GreedySchedule(D[1 .. n], P[1 .. n]):
Sort P in increasing order, and permute D to match
j← 0
for i← 1 to n

X [ j + 1]← i
if X [1 .. j + 1] is realistic

j← j + 1
return the canonical schedule for X [1 .. j]

To turn this outline into a real algorithm, we need a procedure to test whether a given subset
of jobs is realistic. Lemma 9 immediately suggests the following strategy to answer this question
in O(n) time.

Realistic?(X [1 .. m], D[1 .. n]):
〈〈X is sorted by increasing deadline: i ≤ j =⇒ D[X [i]]≤ D[X [ j]]〉〉
N ← 0
j← 0
for t ← 1 to n

if D[X [ j]] = t
N ← N + 1; j← j + 1

〈〈Now N = |X (t)|〉〉
if N > t

return False
return True

If we use this subroutine, GreedySchedule runs in O(n2) time. By using some appropriate data
structures, the running time can be reduced to O(n log n); details are left as an exercise for the
reader.

Exercises

1. Prove that for any graph G, the ‘graphic matroid’ M(G) is in fact a matroid. (This problem
is really asking you to prove that Kruskal’s algorithm is correct!)
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2. Prove that for any graph G, the ‘cographic matroid’ M∗(G) is in fact a matroid.

3. Prove that for any graph G, the ‘matching matroid’ of G is in fact a matroid. [Hint: What
is the symmetric difference of two matchings?]

4. Prove that for any directed graph G and any vertex s of G, the resulting ‘disjoint path
matroid’ of G is in fact a matroid. [Hint: This question is much easier if you’re already
familiar with maximum flows.]

5. Let G be an undirected graph. A set of cycles {c1, c2, . . . , ck} in G is called redundant if
every edge in G appears in an even number of ci ’s. A set of cycles is independent if it
contains no redundant subset. A maximal independent set of cycles is called a cycle basis
for G.

(a) Let C be any cycle basis for G. Prove that for any cycle γ in G, there is a subset A⊆ C
such that A∩{γ} is redundant. In other words, γ is the ‘exclusive or’ of the cycles in A.

(b) Prove that the set of independent cycle sets form a matroid.
?(c) Now suppose each edge of G has a weight. Define the weight of a cycle to be the total

weight of its edges, and the weight of a set of cycles to be the total weight of all cycles
in the set. (Thus, each edge is counted once for every cycle in which it appears.)
Describe and analyze an efficient algorithm to compute the minimum-weight cycle
basis in G.

6. Describe a modification of GreedySchedule that runs in O(n log n) time. [Hint: Store X
in an appropriate data structure that supports the operations “Is X ∪{i} realistic?” and “Add i
to X ” in O(log n) time each.]

© Copyright 2014 Jeff Erickson.
This work is licensed under a Creative Commons License (http://creativecommons.org/licenses/by-nc-sa/4.0/).

Free distribution is strongly encouraged; commercial distribution is expressly forbidden.
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The first nuts and bolts appeared in the middle 1400’s. The bolts were just screws with straight
sides and a blunt end. The nuts were hand-made, and very crude. When a match was found
between a nut and a bolt, they were kept together until they were finally assembled.

In the Industrial Revolution, it soon became obvious that threaded fasteners made it easier
to assemble products, and they also meant more reliable products. But the next big step came
in 1801, with Eli Whitney, the inventor of the cotton gin. The lathe had been recently improved.
Batches of bolts could now be cut on different lathes, and they would all fit the same nut.

Whitney set up a demonstration for President Adams, and Vice-President Jefferson. He had
piles of musket parts on a table. There were 10 similar parts in each pile. He went from pile to
pile, picking up a part at random. Using these completely random parts, he quickly put together a
working musket.

— Karl S. Kruszelnicki (“Dr. Karl”), Karl Trek, December 1997

Dr [John von] Neumann in his Theory of Games and Economic Behavior introduces the cut-up
method of random action into game and military strategy: Assume that the worst has happened
and act accordingly. If your strategy is at some point determined. . . by random factor your opponent
will gain no advantage from knowing your strategy since he cannot predict the move. The cut-up
method could be used to advantage in processing scientific data. How many discoveries have
been made by accident? We cannot produce accidents to order.

— William S. Burroughs, "The Cut-Up Method of Brion Gysin"
in The Third Mind by William S. Burroughs and Brion Gysin (1978)

9 Randomized Algorithms

9.1 Nuts and Bolts

Suppose we are given n nuts and n bolts of different sizes. Each nut matches exactly one bolt
and vice versa. The nuts and bolts are all almost exactly the same size, so we can’t tell if one bolt
is bigger than the other, or if one nut is bigger than the other. If we try to match a nut witch a
bolt, however, the nut will be either too big, too small, or just right for the bolt.

Our task is to match each nut to its corresponding bolt. But before we do this, let’s try to
solve some simpler problems, just to get a feel for what we can and can’t do.

Suppose we want to find the nut that matches a particular bolt. The obvious algorithm —
test every nut until we find a match — requires exactly n− 1 tests in the worst case. We might
have to check every bolt except one; if we get down the the last bolt without finding a match, we
know that the last nut is the one we’re looking for.¹

Intuitively, in the ‘average’ case, this algorithm will look at approximately n/2 nuts. But what
exactly does ‘average case’ mean?

9.2 Deterministic vs. Randomized Algorithms

Normally, when we talk about the running time of an algorithm, we mean the worst-case running
time. This is the maximum, over all problems of a certain size, of the running time of that
algorithm on that input:

Tworst-case(n) = max
|X |=n

T (X ).

On extremely rare occasions, we will also be interested in the best-case running time:

Tbest-case(n) = min
|X |=n

T (X ).

¹“Whenever you lose something, it’s always in the last place you look. So why not just look there first?”

© Copyright 2014 Jeff Erickson.
This work is licensed under a Creative Commons License (http://creativecommons.org/licenses/by-nc-sa/4.0/).

Free distribution is strongly encouraged; commercial distribution is expressly forbidden.
See http://www.cs.uiuc.edu/~jeffe/teaching/algorithms/ for the most recent revision.
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The average-case running time is best defined by the expected value, over all inputs X of a certain
size, of the algorithm’s running time for X :²

Taverage-case(n) = E
|X |=n

[T (X )] =
∑
|X |=n

T (x) · Pr[X ].

The problem with this definition is that we rarely, if ever, know what the probability of getting
any particular input X is. We could compute average-case running times by assuming a particular
probability distribution—for example, every possible input is equally likely—but this assumption
doesn’t describe reality very well. Most real-life data is decidedly non-random (or at least random
in some unpredictable way).

Instead of considering this rather questionable notion of average case running time, we
will make a distinction between two kinds of algorithms: deterministic and randomized. A
deterministic algorithm is one that always behaves the same way given the same input; the input
completely determines the sequence of computations performed by the algorithm. Randomized
algorithms, on the other hand, base their behavior not only on the input but also on several
random choices. The same randomized algorithm, given the same input multiple times, may
perform different computations in each invocation.

This means, among other things, that the running time of a randomized algorithm on a given
input is no longer fixed, but is itself a random variable. When we analyze randomized algorithms,
we are typically interested in the worst-case expected running time. That is, we look at the average
running time for each input, and then choose the maximum over all inputs of a certain size:

Tworst-case expected(n) = max
|X |=n

E[T (X )].

It’s important to note here that we are making no assumptions about the probability distribution
of possible inputs. All the randomness is inside the algorithm, where we can control it!

9.3 Back to Nuts and Bolts

Let’s go back to the problem of finding the nut that matches a given bolt. Suppose we use the
same algorithm as before, but at each step we choose a nut uniformly at random from the untested
nuts. ‘Uniformly’ is a technical term meaning that each nut has exactly the same probability of
being chosen.³ So if there are k nuts left to test, each one will be chosen with probability 1/k.
Now what’s the expected number of comparisons we have to perform? Intuitively, it should be
about n/2, but let’s formalize our intuition.

Let T (n) denote the number of comparisons our algorithm uses to find a match for a single
bolt out of n nuts.⁴ We still have some simple base cases T (1) = 0 and T (2) = 1, but when n> 2,
T (n) is a random variable. T (n) is always between 1 and n− 1; it’s actual value depends on our
algorithm’s random choices. We are interested in the expected value or expectation of T (n), which
is defined as follows:

E[T (n)] =
n−1∑
k=1

k · Pr[T (n) = k]

²The notation E[ ] for expectation has nothing to do with the shift operator E used in the annihilator method for
solving recurrences!

³This is what most people think ‘random’ means, but they’re wrong.
⁴Note that for this algorithm, the input is completely specified by the number n. Since we’re choosing the nuts to

test at random, even the order in which the nuts and bolts are presented doesn’t matter. That’s why I’m using the
simpler notation T (n) instead of T (X ).
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If the target nut is the kth nut tested, our algorithm performs min{k, n− 1} comparisons. In
particular, if the target nut is the last nut chosen, we don’t actually test it. Because we choose the
next nut to test uniformly at random, the target nut is equally likely—with probability exactly
1/n—to be the first, second, third, or kth bolt tested, for any k. Thus:

Pr[T (n) = k] =

¨
1/n if k < n− 1,

2/n if k = n− 1.

Plugging this into the definition of expectation gives us our answer.

E[T (n)] =
n−2∑
k=1

k
n
+

2(n− 1)
n

=
n−1∑
k=1

k
n
+

n− 1
n

=
n(n− 1)

2n
+ 1− 1

n

=
n+ 1

2
− 1

n

We can get exactly the same answer by thinking of this algorithm recursively. We always
have to perform at least one test. With probability 1/n, we successfully find the matching nut
and halt. With the remaining probability 1− 1/n, we recursively solve the same problem but
with one fewer nut. We get the following recurrence for the expected number of tests:

T (1) = 0, E[T (n)] = 1+
n− 1

n
E[T (n− 1)]

To get the solution, we define a new function t(n) = n E[T (n)] and rewrite:

t(1) = 0, t(n) = n+ t(n− 1)

This recurrence translates into a simple summation, which we can easily solve.

t(n) =
n∑

k=2

k =
n(n+ 1)

2
− 1

=⇒ E[T (n)] =
t(n)

n
=

n+ 1
2
− 1

n

9.4 Finding All Matches

Not let’s go back to the problem introduced at the beginning of the lecture: finding the matching
nut for every bolt. The simplest algorithm simply compares every nut with every bolt, for a total
of n2 comparisons. The next thing we might try is repeatedly finding an arbitrary matched pair,
using our very first nuts and bolts algorithm. This requires

n∑
i=1

(i − 1) =
n2 − n

2

comparisons in the worst case. So we save roughly a factor of two over the really stupid algorithm.
Not very exciting.
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Here’s another possibility. Choose a pivot bolt, and test it against every nut. Then test the
matching pivot nut against every other bolt. After these 2n− 1 tests, we have one matched pair,
and the remaining nuts and bolts are partitioned into two subsets: those smaller than the pivot
pair and those larger than the pivot pair. Finally, recursively match up the two subsets. The
worst-case number of tests made by this algorithm is given by the recurrence

T (n) = 2n− 1+ max
1≤k≤n

{T (k− 1) + T (n− k)}
= 2n− 1+ T (n− 1)

Along with the trivial base case T (0) = 0, this recurrence solves to

T (n) =
n∑

i=1

(2n− 1) = n2.

In the worst case, this algorithm tests every nut-bolt pair! We could have been a little more
clever—for example, if the pivot bolt is the smallest bolt, we only need n− 1 tests to partition
everything, not 2n− 1—but cleverness doesn’t actually help that much. We still end up with
about n2/2 tests in the worst case.

However, since this recursive algorithm looks almost exactly like quicksort, and everybody
‘knows’ that the ‘average-case’ running time of quicksort is Θ(n log n), it seems reasonable to
guess that the average number of nut-bolt comparisons is also Θ(n log n). As we shall see shortly,
if the pivot bolt is always chosen uniformly at random, this intuition is exactly right.

9.5 Reductions to and from Sorting

The second algorithm for mathing up the nuts and bolts looks exactly like quicksort. The
algorithm not only matches up the nuts and bolts, but also sorts them by size.

In fact, the problems of sorting and matching nuts and bolts are equivalent, in the following
sense. If the bolts were sorted, we could match the nuts and bolts in O(n log n) time by performing
a binary search with each nut. Thus, if we had an algorithm to sort the bolts in O(n log n) time,
we would immediately have an algorithm to match the nuts and bolts, starting from scratch, in
O(n log n) time. This process of assuming a solution to one problem and using it to solve another
is called reduction—we can reduce the matching problem to the sorting problem in O(n log n)
time.

There is a reduction in the other direction, too. If the nuts and bolts were matched, we could
sort them in O(n log n) time using, for example, merge sort. Thus, if we have an O(n log n) time
algorithm for either sorting or matching nuts and bolts, we automatically have an O(n log n) time
algorithm for the other problem.

Unfortunately, since we aren’t allowed to directly compare two bolts or two nuts, we can’t
use heapsort or mergesort to sort the nuts and bolts in O(n log n) worst case time. In fact, the
problem of sorting nuts and bolts deterministically in O(n log n) time was only ‘solved’ in 1995⁵,
but both the algorithms and their analysis are incredibly technical and the constant hidden in the
O(·) notation is quite large.

Reductions will come up again later in the course when we start talking about lower bounds
and NP-completeness.

⁵János Komlós, Yuan Ma, and Endre Szemerédi, Sorting nuts and bolts in O(n log n) time, SIAM J. Discrete Math
11(3):347–372, 1998. See also Phillip G. Bradford, Matching nuts and bolts optimally, Technical Report MPI-I-95-1-025,
Max-Planck-Institut für Informatik, September 1995. Bradford’s algorithm is slightly simpler.
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9.6 Recursive Analysis

Intuitively, we can argue that our quicksort-like algorithm will usually choose a bolt of approx-
imately median size, and so the average numbers of tests should be O(n log n). We can now
finally formalize this intuition. To simplify the notation slightly, I’ll write T (n) in place of E[T (n)]
everywhere.

Our randomized matching/sorting algorithm chooses its pivot bolt uniformly at random from
the set of unmatched bolts. Since the pivot bolt is equally likely to be the smallest, second
smallest, or kth smallest for any k, the expected number of tests performed by our algorithm is
given by the following recurrence:

T (n) = 2n− 1+ Ek

�
T (k− 1) + T (n− k)

�

= 2n− 1+
1
n

n∑
k=1

�
T (k− 1) + T (n− k)

�

The base case is T (0) = 0. (We can save a few tests by setting T (1) = 0 instead of 1, but the
analysis will be easier if we’re a little stupid.)

Yuck. At this point, we could simply guess the solution, based on the incessant rumors that
quicksort runs in O(n log n) time in the average case, and prove our guess correct by induction.
(See Section 9.8 below for details.)

However, if we’re only interested in asymptotic bounds, we can afford to be a little conservative.
What we’d really like is for the pivot bolt to be the median bolt, so that half the bolts are bigger
and half the bolts are smaller. This isn’t very likely, but there is a good chance that the pivot bolt
is close to the median bolt. Let’s say that a pivot bolt is good if it’s in the middle half of the final
sorted set of bolts, that is, bigger than at least n/4 bolts and smaller than at least n/4 bolts. If
the pivot bolt is good, then the worst split we can have is into one set of 3n/4 pairs and one set
of n/4 pairs. If the pivot bolt is bad, then our algorithm is still better than starting over from
scratch. Finally, a randomly chosen pivot bolt is good with probability 1/2.

These simple observations give us the following simple recursive upper bound for the expected
running time of our algorithm:

T (n)≤ 2n− 1+
1
2

�
T
�3n

4

�
+ T

�n
4

��
+

1
2
· T (n)

A little algebra simplifies this even further:

T (n)≤ 4n− 2+ T
�3n

4

�
+ T

�n
4

�

We can solve this recurrence using the recursion tree method, giving us the unsurprising
upper bound T (n) = O(n log n). A similar argument gives us the matching lower bound
T (n) = Ω(n log n).

Unfortunately, while this argument is convincing, it is not a formal proof, because it relies on the
unproven assumption that T (n) is a convex function, which means that T (n+1)+T (n−1)≥ 2T (n)
for all n. T (n) is actually convex, but we never proved it. Convexity follows form the closed-form
solution of the recurrence, but using that fact would be circular logic. Sadly, formally proving
convexity seems to be almost as hard as solving the recurrence. If we want a proof of the expected
cost of our algorithm, we need another way to proceed.
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9.7 Iterative Analysis

By making a simple change to our algorithm, which has no effect on the number of tests, we can
analyze it much more directly and exactly, without solving a recurrence or relying on hand-wavy
intuition.

The recursive subproblems solved by quicksort can be laid out in a binary tree, where each
node corresponds to a subset of the nuts and bolts. In the usual recursive formulation, the
algorithm partitions the nuts and bolts at the root, then the left child of the root, then the leftmost
grandchild, and so forth, recursively sorting everything on the left before starting on the right
subproblem.

But we don’t have to solve the subproblems in this order. In fact, we can visit the nodes in
the recursion tree in any order we like, as long as the root is visited first, and any other node is
visited after its parent. Thus, we can recast quicksort in the following iterative form. Choose a
pivot bolt, find its match, and partition the remaining nuts and bolts into two subsets. Then pick
a second pivot bolt and partition whichever of the two subsets contains it. At this point, we have
two matched pairs and three subsets of nuts and bolts. Continue choosing new pivot bolts and
partitioning subsets, each time finding one match and increasing the number of subsets by one,
until every bolt has been chosen as the pivot. At the end, every bolt has been matched, and the
nuts and bolts are sorted.

Suppose we always choose the next pivot bolt uniformly at random from the bolts that haven’t
been pivots yet. Then no matter which subset contains this bolt, the pivot bolt is equally likely to
be any bolt in that subset. That implies (by induction) that our randomized iterative algorithm
performs exactly the same set of tests as our randomized recursive algorithm, but possibly in a
different order.

Now let Bi denote the ith smallest bolt, and N j denote the jth smallest nut. For each i and j,
define an indicator variable X i j that equals 1 if our algorithm compares Bi with N j and zero
otherwise. Then the total number of nut/bolt comparisons is exactly

T (n) =
n∑

i=1

n∑
j=1

X i j .

We are interested in the expected value of this double summation:

E[T (n)] = E




n∑
i=1

n∑
j=1

X i j


=

n∑
i=1

n∑
j=1

E[X i j].

This equation uses a crucial property of random variables called linearity of expectation: for any
random variables X and Y , the sum of their expectations is equal to the expectation of their sum:
E[X + Y ] = E[X ] + E[Y ].

To analyze our algorithm, we only need to compute the expected value of each X i j. By
definition of expectation,

E[X i j] = 0 · Pr[X i j = 0] + 1 · Pr[X i j = 1] = Pr[X i j = 1],

so we just need to calculate Pr[X i j = 1] for all i and j.
First let’s assume that i < j. The only comparisons our algorithm performs are between some

pivot bolt (or its partner) and a nut (or bolt) in the same subset. The only event that can prevent
a comparison between Bi and N j is choosing some intermediate pivot bolt Bk, with i < k < j,
before Bi or B j . In other words:

6
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Our algorithm compares Bi and N j if and only if the first pivot
chosen from the set {Bi , Bi+1, . . . , B j} is either Bi or B j .

Since the set {Bi , Bi+1, . . . , B j} contains j− i+1 bolts, each of which is equally likely to be chosen
first, we immediately have

E[X i j] =
2

j − i + 1
for all i < j.

Symmetric arguments give us E[X i j] =
2

i− j+1 for all i > j. Since our algorithm is a little stupid,
every bolt is compared with its partner, so X ii = 1 for all i. (In fact, if a pivot bolt is the only bolt
in its subset, we don’t need to compare it against its partner, but this improvement complicates
the analysis.)

Putting everything together, we get the following summation.

E[T (n)] =
n∑

i=1

n∑
j=1

E[X i j]

=
n∑

i=1

E[X ii] + 2
n∑

i=1

n∑
j=i+1

E[X i j]

= n+ 4
n∑

i=1

n∑
j=i+1

1
j − i + 1

This is quite a bit simpler than the recurrence we got before. With just a few more lines of algebra,
we can turn it into an exact, closed-form expression for the expected number of comparisons.

E[T (n)] = n+ 4
n∑

i=1

n−i+1∑
k=2

1
k

[substitute k = j − i + 1]

= n+ 4
n∑

k=2

n−k+1∑
i=1

1
k

[reorder summations]

= n+ 4
n∑

k=2

n− k+ 1
k

= n+ 4

�
(n+ 1)

n∑
k=2

1
k
−

n∑
k=2

1

�

= n+ 4((n+ 1)(Hn − 1)− (n− 1))

= n+ 4(nHn − 2n+Hn)

= 4nHn − 7n+ 4Hn

Sure enough, it’s Θ(n log n).

9.8 Masochistic Analysis?

If we’re feeling particularly masochistic, we can actually solve the recurrence directly, all the way
to an exact closed-form solution. I’m including this only to show you it can be done; this won’t
be on the test.

7
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First we simplify the recurrence slightly by combining symmetric terms.

T (n) =
1
n

n∑
k=1

�
T (k− 1) + T (n− k)

�
+ 2n− 1 =

2
n

n−1∑
k=0

T (k) + 2n− 1

We then convert this ‘full history’ recurrence into a ‘limited history’ recurrence by shifting and
subtracting away common terms. (I call this “Magic step #1”.) To make this step slightly easier,
we first multiply both sides of the recurrence by n to get rid of the fractions.

nT (n) = 2
n−1∑
k=0

T (k) + 2n2 − n

(n− 1)T (n− 1) = 2
n−2∑
k=0

T (k) + 2(n− 1)2 − (n− 1)

= 2
n−2∑
k=0

T (k) + 2n2 − 5n+ 3

nT (n)− (n− 1)T (n− 1) = 2T (n− 1) + 4n− 3

T (n) =
n+ 1

n
T (n− 1) + 4− 3

n

To solve this limited-history recurrence, we define a new function t(n) = T (n)/(n+ 1). (I call
this “Magic step #2”.) This gives us an even simpler recurrence for t(n) in terms of t(n− 1):

t(n) =
T (n)
n+ 1

=
1

n+ 1

�
(n+ 1)

T (n− 1)
n

+ 4− 3
n

�

= t(n− 1) +
4

n+ 1
− 3

n(n+ 1)

= t(n− 1) +
7

n+ 1
− 3

n

I used the technique of partial fractions (remember calculus?) to replace 1
n(n+1) with 1

n − 1
n+1 in

the last step. The base case for this recurrence is t(0) = 0. Once again, we have a recurrence
that translates directly into a summation, which we can solve with just a few lines of algebra.

t(n) =
n∑

i=1

�
7

i + 1
− 3

i

�

= 7
n∑

i=1

1
i + 1

− 3
n∑

i=1

1
i

= 7(Hn+1 − 1)− 3Hn

= 4Hn − 7+
7

n+ 1

The last step uses the recursive definition of the harmonic numbers: Hn = Hn +
1

n+1 . Finally,
substituting T (n) = (n + 1)t(n) and simplifying gives us the exact solution to the original
recurrence.

T (n) = 4(n+ 1)Hn − 7(n+ 1) + 7= 4nHn − 7n+ 4Hn

Surprise, surprise, we get exactly the same solution!
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Exercises

Probability

Several of these problems refer to decks of playing cards. A standard (Anglo-American) deck of
52 playing cards contains 13 cards in each of four suits: spades («), hearts (ª), diamonds (©),
and clubs (¨). Within each suit, the 13 cards have distinct ranks: 2, 3, 4, 5, 6, 7, 8, 9, 10, jack
(J), queen (Q), king (K), and ace (A). For purposes of these problems, the ranks are ordered
A< 2 < 3 < · · · < 9 < 10 < J < Q < K; thus, for example, the jack of spades has higher rank
thank the eight of diamonds.

1. Clock Solitaire is played with a standard deck of playing cards. To set up the game, deal
the cards face down into 13 piles of four cards each, one in each of the ‘hour’ positions of a
clock and one in the center. Each pile corresponds to a particular rank—A through Q in
clockwise order for the hour positions, and K for the center. To start the game, turn over a
card in the center pile. Then repeatedly turn over a card in the pile corresponding to the
value of the previous card. The game ends when you try to turn over a card from a pile
whose four cards are already face up. (This is always the center pile—why?) You win if
and only if every card is face up when the game ends.

What is the exact probability that you win a game of Clock Solitaire, assuming that the
cards are permuted uniformly at random before they are dealt into their piles?

2. Professor Jay is about to perform a public demonstration with two decks of cards, one
with red backs (‘the red deck’) and one with blue backs (‘the blue deck’). Both decks lie
face-down on a table in front of Professor Jay, shuffled so that every permutation of each
deck is equally likely.

To begin the demonstration, Professor Jay turns over the top card from each deck. If
one of these two cards is the three of clubs (3¨), the demonstration ends immediately.
Otherwise, the good Professor repeatedly hurls the cards he just turned over into the thick,
pachydermatous outer melon layer of a nearby watermelon, and then turns over the next
card from the top of each deck. The demonstration ends the first time a 3¨ is turned over.
Thus, if 3¨ is the last card in both decks, the demonstration ends with 102 cards embedded
in the watermelon, that most prodigious of household fruits.

(a) What is the exact expected number of cards that Professor Jay hurls into the water-
melon?

(b) For each of the statements below, give the exact probability that the statement is true
of the first pair of cards Professor Jay turns over.

i. Both cards are threes.
ii. One card is a three, and the other card is a club.
iii. If (at least) one card is a heart, then (at least) one card is a diamond.
iv. The card from the red deck has higher rank than the card from the blue deck.

(c) For each of the statements below, give the exact probability that the statement is true
of the last pair of cards Professor Jay turns over.

i. Both cards are threes.
ii. One card is a three, and the other card is a club.

9



Algorithms Lecture 9: Randomized Algorithms [Sp’15]

iii. If (at least) one card is a heart, then (at least) one card is a diamond.
iv. The card from the red deck has higher rank than the card from the blue deck.

3. Penn and Teller agree to play the following game. Penn shuffles a standard deck of playing
cards so that every permutation is equally likely. Then Teller draws cards from the deck,
one at a time without replacement, until he draws the three of clubs (3♣), at which point
the remaining undrawn cards instantly burst into flames.

The first time Teller draws a card from the deck, he gives it to Penn. From then on,
until the game ends, whenever Teller draws a card whose value is smaller than the last
card he gave to Penn, he gives the new card to Penn.⁶ To make the rules unambiguous,
they agree beforehand that A= 1, J = 11, Q = 12, and K = 13.

(a) What is the expected number of cards that Teller draws?

(b) What is the expected maximum value among the cards Teller gives to Penn?

(c) What is the expected minimum value among the cards Teller gives to Penn?

(d) What is the expected number of cards that Teller gives to Penn? [Hint: Let 13= n.]

4. Suppose n lights labeled 0, . . . , n− 1 are placed clockwise around a circle. Initially, every
light is off. Consider the following random process.

LightTheCircle(n):
k← 0
turn on light 0
while at least one light is off

with probability 1/2
k← (k+ 1)mod n

else
k← (k− 1)mod n

if light k is off, turn it on

(a) Let p(i, n) be the probability that light i is the last to be turned on by LightTheCircle(n, 0).
For example, p(0,2) = 0 and p(1, 2) = 1. Find an exact closed-form expression for
p(i, n) in terms of n and i. Prove your answer is correct.

(b) Give the tightest upper bound you can on the expected running time of this algorithm.

5. Consider a random walk on a path with vertices numbered 1,2, . . . , n from left to right. At
each step, we flip a coin to decide which direction to walk, moving one step left or one step
right with equal probability. The random walk ends when we fall off one end of the path,
either by moving left from vertex 1 or by moving right from vertex n.

(a) Prove that the probability that the walk ends by falling off the right end of the path is
exactly 1/(n+ 1).

(b) Prove that if we start at vertex k, the probability that we fall off the right end of the
path is exactly k/(n+ 1).

⁶Specifically, he hurls it directly into the back of Penn’s right hand.
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(c) Prove that if we start at vertex 1, the expected number of steps before the random
walk ends is exactly n.

(d) Suppose we start at vertex n/2 instead. State and prove a tight Θ-bound on the
expected length of the random walk in this case.

Randomized Algorithms

6. Consider the following randomized algorithm for generating biased random bits. The
subroutine FairCoin returns either 0 or 1 with equal probability; the random bits returned
by FairCoin are mutually independent.

OneInThree:
if FairCoin = 0

return 0
else

return 1−OneInThree

(a) Prove that OneInThree returns 1 with probability 1/3.

(b) What is the exact expected number of times that this algorithm calls FairCoin?

(c) Now suppose you are given a subroutine OneInThree that generates a random
bit that is equal to 1 with probability 1/3. Describe a FairCoin algorithm that
returns either 0 or 1 with equal probability, using OneInThree as your only source
of randomness.

(d) What is the exact expected number of times that your FairCoin algorithm calls
OneInThree?

7. (a) Suppose you have access to a function FairCoin that returns a single random bit,
chosen uniformly and independently from the set {0, 1}, in O(1) time. Describe and
analyze an algorithm Random(n), which returns an integer chosen uniformly and
independently at random from the set {1, 2, . . . , n}.

(b) Suppose you have access to a function FairCoins(k) that returns k random bits (or
equivalently, a random integer chosen uniformly and independently from the set
{0,1, . . . , 2k − 1}) in O(1) time, given any non-negative integer k as input. Describe
and analyze an algorithm Random(n), which returns an integer chosen uniformly
and independently at random from the set {1, 2, . . . , n}.

For each of the remaining problems, you may assume a function RANDOM(k) that
returns, given any positive integer k, an integer chosen independently and uni-
formly at random from the set {1, 2, . . . , k}, in O(1) time. For example, to perform
a fair coin flip, one could call RANDOM(2).

8. Consider the following algorithm for finding the smallest element in an unsorted array:

RandomMin(A[1 .. n]):
min←∞
for i← 1 to n in random order

if A[i]<min
min← A[i] (?)

return min

11
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(a) In the worst case, how many times does RandomMin execute line (?)?

(b) What is the probability that line (?) is executed during the nth iteration of the for
loop?

(c) What is the exact expected number of executions of line (?)?

9. Consider the following randomized algorithm for choosing the largest bolt. Draw a bolt
uniformly at random from the set of n bolts, and draw a nut uniformly at random from the
set of n nuts. If the bolt is smaller than the nut, discard the bolt, draw a new bolt uniformly
at random from the unchosen bolts, and repeat. Otherwise, discard the nut, draw a new
nut uniformly at random from the unchosen nuts, and repeat. Stop either when every nut
has been discarded, or every bolt except the one in your hand has been discarded.

What is the exact expected number of nut-bolt tests performed by this algorithm? Prove
your answer is correct. [Hint: What is the expected number of unchosen nuts and bolts when
the algorithm terminates?]

10. Let S be a set of n points in the plane. A point p in S is called Pareto-optimal if no other
point in S is both above and to the right of p.

(a) Describe and analyze a deterministic algorithm that computes the Pareto-optimal
points in S in O(n log n) time.

(b) Suppose each point in S is chosen independently and uniformly at random from
the unit square [0, 1]× [0,1]. What is the exact expected number of Pareto-optimal
points in S?

11. Suppose we want to write an efficient function RandomPermutation(n) that returns a
permutation of the integers 〈1, . . . , n〉 chosen uniformly at random.

(a) Prove that the following algorithm is not correct. [Hint: Consider the case n= 3.]

RandomPermutation(n):
for i← 1 to n

π[i]← i
for i← 1 to n

swap π[i]↔ π[Random(n)]

(b) Consider the following implementation of RandomPermutation.

RandomPermutation(n):
for i← 1 to n

π[i]← NULL
for i← 1 to n

j← Random(n)
while (π[ j] != NULL)

j← Random(n)
π[ j]← i

return π

Prove that this algorithm is correct. Analyze its expected runtime.

(c) Consider the following partial implementation of RandomPermutation.
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RandomPermutation(n):
for i← 1 to n

A[i]← Random(n)
π← SomeFunction(A)
return π

Prove that if the subroutine SomeFunction is deterministic, then this algorithm
cannot be correct. [Hint: There is a one-line proof.]

(d) Describe and analyze an implementation of RandomPermutation that runs in
expected worst-case time O(n).

(e) Describe and analyze an implementation of RandomPermutation that runs in
expected worst-case time O(n log n), using fair coin flips (instead of Random) as the
only source of randomness.

?(f) Consider a correct implementation of RandomPermutation(n) with the following
property: whenever it calls Random(k), the argument k is at most m. Prove that this
algorithm always calls Random at least Ω( n log n

log m ) times.

12. A data stream is an extremely long sequence of items that you can only read only once, in
order. A good example of a data stream is the sequence of packets that pass through a
router. Data stream algorithms must process each item in the stream quickly, using very
little memory; there is simply too much data to store, and it arrives too quickly for any
complex computations. Every data stream algorithm looks roughly like this:

DoSomethingInteresting(stream S):
repeat

x ← next item in S
〈〈do something fast with x〉〉

until S ends
return 〈〈something〉〉

Describe and analyze an algorithm that chooses one element uniformly at random from
a data stream, without knowing the length of the stream in advance. Your algorithm should
spend O(1) time per stream element and use O(1) space (not counting the stream itself).

13. Consider the following randomized variant of one-armed quicksort, which selects the kth
smallest element in an unsorted array A[1 .. n]. As usual, Partition(A[1 .. n], p) partitions
the array A into three parts by comparing the pivot element A[p] to every other element,
using n− 1 comparisons, and returns the new index of the pivot element.

QuickSelect(A[1 .. n], k) :
r ← Partition(A[1 .. n],Random(n))

if k < r
return QuickSelect(A[1 .. r − 1], k)

else if k > r
return QuickSelect(A[r + 1 .. n], k− r)

else
return A[k]

13
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(a) State a recurrence for the expected running time of QuickSelect, as a function of n
and k.

(b) What is the exact probability that QuickSelect compares the ith smallest and jth
smallest elements in the input array? The correct answer is a simple function of i, j,
and k. [Hint: Check your answer by trying a few small examples.]

(c) What is the exact probability that in one of the recursive calls to QuickSelect, the
first argument is the subarray A[i .. j]? The correct answer is a simple function of i, j,
and k. [Hint: Check your answer by trying a few small examples.]

(d) Show that for any n and k, the expected running time of QuickSelect is Θ(n). You
can use either the recurrence from part (a) or the probabilities from part (b) or (c).
For extra credit, find the exact expected number of comparisons, as a function of n
and k.

(e) What is the expected number of times that QuickSelect calls itself recursively?

14. Let M[1 .. n, 1 .. n] be an n× n matrix in which every row and every column is sorted. Such
an array is called totally monotone. No two elements of M are equal.

(a) Describe and analyze an algorithm to solve the following problem in O(n) time: Given
indices i, j, i′, j′ as input, compute the number of elements of M smaller than M[i, j]
and larger than M[i′, j′].

(b) Describe and analyze an algorithm to solve the following problem in O(n) time: Given
indices i, j, i′, j′ as input, return an element of M chosen uniformly at random from
the elements smaller than M[i, j] and larger than M[i′, j′]. Assume the requested
range is always non-empty.

(c) Describe and analyze a randomized algorithm to compute the median element of M
in O(n log n) expected time.

15. Suppose we have a circular linked list of numbers, implemented as a pair of arrays, one
storing the actual numbers and the other storing successor pointers. Specifically, let
X [1 .. n] be an array of n distinct real numbers, and let N[1 .. n] be an array of indices with
the following property: If X [i] is the largest element of X , then X [N[i]] is the smallest
element of X ; otherwise, X [N[i]] is the smallest element of X . For example:

i 1 2 3 4 5 6 7 8 9
X [i] 83 54 16 31 45 99 78 62 27
N[i] 6 8 9 5 2 3 1 7 4

Describe and analyze a randomized algorithm that determines whether a given number
x appears in the array X in O(

p
n) expected time. Your algorithm may not modify the

arrays X and N.

16. Death knocks on your door one cold blustery morning and challenges you to a game. Death
knows that you are an algorithms student, so instead of the traditional game of chess,
Death presents you with a complete binary tree with 4n leaves, each colored either black
or white. There is a token at the root of the tree. To play the game, you and Death will
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take turns moving the token from its current node to one of its children. The game will
end after 2n moves, when the token lands on a leaf. If the final leaf is black, you die; if it’s
white, you will live forever. You move first, so Death gets the last turn.

∨

∧ ∧ ∧ ∧ ∧ ∧ ∧ ∧

∧ ∧

∨ ∨ ∨

∨

You can decide whether it’s worth playing or not as follows. Imagine that the nodes at
even levels (where it’s your turn) are Or gates, the nodes at odd levels (where it’s Death’s
turn) are And gates. Each gate gets its input from its children and passes its output to its
parent. White and black stand for True and False. If the output at the top of the tree is
True, then you can win and live forever! If the output at the top of the tree is False, you
should challenge Death to a game of Twister instead.

(a) Describe and analyze a deterministic algorithm to determine whether or not you can
win. [Hint: This is easy!]

(b) Unfortunately, Death won’t give you enough time to look at every node in the tree.
Describe a randomized algorithm that determines whether you can win in O(3n)
expected time. [Hint: Consider the case n= 1.]

?(c) Describe and analyze a randomized algorithm that determines whether you can win
in O(cn) expected time, for some constant c < 3. [Hint: You may not need to change
your algorithm from part (b) at all!]

17. A majority tree is a complete binary tree with depth n, where every leaf is labeled either 0
or 1. The value of a leaf is its label; the value of any internal node is the majority of the
values of its three children. Consider the problem of computing the value of the root of a
majority tree, given the sequence of 3n leaf labels as input. For example, if n= 2 and the
leaves are labeled 1,0, 0,0, 1,0, 1,1, 1, the root has value 0.

0 01 00 1 11 1

0 0

0

1

A majority tree with depth n= 2.

(a) Prove that any deterministic algorithm that computes the value of the root of a majority
tree must examine every leaf. [Hint: Consider the special case n= 1. Recurse.]

(b) Describe and analyze a randomized algorithm that computes the value of the root in
worst-case expected time O(cn) for some constant c < 3. [Hint: Consider the special
case n= 1. Recurse.]
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I thought the following four [rules] would be enough, provided that I made a firm and constant
resolution not to fail even once in the observance of them. The first was never to accept
anything as true if I had not evident knowledge of its being so. . . . The second, to divide
each problem I examined into as many parts as was feasible, and as was requisite for its
better solution. The third, to direct my thoughts in an orderly way. . . establishing an order in
thought even when the objects had no natural priority one to another. And the last, to make
throughout such complete enumerations and such general surveys that I might be sure of
leaving nothing out.

— René Descartes, Discours de la Méthode (1637)

What is luck?
Luck is probability taken personally.
It is the excitement of bad math.

— Penn Jillette (2001), quoting Chip Denman (1998)

10 Randomized Binary Search Trees

In this lecture, we consider two randomized alternatives to balanced binary search tree structures
such as AVL trees, red-black trees, B-trees, or splay trees, which are arguably simpler than any of
these deterministic structures.

10.1 Treaps

10.1.1 Definitions

A treap is a binary tree in which every node has both a search key and a priority, where the
inorder sequence of search keys is sorted and each node’s priority is smaller than the priorities of
its children.¹ In other words, a treap is simultaneously a binary search tree for the search keys
and a (min-)heap for the priorities. In our examples, we will use letters for the search keys and
numbers for the priorities.

M 1

H 2

G 7

A 9

T 3

R 5

O 6

I 4

L 8

A treap. Letters are search keys; numbers are priorities.

I’ll assume from now on that all the keys and priorities are distinct. Under this assumption,
we can easily prove by induction that the structure of a treap is completely determined by the
search keys and priorities of its nodes. Since it’s a heap, the node v with highest priority must be
the root. Since it’s also a binary search tree, any node u with key(u)< key(v) must be in the left

¹Sometimes I hate English. Normally, ‘higher priority’ means ‘more important’, but ‘first priority’ is also more
important than ‘second priority’. Maybe ‘posteriority’ would be better; one student suggested ‘unimportance’.
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subtree, and any node w with key(w) > key(v) must be in the right subtree. Finally, since the
subtrees are treaps, by induction, their structures are completely determined. The base case is
the trivial empty treap.

Another way to describe the structure is that a treap is exactly the binary search tree that
results by inserting the nodes one at a time into an initially empty tree, in order of increasing
priority, using the standard textbook insertion algorithm. This characterization is also easy to
prove by induction.

A third description interprets the keys and priorities as the coordinates of a set of points in
the plane. The root corresponds to a T whose joint lies on the topmost point. The T splits the
plane into three parts. The top part is (by definition) empty; the left and right parts are split
recursively. This interpretation has some interesting applications in computational geometry,
which (unfortunately) we won’t have time to talk about.

9
8
7
6
5
4
3
2
1

A G H I L M O R T

A geometric interpretation of the same treap.

Treaps were first discovered by Jean Vuillemin in 1980, but he called them Cartesian trees.²
The word ‘treap’ was first used by Edward McCreight around 1980 to describe a slightly different
data structure, but he later switched to the more prosaic name priority search trees.³ Treaps were
rediscovered and used to build randomized search trees by Cecilia Aragon and Raimund Seidel in
1989.⁴ A different kind of randomized binary search tree, which uses random rebalancing instead
of random priorities, was later discovered and analyzed by Conrado Martínez and Salvador Roura
in 1996.⁵

10.1.2 Treap Operations

The search algorithm is the usual one for binary search trees. The time for a successful search is
proportional to the depth of the node. The time for an unsuccessful search is proportional to the
depth of either its successor or its predecessor.

To insert a new node z, we start by using the standard binary search tree insertion algorithm
to insert it at the bottom of the tree. At the point, the search keys still form a search tree, but the
priorities may no longer form a heap. To fix the heap property, as long as z has smaller priority
than its parent, perform a rotation at z, a local operation that decreases the depth of z by one

²J. Vuillemin, A unifying look at data structures. Commun. ACM 23:229–239, 1980.
³E. M. McCreight. Priority search trees. SIAM J. Comput. 14(2):257–276, 1985.
⁴R. Seidel and C. R. Aragon. Randomized search trees. Algorithmica 16:464–497, 1996.
⁵C. Martínez and S. Roura. Randomized binary search trees. J. ACM 45(2):288-323, 1998. The results in this paper

are virtually identical (including the constant factors!) to the corresponding results for treaps, although the analysis
techniques are quite different.
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and increases its parent’s depth by one, while maintaining the search tree property. Rotations
can be performed in constant time, since they only involve simple pointer manipulation.

x
x

right

left

y
y

A right rotation at x and a left rotation at y are inverses.

The overall time to insert z is proportional to the depth of z before the rotations—we have to
walk down the treap to insert z, and then walk back up the treap doing rotations. Another way
to say this is that the time to insert z is roughly twice the time to perform an unsuccessful search
for key(z).

M 1

H 2

G 7

A 9

T 3

R 5

O 6

I 4

L 8 S–1
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R 5
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Left to right: After inserting S with priority −1, rotate it up to fix the heap property.
Right to left: Before deleting S, rotate it down to make it a leaf.

To delete a node, we just run the insertion algorithm backward in time. Suppose we want to
delete node z. As long as z is not a leaf, perform a rotation at the child of z with smaller priority.
This moves z down a level and its smaller-priority child up a level. The choice of which child to
rotate preserves the heap property everywhere except at z. When z becomes a leaf, chop it off.

We sometimes also want to split a treap T into two treaps T< and T> along some pivot key
π, so that all the nodes in T< have keys less than π and all the nodes in T> have keys bigger
then π. A simple way to do this is to insert a new node z with key(z) = π and priority(z) = −∞.
After the insertion, the new node is the root of the treap. If we delete the root, the left and right
sub-treaps are exactly the trees we want. The time to split at π is roughly twice the time to
(unsuccessfully) search for π.

Similarly, we may want to join two treaps T< and T>, where every node in T< has a smaller
search key than any node in T>, into one super-treap. Merging is just splitting in reverse—create
a dummy root whose left sub-treap is T< and whose right sub-treap is T>, rotate the dummy
node down to a leaf, and then cut it off.

The cost of each of these operations is proportional to the depth of some node v in the treap.

• Search: A successful search for key k takes O(depth(v)) time, where v is the node with
key(v) = k. For an unsuccessful search, let v− be the inorder predecessor of k (the node
whose key is just barely smaller than k), and let v+ be the inorder successor of k (the
node whose key is just barely larger than k). Since the last node examined by the binary
search is either v− or v+, the time for an unsuccessful search is either O(depth(v+)) or
O(depth(v−)).
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• Insert/Delete: Inserting a new node with key k takes either O(depth(v+)) time or
O(depth(v−)) time, where v+ and v− are the predecessor and successor of the new node.
Deletion is just insertion in reverse.

• Split/Join: Splitting a treap at pivot value k takes either O(depth(v+)) time or O(depth(v−))
time, since it costs the same as inserting a new dummy root with search key k and priority
−∞. Merging is just splitting in reverse.

Since the depth of a node in a treap is Θ(n) in the worst case, each of these operations has a
worst-case running time of Θ(n).

10.1.3 Random Priorities

A randomized treap is a treap in which the priorities are independently and uniformly distributed
continuous random variables. That means that whenever we insert a new search key into the
treap, we generate a random real number between (say) 0 and 1 and use that number as the
priority of the new node. The only reason we’re using real numbers is so that the probability
of two nodes having the same priority is zero, since equal priorities make the analysis slightly
messier. In practice, we could just choose random integers from a large range, like 0 to 231−1, or
random floating point numbers. Also, since the priorities are independent, each node is equally
likely to have the smallest priority.

The cost of all the operations we discussed—search, insert, delete, split, join—is proportional
to the depth of some node in the tree. Here we’ll see that the expected depth of any node
is O(log n), which implies that the expected running time for any of those operations is also
O(log n).

Let xk denote the node with the kth smallest search key. To simplify notation, let us write
i ↑ k (read “i above k”) to mean that x i is a proper ancestor of xk. Since the depth of v is just
the number of proper ancestors of v, we have the following identity:

depth(xk) =
n∑

i=1

[i ↑ k].

(Again, we’re using Iverson bracket notation.) Now we can express the expected depth of a node
in terms of these indicator variables as follows.

E[depth(xk)] =
n∑

i=1

E
�
[i ↑ k]

�
=

n∑
i=1

Pr[i ↑ k]

(Just as in our analysis of matching nuts and bolts, we’re using linearity of expectation and the
fact that E[X ] = Pr[X = 1] for any zero-one variable X ; in this case, X = [i ↑ k].) So to compute
the expected depth of a node, we just have to compute the probability that some node is a proper
ancestor of some other node.

Fortunately, we can do this easily once we prove a simple structural lemma. Let X (i, k) denote
either the subset of treap nodes {x i , x i+1, . . . , xk} or the subset {xk, xk+1, . . . , x i}, depending on
whether i < k or i > k. The order of the arguments is unimportant; the subsets X (i, k) and
X (k, i) are identical. The subset X (1, n) = X (n, 1) contains all n nodes in the treap.

Lemma 1. For all i 6= k, we have i ↑ k if and only if x i has the smallest priority among all nodes in
X (i, k).
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Proof: There are four cases to consider.
If x i is the root, then i ↑ k, and by definition, it has the smallest priority of any node in the

treap, so it must have the smallest priority in X (i, k).
On the other hand, if xk is the root, then k ↑ i, so i 6 ↑ k. Moreover, x i does not have the

smallest priority in X (i, k)— xk does.
On the gripping hand⁶, suppose some other node x j is the root. If x i and xk are in different

subtrees, then either i < j < k or i > j > k, so x j ∈ X (i, k). In this case, we have both i 6 ↑ k and
k 6 ↑ i, and x i does not have the smallest priority in X (i, k)— x j does.

Finally, if x i and xk are in the same subtree, the lemma follows from the inductive hypothesis
(or, if you prefer, the Recursion Fairy), because the subtree is a smaller treap. The empty treap is
the trivial base case. �

Since each node in X (i, k) is equally likely to have smallest priority, we immediately have the
probability we wanted:

Pr[i ↑ k] =
[i 6= k]
|k− i|+ 1

=





1
k− i + 1

if i < k

0 if i = k

1
i − k+ 1

if i > k

To compute the expected depth of a node xk, we just plug this probability into our formula and
grind through the algebra.

E[depth(xk)] =
n∑

i=1

Pr[i ↑ k] =
k−1∑
i=1

1
k− i + 1

+
n∑

i=k+1

1
i − k+ 1

=
k∑

j=2

1
j
+

n−k+1∑
i=2

1
j

= Hk − 1+Hn−k+1 − 1

< ln k+ ln(n− k+ 1)− 2

< 2 ln n− 2.

In conclusion, every search, insertion, deletion, split, and join operation in an n-node randomized
binary search tree takes O(log n) expected time.

Since a treap is exactly the binary tree that results when you insert the keys in order of
increasing priority, a randomized treap is the result of inserting the keys in random order. So
our analysis also automatically gives us the expected depth of any node in a binary tree built by
random insertions (without using priorities).

10.1.4 Randomized Quicksort (Again!)

We’ve already seen two completely different ways of describing randomized quicksort. The first
is the familiar recursive one: choose a random pivot, partition, and recurse. The second is a
less familiar iterative version: repeatedly choose a new random pivot, partition whatever subset
contains it, and continue. But there’s a third way to describe randomized quicksort, this time in
terms of binary search trees.

⁶See Larry Niven and Jerry Pournelle, The Gripping Hand, Pocket Books, 1994.
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RandomizedQuicksort:
T ← an empty binary search tree
insert the keys into T in random order
output the inorder sequence of keys in T

Our treap analysis tells us is that this algorithm will run in O(n log n) expected time, since each
key is inserted in O(log n) expected time.

Why is this quicksort? Just like last time, all we’ve done is rearrange the order of the
comparisons. Intuitively, the binary tree is just the recursion tree created by the normal version of
quicksort. In the recursive formulation, we compare the initial pivot against everything else and
then recurse. In the binary tree formulation, the first “pivot” becomes the root of the tree without
any comparisons, but then later as each other key is inserted into the tree, it is compared against
the root. Either way, the first pivot chosen is compared with everything else. The partition splits
the remaining items into a left subarray and a right subarray; in the binary tree version, these
are exactly the items that go into the left subtree and the right subtree. Since both algorithms
define the same two subproblems, by induction, both algorithms perform the same comparisons.

We even saw the probability 1/(|k− i|+ 1) before, when we were talking about sorting nuts
and bolts with a variant of randomized quicksort. In the more familiar setting of sorting an array
of numbers, the probability that randomized quicksort compares the ith largest and kth largest
elements is exactly 2/(|k− i|+ 1). The binary tree version of quicksort compares x i and xk if
and only if i ↑ k or k ↑ i, so the probabilities are exactly the same.

10.2 Skip Lists

Skip lists, which were first discovered by Bill Pugh in the late 1980’s,⁷ have many of the usual
desirable properties of balanced binary search trees, but their structure is very different.

At a high level, a skip list is just a sorted linked list with some random shortcuts. To do a
search in a normal singly-linked list of length n, we obviously need to look at n items in the worst
case. To speed up this process, we can make a second-level list that contains roughly half the
items from the original list. Specifically, for each item in the original list, we duplicate it with
probability 1/2. We then string together all the duplicates into a second sorted linked list, and
add a pointer from each duplicate back to its original. Just to be safe, we also add sentinel nodes
at the beginning and end of both lists.

0 1 2 3 4 5 6 7 8 9 ∞–∞

0 1 3 6 7 9 ∞–∞

A linked list with some randomly-chosen shortcuts.

Now we can find a value x in this augmented structure using a two-stage algorithm. First,
we scan for x in the shortcut list, starting at the −∞ sentinel node. If we find x , we’re done.
Otherwise, we reach some value bigger than x and we know that x is not in the shortcut list. Let
w be the largest item less than x in the shortcut list. In the second phase, we scan for x in the
original list, starting from w. Again, if we reach a value bigger than x , we know that x is not in
the data structure.

Since each node appears in the shortcut list with probability 1/2, the expected number of
nodes examined in the first phase is at most n/2. Only one of the nodes examined in the second

⁷William Pugh. Skip lists: A probabilistic alternative to balanced trees. Commun. ACM 33(6):668–676, 1990.
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0 1 2 3 4 5 6 7 8 9 ∞–∞

0 1 3 6 7 9 ∞–∞

Searching for 5 in a list with shortcuts.

phase has a duplicate. The probability that any node is followed by k nodes without duplicates is
2−k, so the expected number of nodes examined in the second phase is at most 1+

∑
k≥0 2−k = 2.

Thus, by adding these random shortcuts, we’ve reduced the cost of a search from n to n/2+ 2,
roughly a factor of two in savings.

10.2.1 Recursive Random Shortcuts

Now there’s an obvious improvement—add shortcuts to the shortcuts, and repeat recursively.
That’s exactly how skip lists are constructed. For each node in the original list, we flip a coin
over and over until we get tails. Each time we get heads, we make a duplicate of the node. The
duplicates are stacked up in levels, and the nodes on each level are strung together into sorted
linked lists. Each node v stores a search key (key(v)), a pointer to its next lower copy (down(v)),
and a pointer to the next node in its level (right(v)).

0 1 2 3 4 5 6 7 8 9 ∞–∞

0 1 3 6 7 9 ∞–∞

1 6 7 ∞–∞

1 7 ∞–∞

7 ∞–∞

∞–∞

A skip list is a linked list with recursive random shortcuts.

The search algorithm for skip lists is very simple. Starting at the leftmost node L in the
highest level, we scan through each level as far as we can without passing the target value x , and
then proceed down to the next level. The search ends when we either reach a node with search
key x or fail to find x on the lowest level.

SkipListFind(x , L):
v← L
while (v 6= Null and key(v) 6= x)

if key(right(v))> x
v← down(v)

else
v← right(v)

return v

Intuitively, since each level of the skip lists has about half the number of nodes as the previous
level, the total number of levels should be about O(log n). Similarly, each time we add another
level of random shortcuts to the skip list, we cut the search time roughly in half, except for
a constant overhead, so after O(log n) levels, we should have a search time of O(log n). Let’s
formalize each of these two intuitive observations.
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0 1 2 3 4 5 6 7 8 9 ∞–∞

0 1 3 6 7 9 ∞–∞

1 6 7 ∞–∞

1 7 ∞–∞

7 ∞–∞

∞–∞

Searching for 5 in a skip list.

10.2.2 Number of Levels

The actual values of the search keys don’t affect the skip list analysis, so let’s assume the keys
are the integers 1 through n. Let L(x) be the number of levels of the skip list that contain some
search key x , not counting the bottom level. Each new copy of x is created with probability 1/2
from the previous level, essentially by flipping a coin. We can compute the expected value of
L(x) recursively—with probability 1/2, we flip tails and L(x) = 0; and with probability 1/2, we
flip heads, increase L(x) by one, and recurse:

E[L(x)] =
1
2
· 0+ 1

2

�
1+ E[L(x)]

�

Solving this equation gives us E[L(x )] = 1.
In order to analyze the expected worst-case cost of a search, however, we need a bound on

the number of levels L =maxx L(x). Unfortunately, we can’t compute the average of a maximum
the way we would compute the average of a sum. Instead, we derive a stronger result: The
depth of a skip list storing n keys is O(logn) with high probability. “High probability” is a
technical term that means the probability is at least 1−1/nc for some constant c ≥ 1; the hidden
constant in the O(log n) bound could depend on c.

In order for a search key x to appear on level `, it must have flipped ` heads in a row when it
was inserted, so Pr[L(x ) ≥ `] = 2−`. The skip list has at least ` levels if and only if L(x)≥ ` for
at least one of the n search keys.

Pr[L ≥ `] = Pr
�
(L(1)≥ `) ∨ (L(2)≥ `) ∨ · · · ∨ (L(n)≥ `)�

Using the union bound — Pr[A∨ B]≤ Pr[A] + Pr[B] for any random events A and B — we can
simplify this as follows:

Pr[L ≥ `] ≤
n∑

x=1

Pr[L(x)≥ `] = n · Pr[L(x)≥ `] = n
2`

.

When ` ≤ lg n, this bound is trivial. However, for any constant c > 1, we have a strong upper
bound

Pr[L ≥ c lg n]≤ 1
nc−1

.

We conclude that with high probability, a skip list has O(logn) levels.
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This high-probability bound indirectly implies a bound on the expected number of levels.
Some simple algebra gives us the following alternate definition for expectation:

E[L] =
∑
`≥0

` · Pr[L = `] =
∑
`≥1

Pr[L ≥ `]

Clearly, if ` < `′, then Pr[L(x) ≥ `] > Pr[L(x) ≥ `′]. So we can derive an upper bound on the
expected number of levels as follows:

E[L(x)] =
∑
`≥1

Pr[L ≥ `] =
lg n∑
`=1

Pr[L ≥ `] +
∑

`≥lg n+1

Pr[L ≥ `]

≤
lg n∑
`=1

1 +
∑

`≥lg n+1

n
2`

= lg n+
∑
i≥1

1
2i

[i = `− lg n]

= lgn + 2

So in expectation, a skip list has at most two more levels than an ideal version where each level
contains exactly half the nodes of the next level below.

10.2.3 Logarithmic Search Time

It’s a little easier to analyze the cost of a search if we imagine running the algorithm backwards.
SkipListFind takes the output from SkipListFind as input and traces back through the data

structure to the upper left corner. Skip lists don’t really have up and left pointers, but we’ll
pretend that they do so we don’t have to write ‘ v←down(v) ’ or ‘ v←right(v) ’.⁸

SkipListFind (v):
while (v 6= L)

if up(v) exists
v← up(v)

else
v← left(v)

Now for every node v in the skip list, up(v) exists with probability 1/2. So for purposes of
analysis, SkipListFind is equivalent to the following algorithm:

FlipWalk(v):
while (v 6= L)

if CoinFlip= Heads
v← up(v)

else
v← left(v)

Obviously, the expected number of heads is exactly the same as the expected number of Tails.
Thus, the expected running time of this algorithm is twice the expected number of upward jumps.
Since we already know that the number of upward jumps is O(log n) with high probability, we
can conclude that the worst-case search time is O(log n) with high probability (and therefore in
expectation).

⁸ LeonardodaVinciwroteallhisnotesusingmirror-writing,butnotbecausehewantedtokeephisdiscoveriessecret.
Hejusthadreallybadarthritisinhisrighthand!
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Exercises

1. Prove that a treap is exactly the binary search tree that results from inserting the nodes
one at a time into an initially empty tree, in order of increasing priority, using the standard
textbook insertion algorithm.

2. Consider a treap T with n vertices. As in the notes, Identify nodes in T by the ranks of
their search keys; thus, ‘node 5’ means the node with the 5th smallest search key. Let i, j,
and k be integers such that 1≤ i ≤ j ≤ k ≤ n.

(a) The left spine of a binary tree is a path starting at the root and following only left-child
pointers down to a leaf. What is the expected number of nodes in the left spine of T?

(b) What is the expected number of leaves in T? [Hint: What is the probability that node
k is a leaf?]

(c) What is the expected number of nodes in T with two children?

(d) What is the expected number of nodes in T with exactly one child?
?(e) What is the expected number of nodes in T with exactly one grandchild?

(f) Prove that the expected number of proper descendants of any node in a treap is
exactly equal to the expected depth of that node.

(g) What is the exact probability that node j is a common ancestor of node i and node k?

(h) What is the exact expected length of the unique path from node i to node k in T?

3. Recall that a priority search tree is a binary tree in which every node has both a search key
and a priority, arranged so that the tree is simultaneously a binary search tree for the keys
and a min-heap for the priorities. A heater is a priority search tree in which the priorities
are given by the user, and the search keys are distributed uniformly and independently at
random in the real interval [0, 1]. Intuitively, a heater is a sort of anti-treap.⁹

The following problems consider an n-node heater T whose priorities are the integers
from 1 to n. We identify nodes in T by their priorities; thus, ‘node 5’ means the node in T
with priority 5. For example, the min-heap property implies that node 1 is the root of T .
Finally, let i and j be integers with 1≤ i < j ≤ n.

(a) Prove that in a random permutation of the (i+1)-element set {1, 2, . . . , i, j}, elements
i and j are adjacent with probability 2/(i + 1).

(b) Prove that node i is an ancestor of node j with probability 2/(i + 1). [Hint: Use part
(a)!]

(c) What is the probability that node i is a descendant of node j? [Hint: Don’t use part
(a)!]

(d) What is the exact expected depth of node j?

(e) Describe and analyze an algorithm to insert a new item into a heater. Express the
expected running time of the algorithm in terms of the rank of the newly inserted
item.

⁹There are those who think that life has nothing left to chance, a host of holy horrors to direct our aimless dance.
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(f) Describe an algorithm to delete the minimum-priority item (the root) from an n-node
heater. What is the expected running time of your algorithm?

?4. In the usual theoretical presentation of treaps, the priorities are random real numbers
chosen uniformly from the interval [0, 1]. In practice, however, computers have access only
to random bits. This problem asks you to analyze an implementation of treaps that takes
this limitation into account.

Suppose the priority of a node v is abstractly represented as an infinite sequence
πv[1 ..∞] of random bits, which is interpreted as the rational number

priority(v) =
∞∑
i=1

πv[i] · 2−i .

However, only a finite number `v of these bits are actually known at any given time.
When a node v is first created, none of the priority bits are known: `v = 0. We generate
(or “reveal”) new random bits only when they are necessary to compare priorities. The
following algorithm compares the priorities of any two nodes in O(1) expected time:

LargerPriority(v, w):
for i← 1 to∞

if i > `v
`v ← i; πv[i]← RandomBit

if i > `w
`w← i; πw[i]← RandomBit

if πv[i]> πw[i]
return v

else if πv[i]< πw[i]
return w

Suppose we insert n items one at a time into an initially empty treap. Let L =
∑

v `v
denote the total number of random bits generated by calls to LargerPriority during these
insertions.

(a) Prove that E[L] = Θ(n).

(b) Prove that E[`v] = Θ(1) for any node v. [Hint: This is equivalent to part (a). Why?]

(c) Prove that E[`root] = Θ(log n). [Hint: Why doesn’t this contradict part (b)?]

5. Prove the following basic facts about skip lists, where n is the number of keys.

(a) The expected number of nodes is O(n).

(b) A new key can be inserted in O(log n) time with high probability.

(c) A key can be deleted in O(log n) time with high probability.

6. Suppose we are given two skip lists, one storing a set A of m keys the other storing a set B of
n keys. Describe and analyze an algorithm to merge these into a single skip list storing the
set A∪ B in O(n) expected time. Here we do not assume that every key in A is smaller than
every key in B; the two sets maybe arbitrarily intermixed. [Hint: Do the obvious thing.]
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?7. Any skip list L can be transformed into a binary search tree T (L) as follows. The root of
T (L) is the leftmost node on the highest non-empty level of L; the left and right subtrees
are constructed recursively from the nodes to the left and to the right of the root. Let’s call
the resulting tree T (L) a skip list tree.

(a) Show that any search in T (L) is no more expensive than the corresponding search in
L. (Searching in T (L) could be considerably cheaper—why?)

(b) Describe an algorithm to insert a new search key into a skip list tree in O(log n)
expected time. Inserting key x into T (L) should produce exactly the same tree as
inserting x into L and then transforming L into a tree. [Hint: You will need to
maintain some additional information in the tree nodes.]

(c) Describe an algorithm to delete a search key from a skip list tree in O(log n) expected
time. Again, deleting key x from T (L) should produce exactly the same tree as
deleting x from L and then transforming L into a tree.

8. A meldable priority queue stores a set of keys from some totally-ordered universe (such as
the integers) and supports the following operations:

• MakeQueue: Return a new priority queue containing the empty set.

• FindMin(Q): Return the smallest element of Q (if any).

• DeleteMin(Q): Remove the smallest element in Q (if any).

• Insert(Q, x): Insert element x into Q, if it is not already there.

• DecreaseKey(Q, x , y): Replace an element x ∈ Q with a smaller key y. (If y > x ,
the operation fails.) The input is a pointer directly to the node in Q containing x .

• Delete(Q, x): Delete the element x ∈Q. The input is a pointer directly to the node
in Q containing x .

• Meld(Q1,Q2): Return a new priority queue containing all the elements of Q1 and
Q2; this operation destroys Q1 and Q2.

A simple way to implement such a data structure is to use a heap-ordered binary tree,
where each node stores a key, along with pointers to its parent and two children. Meld
can be implemented using the following randomized algorithm:

Meld(Q1,Q2):
if Q1 is empty return Q2
if Q2 is empty return Q1

if key(Q1)> key(Q2)
swap Q1↔Q2

with probability 1/2
left(Q1)←Meld(left(Q1),Q2)

else
right(Q1)←Meld(right(Q1),Q2)

return Q1

(a) Prove that for any heap-ordered binary trees Q1 and Q2 (not just those constructed by
the operations listed above), the expected running time of Meld(Q1,Q2) is O(log n),
where n = |Q1|+ |Q2|. [Hint: How long is a random root-to-leaf path in an n-node
binary tree if each left/right choice is made with equal probability?]
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(b) Prove that Meld(Q1,Q2) runs in O(log n) time with high probability.

(c) Show that each of the other meldable priority queue operations can be implemented
with at most one call to Meld and O(1) additional time. (This implies that every
operation takes O(log n) time with high probability.)
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But, on the other hand, Uncle Abner said that the person that had took a bull by
the tail once had learnt sixty or seventy times as much as a person that hadn’t,
and said a person that started in to carry a cat home by the tail was gitting
knowledge that was always going to be useful to him, and warn’t ever going to
grow dim or doubtful.

— Mark Twain, Tom Sawyer Abroad (1894)

11 Tail Inequalities?

The simple recursive structure of skip lists made it relatively easy to derive an upper bound
on the expected worst-case search time, by way of a stronger high-probability upper bound on
the worst-case search time. We can prove similar results for treaps, but because of the more
complex recursive structure, we need slightly more sophisticated probabilistic tools. These tools
are usually called tail inequalities; intuitively, they bound the probability that a random variable
with a bell-shaped distribution takes a value in the tails of the distribution, far away from the
mean.

11.1 Markov’s Inequality

Perhaps the simplest tail inequality was named after the Russian mathematician Andrey Markov;
however, in strict accordance with Stigler’s Law of Eponymy, it first appeared in the works of
Markov’s probability teacher, Pafnuty Chebyshev.¹

Markov’s Inequality. Let X be a non-negative integer random variable. For any t > 0, we have
Pr[X ≥ t]≤ E[X ]/t.

Proof: The inequality follows from the definition of expectation by simple algebraic manipulation.

E[X ] =
∞∑
k=0

k · Pr[X = k] [definition of E[X ]]

=
∞∑
k=0

Pr[X ≥ k] [algebra]

≥
t−1∑
k=0

Pr[X ≥ k] [since t <∞]

≥
t−1∑
k=0

Pr[X ≥ t] [since k < t]

= t · Pr[X ≥ t] [algebra] �

Unfortunately, the bounds that Markov’s inequality implies (at least directly) are often very
weak, even useless. (For example, Markov’s inequality implies that with high probability, every
node in an n-node treap has depth O(n2 log n). Well, duh!) To get stronger bounds, we need to
exploit some additional structure in our random variables.

¹The closely related tail bound traditionally called Chebyshev’s inequality was actually discovered by the French
statistician Irénée-Jules Bienaymé, a friend and colleague of Chebyshev’s.
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11.2 Independence

A set of random variables X1, X2, . . . , Xn are said to be mutually independent if and only if

Pr

� n∧
i=1

(X i = x i)

�
=

n∏
i=1

Pr[X i = x i]

for all possible values x1, x2, . . . , xn. For examples, different flips of the same fair coin are
mutually independent, but the number of heads and the number of tails in a sequence of n coin
flips are not independent (since they must add to n). Mutual independence of the X i ’s implies
that the expectation of the product of the X i ’s is equal to the product of the expectations:

E

� n∏
i=1

X i

�
=

n∏
i=1

E[X i].

Moreover, if X1, X2, . . . , Xn are independent, then for any function f , the random variables f (X1),
f (X2), . . . , f (Xn) are also mutually independent.

— Discuss limited independence? —
— Add Chebychev and other moment inequalities? —

11.3 Chernoff Bounds

— Replace with Mihai’s exponential-moment derivation! —

Suppose X =
∑n

i=1 X i is the sum of n mutually independent random indicator variables X i . For
each i, let pi = Pr[X i = 1], and let µ= E[X ] =

∑
i E[X i] =

∑
i pi .

Chernoff Bound (Upper Tail). Pr[X > (1+δ)µ]<

�
eδ

(1+δ)1+δ

�µ
for any δ > 0.

Proof: The proof is fairly long, but it replies on just a few basic components: a clever substitution,
Markov’s inequality, the independence of the X i ’s, The World’s Most Useful Inequality ex > 1+ x ,
a tiny bit of calculus, and lots of high-school algebra.

We start by introducing a variable t, whose role will become clear shortly.

Pr[X > (1+δ)µ] = Pr[etX > et(1+δ)µ]

To cut down on the superscripts, I’ll usually write exp(x) instead of ex in the rest of the proof.
Now apply Markov’s inequality to the right side of this equation:

Pr[X > (1+δ)µ]<
E[exp(tX )]

exp(t(1+δ)µ)
.

We can simplify the expectation on the right using the fact that the terms X i are independent.

E[exp(tX )] = E
�

exp
�

t
∑

i

X i

��
= E

�∏
i

exp(tX i)
�
=
∏

i

E[exp(tX i)]
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We can bound the individual expectations E[exp(tX i)] using The World’s Most Useful Inequality:

E[exp(tX i)] = pie
t + (1− pi) = 1+ (et − 1)pi < exp

�
(et − 1)pi

�

This inequality gives us a simple upper bound for E[etX ]:

E[exp(tX )]<
∏

i

exp((et − 1)pi)< exp
�∑

i

(et − 1)pi

�
= exp((et − 1)µ)

Substituting this back into our original fraction from Markov’s inequality, we obtain

Pr[X > (1+δ)µ]<
E[exp(tX )]

exp(t(1+δ)µ)
<

exp((et − 1)µ)
exp(t(1+δ)µ)

=
�

exp(et − 1− t(1+δ))
�µ

Notice that this last inequality holds for all possible values of t. To obtain the final tail bound,
we will choose t to make this bound as small as possible. To minimize et −1− t − tδ, we take its
derivative with respect to t and set it to zero:

d
d t
(et − 1− t(1+δ)) = et − 1−δ = 0.

(And you thought calculus would never be useful!) This equation has just one solution t = ln(1+δ).
Plugging this back into our bound gives us

Pr[X > (1+δ)µ]<
�

exp(δ− (1+δ) ln(1+δ))�µ =
�

eδ

(1+δ)1+δ

�µ

And we’re done! �

This form of the Chernoff bound can be a bit clumsy to use. A more complicated argument
gives us the bound

Pr[X > (1+δ)µ]< e−µδ
2/3 for any 0< δ < 1.

A similar argument gives us an inequality bounding the probability that X is significantly
smaller than its expected value:

Chernoff Bound (Lower Tail). Pr[X < (1−δ)µ]<
�

e−δ

(1−δ)1−δ
�µ
< e−µδ

2/2 for any δ > 0.

11.4 Back to Treaps

In our analysis of randomized treaps, we wrote i ↑ k to indicate that the node with the ith
smallest key (‘node i’) was a proper ancestor of the node with the kth smallest key (‘node k’).
We argued that

Pr[i ↑ k] =
[i 6= k]
|k− i|+ 1

,

and from this we concluded that the expected depth of node k is

E[depth(k)] =
n∑

i=1

Pr[i ↑ k] = Hk +Hn−k − 2< 2 ln n.

To prove a worst-case expected bound on the depth of the tree, we need to argue that the
maximum depth of any node is small. Chernoff bounds make this argument easy, once we
establish that the relevant indicator variables are mutually independent.
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Lemma 1. For any index k, the k−1 random variables [i ↑ k]with i < k are mutually independent.
Similarly, for any index k, the n− k random variables [i ↑ k] with i > k are mutually independent.

Proof: We explicitly consider only the first half of the lemma when k = 1, although the argument
generalizes easily to other values of k. To simplify notation, let X i denote the indicator variable
[i ↑ 1]. Fix n−1 arbitrary indicator values x2, x3, . . . , xn. We prove the lemma by induction on n,
with the vacuous base case n= 1. The definition of conditional probability gives us

Pr

� n∧
i=2

(X i = x i)

�
= Pr

�
n−1∧
i=2

(X i = x i) ∧ Xn = xn

�

= Pr

�
n−1∧
i=2

(X i = x i)

���� Xn = xn

�
· Pr

�
Xn = xn

�

Now recall that Xn = 1 (which means 1 ↑ n) if and only if node n has the smallest priority of
all nodes. The other n− 2 indicator variables X i depend only on the order of the priorities of
nodes 1 through n− 1. There are exactly (n− 1)! permutations of the n priorities in which the
nth priority is smallest, and each of these permutations is equally likely. Thus,

Pr

�
n−1∧
i=2

(X i = x i)

���� Xn = xn

�
= Pr

�
n−1∧
i=2

(X i = x i)

�

The inductive hypothesis implies that the variables X2, . . . , Xn−1 are mutually independent, so

Pr

�
n−1∧
i=2

(X i = x i)

�
=

n−1∏
i=2

Pr [X i = x i] .

We conclude that

Pr

� n∧
i=2

(X i = x i)

�
= Pr

�
Xn = xn

� ·
n−1∏
i=2

Pr [X i = x i] =
n−1∏
i=1

Pr [X i = x i] ,

or in other words, that the indicator variables are mutually independent. �

Theorem 2. The depth of a randomized treap with n nodes is O(log n) with high probability.

Proof: First let’s bound the probability that the depth of node k is at most 8 ln n. There’s nothing
special about the constant 8 here; I’m being generous to make the analysis easier.

The depth is a sum of n indicator variables Ai
k, as i ranges from 1 to n. Our Observation allows

us to partition these variables into two mutually independent subsets. Let d<(k) =
∑

i<k[i ↑ k]
and d>(k) =

∑
i<k[i ↑ k], so that depth(k) = d<(k) + d>(k). If depth(k) > 8 ln n, then either

d<(k)> 4 ln n or d>(k)> 4 ln n.
Chernoff’s inequality, with µ= E[d<(k)] = Hk − 1< ln n and δ = 3, bounds the probability

that d<(k)> 4 ln n as follows.

Pr[d<(k)> 4 ln n]< Pr[d<(k)> 4µ]<

�
e3

44

�µ
<

�
e3

44

�ln n

= nln(e3/44) = n3−4 ln 4 <
1
n2

.

(The last step uses the fact that 4 ln4≈ 5.54518> 5.) The same analysis implies that Pr[d>(k)>
4 ln n]< 1/n2. These inequalities imply the crude bound Pr[depth(k)> 4 ln n]< 2/n2.
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Now consider the probability that the treap has depth greater than 10 ln n. Even though the
distributions of different nodes’ depths are not independent, we can conservatively bound the
probability of failure as follows:

Pr
h
max

k
depth(k)> 8 ln n

i
= Pr

�
n∧

k=1

(depth(k)> 8 ln n)

�
≤

n∑
k=1

Pr[depth(k)> 8 ln n]<
2
n

.

This argument implies more generally that for any constant c, the depth of the treap is greater
than c ln n with probability at most 2/nc ln c−c . We can make the failure probability an arbitrarily
small polynomial by choosing c appropriately. �

This lemma implies that any search, insertion, deletion, or merge operation on an n-node
treap requires O(log n) time with high probability. In particular, the expected worst-case time for
each of these operations is O(log n).

Exercises

1. Prove that for any integer k such that 1< k < n, the n− 1 indicator variables [i ↑ k] with
i 6= k are not mutually independent. [Hint: Consider the case n= 3.]

2. Recall from Exercise 1 in the previous note that the expected number of descendants of any
node in a treap is O(log n). Why doesn’t the Chernoff-bound argument for depth imply
that, with high probability, every node in a treap has O(log n) descendants? The conclusion
is clearly bogus—Every treap has a node with n descendants!—but what’s the hole in the
argument?

3. Recall from the previous lecture note that a heater is a sort of anti-treap, in which the
priorities of the nodes are given, but their search keys are generated independently and
uniformly from the unit interval [0, 1].

Prove that an n-node heater has depth O(log n) with high probability.
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Insanity is repeating the same mistakes and expecting different results.

— Narcotics Anonymous (1981)

Calvin: There! I finished our secret code!
Hobbes: Let’s see.
Calvin: I assigned each letter a totally random number, so the code will be hard

to crack. For letter “A”, you write 3,004,572,688. “B” is 28,731,569½.
Hobbes: That’s a good code all right.
Calvin: Now we just commit this to memory.
Calvin: Did you finish your map of our neighborhood?
Hoobes: Not yet. How many bricks does the front walk have?

— Bill Watterson, “Calvin and Hobbes” (August 23, 1990)

[RFC 1149.5 specifies 4 as the standard IEEE-vetted random number.]

— Randall Munroe, xkcd (http://xkcd.com/221/)
Reproduced under a Creative Commons Attribution-NonCommercial 2.5 License

12 Hash Tables

12.1 Introduction

A hash table is a data structure for storing a set of items, so that we can quickly determine
whether an item is or is not in the set. The basic idea is to pick a hash function h that maps every
possible item x to a small integer h(x). Then we store x in slot h(x) in an array. The array is the
hash table.

Let’s be a little more specific. We want to store a set of n items. Each item is an element of
a fixed set U called the universe; we use u to denote the size of the universe, which is just the
number of items in U. A hash table is an array T[1 .. m], where m is another positive integer,
which we call the table size. Typically, m is much smaller than u. A hash function is any function
of the form

h: U→ {0, 1, . . . , m− 1},
mapping each possible item in U to a slot in the hash table. We say that an item x hashes to the
slot T[h(x)].

Of course, if u= m, then we can always just use the trivial hash function h(x) = x; n other
words, we can use the item itself as the index into the table. This is called a direct access table, or
more commonly, an array. In most applications, though, this approach requires much more space
than we can reasonably allocate; on the other hand, we rarely need need to store more than a
tiny fraction of U. Ideally, the table size m should be roughly equal to the number n of items we
actually want to store.

The downside of using a smaller table is that we must deal with collisions. We say that two
items x and y collide if their hash values are equal: h(x) = h(y). We are now left with two
different (but interacting) design decisions. First, how to we choose a hash function h that can
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be evaluated quickly and that keeps the number of collisions as small as possible? Second, when
collisions do occur, how do we deal with them?

12.2 The Importance of Being Random

If we already knew the precise data set that would be stored in our hash table, it is possible (but
not particularly easy) to find a perfect hash function that avoids collisions entirely. Unfortunately,
for most applications of hashing, we don’t know what the user will put into the table. Thus, it is
impossible even in principle to devise a perfect hash function in advance; no matter what hash
function we choose, some pair of items from U will collide. Worse, for any fixed hash function,
there is a subset of at least |U |/m items that all hash to the same location. If our input data
happens to come from such a subset, either by chance or malicious intent, our code will come
to a grinding halt. This is a real security issue with core Internet routers, for example; every
router on the Internet backbone survives millions of attacks per day, including timing attacks,
from malicious agents.

The only way to provably avoid this worst-case behavior is to choose our hash functions
randomly. Specifically, we will fix a set H of functions from U to {0, 1, . . . , m− 1}, and then
at run time, we choose our hash function randomly from the set H according to some fixed
distribution. Different sets H and different distributions over that set imply different theoretical
guarantees. Screw this into your brain:

Input data is not random!
So good hash functions must be random!

In particular, the simple deterministic hash function h(x) = x mod m, which is often taught
and recommended under the name “the division method”, is utterly stupid. Many textbooks
correctly observe that this hash function is bad when m is a power of 2, because then h(x) is
just the low-order bits of m, but then they bizarrely recommend making m prime to avoid such
obvious collisions. But even when m is prime, any pair of items whose difference is an integer
multiple of m collide with absolute certainty; for all integers a and x , we have h(x + am) = h(x).
Why would anyone use a hash function where they know certain pairs of keys always collide?
Sheesh!

12.3 ...But Not Too Random

Most theoretical analysis of hashing assumes ideal random hash functions. Ideal randomness
means that the hash function is chosen uniformly at random from the set of all functions from
U to {0,1, . . . , m− 1}. Intuitively, for each new item x , we roll a new m-sided die to determine
the hash value h(x). Ideal randomness is a clean theoretical model, which provides the strongest
possible theoretical guarantees.

Unfortunately, ideal random hash functions are a theoretical fantasy; evaluating such a
function would require recording values in a separate data structure which we could access using
the items in our set, which is exactly what hash tables are for! So instead, we look for families of
hash functions with just enough randomness to guarantee good performance. Fortunately, most
hashing analysis does not actually require ideal random hash functions, but only some weaker
consequences of ideal randomness.
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One property of ideal random hash functions that seems intuitively useful is uniformity. A
family H of hash functions is uniform if choosing a hash function uniformly at random from H

makes every hash value equally likely for every item in the universe:

Uniform: Pr
h∈H

�
h(x) = i

�
=

1
m

for all x and all i

We emphasize that this condition must hold for every item x ∈ U and every index i. Only the
hash function h is random.

In fact, despite its intuitive appeal, uniformity is not terribly important or useful by itself.
Consider the family K of constant hash functions defined as follows. For each integer a
between 0 and m− 1, let consta denote the constant function consta(x) = a for all x , and let
K = {consta | 0 ≤ a ≤ m− 1} be the set of all such functions. It is easy to see that the set K is
both perfectly uniform and utterly useless!

A much more important goal is to minimize the number of collisions. A family of hash
functions is universal if, for any two items in the universe, the probability of collision is as small
as possible:

Universal: Pr
h∈H

�
h(x) = h(y)

�
=

1
m

for all x 6= y

(Trivially, if x = y , then Pr[h(x) = h(y)] = 1!) Again, we emphasize that this equation must hold
for every pair of distinct items; only the function h is random. The family of constant functions
is uniform but not universal; on the other hand, universal hash families are not necessarily
uniform.¹

Most elementary hashing analysis requires a weaker versions of universality. A family of hash
functions is near-universal if the probability of collision is close to ideal:

Near-universal: Pr
h∈H

�
h(x) = h(y)

�≤ 2
m

for all x 6= y

There’s nothing special about the number 2 in this definition; any other explicit constant will do.
On the other hand, some hashing analysis requires reasoning about larger sets of collisions.

For any integer k, we say that a family of hash functions is strongly k-universal or k-uniform if
for any sequence of k disjoint keys and any sequence of k hash values, the probability that each
key maps to the corresponding hash value is 1/mk:

k-uniform: Pr

�
k∧

j=1
h(x j) = i j

�
=

1
mk

for all distinct x1, . . . , xk and all i1, . . . , ik

Ideal random hash functions are k-uniform for every positive integer k.

12.4 Chaining

One of the most common methods for resolving collisions in hash tables is called chaining. In a
chained hash table, each entry T[i] is not just a single item, but rather (a pointer to) a linked
list of all the items that hash to T[i]. Let `(x) denote the length of the list T[h(x)]. To see if

¹Confusingly, universality is often called the uniform hashing assumption, even though it is not an assumption
that the hash function is uniform.
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an item x is in the hash table, we scan the entire list T[h(x)]. The worst-case time required
to search for x is O(1) to compute h(x) plus O(1) for every element in T[h(x)], or O(1+ `(x))
overall. Inserting and deleting x also take O(1+ `(x)) time.

G H

M I T

R O

S

A L

A chained hash table with load factor 1.

Let’s compute the expected value of `(x) under this assumption; this will immediately imply
a bound on the expected time to search for an item x . To be concrete, let’s suppose that x is not
already stored in the hash table. For all items x and y , we define the indicator variable

Cx ,y =
�
h(x) = h(y)

�
.

(In case you’ve forgotten the bracket notation, Cx ,y = 1 if h(x) = h(y) and Cx ,y = 0 if
h(x) 6= h(y).) Since the length of T[h(x)] is precisely equal to the number of items that collide
with x , we have

`(x) =
∑
y∈T

Cx ,y .

Assuming h is chosen from a universal set of hash functions, we have

E[Cx ,y] = Pr[Cx ,y = 1] =

¨
1 if x = y

1/m otherwise

Now we just have to grind through the definitions.

E[`(x)] =
∑
y∈T

E[Cx ,y] =
∑
y∈T

1
m
=

n
m

We call this fraction n/m the load factor of the hash table. Since the load factor shows up
everywhere, we will give it its own symbol α.

α :=
n
m

Similarly, if h is chosen from a near-universal set of hash functions, then E[`(x)]≤ 2α. Thus, the
expected time for an unsuccessful search in a chained hash table, using near-universal hashing, is
Θ(1+α). As long as the number of items n is only a constant factor bigger than the table size m,
the search time is a constant. A similar analysis gives the same expected time bound (with a
slightly smaller constant) for a successful search.

Obviously, linked lists are not the only data structure we could use to store the chains; any
data structure that can store a set of items will work. For example, if the universe U has a total
ordering, we can store each chain in a balanced binary search tree. This reduces the expected
time for any search to O(1+ log`(x)), and under the simple uniform hashing assumption, the
expected time for any search is O(1+ logα).

Another natural possibility is to work recursively! Specifically, for each T[i], we maintain a
hash table Ti containing all the items with hash value i. Collisions in those secondary tables are
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resolved recursively, by storing secondary overflow lists in tertiary hash tables, and so on. The
resulting data structure is a tree of hash tables, whose leaves correspond to items that (at some
level of the tree) are hashed without any collisions. If every hash table in this tree has size m,
then the expected time for any search is O(logm n). In particular, if we set m=

p
n, the expected

time for any search is constant. On the other hand, there is no inherent reason to use the same
hash table size everywhere; after all, hash tables deeper in the tree are storing fewer items.

Caveat Lector! The preceding analysis does not imply bounds on the expected worst-case
search time is constant. The expected worst-case search time is O(1+ L), where L =maxx `(x).
Under the uniform hashing assumption, the maximum list size L is very likely to grow faster
than any constant, unless the load factor α is significantly smaller than 1. For example,
E[L] = Θ(log n/ log log n) when α= 1. We’ve stumbled on a powerful but counterintuitive fact
about probability: When several individual items are distributed independently and uniformly at
random, the resulting distribution is not uniform in the traditional sense! Later in this lecture, I’ll
describe how to achieve constant expected worst-case search time using secondary hash tables.

12.5 Multiplicative Hashing

Perhaps the simplest technique for near-universal hashing, first described by Carter and Wegman
in the 1970s, is called multiplicative hashing. I’ll describe two variants of multiplicative hashing,
one using modular arithmetic with prime numbers, the other using modular arithmetic with
powers of two. In both variants, a hash function is specified by an integer parameter a, called a
salt. The salt is chosen uniformly at random when the hash table is created and remains fixed for
the entire lifetime of the table. All probabilities are defined with respect to the random choice of
salt.

For any non-negative integer n, let [n] denote the n-element set {0,1, . . . , n− 1}, and let
[n]+ denote the (n− 1)-element set {1, 2, . . . , n− 1}.

12.5.1 Prime multiplicative hashing

The first family of multiplicative hash function is defined in terms of a prime number p > |U|.
For any integer a ∈ [p]+, define a function multpa : U → [m] by setting

multpa(x) = (ax mod p)mod m

and let
MP :=

�
multpa

�� a ∈ [p]+	

denote the set of all such functions. Here, the integer a is the salt for the hash function multpa.
We claim that this family of hash functions is universal.

The use of prime modular arithmetic is motivated by the fact that division modulo prime
numbers is well-defined.

Lemma 1. For every integer z ∈ [p]+, there is a unique integer a ∈ [p]+ such that az mod p = 1.

Proof: Let z be an arbitrary integer in [p]+.
Suppose az mod p = bz mod p for some integers a, b ∈ [p]+. Then (a − b)z mod p = 0,

which means (a− b)z is divisible by p. Because p is prime, the inequality 1≤ z ≤ p− 1 implies
that a− b must be divisible by p. Similarly, the inequality 2− p < a− b < p−2 implies that a and
b must be equal. Thus, for each z ∈ [p]+, there is at most one a ∈ [p]+ such that ax mod p = z.
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Similarly, suppose az mod p = 0 for some integer a ∈ [p]+. Then because p is prime, either
a or z is divisible by p, which is impossible.

We conclude that the set {az mod p | a ∈ [p]+} has p− 1 distinct elements, all non-zero, and
therefore is equal to [p]+. In other words, multiplication by z defines a permutation of [p]+. The
lemma follows immediately. �

For any integers x , y ∈ U and any salt a ∈ [p]+, we have

multpa(x)−multpa(y) = (ax mod p)mod m− (a y mod p)mod m

= (ax mod p− a y mod p)mod m

= ((ax − a y)mod p)mod m

= (a(x − y)mod p)mod m

=multpa(x − y).

Thus, we have a collision multpa(x) =multpa(y) if and only if multpa(x − y) = 0. Thus, to prove
that MP is universal, it suffices to prove the following lemma.

Lemma 2. For any z ∈ [p]+, we have Pra[multpa(z) = 0]≤ 1/m.

Proof: Fix an arbitrary integer z ∈ [p]+. The previous lemma implies that for any integer
1≤ x ≤ p−1, there is a unique integer a such that (az mod p) = x; specifically, a = x ·z−1 mod p.
There are exactly b(p − 1)/mc integers k such that 1 ≤ km ≤ p − 1. Thus, there are exactly
b(p− 1)/mc salts a such that multpa(z) = 0. �

12.5.2 Binary multiplicative hashing

A slightly simpler variant of multiplicative hashing that avoids the need for large prime numbers
was first analyzed by Martin Dietzfelbinger, Torben Hagerup, Jyrki Katajainen, and Martti
Penttonen in 1997. For this variant, we assume that U= [2w] and that m= 2` for some integers
w and `. Thus, our goal is to hash w-bit integers (“words”) to `-bit integers (“labels”).

For any odd integer a ∈ [2w], we define the hash function multba : U→ [m] as follows:

multba(x) :=
�
(a · x)mod 2w

2w−`

�

Again, the odd integer a is the salt.

 ℓ 

2w  

w x

a

a⋅x

ha(x)

w 

Binary multiplicative hashing.
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If we think of any w-bit integer z as an array of bits z[0 .. w− 1], where z[0] is the least
significant bit, this function has an easy interpretation. The product a · x is 2w bits long; the
hash value multba(x) consists of the top ` bits of the bottom half:

multba(x) := (a · x)[w− 1 .. w− `]
Most programming languages automatically perform integer arithmetic modulo some power of
two. If we are using an integer type with w bits, the function multba(x) can be implemented by
a single multiplication followed by a single right-shift. For example, in C:

#define hash(a,x) ((a)*(x) >> (WORDSIZE-HASHBITS))

Nowwe claim that the familyMB := {multba | a is odd} of all such functions is near-universal.
To prove this claim, we again need to argue that division is well-defined, at least for a large
subset of possible words. Let W denote the set of odd integers in [2w].

Lemma 3. For any integers x , z ∈W , there is exactly one integer a ∈W such that ax mod 2w = z.

Proof: Fix an integer x ∈ W . Suppose ax mod 2w = bx mod 2w for some integers a, b ∈ W .
Then (b − a)x mod 2w = 0, which means x(b − a) is divisible by 2w. Because x is odd, b − a
must be divisible by 2w. But −2w < b− a < 2w, so a and b must be equal. Thus, for each z ∈W ,
there is at most one a ∈W such that ax mod 2w = z. In other words, the function fx : W →W
defined by fx(a) := ax mod 2w is injective. Every injective function from a finite set to itself is a
bijection. �

Lemma 4. MB is near-universal.

Proof: Fix two distinct words x , y ∈ U such that x < y . If multba(x) =multba(y), then the top
` bits of a(y − x)mod 2w are either all 0s (if ax mod 2w ≤ a y mod 2w) or all 1s (otherwise).
Equivalently, if multba(x) =multba(y), then either multba(y − x) = 0 or multba(y − x) = m− 1.
Thus,

Pr[multba(x) =multba(y)] ≤ Pr[multba(y − x) = 0] + Pr[multba(y − x) = m− 1].

We separately bound the terms on the right side of this inequality.
Because x 6= y , we can write (y − x)mod 2w = q2r for some odd integer q and some integer

0≤ r ≤ w−1. The previous lemma implies that aq mod 2w consists of w−1 random bits followed
by a 1. Thus, aq2r mod 2w consists of w− r − 1 random bits, followed by a 1, followed by r 0s.
There are three cases to consider:

• If r < w− `, then multba(y − x) consists of ` random bits, so

Pr[multba(y − x) = 0] = Pr[multba(y − x) = m− 1] = 1/2`.

• If r = w− `, then multba(y − x) consists of `− 1 random bits followed by a 1, so

Pr[multba(y − x) = 0] = 0 and Pr[multba(y − x) = m− 1] = 2/2`.

• Finally, if r < w− `, then multba(y − x) consists of zero or more random bits, followed by
a 1, followed by one or more 0s, so

Pr[multba(y − x) = 0] = Pr[multba(y − x) = m− 1] = 0.

In all cases, we have Pr[multba(x) =multba(y)]≤ 2/2`, as required. �
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12.6 High Probability Bounds: Balls and Bins?

Although any particular search in a chained hash tables requires only constant expected time, but
what about the worst search time? Assuming that we are using ideal random hash functions,
this question is equivalent to the following more abstract problem. Suppose we toss n balls
independently and uniformly at random into one of n bins. Can we say anything about the
number of balls in the fullest bin?

Lemma 5. If n balls are thrown independently and uniformly into n bins, then with high proba-
bility, the fullest bin contains O(log n/ log log n) balls.

Proof: Let X j denote the number of balls in bin j, and let X̂ =max j X j be the maximum number
of balls in any bin. Clearly, E[X j] = 1 for all j.

Now consider the probability that bin j contains at least k balls. There are
�n

k

�
choices for

those k balls; each chosen ball has probability 1/n of landing in bin j. Thus,

Pr[X j ≥ k] =
�

n
k

��
1
n

�k

≤ nk

k!

�
1
n

�k

=
1
k!

Setting k = 2c lg n/ lg lg n, we have

k!≥ kk/2 =
�

2c lg n
lg lg n

�2c lg n/ lg lg n

≥ �plg n
�2c lg n/ lg lg n

= 2c lg n = nc ,

which implies that

Pr
�
X j ≥

2c lg n
lg lg n

�
<

1
nc

.

This probability bound holds for every bin j. Thus, by the union bound, we conclude that

Pr
�

max
j

X j >
2c lg n
lg lg n

�
= Pr

�
X j >

2c lg n
lg lg n

for all j
�
≤

n∑
j=1

Pr
�
X j >

2c lg n
lg lg n

�
<

1
nc−1

. �

A somewhat more complicated argument implies that if we throw n balls randomly into n
bins, then with high probability, the most popular bin contains at least Ω(log n/ log log n) balls.

However, if we make the hash table large enough, we can expect every ball to land in its own
bin. Suppose there are m bins. Let Ci j be the indicator variable that equals 1 if and only if i 6= j
and ball i and ball j land in the same bin, and let C =

∑
i< j Ci j be the total number of pairwise

collisions. Since the balls are thrown uniformly at random, the probability of a collision is exactly
1/m, so E[C] =

�n
2

�
/m. In particular, if m = n2, the expected number of collisions is less than

1/2.
To get a high probability bound, let X j denote the number of balls in bin j, as in the previous

proof. We can easily bound the probability that bin j is empty, by taking the two most significant
terms in a binomial expansion:

Pr[X j = 0] =
�

1− 1
m

�n

=
n∑

i=1

�
n
i

��−1
m

�i

= 1− n
m
+Θ

�
n2

m2

�
> 1− n

m

We can similarly bound the probability that bin j contains exactly one ball:

Pr[X j = 1] = n · 1
m

�
1− 1

m

�n−1

=
n
m

�
1− n− 1

m
+Θ

�
n2

m2

��
>

n
m
− n(n− 1)

m2
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It follows immediately that Pr[X j > 1] < n(n − 1)/m2. The union bound now implies that
Pr[X̂ > 1]< n(n− 1)/m. If we set m= n2+ε for any constant ε > 0, then the probability that no
bin contains more than one ball is at least 1− 1/nε.

Lemma 6. For any ε > 0, if n balls are thrown independently and uniformly into n2+ε bins, then
with high probability, no bin contains more than one ball.

We can give a slightly weaker version of this lemma that assumes only near-universal hashing.
Suppose we hash n items into a table of size m. Linearity of expectation implies that the expected
number of pairwise collisions is

∑
x<y

Pr[h(x) = h(y)]≤
�

n
2

�
2
m
=

n(n− 1)
m

.

In particular, if we set m= cn2, the expected number of collisions is less than 1/c, which implies
that the probability of even a single collision is less than 1/c.

12.7 Perfect Hashing

So far we are faced with two alternatives. If we use a small hash table to keep the space usage
down, even if we use ideal random hash functions, the resulting worst-case expected search time
is Θ(log n/ log log n) with high probability, which is not much better than a binary search tree.
On the other hand, we can get constant worst-case search time, at least in expectation, by using
a table of roughly quadratic size, but that seems unduly wasteful.

Fortunately, there is a fairly simple way to combine these two ideas to get a data structure of
linear expected size, whose expected worst-case search time is constant. At the top level, we use
a hash table of size m = n, but instead of linked lists, we use secondary hash tables to resolve
collisions. Specifically, the jth secondary hash table has size 2n2

j , where n j is the number of items
whose primary hash value is j. Our earlier analysis implies that with probability at least 1/2, the
secondary hash table has no collisions at all, so the worst-case search time in any secondary hash
table is O(1). (If we discover a collision in some secondary hash table, we can simply rebuild that
table with a new near-universal hash function.)

Although this data structure apparently needs significantly more memory for each secondary
structure, the overall increase in space is insignificant, at least in expectation.

Lemma 7. Assuming near-universal hashing, we have E[
∑

i n2
i ]< 3n.

Proof: let h(x) denote the position of x in the primary hash table. We rewrite
∑

i E[n2
i ] in terms

of the indicator variables [h(x) = i] as follows. The first equation uses the definition of ni; the
rest is just routine algebra.
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∑
i

n2
i =

∑
i

�∑
x

[h(x) = i]

�2

=
∑

i

�∑
x

∑
y

[h(x) = i][h(y) = i]

�

=
∑

i

�∑
x

[h(x) = i]2 + 2
∑
x<y

[h(x) = i][h(y) = i]

�

=
∑

x

∑
i

[h(x) = i]2 + 2
∑
x<y

∑
i

[h(x) = i][h(y) = i]

=
∑

x

∑
i

[h(x) = i] + 2
∑
x<y

[h(x) = h(y)]

The first sum is equal to n, because each item x hashes to exactly one index i, and the second
sum is just the number of pairwise collisions. Linearity of expectation immediately implies that

E

�∑
i

n2
i

�
= n+ 2

∑
x<y

Pr[h(x) = h(y)] ≤ n+ 2 · n(n− 1)
2

· 2
n
= 3n− 2. �

This lemma immediately implies that the expected size of our two-level hash table is O(n).
By our earlier analysis, the expected worst-case search time is O(1).

12.8 Open Addressing

Another method used to resolve collisions in hash tables is called open addressing. Here, rather
than building secondary data structures, we resolve collisions by looking elsewhere in the table.
Specifically, we have a sequence of hash functions 〈h0, h1, h2, . . . , hm−1〉, such that for any item x ,
the probe sequence 〈h0(x), h1(x), . . . , hm−1(x)〉 is a permutation of 〈0, 1,2, . . . , m− 1〉. In other
words, different hash functions in the sequence always map x to different locations in the hash
table.

We search for x using the following algorithm, which returns the array index i if T[i] = x ,
‘absent’ if x is not in the table but there is an empty slot, and ‘full’ if x is not in the table and
there no no empty slots.

OpenAddressSearch(x):
for i← 0 to m− 1

if T[hi(x)] = x
return hi(x)

else if T[hi(x)] =∅
return ‘absent’

return ‘full’

The algorithm for inserting a new item into the table is similar; only the second-to-last line is
changed to T[hi(x)]← x . Notice that for an open-addressed hash table, the load factor is never
bigger than 1.

Just as with chaining, we’d like to pretend that the sequence of hash values is truly random,
for purposes of analysis. Specifically, most open-addressed hashing analysis uses the following
assumption, which is impossible to enforce in practice, but leads to reasonably predictive results
for most applications.
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Strong uniform hashing assumption:

For any item x , the probe sequence 〈h0(x), h1(x), . . . , hm−1(x)〉 is equally
likely to be any permutation of the set {0,1, 2, . . . , m− 1}.

Let’s compute the expected time for an unsuccessful search in light of this assupmtion.
Suppose there are currently n elements in the hash table. The strong uniform hashing assumption
has two important consequences:

• Uniformity: Each hash value hi(x) is equally likely to be any integer in the set {0,1, 2, . . . , m− 1}.
• Indpendence: If we ignore the first probe, the remaining probe sequence 〈h1(x), h2(x), . . . , hm−1(x)〉

is equally likely to be any permutation of the smaller set {0, 1, 2, . . . , m− 1} \ {h0(x)}.
The first sentence implies that the probability that T[h0(x)] is occupied is exactly n/m. The
second sentence implies that if T[h0(x)] is occupied, our search algorithm recursively searches
the rest of the hash table! Since the algorithm will never again probe T[h0(x)], for purposes
of analysis, we might as well pretend that slot in the table no longer exists. Thus, we get the
following recurrence for the expected number of probes, as a function of m and n:

E[T (m, n)] = 1+
n
m

E[T (m− 1, n− 1)].

The trivial base case is T (m, 0) = 1; if there’s nothing in the hash table, the first probe always
hits an empty slot. We can now easily prove by induction that E[T(m, n)] ≤ m/(m − n):

E[T (m, n)] = 1+
n
m

E[T (m− 1, n− 1)]

≤ 1+
n
m
· m− 1

m− n
[induction hypothesis]

< 1+
n
m
· m

m− n
[m− 1< m]

=
m

m− n
Ø [algebra]

Rewriting this in terms of the load factor α = n/m, we get E[T(m,n)] ≤ 1/(1− α). In other
words, the expected time for an unsuccessful search is O(1), unless the hash table is almost
completely full.

12.9 Linear and Binary Probing

In practice, however, we can’t generate ideal random probe sequences, so we must rely on a
simpler probing scheme to resolve collisions. Perhaps the simplest scheme is linear probing—use
a single hash function h(x) and define

hi(x) := (h(x) + i)mod m

This strategy has several advantages, in addition to its obvious simplicity. First, because the
probing strategy visits consecutive entries in the has table, linear probing exhibits better cache
performance than other strategies. Second, as long as the load factor is strictly less than 1,
the expected length of any probe sequence is provably constant; moreover, this performance is
guaranteed even for hash functions with limited independence. On the other hand, the number
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or probes grows quickly as the load factor approaches 1, because the occupied cells in the hash
table tend to cluster together. On the gripping hand, this clustering is arguably an advantage of
linear probing, since any access to the hash table loads several nearby entries into the cache.

A simple variant of linear probing called binary probing is slightly easier to analyze. Assume
that m= 2` for some integer ` (in a binary multiplicative hashing), and define

hi(x) := h(x)⊕ i

where ⊕ denotes bitwise exclusive-or. This variant of linear probing has slightly better cache
performance, because cache lines (and disk pages) usually cover address ranges of the form
[r2k .. (r + 1)2k − 1]; assuming the hash table is aligned in memory correctly, binary probing will
scan one entire cache line before loading the next one.

Several more complex probing strategies have been proposed in the literature. Two of
the most common are quadratic probing, where we use a single hash function h and set
hi(x) := (h(x) + i2)mod m, and double hashing, where we use two hash functions h and h′ and
set hi(x) := (h(x) + i · h′(x))mod m. These methods have some theoretical advantages over
linear and binary probing, but they are not as efficient in practice, primarily due to cache effects.

12.10 Analysis of Binary Probing?

Lemma 8. In a hash table of size m = 2` containing n ≤ m/4 keys, built using binary probing,
the expected time for any search is O(1), assuming ideal random hashing.

Proof: The hash table is an array H[0 .. m−1]. For each integer k between 0 and `, we partition
H into m/2k level-k blocks of length 2k; each level-k block has the form H[c2k .. (c + 1)2k − 1]
for some integer c. Each level-k block contains exactly two level-(k− 1) blocks; thus, the blocks
implicitly define a complete binary tree of depth `.

Now suppose we want to search for a key x . For any integer k, let Bk(x) denote the range of
indices for the level-k block containing H[h(x)]:

Bk(x) =
�
2kbh(x)/2kc .. 2kbh(x)/2kc+ 2k − 1

�

Similarly, let B′k(x) denote the sibling of Bk(x) in the block tree; that is, B′k(x) = Bk+1(x) \ Bk(x).
We refer to each Bk(x) as an ancestor of x and each B′k(x) as an uncle of x . The proper ancestors
of any uncle of x are also proper ancestors of x .

The binary probing algorithm can be recast conservatively as follows:

BinaryProbe(x) :
if H[h(x)] = x

return True
if H[h(x)] is empty

return False

for k = 0 to `− 1
for each index j in B′k(x)
if H[ j] = x

return True
if H[ j] is empty

return False

12
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For purposes of analysis, suppose the target item x is not in the table. (The time to search for an
item that is in the table can only be faster.) Then the expected running time of BinaryProbe(x)
can be expressed as follows:

E[T (x)]≤
`−1∑
k=0

O(2k) · Pr[B′k(x) is full].

Assuming ideal random hashing, all blocks at the same level have equal probability of being full.
Let Fk denote the probability that a fixed level-k block is full. Then we have

E[T (x)]≤
`−1∑
k=0

O(2k) · Fk.

Call a level-k block B popular if there are at least 2k items y in the table such that h(y) ∈ B.
Every popular block is full, but full blocks are not necessarily popular.

If block Bk(x) is full but not popular, then Bk(x) contains at least one item whose hash value
is not in Bk(x). Let y be the first such item inserted into the hash table. When y was inserted,
some uncle block B′j(x) = B j(y) with j ≥ k was already full. Let B′j(x) be the first uncle of Bk(x)
to become full. The only blocks that can overflow into B j(y) are its uncles, which are all either
ancestors or uncles of Bk(x). But when B j(y) became full, no other uncle of Bk(x) was full.
Moreover, Bk(x) was not yet full (because there was still room for y), so no ancestor of Bk(x)
was full. It follows that B′j(x) is popular.

We conclude that if a block is full, then either that block or one of its uncles is popular. Thus,
if we write Pk to denote the probability that a fixed level-k block is popular, we have

Fk ≤ 2Pk +
∑
j>k

Pj .

We can crudely bound the probability Pk as follows. Each of the n items in the table hashes into
a fixed level-k block with probability 2k/m; thus,

Pk =
�

n
2k

��
2k

m

�2k

≤ n2k

(2k)!
2k2k

m2k <
� en

m

�2k

(The last inequality uses a crude form of Stirling’s approximation: n!> nn/en.) Our assumption
n ≤ m/4 implies the simpler inequality Pk < (e/4)2

k
. Because e < 4, it is easy to see that

Pk < 4−k for all sufficiently large k.
It follows that Fk = O(4−k), which implies that the expected search time is at most

∑
k≥0 O(2k)·

O(4−k) =
∑

k≥0 O(2−k) = O(1). �

12.11 Cuckoo Hashing

ÆÆÆ Write this.

Exercises

1. Your boss wants you to find a perfect hash function for mapping a known set of n items into
a table of size m. A hash function is perfect if there are no collisions; each of the n items
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is mapped to a different slot in the hash table. Of course, a perfect hash function is only
possible if m≥ n. (This is a different definition of “perfect” than the one considered in the
lecture notes.) After cursing your algorithms instructor for not teaching you about (this
kind of) perfect hashing, you decide to try something simple: repeatedly pick ideal random
hash functions until you find one that happens to be perfect.

(a) Suppose you pick an ideal random hash function h. What is the exact expected
number of collisions, as a function of n (the number of items) and m (the size of the
table)? Don’t worry about how to resolve collisions; just count them.

(b) What is the exact probability that a random hash function is perfect?

(c) What is the exact expected number of different random hash functions you have to
test before you find a perfect hash function?

(d) What is the exact probability that none of the first N random hash functions you try is
perfect?

(e) How many ideal random hash functions do you have to test to find a perfect hash
function with high probability?

2. (a) Describe a set of hash functions that is uniform but not (near-)universal.

(b) Describe a set of hash functions that is universal but not (near-)uniform.

(c) Describe a set of hash functions that is universal but (near-)3-universal.

(d) A family of hash function is pairwise independent if knowing the hash value of any
one item gives us absolutely no information about the hash value of any other item;
more formally,

Pr
h∈H
[h(x) = i | h(y) = j] = Pr

h∈H
[h(x) = i]

or equivalently,

Pr
h∈H
[(h(x) = i)∧ (h(y) = j)] = Pr

h∈H
[h(x) = i] · Pr

h∈H
[h(y) = j]

for all distinct items x 6= y and all (possibly equal) hash values i and j.
Describe a set of hash functions that is uniform but not pairwise independent.

(e) Describe a set of hash functions that is pairwise independent but not (near-)uniform.

(f) Describe a set of hash functions that is universal but not pairwise independent.

(g) Describe a set of hash functions that is pairwise independent but not (near-)uniform.

(h) Describe a set of hash functions that is universal and pairwise independent but not
uniform, or prove no such set exists.

3. (a) Prove that the setMB of binary multiplicative hash functions described in Section 12.5
is not uniform. [Hint: What is multba(0)?]

(b) Prove that MB is not pairwise independent. [Hint: Compare multba(0) and
multba(2w−1).]

14



Algorithms Lecture 12: Hash Tables [Fa’13]

(c) Consider the following variant of multiplicative hashing, which uses slightly longer
salt parameters. For any integers a, b ∈ [2w+`] where a is odd, let

ha,b(x) :=
�
(a · x + b)mod 2w+`

�
div 2w =

�
(a · x + b)mod 2w+`

2w

�
,

and let MB+ = {ha,b | a, b ∈ [2w+`] and a odd}. Prove that the family of hash
functions MB+ is strongly near-universal:

Pr
h∈MB+

�
(h(x) = i)∧ (h(y) = j)

�≤ 2
m2

for all items x 6= y and all (possibly equal) hash values i and j.

4. Suppose we are using an open-addressed hash table of size m to store n items, where
n≤ m/2. Assume an ideal random hash function. For any i, let X i denote the number of
probes required for the ith insertion into the table, and let X =maxi X i denote the length
of the longest probe sequence.

(a) Prove that Pr[X i > k]≤ 1/2k for all i and k.

(b) Prove that Pr[X i > 2 lg n]≤ 1/n2 for all i.

(c) Prove that Pr[X > 2 lg n]≤ 1/n.

(d) Prove that E[X ] = O(log n).
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Philosophers gathered from far and near
To sit at his feet and hear and hear,

Though he never was heard
To utter a word

But “Abracadabra, abracadab,
Abracada, abracad,

Abraca, abrac, abra, ab!”
’Twas all he had,

’Twas all they wanted to hear, and each
Made copious notes of the mystical speech,

Which they published next –
A trickle of text

In the meadow of commentary.
Mighty big books were these,
In a number, as leaves of trees;

In learning, remarkably – very!

— Jamrach Holobom, quoted by Ambrose Bierce,
The Devil’s Dictionary (1911)

Why are our days numbered and not, say, lettered?

— Woody Allen, “Notes from the Overfed”, The New Yorker (March 16, 1968)

13 String Matching

13.1 Brute Force

The basic object that we consider in this lecture note is a string, which is really just an array.
The elements of the array come from a set Σ called the alphabet; the elements themselves are
called characters. Common examples are ASCII text, where each character is an seven-bit integer,
strands of DNA, where the alphabet is the set of nucleotides {A, C , G, T}, or proteins, where the
alphabet is the set of 22 amino acids.

The problem we want to solve is the following. Given two strings, a text T[1 .. n] and a
pattern P[1 .. m], find the first substring of the text that is the same as the pattern. (It would be
easy to extend our algorithms to find all matching substrings, but we will resist.) A substring is
just a contiguous subarray. For any shift s, let Ts denote the substring T[s .. s+m− 1]. So more
formally, we want to find the smallest shift s such that Ts = P, or report that there is no match.
For example, if the text is the string ‘AMANAPLANACATACANALPANAMA’¹ and the pattern is ‘CAN’,
then the output should be 15. If the pattern is ‘SPAM’, then the answer should be None. In most
cases the pattern is much smaller than the text; to make this concrete, I’ll assume that m< n/2.

¹Dan Hoey (or rather, his computer program) found the following 540-word palindrome in 1984. We have better
online dictionaries now, so I’m sure you could do better.

A man, a plan, a caret, a ban, a myriad, a sum, a lac, a liar, a hoop, a pint, a catalpa, a gas, an oil, a bird, a yell, a vat, a caw, a pax, a wag, a tax, a nay, a
ram, a cap, a yam, a gay, a tsar, a wall, a car, a luger, a ward, a bin, a woman, a vassal, a wolf, a tuna, a nit, a pall, a fret, a watt, a bay, a daub, a tan, a
cab, a datum, a gall, a hat, a fag, a zap, a say, a jaw, a lay, a wet, a gallop, a tug, a trot, a trap, a tram, a torr, a caper, a top, a tonk, a toll, a ball, a fair, a
sax, a minim, a tenor, a bass, a passer, a capital, a rut, an amen, a ted, a cabal, a tang, a sun, an ass, a maw, a sag, a jam, a dam, a sub, a salt, an axon, a
sail, an ad, a wadi, a radian, a room, a rood, a rip, a tad, a pariah, a revel, a reel, a reed, a pool, a plug, a pin, a peek, a parabola, a dog, a pat, a cud, a
nu, a fan, a pal, a rum, a nod, an eta, a lag, an eel, a batik, a mug, a mot, a nap, a maxim, a mood, a leek, a grub, a gob, a gel, a drab, a citadel, a total,
a cedar, a tap, a gag, a rat, a manor, a bar, a gal, a cola, a pap, a yaw, a tab, a raj, a gab, a nag, a pagan, a bag, a jar, a bat, a way, a papa, a local, a gar, a
baron, a mat, a rag, a gap, a tar, a decal, a tot, a led, a tic, a bard, a leg, a bog, a burg, a keel, a doom, a mix, a map, an atom, a gum, a kit, a baleen,
a gala, a ten, a don, a mural, a pan, a faun, a ducat, a pagoda, a lob, a rap, a keep, a nip, a gulp, a loop, a deer, a leer, a lever, a hair, a pad, a tapir, a
door, a moor, an aid, a raid, a wad, an alias, an ox, an atlas, a bus, a madam, a jag, a saw, a mass, an anus, a gnat, a lab, a cadet, an em, a natural, a tip,
a caress, a pass, a baronet, a minimax, a sari, a fall, a ballot, a knot, a pot, a rep, a carrot, a mart, a part, a tort, a gut, a poll, a gateway, a law, a jay, a
sap, a zag, a fat, a hall, a gamut, a dab, a can, a tabu, a day, a batt, a waterfall, a patina, a nut, a flow, a lass, a van, a mow, a nib, a draw, a regular, a
call, a war, a stay, a gam, a yap, a cam, a ray, an ax, a tag, a wax, a paw, a cat, a valley, a drib, a lion, a saga, a plat, a catnip, a pooh, a rail, a calamus, a
dairyman, a bater, a canal—Panama!
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Algorithms Lecture 13: String Matching

Here’s the ‘obvious’ brute force algorithm, but with one immediate improvement. The inner
while loop compares the substring Ts with P. If the two strings are not equal, this loop stops at
the first character mismatch.

AlmostBruteForce(T[1 .. n], P[1 .. m]):
for s← 1 to n−m+ 1

equal← True
i← 1
while equal and i ≤ m

if T[s+ i − 1] 6= P[i]
equal← False

else
i← i + 1

if equal
return s

return None

In the worst case, the running time of this algorithm is O((n−m)m) = O(nm), and we can
actually achieve this running time by searching for the pattern AAA...AAAB with m− 1 A’s, in a
text consisting of n A’s.

In practice, though, breaking out of the inner loop at the first mismatch makes this algorithm
quite practical. We can wave our hands at this by assuming that the text and pattern are both
random. Then on average, we perform a constant number of comparisons at each position i, so
the total expected number of comparisons is O(n). Of course, neither English nor DNA is really
random, so this is only a heuristic argument.

13.2 Strings as Numbers

For the moment, let’s assume that the alphabet consists of the ten digits 0 through 9, so we can
interpret any array of characters as either a string or a decimal number. In particular, let p be the
numerical value of the pattern P, and for any shift s, let ts be the numerical value of Ts:

p =
m∑

i=1

10m−i · P[i] ts =
m∑

i=1

10m−i · T[s+ i − 1]

For example, if T = 31415926535897932384626433832795028841971 and m= 4, then
t17 = 2384.

Clearly we can rephrase our problem as follows: Find the smallest s, if any, such that p = ts.
We can compute p in O(m) arithmetic operations, without having to explicitly compute powers
of ten, using Horner’s rule:

p = P[m] + 10
�
P[m− 1] + 10

�
P[m− 2] + · · ·+ 10

�
P[2] + 10 · P[1]� · · · ��

We could also compute any ts in O(m) operations using Horner’s rule, but this leads to essentially
the same brute-force algorithm as before. But once we know ts, we can actually compute ts+1 in
constant time just by doing a little arithmetic — subtract off the most significant digit T[s] ·10m−1,
shift everything up by one digit, and add the new least significant digit T[r +m]:

ts+1 = 10
�
ts − 10m−1 · T[s]�+ T[s+m]

To make this fast, we need to precompute the constant 10m−1. (And we know how to do that
quickly, right?) So at least intuitively, it looks like we can solve the string matching problem in
O(n) worst-case time using the following algorithm:
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NumberSearch(T[1 .. n], P[1 .. m]):
σ← 10m−1

p← 0
t1← 0
for i← 1 to m

p← 10 · p+ P[i]
t1← 10 · t1 + T[i]

for s← 1 to n−m+ 1
if p = ts

return s
ts+1← 10 · �ts −σ · T[s]

�
+ T[s+m]

return None

Unfortunately, the most we can say is that the number of arithmetic operations is O(n). These
operations act on numbers with up to m digits. Since we want to handle arbitrarily long patterns,
we can’t assume that each operation takes only constant time! In fact, if we want to avoid
expensive multiplications in the second-to-last line, we should represent each number as a string
of decimal digits, which brings us back to our original brute-force algorithm!

13.3 Karp-Rabin Fingerprinting

To make this algorithm efficient, we will make one simple change, proposed by Richard Karp
and Michael Rabin in 1981:

Perform all arithmetic modulo some prime number q.

We choose q so that the value 10q fits into a standard integer variable, so that we don’t need any
fancy long-integer data types. The values (p mod q) and (ts mod q) are called the fingerprints
of P and Ts, respectively. We can now compute (p mod q) and (t1 mod q) in O(m) time using
Horner’s rule:

p mod q = P[m] +
� · · ·+ �10 · �P[2] + �10 · P[1]mod q

�
mod q

�
mod q

� · · · ��mod q.

Similarly, given (ts mod q), we can compute (ts+1 mod q) in constant time as follows:

ts+1 mod q =
�
10 · �ts −

��
10m−1 mod q

� · T[s]mod q
�

mod q
�

mod q
�
+ T[s+m]mod q.

Again, we have to precompute the value (10m−1 mod q) to make this fast.
If (p mod q) 6= (ts mod q), then certainly P 6= Ts. However, if (p mod q) = (ts mod q), we

can’t tell whether P = Ts or not. All we know for sure is that p and ts differ by some integer
multiple of q. If P 6= Ts in this case, we say there is a false match at shift s. To test for a false
match, we simply do a brute-force string comparison. (In the algorithm below, p̃ = p mod q and
t̃s = ts mod q.) The overall running time of the algorithm is O(n+ Fm), where F is the number
of false matches.

Intuitively, we expect the fingerprints ts to jump around between 0 and q− 1 more or less
at random, so the ‘probability’ of a false match ‘ought’ to be 1/q. This intuition implies that
F = n/q “on average”, which gives us an ‘expected’ running time of O(n+ nm/q). If we always
choose q ≥ m, this bound simplifies to O(n).

But of course all this intuitive talk of probabilities is meaningless hand-waving, since we
haven’t actually done anything random yet! There are two simple methods to formalize this
intuition.
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Random Prime Numbers

The algorithm that Karp and Rabin actually proposed chooses the prime modulus q randomly
from a sufficiently large range.

KarpRabin(T[1 .. n], P[1 .. m]:
q ← a random prime number between 2 and dm2 lg me
σ← 10m−1 mod q
p̃← 0
t̃1← 0
for i← 1 to m

p̃← (10 · p̃ mod q) + P[i]mod q
t̃1← (10 · t̃1 mod q) + T[i]mod q

for s← 1 to n−m+ 1
if p̃ = t̃s

if P = Ts 〈〈brute-force O(m)-time comparison〉〉
return s

t̃s+1←
�
10 · � t̃s −

�
σ · T[s]mod q

�
mod q

�
mod q

�
+ T[s+m]mod q

return None

For any positive integer u, let π(u) denote the number of prime numbers less than u. There
are π(m2 log m) possible values for q, each with the same probability of being chosen. Our
analysis needs two results from number theory. I won’t even try to prove the first one, but the
second one is quite easy.

Lemma 1 (The Prime Number Theorem). π(u) = Θ(u/ log u).

Lemma 2. Any integer x has at most blg xc distinct prime divisors.

Proof: If x has k distinct prime divisors, then x ≥ 2k, since every prime number is bigger
than 1. �

Suppose there are no true matches, since a true match can only end the algorithm early, so
p 6= ts for all s. There is a false match at shift s if and only if p̃ = t̃s, or equivalently, if q is one of
the prime divisors of |p− ts|. Because p < 10m and ts < 10m, we must have |p− ts|< 10m. Thus,
Lemma 2 implies that |p− ts| has at most O(m) prime divisors. We chose q randomly from a set
of π(m2 log m) = Ω(m2) prime numbers, so the probability of a false match at shift s is O(1/m).
Linearity of expectation now implies that the expected number of false matches is O(n/m). We
conclude that KarpRabin runs in O(n+ E[F]m) = O(n) expected time.

Actually choosing a random prime number is not particularly easy; the best method known is
to repeatedly generate a random integer and test whether it’s prime. The Prime Number Theorem
implies that we will find a prime number after O(log m) iterations. Testing whether a number x
is prime by brute force requires roughly O(

p
x) divisions, each of which require O(log2 x) time

if we use standard long division. So the total time to choose q using this brute-force method
is about O(m log3 m). There are faster algorithms to test primality, but they are considerably
more complex. In practice, it’s enough to choose a random probable prime. Unfortunately, even
describing what the phrase “probable prime” means is beyond the scope of this note.
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Polynomial Hashing

A much simpler method relies on a classical string-hashing technique proposed by Lawrence
Carter and Mark Wegman in the late 1970s. Instead of generating the prime modulus randomly,
we generate the radix of our number representation randomly. Equivalently, we treat each string
as the coefficient vector of a polynomial of degree m− 1, and we evaluate that polynomial at
some random number.

CarterWegmanKarpRabin(T[1 .. n], P[1 .. m]:
q ← prime number larger than m2

b← Random(q)− 1
σ← bm−1 mod q
p̃← 0
t̃1← 0
for i← 1 to m

p̃← (b · p̃ mod q) + P[i]mod q
t̃1← (b · t̃1 mod q) + T[i]mod q

for s← 1 to n−m+ 1
if p̃ = t̃s

if P = Ts 〈〈brute-force O(m)-time comparison〉〉
return s

t̃s+1←
�
b · � t̃s −

�
σ · T[s]mod q

�
mod q

�
mod q

�
+ T[s+m]mod q

return None

Fix an arbitrary prime number q ≥ m2, and choose b uniformly at random from the set
{0,1, . . . , q− 1}. We redefine the numerical values p and ts using b in place of the alphabet size:

p(b) =
m∑

i=1

bi · P[m− i] ts(b) =
m∑

i=1

bi · T[s− 1+m− i],

Now define p̃(b) = p(b)mod q and t̃s(b) = ts(b)mod q.
The function f (b) = p̃(b)− t̃s(b) is a polynomial of degree m−1 over the variable b. Because q

is prime, the set Zq = {0,1, . . . , q− 1} with addition and multiplication modulo q defines a field.
A standard theorem of abstract algebra states that any polynomial with degree m− 1 over a field
has at most m− 1 roots in that field. Thus, there are at most m− 1 elements b ∈ Zq such that
f (b) = 0.

It follows that if P 6= Ts, the probability of a false match at shift s is Prb[p̃(b) = t̃s(b)] ≤
(m−1)/q < 1/m. Linearity of expectation now implies that the expected number of false positives
is O(n/m), so the modified Rabin-Karp algorithm also runs in O(n) expected time.

13.4 Redundant Comparisons

Let’s go back to the character-by-character method for string matching. Suppose we are looking
for the pattern ‘ABRACADABRA’ in some longer text using the (almost) brute force algorithm
described in the previous lecture. Suppose also that when s = 11, the substring comparison fails
at the fifth position; the corresponding character in the text (just after the vertical line below) is
not a C. At this point, our algorithm would increment s and start the substring comparison from
scratch.

HOCUSPOCUSABRABRACADABRA...
ABRA/CADABRA
ABRACADABRA

5
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If we look carefully at the text and the pattern, however, we should notice right away that
there’s no point in looking at s = 12. We already know that the next character is a B — after all,
it matched P[2] during the previous comparison — so why bother even looking there? Likewise,
we already know that the next two shifts s = 13 and s = 14 will also fail, so why bother looking
there?

HOCUSPOCUSABRABRACADABRA...
ABRA/CADABRA
/ABRACADABRA
/ABRACADABRA
ABRACADABRA

Finally, when we get to s = 15, we can’t immediately rule out a match based on earlier
comparisons. However, for precisely the same reason, we shouldn’t start the substring comparison
over from scratch — we already know that T[15] = P[4] = A. Instead, we should start the
substring comparison at the second character of the pattern, since we don’t yet know whether or
not it matches the corresponding text character.

If you play with this idea long enough, you’ll notice that the character comparisons should
always advance through the text. Once we’ve found a match for a text character, we never
need to do another comparison with that text character again. In other words, we should
be able to optimize the brute-force algorithm so that it always advances through the text.

You’ll also eventually notice a good rule for finding the next ‘reasonable’ shift s. A prefix of a
string is a substring that includes the first character; a suffix is a substring that includes the last
character. A prefix or suffix is proper if it is not the entire string. Suppose we have just discovered
that T[i] 6= P[ j]. The next reasonable shift is the smallest value of s such that T[s .. i − 1],
which is a suffix of the previously-read text, is also a proper prefix of the pattern.

in 1977, Donald Knuth, James Morris, and Vaughn Pratt published a string-matching algorithm
that implements both of these ideas.

13.5 Finite State Machines

We can interpret any string matching algorithm that always advance through the text as feeding
the text through a special type of finite-state machine. A finite state machine is a directed graph.
Each node (or state) in the string-matching machine is labeled with a character from the pattern,
except for two special nodes labeled $© and !©©. Each node has two outgoing edges, a success
edge and a failure edge. The success edges define a path through the characters of the pattern
in order, starting at $© and ending at !©©. Failure edges always point to earlier characters in the
pattern.

We use the finite state machine to search for the pattern as follows. At all times, we have a
current text character T[i] and a current node in the graph, which is usually labeled by some
pattern character P[ j]. We iterate the following rules:

• If T[i] = P[ j], or if the current label is $©, follow the success edge to the next node and
increment i. (So there is no failure edge from the start node $©.)

• If T[i] 6= P[ j], follow the failure edge back to an earlier node, but do not change i.

For the moment, let’s simply assume that the failure edges are defined correctly—we’ll see
how to do that later. If we ever reach the node labeled !©©, then we’ve found an instance of the
pattern in the text, and if we run out of text characters (i > n) before we reach !©©, then there is
no match.
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$ A
B

R

A

C

A
D

A

B

R

A

!

A finite state machine for the string ‘ABRADACABRA’.
Thick arrows are the success edges; thin arrows are the failure edges.

The finite state machine is really just a (very!) convenient metaphor. In a real implementation,
we would not construct the entire graph. Since the success edges always traverse the pattern
characters in order, and each state has exactly one outgoing failure edge, we only have to
remember the targets of the failure edges. We can encode this failure function in an array
fail[1 .. n], where for each index j, the failure edge from node j leads to node fail[ j]. Following a
failure edge back to an earlier state corresponds exactly, in our earlier formulation, to shifting the
pattern forward. The failure function fail[ j] tells us how far to shift after a character mismatch
T[i] 6= P[ j]. Here’s the actual algorithm:

KnuthMorrisPratt(T[1 .. n], P[1 .. m]):
j← 1
for i← 1 to n

while j > 0 and T[i] 6= P[ j]
j← fail[ j]

if j = m 〈〈Found it!〉〉
return i −m+ 1

j← j + 1
return None

Before we discuss computing the failure function, let’s analyze the running time of Knuth-
MorrisPratt under the assumption that a correct failure function is already known. At each
character comparison, either we increase i and j by one, or we decrease j and leave i alone. We
can increment i at most n−1 times before we run out of text, so there are at most n−1 successful
comparisons. Similarly, there can be at most n − 1 failed comparisons, since the number of
times we decrease j cannot exceed the number of times we increment j. In other words, we can
amortize character mismatches against earlier character matches. Thus, the total number of
character comparisons performed by KnuthMorrisPratt in the worst case is O(n).

13.6 Computing the Failure Function

We can now rephrase our second intuitive rule about how to choose a reasonable shift after a
character mismatch T[i] 6= P[ j]:

P[1 .. fail[ j]− 1] is the longest proper prefix of P[1 .. j − 1] that is also a suffix of T[1 .. i − 1].
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Notice, however, that if we are comparing T[i] against P[ j], then we must have already matched
the first j − 1 characters of the pattern. In other words, we already know that P[1 .. j − 1] is a
suffix of T[1 .. i − 1]. Thus, we can rephrase the prefix-suffix rule as follows:

P[1 .. fail[ j]− 1] is the longest proper prefix of P[1 .. j − 1] that is also a suffix of P[1 .. j − 1].

This is the definition of the Knuth-Morris-Pratt failure function fail[ j] for all j > 1. By convention
we set fail[1] = 0; this tells the KMP algorithm that if the first pattern character doesn’t match,
it should just give up and try the next text character.

P[i] A B R A C A D A B R A

fail[i] 0 1 1 1 2 1 2 1 2 3 4

Failure function for the string ‘ABRACADABRA’
(Compare with the finite state machine on the previous page.)

We could easily compute the failure function in O(m3) time by checking, for each j, whether
every prefix of P[1 .. j − 1] is also a suffix of P[1 .. j − 1], but this is not the fastest method. The
following algorithm essentially uses the KMP search algorithm to look for the pattern inside itself!

ComputeFailure(P[1 .. m]):
j← 0
for i← 1 to m

fail[i]← j (∗)
while j > 0 and P[i] 6= P[ j]

j← fail[ j]
j← j + 1

Here’s an example of this algorithm in action. In each line, the current values of i and j are
indicated by superscripts; $ represents the beginning of the string. (You should imagine pointing
at P[ j] with your left hand and pointing at P[i] with your right hand, and moving your fingers
according to the algorithm’s directions.)

Just as we did for KnuthMorrisPratt, we can analyze ComputeFailure by amortizing
character mismatches against earlier character matches. Since there are at most m character
matches, ComputeFailure runs in O(m) time.

Let’s prove (by induction, of course) that ComputeFailure correctly computes the failure
function. The base case fail[1] = 0 is obvious. Assuming inductively that we correctly computed
fail[1] through fail[i − 1] in line (∗), we need to show that fail[i] is also correct. Just after
the ith iteration of line (∗), we have j = fail[i], so P[1 .. j − 1] is the longest proper prefix of
P[1 .. i − 1] that is also a suffix.

Let’s define the iterated failure functions failc[ j] inductively as follows: fail0[ j] = j, and

failc[ j] = fail[ failc−1[ j]] =

c︷ ︸︸ ︷
fail[ fail[· · · [ fail[ j]] · · · ]].

In particular, if failc−1[ j] = 0, then failc[ j] is undefined. We can easily show by induction
that every string of the form P[1 .. failc[ j]− 1] is both a proper prefix and a proper suffix of
P[1 .. i − 1], and in fact, these are the only examples. Thus, the longest proper prefix/suffix of
P[1 .. i] must be the longest string of the form P[1 .. failc[ j]]—the one with smallest c—such
that P[ failc[ j]] = P[i]. This is exactly what the while loop in ComputeFailure computes;
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j← 0, i← 1 $ j Ai B R A C A D A B R X . . .

fail[i]← j 0 . . .

j← j + 1, i← i + 1 $ A j Bi R A C A D A B R X . . .

fail[i]← j 0 1 . . .

j← fail[ j] $ j A Bi R A C A D A B R X . . .

j← j + 1, i← i + 1 $ A j B Ri A C A D A B R X . . .

fail[i]← j 0 1 1 . . .

j← fail[ j] $ j A B Ri A C A D A B R X . . .

j← j + 1, i← i + 1 $ A j B R Ai C A D A B R X . . .

fail[i]← j 0 1 1 1 . . .

j← j + 1, i← i + 1 $ A B j R A Ci A D A B R X . . .

fail[i]← j 0 1 1 1 2 . . .

j← fail[ j] $ A j B R A Ci A D A B R X . . .

j← fail[ j] $ j A B R A Ci A D A B R X . . .

j← j + 1, i← i + 1 $ A j B R A C Ai D A B R X . . .

fail[i]← j 0 1 1 1 2 1 . . .

j← j + 1, i← i + 1 $ A B j R A C A Di A B R X . . .

fail[i]← j 0 1 1 1 2 1 2 . . .

j← fail[ j] $ A j B R A C A Di A B R X . . .

j← fail[ j] $ j A B R A C A Di A B R X . . .

j← j + 1, i← i + 1 $ A j B R A C A D Ai B R X . . .

fail[i]← j 0 1 1 1 2 1 2 1 . . .

j← j + 1, i← i + 1 $ A B j R A C A D A Bi R X . . .

fail[i]← j 0 1 1 1 2 1 2 1 2 . . .

j← j + 1, i← i + 1 $ A B R j A C A D A B Ri X . . .

fail[i]← j 0 1 1 1 2 1 2 1 2 3 . . .

j← j + 1, i← i + 1 $ A B R A j C A D A B R Xi . . .

fail[i]← j 0 1 1 1 2 1 2 1 2 3 4 . . .

j← fail[ j] $ A j B R A C A D A B R Xi . . .

j← fail[ j] $ j A B R A C A D A B R Xi . . .

ComputeFailure in action. Do this yourself by hand!
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the (c + 1)th iteration compares P[ failc[ j]] = P[ failc+1[i]] against P[i]. ComputeFailure is
actually a dynamic programming implementation of the following recursive definition of fail[i]:

fail[i] =





0 if i = 0,

max
c≥1

�
failc[i − 1] + 1

�� P[i − 1] = P[ failc[i − 1]]
	

otherwise.

13.7 Optimizing the Failure Function

We can speed up KnuthMorrisPratt slightly by making one small change to the failure
function. Recall that after comparing T[i] against P[ j] and finding a mismatch, the algorithm
compares T[i] against P[ fail[ j]]. With the current definition, however, it is possible that P[ j]
and P[ fail[ j]] are actually the same character, in which case the next character comparison will
automatically fail. So why do the comparison at all?

We can optimize the failure function by ‘short-circuiting’ these redundant comparisons with
some simple post-processing:

OptimizeFailure(P[1 .. m], fail[1 .. m]):
for i← 2 to m

if P[i] = P[ fail[i]]
fail[i]← fail[ fail[i]]

We can also compute the optimized failure function directly by adding three new lines (in bold)
to the ComputeFailure function.

ComputeOptFailure(P[1 .. m]):
j← 0
for i← 1 to m

if P[i] = P[ j]
fail[i]← fail[ j]

else
fail[i]← j

while j > 0 and P[i] 6= P[ j]
j← fail[ j]

j← j + 1

This optimization slows down the preprocessing slightly, but it may significantly decrease the
number of comparisons at each text character. The worst-case running time is still O(n); however,
the constant is about half as big as for the unoptimized version, so this could be a significant
improvement in practice. Several examples of this optimization are given on the next page.

Exercises

1. Describe and analyze a two-dimensional variant of KarpRabin that searches for a given two-
dimensional pattern P[1 .. p][1 .. q] within a given two-dimensional “text” T[1 .. m][1 .., n].
Your algorithm should report all index pairs (i, j) such that the subarray T[i .. i + p −
1][ j .. j + q− 1] is identical to the given pattern, in O(pq+mn) expected time.

2. A palindrome is any string that is the same as its reversal, such as X, ABBA, or REDIVIDER.
Describe and analyze an algorithm that computes the longest palindrome that is a (not

10
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$ A
B

R

A

C

A
D

A

B

R

A

!

P[i] A B R A C A D A B R A

unoptimized fail[i] 0 1 1 1 2 1 2 1 2 3 4

optimized fail[i] 0 1 1 0 2 0 2 0 1 1 1

Optimized finite state machine and failure function for the string ‘ABRADACABRA’

P[i] A N A N A B A N A N A N A

unoptimized fail[i] 0 1 1 2 3 4 1 2 3 4 5 6 5

optimized fail[i] 0 1 0 1 0 4 0 1 0 1 0 6 0

P[i] A B A B C A B A B C A B C

unoptimized fail[i] 0 1 1 2 3 1 2 3 4 5 6 7 8

optimized fail[i] 0 1 0 1 3 0 1 0 1 3 0 1 8

P[i] A B B A B B A B A B B A B

unoptimized fail[i] 0 1 1 1 2 3 4 5 6 2 3 4 5

optimized fail[i] 0 1 1 0 1 1 0 1 6 1 1 0 1

Failure functions for four more example strings.

necessarily proper) prefix of a given string T[1 .. n]. Your algorithm should run in O(n)
time (either expected or worst-case).

?3. How important is the requirement that the fingerprint modulus q is prime in the original
Karp-Rabin algorithm? Specifically, suppose q is chosen uniformly at random in the range
1 .. N . If ts 6= p, what is the probability that t̃s = p̃? What does this imply about the
expected number of false matches? How large should N be to guarantee expected running
time O(m+ n)? [Hint: This will require some additional number theory.]

4. Describe a modification of KnuthMorrisPratt in which the pattern can contain any
number of wildcard symbols ***, each of which matches an arbitrary string. For example, the
pattern ABR***CAD***BRA appears in the text SCHABRAINAINAINCADBRANCH; in this case, the second ***
matches the empty string. Your algorithm should run in O(m+ n) time, where m is the
length of the pattern and n is the length of the text.

5. Describe a modification of KnuthMorrisPratt in which the pattern can contain any
number of wildcard symbols ???, each of which matches an arbitrary single character. For
example, the pattern ABR???CAD???BRA appears in the text SCHABRUUUCADIIIBRANCH. Your algorithm
should run in O(m+ qn) time, where m is the length of the pattern, n is the length of the
text., and q is the number of ???s in the pattern.

11
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?6. Describe another algorithm for the previous problem that runs in time O(m+ kn), where k
is the number of runs of consecutive non-wildcard characters in the pattern. For example,
the pattern ???FISH?????????B??????IS????????????CUIT??? has k = 4 runs.

7. Describe a modification of KnuthMorrisPratt in which the pattern can contain any
number of wildcard symbols ===, each of which matches the same arbitrary single charac-
ter. For example, the pattern ===HOC===SPOC===S appears in the texts WHUUUHOCUUUSPOCUUUSOT and
ABRAAAHOCAAASPOCAAASCADABRA, but not in the text FRISSSHOCUUUSPOCEEESTIX. Your algorithm should
run in O(m+ n) time, where m is the length of the pattern and n is the length of the text.

8. This problem considers the maximum length of a failure chain j→ fail[ j]→ fail[ fail[ j]]→
fail[ fail[ fail[ j]]]→ ·· · → 0, or equivalently, the maximum number of iterations of the
inner loop of KnuthMorrisPratt. This clearly depends on which failure function we use:
unoptimized or optimized. Let m be an arbitrary positive integer.

(a) Describe a pattern A[1 .. m] whose longest unoptimized failure chain has length m.

(b) Describe a pattern B[1 .. m]whose longest optimized failure chain has lengthΘ(log m).
?(c) Describe a pattern C[1 .. m] containing only two different characters, whose longest

optimized failure chain has length Θ(log m).
?(d) Prove that for any pattern of length m, the longest optimized failure chain has length

at most O(log m).

9. Suppose we want to search for a string inside a labeled rooted tree. Our input consists of a
pattern string P[1 .. m] and a rooted text tree T with n nodes, each labeled with a single
character. Nodes in T can have any number of children. Our goal is to either return a
downward path in T whose labels match the string P, or report that there is no such path.

A

C

A

R

S

I

S

E

P

H

N

R

E

O

A

E

L M

Z

H

M

QW

K

F

The string SEARCH appears on a downward path in the tree.

(a) Describe and analyze a variant of KarpRabin that solves this problem in O(m+ n)
expected time.

(b) Describe and analyze a variant of KnuthMorrisPratt that solves this problem in
O(m+ n) expected time.
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10. Suppose we want to search a rooted binary tree for subtrees of a certain shape. The input
consists of a pattern tree P with m nodes and a text tree T with n nodes. Every node in
both trees has a left subtree and a right subtree, either or both of which may be empty. We
want to report all nodes v in T such that the subtree rooted at v is structurally identical
to P, ignoring all search keys, labels, or other data in the nodes—only the left/right pointer
structure matters.

The pattern tree (left) appears exactly twice in the text tree (right).

(a) Describe and analyze a variant of KarpRabin that solves this problem in O(m+ n)
expected time.

(b) Describe and analyze a variant of KnuthMorrisPratt that solves this problem in
O(m+ n) expected time.
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Jaques: But, for the seventh cause; how did you find the quarrel on the seventh cause?
Touchstone: Upon a lie seven times removed:–bear your body more seeming, Audrey:–as

thus, sir. I did dislike the cut of a certain courtier’s beard: he sent me word, if I
said his beard was not cut well, he was in the mind it was: this is called the Retort
Courteous. If I sent him word again ‘it was not well cut,’ he would send me word, he
cut it to please himself: this is called the Quip Modest. If again ‘it was not well cut,’
he disabled my judgment: this is called the Reply Churlish. If again ‘it was not well
cut,’ he would answer, I spake not true: this is called the Reproof Valiant. If again ‘it
was not well cut,’ he would say I lied: this is called the Counter-cheque Quarrelsome:
and so to the Lie Circumstantial and the Lie Direct.

Jaques: And how oft did you say his beard was not well cut?
Touchstone: I durst go no further than the Lie Circumstantial, nor he durst not give me the

Lie Direct; and so we measured swords and parted.

— William Shakespeare, As You Like It, Act V, Scene 4 (1600)

13 Randomized Minimum Cut

13.1 Setting Up the Problem

This lecture considers a problem that arises in robust network design. Suppose we have a
connected multigraph¹ G representing a communications network like the UIUC telephone
system, the Facebook social network, the internet, or Al-Qaeda. In order to disrupt the network,
an enemy agent plans to remove some of the edges in this multigraph (by cutting wires, placing
police at strategic drop-off points, or paying street urchins to ‘lose’ messages) to separate it into
multiple components. Since his country is currently having an economic crisis, the agent wants
to remove as few edges as possible to accomplish this task.

More formally, a cut partitions the nodes of G into two nonempty subsets. The size of the cut
is the number of crossing edges, which have one endpoint in each subset. Finally, a minimum
cut in G is a cut with the smallest number of crossing edges. The same graph may have several
minimum cuts.

a b

c d e  f 

 g h
A multigraph whose minimum cut has three edges.

This problem has a long history. The classical deterministic algorithms for this problem rely
on network flow techniques, which are discussed in another lecture. The fastest such algorithms
(that we will discuss) run in O(n3) time and are fairly complex; we will see some of these later
in the semester. Here I’ll describe a relatively simple randomized algorithm discovered by David
Karger when he was a Ph.D. student.²

¹A multigraph allows multiple edges between the same pair of nodes. Everything in this lecture could be rephrased
in terms of simple graphs where every edge has a non-negative weight, but this would make the algorithms and
analysis slightly more complicated.

²David R. Karger*. Random sampling in cut, flow, and network design problems. Proc. 25th STOC, 648–657, 1994.
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Karger’s algorithm uses a primitive operation called collapsing an edge. Suppose u and v
are vertices that are connected by an edge in some multigraph G. To collapse the edge {u, v},
we create a new node called uv, replace any edge of the form {u, w} or {v, w} with a new edge
{uv, w}, and then delete the original vertices u and v. Equivalently, collapsing the edge shrinks
the edge down to nothing, pulling the two endpoints together. The new collapsed graph is
denoted G/{u, v}. We don’t allow self-loops in our multigraphs; if there are multiple edges
between u and v, collapsing any one of them deletes them all.

a

b c d

 e 

a

b cd

 e 

a

be 

c d

A graph G and two collapsed graphs G/{b, e} and G/{c, d}.

Any edge in an n-vertex graph can be collapsed in O(n) time, assuming the graph is
represented as an adjacency list; I’ll leave the precise implementation details as an easy exercise.

The correctness of our algorithms will eventually boil down the following simple observation:
For any cut in G/{u, v}, there is cut in G with exactly the same number of crossing edges. In
fact, in some sense, the ‘same’ edges form the cut in both graphs. The converse is not necessarily
true, however. For example, in the picture above, the original graph G has a cut of size 1, but the
collapsed graph G/{c, d} does not.

This simple observation has two immediate but important consequences. First, collapsing an
edge cannot decrease the minimum cut size. More importantly, collapsing an edge increases the
minimum cut size if and only if that edge is part of every minimum cut.

13.2 Blindly Guessing

Let’s start with an algorithm that tries to guess the minimum cut by randomly collapsing edges
until the graph has only two vertices left.

GuessMinCut(G):
for i← n downto 2

pick a random edge e in G
G← G/e

return the only cut in G

Because each collapse requires O(n) time, this algorithm runs in O(n2) time. Our earlier
observations imply that as long as we never collapse an edge that lies in every minimum cut, our
algorithm will actually guess correctly. But how likely is that?

Suppose G has only one minimum cut—if it actually has more than one, just pick your
favorite—and this cut has size k. Every vertex of G must lie on at least k edges; otherwise,
we could separate that vertex from the rest of the graph with an even smaller cut. Thus, the
number of incident vertex-edge pairs is at least kn. Since every edge is incident to exactly two
vertices, G must have at least kn/2 edges. That implies that if we pick an edge in G uniformly at
random, the probability of picking an edge in the minimum cut is at most 2/n. In other words,
the probability that we don’t screw up on the very first step is at least 1− 2/n.

2



Algorithms Lecture 13: Randomized Minimum Cut [Fa’13]

Once we’ve collapsed the first random edge, the rest of the algorithm proceeds recursively
(with independent random choices) on the remaining (n − 1)-node graph. So the overall
probability P(n) that GuessMinCut returns the true minimum cut is given by the recurrence

P(n)≥ n− 2
n
· P(n− 1)

with base case P(2) = 1. We can expand this recurrence into a product, most of whose factors
cancel out immediately.

P(n)≥
n∏

i=3

i − 2
i
=

∏n
i=3(i − 2)∏n

i=3 i
=

∏n−2
j=1 j

∏n
i=3 i

=
2

n(n− 1)

13.3 Blindly Guessing Over and Over

That’s not very good. Fortunately, there’s a simple method for increasing our chances of finding the
minimum cut: run the guessing algorithmmany times and return the smallest guess. Randomized
algorithms folks like to call this idea amplification.

KargerMinCut(G):
mink←∞
for i← 1 to N

X ← GuessMinCut(G)
if |X |<mink

mink← |X |
minX← X

return minX

Both the running time and the probability of success will depend on the number of iterations N ,
which we haven’t specified yet.

First let’s figure out the probability that KargerMinCut returns the actual minimum cut.
The only way for the algorithm to return the wrong answer is if GuessMinCut fails N times in a
row. Since each guess is independent, our probability of success is at least

1−
�

1− 2
n(n− 1)

�N

≤ 1− e−2N/n(n−1),

by The World’s Most Useful Inequality 1 + x ≤ ex . By making N larger, we can make this
probability arbitrarily close to 1, but never equal to 1. In particular, if we set N = c

�n
2

�
ln n for

some constant c, then KargerMinCut is correct with probability at least

1− e−c ln n = 1− 1
nc

.

When the failure probability is a polynomial fraction, we say that the algorithm is correct with
high probability. Thus, KargerMinCut computes the minimum cut of any n-node graph in
O(n4 logn) time.

If we make the number of iterations even larger, say N = n2(n− 1)/2, the success probability
becomes 1 − e−n. When the failure probability is exponentially small like this, we say that
the algorithm is correct with very high probability. In practice, very high probability is usually
overkill; high probability is enough. (Remember, there is a small but non-zero probability that
your computer will transform itself into a kitten before your program is finished.)
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13.4 Not-So-Blindly Guessing

The O(n4 log n) running time is actually comparable to some of the simpler flow-based algorithms,
but it’s nothing to get excited about. But we can improve our guessing algorithm, and thus
decrease the number of iterations in the outer loop, by observing that as the graph shrinks, the
probability of collapsing an edge in the minimum cut increases. At first the probability is quite
small, only 2/n, but near the end of execution, when the graph has only three vertices, we have a
2/3 chance of screwing up!

A simple technique for working around this increasing probability of error was developed by
David Karger and Cliff Stein.³ Their idea is to group the first several random collapses a ‘safe’
phase, so that the cumulative probability of screwing up is small—less than 1/2, say—and a
‘dangerous’ phase, which is much more likely to screw up.

The safe phase shrinks the graph from n nodes to n/
p

2 + 1 nodes, using a sequence of
n− n/

p
2− 1 random collapses. Following our earlier analysis, the probability that none of these

safe collapses touches the minimum cut is at least

n∏

i=n/
p

2+2

i − 2
i
=
(n/
p

2)(n/
p

2+ 1)
n(n− 1)

=
n+
p

2
2(n− 1)

>
1
2

.

Now, to get around the danger of the dangerous phase, we use amplification. However, instead of
running through the dangerous phase once, we run it twice and keep the best of the two answers.
Naturally, we treat the dangerous phase recursively, so we actually obtain a binary recursion tree,
which expands as we get closer to the base case, instead of a single path. More formally, the
algorithm looks like this:

Contract(G, m):
for i← n downto m

pick a random edge e in G
G← G/e

return G

BetterGuess(G):
if G has more than 8 vertices

X1← BetterGuess(Contract(G, n/
p

2+ 1))
X2← BetterGuess(Contract(G, n/

p
2+ 1))

return min{X1, X2}
else

use brute force

This might look like we’re just doing to same thing twice, but remember that Contract (and
thus BetterGuess) is randomized. Each call to Contract contracts an independent random
set of edges; X1 and X2 are almost always different cuts.

BetterGuess correctly returns the minimum cut unless both recursive calls return the wrong
result. X1 is the minimum cut of G if and only if (1) none of the edges of the minimum cut
are Contracted and (2) the recursive call to BetterGuess returns the minimum cut of the
Contracted graph. Thus, if P(n) denotes the probability that BetterGuess returns a minimum
cut of an n-node graph, then X1 is the minimum cut with probability at least 1/2 · P(n/p2+ 1).
The same argument implies that X2 is the minimum cut with probability at least 1/2·P(n/p2+1).
Because these two events are independent, we have the following recurrence, with base case
P(n) = 1 for all n≤ 6.

P(n)≥ 1−
�

1− 1
2

P
�

np
2
+ 1

��2

Using a series of transformations, Karger and Stein prove that P(n) = Ω(1/ log n). I’ve included
the proof at the end of this note.

³David R. Karger∗ and Cliff Stein. An Õ(n2) algorithm for minimum cuts. Proc. 25th STOC, 757–765, 1993.
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For the running time, we get a simple recurrence that is easily solved using recursion trees or
the Master theorem (after a domain transformation to remove the +1 from the recurrence).

T (n) = O(n2) + 2T
�

np
2
+ 1

�
= O(n2 log n)

So all this splitting and recursing has slowed down the guessing algorithm slightly, but the
probability of failure is exponentially smaller!

Let’s express the lower bound P(n) = Ω(1/ log n) explicitly as P(n) ≥ α/ ln n for some
constant α. (Karger and Stein’s proof implies α > 2). If we call BetterGuess N = c ln2 n times,
for some new constant c, the overall probability of success is at least

1−
�

1− α

ln n

�c ln2 n
≥ 1− e−(c/α) ln n = 1− 1

nc/α
.

By setting c sufficiently large, we can bound the probability of failure by an arbitrarily small
polynomial function of n. In other words, we now have an algorithm that computes the minimum
cut with high probability in only O(n2 log3 n) time!

13.5 Solving the Karger-Stein recurrence?

Recall the following recurrence for the probability that BetterGuess successfully finds a
minimum cut of an n-node graph:

P(n)≥ 1−
�

1− 1
2

P
�

np
2
+ 1

��2

Karger and Stein solve this rather ugly recurrence through a series of functional transformations.
Let p(k) denote the probability of success at the kth level of recursion, counting upward from
the base case. This function satisfies the recurrence

p(k)≥ 1−
�

1− p(k− 1)
2

�2

= p(k− 1)− p(k− 1)2

4

with base case p(0) = 1. Let p̄(k) be the function that satisfies this recurrence with equality;
clearly, p(k) ≥ p̄(k). Substituting the function z(k) = 4/p̄(k)− 1 into this recurrence implies
(after a bit of algebra) gives a new recurrence

z(k) = z(k− 1) + 2+
1

z(k− 1)

with base case z(0) = 3. Clearly z(k)> 1 for all k, so we have a conservative upper bound z(k)<
z(k− 1) + 3, which implies (by induction) that z(k)≤ 3k+ 3. Substituting p̄(k) = 4/(z(k) + 1)
into this solution, we conclude that

p(k)≥ p̄(k)>
1

3k+ 6
= Ω(1/k).

To compute the number of levels of recursion that BetterGuess executes for an n-node
graph, we solve the secondary recurrence

k(n) = 1+ k
�

np
2
+ 1

�

with base cases k(n) = 0 for all n≤ 8. After a domain transformation to remove the +1 from the
right side, the recursion tree method (or the Master theorem) implies that k(n) = Θ(log n).

We conclude that P(n) = p(k(n)) = Ω(1/ logn), as promised. Whew!
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Exercises

1. Suppose you had an algorithm to compute the minimum spanning tree of a graph in O(m)
time, where m is the number of edges in the input graph. Use this algorithm as a subroutine
to improve the running time of GuessMinCut from O(n2) to O(m).

(In fact, there is a randomized algorithm—due to Philip Klein, David Karger, and Robert
Tarjan—that computes the minimum spanning tree of any graph in O(m) expected time.
The fastest deterministic algorithm known in 2013 runs in O(mα(m)) time.)

2. Suppose you are given a graph G with weighted edges, and your goal is to find a cut whose
total weight (not just number of edges) is smallest.

(a) Describe an algorithm to select a random edge of G, where the probability of choosing
edge e is proportional to the weight of e.

(b) Prove that if you use the algorithm from part (a), instead of choosing edges uniformly
at random, the probability that GuessMinCut returns a minimum-weight cut is still
Ω(1/n2).

(c) What is the running time of your modified GuessMinCut algorithm?

3. Prove that GuessMinCut returns the second smallest cut in its input graph with probability
Ω(1/n3). (The second smallest cut could be significantly larger than the minimum cut.)

4. Consider the following generalization of the BetterGuess algorithm, where we pass in a
real parameter α > 1 in addition to the graph G.

BetterGuess(G,α):
n← number of vertices in G
if n> 8

X1← BetterGuess(Contract(G, n/α),α)
X2← BetterGuess(Contract(G, n/α),α)
return min{X1, X2}

else
use brute force

Assume for this question that the input graph G has a unique minimum cut.

(a) What is the running time of the modified algorithm, as a function of n and α? [Hint:
Consider the cases α <

p
2, α=

p
2, and α >

p
2 separately.]

(b) What is the probability that Contract(G, n/α) does not contract any edge in the
minimum cut in G? Give both an exact expression involving both n and α, and a
simple approximation in terms of just α. [Hint: When α =

p
2, the probability is

approximately 1/2.]

(c) Estimate the probability that BetterGuess(G,α) returns the minimum cut in G,
by adapting the solution to the Karger-Stein recurrence. [Hint: Consider the cases
α <
p

2, α=
p

2, and α >
p

2 separately.]
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(d) Suppose we iterate BetterGuess(G,α) until we are guaranteed to see the minimum
cut with high probability. What is the running time of the resulting algorithm? For
which value of α is this running time minimized?

(e) Suppose we modify BetterGuess(G,α) further, to recurse four times instead of only
twice. Now what is the best choice of α? What is the resulting running time?
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The goode workes that men don whil they ben in good lif
al amortised by synne folwyng.

— Geoffrey Chaucer, “The Persones [Parson’s] Tale” (c.1400)

I will gladly pay you Tuesday for a hamburger today.

— J. Wellington Wimpy, “Thimble Theatre” (1931)

I want my two dollars!

— Johnny Gasparini [Demian Slade], “Better Off Dead” (1985)

A dollar here, a dollar there. Over time, it adds up to two dollars.

— Jarod Kintz, The Titanic Would Never Have Sunk
if It Were Made out of a Sink (2012)

15 Amortized Analysis

15.1 Incrementing a Binary Counter

It is a straightforward exercise in induction, which often appears on Homework 0, to prove that
any non-negative integer n can be represented as the sum of distinct powers of 2. Although some
students correctly use induction on the number of bits—pulling off either the least significant bit
or the most significant bit in the binary representation and letting the Recursion Fairy convert
the remainder—the most commonly submitted proof uses induction on the value of the integer,
as follows:

Proof: The base case n= 0 is trivial. For any n> 0, the inductive hypothesis implies that there
is set of distinct powers of 2 whose sum is n− 1. If we add 20 to this set, we obtain a multiset of
powers of two whose sum is n, which might contain two copies of 20. Then as long as there are
two copies of any 2i in the multiset, we remove them both and insert 2i+1 in their place. The
sum of the elements of the multiset is unchanged by this replacement, because 2i+1 = 2i + 2i.
Each iteration decreases the size of the multiset by 1, so the replacement process must eventually
terminate. When it does terminate, we have a set of distinct powers of 2 whose sum is n. �

This proof is describing an algorithm to increment a binary counter from n− 1 to n. Here’s a
more formal (and shorter!) description of the algorithm to add 1 to a binary counter. The input B
is an (infinite) array of bits, where B[i] = 1 if and only if 2i appears in the sum.

Increment(B[0 ..∞]):
i← 0
while B[i] = 1

B[i]← 0
i← i + 1

B[i]← 1

We’ve already argued that Increment must terminate, but how quickly? Obviously, the
running time depends on the array of bits passed as input. If the first k bits are all 1s, then
Increment takes Θ(k) time. The binary representation of any positive integer n is exactly
blg nc+ 1 bits long. Thus, if B represents an integer between 0 and n, Increment takes Θ(log n)
time in the worst case.
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15.2 Counting from 0 to n

Now suppose we call Increment n times, starting with a zero counter. How long does it take
to count from 0 to n? If we only use the worst-case running time for each Increment, we get
an upper bound of O(n log n) on the total running time. Although this bound is correct, we can
do better; in fact, the total running time is only Θ(n). This section describes several general
methods for deriving, or at least proving, this linear time bound. Many (perhaps even all) of
these methods are logically equivalent, but different formulations are more natural for different
problems.

15.2.1 Summation

Perhaps the simplest way to derive a tighter bound is to observe that Increment doesn’t flip
Θ(log n) bits every time it is called. The least significant bit B[0] does flip in every iteration, but
B[1] only flips every other iteration, B[2] flips every 4th iteration, and in general, B[i] flips every
2ith iteration. Because we start with an array full of 0’s, a sequence of n Increments flips each
bit B[i] exactly bn/2ic times. Thus, the total number of bit-flips for the entire sequence is

blg nc∑
i=0

j n
2i

k
<

∞∑
i=0

n
2i
= 2n.

(More precisely, the number of flips is exactly 2n−#1(n), where #1(n) is the number of 1 bits
in the binary representation of n.) Thus, on average, each call to Increment flips just less than
two bits, and therefore runs in constant time.

This sense of “on average” is quite different from the averaging we consider with randomized
algorithms. There is no probability involved; we are averaging over a sequence of operations, not
the possible running times of a single operation. This averaging idea is called amortization—the
amortized time for each Increment is O(1). Amortization is a sleazy clever trick used by
accountants to average large one-time costs over long periods of time; the most common example
is calculating uniform payments for a loan, even though the borrower is paying interest on less
and less capital over time. For this reason, it is common to use “cost” as a synonym for running
time in the context of amortized analysis. Thus, the worst-case cost of Increment is O(log n),
but the amortized cost is only O(1).

Most textbooks call this particular technique “the aggregate method”, or “aggregate analysis”,
but these are just fancy names for computing the total cost of all operations and then dividing by
the number of operations.

The Summation Method. Let T (n) be the worst-case running time for a sequence of
n operations. The amortized time for each operation is T (n)/n.

15.2.2 Taxation

A second method we can use to derive amortized bounds is called either the accounting method
or the taxation method. Suppose it costs us a dollar to toggle a bit, so we can measure the
running time of our algorithm in dollars. Time is money!

Instead of paying for each bit flip when it happens, the Increment Revenue Service charges a
two-dollar increment tax whenever we want to set a bit from zero to one. One of those dollars is
spent changing the bit from zero to one; the other is stored away as credit until we need to reset
the same bit to zero. The key point here is that we always have enough credit saved up to pay for
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the next Increment. The amortized cost of an Increment is the total tax it incurs, which is
exactly 2 dollars, since each Increment changes just one bit from 0 to 1.

It is often useful to distribute the tax income to specific pieces of the data structure. For
example, for each Increment, we could store one of the two dollars on the single bit that is set
for 0 to 1, so that that bit can pay to reset itself back to zero later on.

Taxation Method 1. Certain steps in the algorithm charge you taxes, so that the total
cost incurred by the algorithm is never more than the total tax you pay. The amortized
cost of an operation is the overall tax charged to you during that operation.

A different way to schedule the taxes is for every bit to charge us a tax at every operation,
regardless of whether the bit changes of not. Specifically, each bit B[i] charges a tax of 1/2i dollars
for each Increment. The total tax we are charged during each Increment is

∑
i≥0 2−i = 2

dollars. Every time a bit B[i] actually needs to be flipped, it has collected exactly $1, which is
just enough for us to pay for the flip.

Taxation Method 2. Certain portions of the data structure charge you taxes at each
operation, so that the total cost of maintaining the data structure is never more than
the total taxes you pay. The amortized cost of an operation is the overall tax you pay
during that operation.

In both of the taxation methods, our task as algorithm analysts is to come up with an
appropriate ‘tax schedule’. Different ‘schedules’ can result in different amortized time bounds.
The tightest bounds are obtained from tax schedules that just barely stay in the black.

15.2.3 Charging

Another common method of amortized analysis involves charging the cost of some steps to some
other, earlier steps. The method is similar to taxation, except that we focus on where each unit of
tax is (or will be) spent, rather than where is it collected. By charging the cost of some operations
to earlier operations, we are overestimating the total cost of any sequence of operations, since we
pay for some charges from future operations that may never actually occur.

The Charging Method. Charge the cost of some steps of the algorithm to earlier steps,
or to steps in some earlier operation. The amortized cost of the algorithm is its actual
running time, minus its total charges to past operations, plus its total charge from
future operations.

For example, in our binary counter, suppose we charge the cost of clearing a bit (changing
its value from 1 to 0) to the previous operation that sets that bit (changing its value from 0 to
1). If we flip k bits during an Increment, we charge k− 1 of those bit-flips to earlier bit-flips.
Conversely, the single operation that sets a bit receives at most one unit of charge from the next
time that bit is cleared. So instead of paying for k bit-flips, we pay for at most two: one for
actually setting a bit, plus at most one charge from the future for clearing that same bit. Thus,
the total amortized cost of the Increment is at most two bit-flips.

We can visualize this charging scheme as follows. For each integer i, we represent the running
time of the ith Increment as a stack of blocks, one for each bit flip. The jth block in the ith
stack is white if the ith Increment changes B[ j] from 0 to 1, and shaded if the ith Increment
changes B[ j] from 1 to 0. If we moved each shaded block onto the white block directly to its left,
there would at most two blocks in each stack.
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1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32

Charging scheme for a binary counter.

15.2.4 Potential

The most powerful method (and the hardest to use) builds on a physics metaphor of ‘potential
energy’. Instead of associating costs or taxes with particular operations or pieces of the data
structure, we represent prepaid work as potential that can be spent on later operations. The
potential is a function of the entire data structure.

Let Di denote our data structure after i operations have been performed, and let Φi denote
its potential. Let ci denote the actual cost of the ith operation (which changes Di−1 into Di).
Then the amortized cost of the ith operation, denoted ai , is defined to be the actual cost plus the
increase in potential:

ai = ci +Φi −Φi−1

So the total amortized cost of n operations is the actual total cost plus the total increase in
potential:

n∑
i=1

ai =
n∑

i=1

(ci +Φi −Φi−1) =
n∑

i=1

ci +Φn −Φ0.

A potential function is valid if Φi −Φ0 ≥ 0 for all i. If the potential function is valid, then the
total actual cost of any sequence of operations is always less than the total amortized cost:

n∑
i=1

ci =
n∑

i=1

ai −Φn ≤
n∑

i=1

ai .

For our binary counter example, we can define the potential Φi after the ith Increment to
be the number of bits with value 1. Initially, all bits are equal to zero, so Φ0 = 0, and clearly
Φi > 0 for all i > 0, so this is a valid potential function. We can describe both the actual cost of
an Increment and the change in potential in terms of the number of bits set to 1 and reset to 0.

ci = #bits changed from 0 to 1+#bits changed from 1 to 0

Φi −Φi−1 = #bits changed from 0 to 1−#bits changed from 1 to 0

Thus, the amortized cost of the ith Increment is

ai = ci +Φi −Φi−1 = 2×#bits changed from 0 to 1

Since Increment changes only one bit from 0 to 1, the amortized cost Increment is 2.

The Potential Method. Define a potential function for the data structure that is ini-
tially equal to zero and is always non-negative. The amortized cost of an operation is
its actual cost plus the change in potential.
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For this particular example, the potential is precisely the total unspent taxes paid using the
taxation method, so it should be no surprise that we obtain precisely the same amortized cost.
In general, however, there may be no natural way to interpret change in potential as “taxes” or
“charges”. Taxation and charging are useful when there is a convenient way to distribute costs to
specific steps in the algorithm or components of the data structure. Potential arguments allow us
to argue more globally when a local distribution is difficult or impossible.

Different potential functions can lead to different amortized time bounds. The trick to using
the potential method is to come up with the best possible potential function. A good potential
function goes up a little during any cheap/fast operation, and goes down a lot during any
expensive/slow operation. Unfortunately, there is no general technique for finding good potential
functions, except to play around with the data structure and try lots of possibilities (most of
which won’t work).

15.3 Incrementing and Decrementing

Now suppose we wanted a binary counter that we can both increment and decrement efficiently.
A standard binary counter won’t work, even in an amortized sense; if we alternate between 2k

and 2k − 1, every operation costs Θ(k) time.
A nice alternative is represent each integer as a pair (P, N) of bit strings, subject to the

invariant P ∧ N = 0 where ∧ represents bit-wise And. In other words,

For every index i, at most one of the bits P[i] and N[i] is equal to 1.

If we interpret P and N as binary numbers, the actual value of the counter is P − N ; thus,
intuitively, P represents the “positive” part of the pair, and N represents the “negative” part.
Unlike the standard binary representation, this new representation is not unique, except for zero,
which can only be represented by the pair (0,0). In fact, every positive or negative integer can
be represented has an infinite number of distinct representations.

We can increment and decrement our double binary counter as follows. Intuitively, the
Increment algorithm increments P, and the Decrement algorithm increments N ; however, in
both cases, we must change the increment algorithm slightly to maintain the invariant P ∧N = 0.

Increment(P, N):
i← 0
while P[i] = 1

P[i]← 0
i← i + 1

if N[i] = 1
N[i]← 0

else
P[i]← 1

Decrement(P, N):
i← 0
while N[i] = 1

N[i]← 0
i← i + 1

if P[i] = 1
P[i]← 0

else
N[i]← 1

P = 10001
N = 01100
P − N = 5

++−→
P = 10010
N = 01100
P − N = 6

++−→
P = 10011
N = 01100
P − N = 7

++−→
P = 10000
N = 01000
P − N = 8

−−−→
P = 10000
N = 01001
P − N = 7

−−−→
P = 10000
N = 01010
P − N = 6

++−→
P = 10001
N = 01010
P − N = 7

Incrementing and decrementing a double-binary counter.

Now suppose we start from (0, 0) and apply a sequence of n Increments and Decrements.
In the worst case, each operation takes Θ(log n) time, but what is the amortized cost? We can’t
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use the aggregate method here, because we don’t know what the sequence of operations looks
like.

What about taxation? It’s not hard to prove (by induction, of course) that after either P[i]
or N[i] is set to 1, there must be at least 2i operations, either Increments or Decrements,
before that bit is reset to 0. So if each bit P[i] and N[i] pays a tax of 2−i at each operation, we
will always have enough money to pay for the next operation. Thus, the amortized cost of each
operation is at most

∑
i≥0 2 · 2−i = 4.

We can get even better amortized time bounds using the potential method. Define the
potential Φi to be the number of 1-bits in both P and N after i operations. Just as before, we have

ci = #bits changed from 0 to 1+#bits changed from 1 to 0

Φi −Φi−1 = #bits changed from 0 to 1−#bits changed from 1 to 0

=⇒ ai = 2×#bits changed from 0 to 1

Since each operation changes at most one bit to 1, the ith operation has amortized cost ai ≤ 2.

15.4 Gray Codes?

An attractive alternate solution to the increment/decrement problemwas independently suggested
by several students. Gray codes (named after Frank Gray, who discovered them in the 1950s) are
methods for representing numbers as bit strings so that successive numbers differ by only one bit.
For example, here is the four-bit binary reflected Gray code for the integers 0 through 15:

0000, 0001,0011,0010, 0110,0111, 0101, 0100, 1100,1101, 1111,1110, 1010,1011, 1001,1000

The general rule for incrementing a binary reflected Gray code is to invert the bit that would be
set from 0 to 1 by a normal binary counter. In terms of bit-flips, this is the perfect solution; each
increment of decrement by definition changes only one bit. Unfortunately, the naïve algorithm
to find the single bit to flip still requires Θ(log n) time in the worst case. Thus, so the total cost
of maintaining a Gray code, using the obvious algorithm, is the same as that of maintaining a
normal binary counter.

Fortunately, this is only true of the naïve algorithm. The following algorithm, discovered
by Gideon Ehrlich¹ in 1973, maintains a Gray code counter in constant worst-case time per
increment! The algorithm uses a separate ‘focus’ array F[0 .. n] in addition to a Gray-code bit
array G[0 .. n− 1].

EhrlichGrayInit(n):
for i← 0 to n− 1

G[i]← 0
for i← 0 to n

F[i]← i

EhrlichGrayIncrement(n):
j← F[0]
F[0]← 0
if j = n

G[n− 1]← 1− G[n− 1]
else

G[ j] = 1− G[ j]
F[ j]← F[ j + 1]
F[ j + 1]← j + 1

¹Gideon Ehrlich. Loopless algorithms for generating permutations, combinations, and other combinatorial
configurations. J. Assoc. Comput. Mach. 20:500–513, 1973.
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The EhrlichGrayIncrement algorithm obviously runs in O(1) time, even in the worst case.
Here’s the algorithm in action with n= 4. The first line is the Gray bit-vector G, and the second
line shows the focus vector F , both in reverse order:

G : 0000, 0001,0011, 0010,0110, 0111,0101, 0100,1100, 1101,1111, 1110, 1010, 1011, 1001, 1000
F : 3210, 3211,3220, 3212,3310, 3311,3230, 3213,4210, 4211,4220, 4212, 3410, 3411, 3240, 3214

Voodoo! I won’t explain in detail how Ehrlich’s algorithm works, except to point out the following
invariant. Let B[i] denote the ith bit in the standard binary representation of the current number.
If B[ j] = 0 and B[ j − 1] = 1, then F[ j] is the smallest integer k > j such that B[k] = 1;
otherwise, F[ j] = j . Got that?

But wait — this algorithm only handles increments; what if we also want to decrement?
Sorry, I don’t have a clue. Extra credit, anyone?

15.5 Generalities and Warnings

Although computer scientists usually apply amortized analysis to understand the efficiency of
maintaining and querying data structures, you should remember that amortization can be applied
to any sequence of numbers. Banks have been using amortization to calculate fixed payments for
interest-bearing loans for centuries. The IRS allows taxpayers to amortize business expenses or
gambling losses across several years for purposes of computing income taxes. Some cell phone
contracts let you to apply amortization to calling time, by rolling unused minutes from one month
into the next month.

It’s also important to remember that amortized time bounds are not unique. For a data
structure that supports multiple operations, different amortization schemes can assign different
costs to exactly the same algorithms. For example, consider a generic data structure that can be
modified by three algorithms: Fold, Spindle, and Mutilate. One amortization scheme might
imply that Fold and Spindle each run in O(log n) amortized time, while Mutilate runs in O(n)
amortized time. Another scheme might imply that Fold runs in O(

p
n) amortized time, while

Spindle and Mutilate each run in O(1) amortized time. These two results are not necessarily
inconsistent! Moreover, there is no general reason to prefer one of these sets of amortized time
bounds over the other; our preference may depend on the context in which the data structure is
used.

Exercises

1. Suppose we are maintaining a data structure under a series of n operations. Let f (k)
denote the actual running time of the kth operation. For each of the following functions f ,
determine the resulting amortized cost of a single operation. (For practice, try all of the
methods described in this note.)

(a) f (k) is the largest integer i such that 2i divides k.

(b) f (k) is the largest power of 2 that divides k.

(c) f (k) = n if k is a power of 2, and f (k) = 1 otherwise.

(d) f (k) = n2 if k is a power of 2, and f (k) = 1 otherwise.

(e) f (k) is the index of the largest Fibonacci number that divides k.

(f) f (k) is the largest Fibonacci number that divides k.
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(g) f (k) = k if k is a Fibonacci number, and f (k) = 1 otherwise.

(h) f (k) = k2 if k is a Fibonacci number, and f (k) = 1 otherwise.

(i) f (k) is the largest integer whose square divides k.

(j) f (k) is the largest perfect square that divides k.

(k) f (k) = k if k is a perfect square, and f (k) = 1 otherwise.

(l) f (k) = k2 if k is a perfect square, and f (k) = 1 otherwise.

(m) Let T be a complete binary search tree, storing the integer keys 1 through n. f (k) is
the number of ancestors of node k.

(n) Let T be a complete binary search tree, storing the integer keys 1 through n. f (k) is
the number of descendants of node k.

(o) Let T be a complete binary search tree, storing the integer keys 1 through n. f (k) is
the square of the number of ancestors of node k.

(p) Let T be a complete binary search tree, storing the integer keys 1 through n. f (k) =
size(k) lg size(k), where size(k) is the number of descendants of node k.

(q) Let T be an arbitrary binary search tree, storing the integer keys 0 through n. f (k) is
the length of the path in T from node k− 1 to node k.

(r) Let T be an arbitrary binary search tree, storing the integer keys 0 through n. f (k) is
the square of the length of the path in T from node k− 1 to node k.

(s) Let T be a complete binary search tree, storing the integer keys 0 through n. f (k) is
the square of the length of the path in T from node k− 1 to node k.

2. Consider the following modification of the standard algorithm for incrementing a binary
counter.

Increment(B[0 ..∞]):
i← 0
while B[i] = 1

B[i]← 0
i← i + 1

B[i]← 1
SomethingElse(i)

The only difference from the standard algorithm is the function call at the end, to a
black-box subroutine called SomethingElse.

Suppose we call Increment n times, starting with a counter with value 0. The amortized
time of each Increment clearly depends on the running time of SomethingElse. Let
T (i) denote the worst-case running time of SomethingElse(i). For example, we proved
in class that Increment algorithm runs in O(1) amortized time when T (i) = 0.

(a) What is the amortized time per Increment if T (i) = 42?

(b) What is the amortized time per Increment if T (i) = 2i?

(c) What is the amortized time per Increment if T (i) = 4i?

(d) What is the amortized time per Increment if T (i) =
p

2
i
?

(e) What is the amortized time per Increment if T (i) = 2i/(i + 1)?

8



Algorithms Lecture 15: Amortized Analysis [Fa’13]

3. An extendable array is a data structure that stores a sequence of items and supports the
following operations.

• AddToFront(x) adds x to the beginning of the sequence.

• AddToEnd(x) adds x to the end of the sequence.

• Lookup(k) returns the kth item in the sequence, or Null if the current length of the
sequence is less than k.

Describe a simple data structure that implements an extendable array. Your AddToFront
and AddToBack algorithms should take O(1) amortized time, and your Lookup algorithm
should take O(1) worst-case time. The data structure should use O(n) space, where n is
the current length of the sequence.

4. An ordered stack is a data structure that stores a sequence of items and supports the
following operations.

• OrderedPush(x) removes all items smaller than x from the beginning of the
sequence and then adds x to the beginning of the sequence.

• Pop deletes and returns the first item in the sequence (or Null if the sequence is
empty).

Suppose we implement an ordered stack with a simple linked list, using the obvious
OrderedPush and Pop algorithms. Prove that if we start with an empty data structure,
the amortized cost of each OrderedPush or Pop operation is O(1).

5. A multistack consists of an infinite series of stacks S0, S1, S2, . . ., where the ith stack Si can
hold up to 3i elements. The user always pushes and pops elements from the smallest stack
S0. However, before any element can be pushed onto any full stack Si , we first pop all the
elements off Si and push them onto stack Si+1 to make room. (Thus, if Si+1 is already full,
we first recursively move all its members to Si+2.) Similarly, before any element can be
popped from any empty stack Si , we first pop 3i elements from Si+1 and push them onto
Si to make room. (Thus, if Si+1 is already empty, we first recursively fill it by popping
elements from Si+2.) Moving a single element from one stack to another takes O(1) time.

Here is pseudocode for the multistack operations MSPush and MSPop. The internal
stacks are managed with the subroutines Push and Pop.

MPush(x) :
i← 0
while Si is full

i← i + 1

while i > 0
i← i − 1
for j← 1 to 3i

Push(Si+1,Pop(Si))

Push(S0, x)

MPop(x) :
i← 0
while Si is empty

i← i + 1

while i > 0
i← i − 1
for j← 1 to 3i

Push(Si ,Pop(Si+1))

return Pop(S0)

(a) In the worst case, how long does it take to push one more element onto a multistack
containing n elements?
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×9

×3

Making room in a multistack, just before pushing on a new element.

(b) Prove that if the user never pops anything from the multistack, the amortized cost
of a push operation is O(log n), where n is the maximum number of elements in the
multistack during its lifetime.

(c) Prove that in any intermixed sequence of pushes and pops, each push or pop operation
takes O(log n) amortized time, where n is the maximum number of elements in the
multistack during its lifetime.

6. Recall that a standard (FIFO) queue maintains a sequence of items subject to the following
operations.

• Push(x): Add item x to the end of the sequence.

• Pull(): Remove and return the item at the beginning of the sequence.

It is easy to implement a queue using a doubly-linked list and a counter, so that the entire
data structure uses O(n) space (where n is the number of items in the queue) and the
worst-case time per operation is O(1).

(a) Now suppose we want to support the following operation instead of Pull:

• MultiPull(k): Remove the first k items from the front of the queue, and return
the kth item removed.

Suppose we use the obvious algorithm to implement MultiPull:

MultiPull(k):
for i← 1 to k

x ← Pull()
return x

Prove that in any intermixed sequence of Push and MultiPull operations, the
amortized cost of each operation is O(1)

(b) Now suppose we also want to support the following operation instead of Push:

• MultiPush(x , k): Insert k copies of x into the back of the queue.

Suppose we use the obvious algorithm to implement MultiPuush:

MultiPush(k, x):
for i← 1 to k

Push(x)
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Prove that for any integers ` and n, there is a sequence of `MultiPush andMultiPull
operations that require Ω(n`) time, where n is the maximum number of items in the
queue at any time. Such a sequence implies that the amortized cost of each operation
is Ω(n).

(c) Describe a data structure that supports arbitrary intermixed sequences of MultiPush
and MultiPull operations in O(1) amortized cost per operation. Like a standard
queue, your data structure should use only O(1) space per item.

7. Recall that a standard (FIFO) queue maintains a sequence of items subject to the following
operations.

• Push(x): Add item x to the end of the sequence.

• Pull(): Remove and return the item at the beginning of the sequence.

• Size(): Return the current number of items in the sequence.

It is easy to implement a queue using a doubly-linked list, so that it uses O(n) space (where
n is the number of items in the queue) and the worst-case time for each of these operations
is O(1).

Consider the following new operation, which removes every tenth element from the
queue, starting at the beginning, in Θ(n) worst-case time.

Decimate():
n← Size()
for i← 0 to n− 1

if i mod 10= 0
Pull() 〈〈result discarded〉〉

else
Push(Pull())

Prove that in any intermixed sequence of Push, Pull, and Decimate operations, the
amortized cost of each operation is O(1).

8. Chicago has many tall buildings, but only some of them have a clear view of Lake Michigan.
Suppose we are given an array A[1 .. n] that stores the height of n buildings on a city block,
indexed from west to east. Building i has a good view of Lake Michigan if and only if every
building to the east of i is shorter than i.

Here is an algorithm that computes which buildings have a good view of Lake Michigan.
What is the running time of this algorithm?

GoodView(A[1 .. n]):
initialize a stack S
for i← 1 to n

while (S not empty and A[i]> A[Top(S)])
Pop(S)

Push(S, i)
return S
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9. Suppose we can insert or delete an element into a hash table in O(1) time. In order to
ensure that our hash table is always big enough, without wasting a lot of memory, we will
use the following global rebuilding rules:

• After an insertion, if the table is more than 3/4 full, we allocate a new table twice as
big as our current table, insert everything into the new table, and then free the old
table.

• After a deletion, if the table is less than 1/4 full, we allocate a new table half as big as
our current table, insert everything into the new table, and then free the old table.

Show that for any sequence of insertions and deletions, the amortized time per operation
is still O(1). [Hint: Do not use potential functions.]

10. Professor Pisano insists that the size of any hash table used in his class must always be a
Fibonacci number. He insists on the following variant of the previous global rebuilding
strategy. Suppose the current hash table has size Fk.

• After an insertion, if the number of items in the table is Fk−1, we allocate a new hash
table of size Fk+1, insert everything into the new table, and then free the old table.

• After a deletion, if the number of items in the table is Fk−3, we allocate a new hash
table of size Fk−1, insert everything into the new table, and then free the old table.

Show that for any sequence of insertions and deletions, the amortized time per operation
is still O(1). [Hint: Do not use potential functions.]

11. Remember the difference between stacks and queues? Good.

(a) Describe how to implement a queue using two stacks and O(1) additional memory,
so that the amortized time for any enqueue or dequeue operation is O(1). The only
access you have to the stacks is through the standard subroutines Push and Pop.

(b) A quack is a data structure combining properties of both stacks and queues. It can
be viewed as a list of elements written left to right such that three operations are
possible:

• QuackPush(x): add a new item x to the left end of the list;
• QuackPop(): remove and return the item on the left end of the list;
• QuackPull(): remove the item on the right end of the list.

Implement a quack using three stacks and O(1) additional memory, so that the
amortized time for any QuackPush, QuackPop, or QuackPull operation is O(1).
In particular, each element in the quack must be stored in exactly one of the three
stacks. Again, you cannot access the component stacks except through the interface
functions Push and Pop.

12. Let’s glom a whole bunch of earlier problems together. Yay! An random-access double-
ended multi-queue or radmuque (pronounced “rad muck”) stores a sequence of items and
supports the following operations.

• MultiPush(x , k) adds k copies of item x to the beginning of the sequence.

12
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• MultiPoke(x , k) adds k copies of item x to the end of the sequence.

• MultiPop(k) removes k items from the beginning of the sequence and retrns the last
item removed. (If there are less than k items in the sequence, remove them all and
return Null.)

• MultiPull(k) removes k items from the end of the sequence and retrns the last item
removed. (If there are less than k items in the sequence, remove them all and return
Null.)

• Lookup(k) returns the kth item in the sequence. (If there are less than k items in the
sequence, return Null.)

Describe and analyze a simple data structure that supports these operations using O(n)
space, where n is the current number of items in the sequence. Lookup should run in O(1)
worst-case time; all other operations should run in O(1) amortized time.

13. Suppose you are faced with an infinite number of counters x i, one for each integer i.
Each counter stores an integer mod m, where m is a fixed global constant. All counters
are initially zero. The following operation increments a single counter x i; however, if x i
overflows (that is, wraps around from m to 0), the adjacent counters x i−1 and x i+1 are
incremented recursively.

Nudgem(i):
x i ← x i + 1
while x i ≥ m

x i ← x i −m
Nudgem(i − 1)
Nudgem(i + 1)

(a) Prove that Nudge3 runs in O(1) amortized time. [Hint: Prove that Nudge3 always
halts!]

(b) What is the worst-case total time for n calls to Nudge2, if all counters are initially
zero?

14. Now suppose you are faced with an infinite two-dimensional grid of modular counters,
one counter x i, j for every pair of integers (i, j). Again, all counters are initially zero. The
counters are modified by the following operation, where m is a fixed global constant:

2dNudgem(i, j):
x i, j ← x i + 1
while x i, j ≥ m

x i, j ← x i, j −m
2dNudgem(i − 1, j)
2dNudgem(i, j + 1)
2dNudgem(i + 1, j)
2dNudgem(i, j − 1)

(a) Prove that 2dNudge5 runs in O(1) amortized time.
Æ(b) Prove or disprove: 2dNudge4 also runs in O(1) amortized time.

13



Algorithms Lecture 15: Amortized Analysis [Fa’13]

Æ(c) Prove or disprove: 2dNudge3 always halts.

?15. Suppose instead of powers of two, we represent integers as the sum of Fibonacci numbers.
In other words, instead of an array of bits, we keep an array of fits, where the ith least
significant fit indicates whether the sum includes the ith Fibonacci number Fi . For example,
the fitstring 101110F represents the number F6+F4+F3+F2 = 8+3+2+1= 14. Describe
algorithms to increment and decrement a single fitstring in constant amortized time. [Hint:
Most numbers can be represented by more than one fitstring!]

?16. A doubly lazy binary counter represents any number as a weighted sum of powers of two,
where each weight is one of four values: −1, 0, 1, or 2. (For succinctness, I’ll write 1 instead
of −1.) Every integer—positive, negative, or zero—has an infinite number of doubly lazy
binary representations. For example, the number 13 can be represented as 1101 (the
standard binary representation), or 2101 (because 2 ·23−22+20 = 13) or 10111 (because
24−22+21−20 = 13) or 11200010111 (because −210+29+2 ·28+24−22+21−20 = 13).

To increment a doubly lazy binary counter, we add 1 to the least significant bit, then
carry the rightmost 2 (if any). To decrement, we subtract 1 from the lest significant bit,
and then borrow the rightmost 1 (if any).

LazyIncrement(B[0 .. n]):
B[0]← B[0] + 1
for i← 1 to n− 1

if B[i] = 2
B[i]← 0
B[i + 1]← B[i + 1] + 1
return

LazyDecrement(B[0 .. n]):
B[0]← B[0]− 1
for i← 1 to n− 1

if B[i] = −1
B[i]← 1
B[i + 1]← B[i + 1]− 1
return

For example, here is a doubly lazy binary count from zero up to twenty and then back
down to zero. The bits are written with the least significant bit B[0] on the right, omitting
all leading 0’s.

0
++−→ 1

++−→ 10
++−→ 11

++−→ 20
++−→ 101

++−→ 110
++−→ 111

++−→ 120
++−→ 201

++−→ 210
++−→ 1011

++−→ 1020
++−→ 1101

++−→ 1110
++−→ 1111

++−→ 1120
++−→ 1201

++−→ 1210
++−→ 2011

++−→ 2020
−−−→ 2011

−−−→ 2010
−−−→ 2001

−−−→ 2000
−−−→ 2011

−−−→ 2110
−−−→ 2101

−−−→ 1100
−−−→ 1111

−−−→ 1010
−−−→ 1001

−−−→ 1000
−−−→ 1011

−−−→ 1110
−−−→ 1101

−−−→ 100
−−−→ 111

−−−→ 10
−−−→ 1

−−−→ 0

Prove that for any intermixed sequence of increments and decrements of a doubly lazy
binary number, starting with 0, the amortized time for each operation is O(1). Do not
assume, as in the example above, that all the increments come before all the decrements.
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Everything was balanced before the computers went off line. Try and adjust something,
and you unbalance something else. Try and adjust that, you unbalance two more and
before you know what’s happened, the ship is out of control.

— Blake, Blake’s 7, “Breakdown” (March 6, 1978)

A good scapegoat is nearly as welcome as a solution to the problem.

— Anonymous

Let’s play.

— El Mariachi [Antonio Banderas], Desperado (1992)

CAPTAIN: TAKE OFF EVERY ’ZIG’!!
CAPTAIN: YOU KNOW WHAT YOU DOING.
CAPTAIN: MOVE ’ZIG’.
CAPTAIN: FOR GREAT JUSTICE.

— Zero Wing (1992)

16 Scapegoat and Splay Trees

16.1 Definitions

ÆÆÆ Move intro paragraphs to earlier treap notes, or maybe to new appendix on basic data
structures (arrays, stacks, queues, heaps, binary search trees).

I’ll assume that everyone is already familiar with the standard terminology for binary search
trees—node, search key, edge, root, internal node, leaf, right child, left child, parent, descendant,
sibling, ancestor, subtree, preorder, postorder, inorder, etc.—as well as the standard algorithms
for searching for a node, inserting a node, or deleting a node. Otherwise, consult your favorite
data structures textbook.

For this lecture, we will consider only full binary trees—where every internal node has exactly
two children—where only the internal nodes actually store search keys. In practice, we can
represent the leaves with null pointers.

Recall that the depth of a node is its distance from the root, and its height is the distance to
the farthest leaf in its subtree. The height (or depth) of the tree is just the height of the root.
The size of a node is the number of nodes in its subtree. The size n of the whole tree is just the
total number of nodes.

A tree with height h has at most 2h leaves, so the minimum height of an n-leaf binary tree
is dlg ne. In the worst case, the time required for a search, insertion, or deletion to the height
of the tree, so in general we would like keep the height as close to lg n as possible. The best
we can possibly do is to have a perfectly balanced tree, in which each subtree has as close to
half the leaves as possible, and both subtrees are perfectly balanced. The height of a perfectly
balanced tree is dlg ne, so the worst-case search time is O(log n). However, even if we started
with a perfectly balanced tree, a malicious sequence of insertions and/or deletions could make
the tree arbitrarily unbalanced, driving the search time up to Θ(n).

To avoid this problem, we need to periodically modify the tree to maintain ‘balance’. There
are several methods for doing this, and depending on the method we use, the search tree is
given a different name. Examples include AVL trees, red-black trees, height-balanced trees,
weight-balanced trees, bounded-balance trees, path-balanced trees, B-trees, treaps, randomized

© Copyright 2014 Jeff Erickson.
This work is licensed under a Creative Commons License (http://creativecommons.org/licenses/by-nc-sa/4.0/).
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binary search trees, skip lists,¹ and jumplists. Some of these trees support searches, insertions,
and deletions, in O(log n) worst-case time, others in O(log n) amortized time, still others in
O(log n) expected time.

In this lecture, I’ll discuss three binary search tree data structures with good amortized
performance. The first two are variants of lazy balanced trees: lazy weight-balanced trees,
developed by Mark Overmars* in the early 1980s, [14] and scapegoat trees, discovered by Arne
Andersson* in 1989 [1, 2] and independently² by Igal Galperin* and Ron Rivest in 1993 [11]. The
third structure is the splay tree, discovered by Danny Sleator and Bob Tarjan in 1981 [19, 16].

16.2 Lazy Deletions: Global Rebuilding

First let’s consider the simple case where we start with a perfectly-balanced tree, and we only
want to perform searches and deletions. To get good search and delete times, we can use a
technique called global rebuilding. When we get a delete request, we locate and mark the node
to be deleted, but we don’t actually delete it. This requires a simple modification to our search
algorithm—we still use marked nodes to guide searches, but if we search for a marked node, the
search routine says it isn’t there. This keeps the tree more or less balanced, but now the search
time is no longer a function of the amount of data currently stored in the tree. To remedy this,
we also keep track of how many nodes have been marked, and then apply the following rule:

Global Rebuilding Rule. As soon as half the nodes in the tree have been marked,
rebuild a new perfectly balanced tree containing only the unmarked nodes.³

With this rule in place, a search takes O(log n) time in the worst case, where n is the number of
unmarked nodes. Specifically, since the tree has at most n marked nodes, or 2n nodes altogether,
we need to examine at most lg n+ 1 keys. There are several methods for rebuilding the tree in
O(n) time, where n is the size of the new tree. (Homework!) So a single deletion can cost Θ(n)
time in the worst case, but only if we have to rebuild; most deletions take only O(log n) time.

We spend O(n) time rebuilding, but only after Ω(n) deletions, so the amortized cost of
rebuilding the tree is O(1) per deletion. (Here I’m using a simple version of the ‘taxation method’.
For each deletion, we charge a $1 tax; after n deletions, we’ve collected $n, which is just enough
to pay for rebalancing the tree containing the remaining n nodes.) Since we also have to find
and mark the node being ‘deleted’, the total amortized time for a deletion is O(logn).

16.3 Insertions: Partial Rebuilding

Now suppose we only want to support searches and insertions. We can’t ‘not really insert’ new
nodes into the tree, since that would make them unavailable to the search algorithm.⁴ So
instead, we’ll use another method called partial rebuilding. We will insert new nodes normally,
but whenever a subtree becomes unbalanced enough, we rebuild it. The definition of ‘unbalanced
enough’ depends on an arbitrary constant α > 1.

Each node v will now also store height(v) and size(v). We now modify our insertion algorithm
with the following rule:

¹Yeah, yeah. Skip lists aren’t really binary search trees. Whatever you say, Mr. Picky.
²The claim of independence is Andersson’s [2]. The two papers actually describe very slightly different rebalancing

algorithms. The algorithm I’m using here is closer to Andersson’s, but my analysis is closer to Galperin and Rivest’s.
³Alternately: When the number of unmarked nodes is one less than an exact power of two, rebuild the tree. This

rule ensures that the tree is always exactly balanced.
⁴Well, we could use the Bentley-Saxe* logarithmic method [3], but that would raise the query time to O(log2 n).
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Partial Rebuilding Rule. After we insert a node, walk back up the tree updating
the heights and sizes of the nodes on the search path. If we encounter a node v
where height(v) > α · lg(size(v)), rebuild its subtree into a perfectly balanced tree (in
O(size(v)) time).

If we always follow this rule, then after an insertion, the height of the tree is at most α · lg n.
Thus, since α is a constant, the worst-case search time is O(log n). In the worst case, insertions
require Θ(n) time—we might have to rebuild the entire tree. However, the amortized time for
each insertion is again only O(log n). Not surprisingly, the proof is a little bit more complicated
than for deletions.

Define the imbalance I(v) of a node v to be the absolute difference between the sizes of its
two subtrees:

Imbal(v) := |size(left(v))− size(right(v))|
A simple induction proof implies that Imbal(v)≤ 1 for every node v in a perfectly balanced tree.
In particular, immediately after we rebuild the subtree of v, we have Imbal(v)≤ 1. On the other
hand, each insertion into the subtree of v increments either size(left(v)) or size(right(v)), so
Imbal(v) changes by at most 1.

The whole analysis boils down to the following lemma.

Lemma 1. Just before we rebuild v’s subtree, Imbal(v) = Ω(size(v)).

Before we prove this lemma, let’s first look at what it implies. If Imbal(v) = Ω(size(v)), then
Ω(size(v)) keys have been inserted in the v’s subtree since the last time it was rebuilt from scratch.
On the other hand, rebuilding the subtree requires O(size(v)) time. Thus, if we amortize the
rebuilding cost across all the insertions since the previous rebuild, v is charged constant time for
each insertion into its subtree. Since each new key is inserted into at most α · lg n = O(log n)
subtrees, the total amortized cost of an insertion is O(logn).

Proof: Since we’re about to rebuild the subtree at v, we must have height(v) > α · lg size(v).
Without loss of generality, suppose that the node we just inserted went into v’s left subtree. Either
we just rebuilt this subtree or we didn’t have to, so we also have height(left(v))≤ α · lg size(left(v)).
Combining these two inequalities with the recursive definition of height, we get

α · lg size(v) < height(v) ≤ height(left(v)) + 1 ≤ α · lg size(left(v)) + 1.

After some algebra, this simplifies to size(left(v))> size(v)/21/α. Combining this with the identity
size(v) = size(left(v)) + size(right(v)) + 1 and doing some more algebra gives us the inequality

size(right(v))<
�
1− 1/21/α

�
size(v)− 1.

Finally, we combine these two inequalities using the recursive definition of imbalance.

Imbal(v) ≥ size(left(v))− size(right(v))− 1 >
�
2/21/α − 1

�
size(v)

Since α is a constant bigger than 1, the factor in parentheses is a positive constant. �
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16.4 Scapegoat (Lazy Height-Balanced) Trees

Finally, to handle both insertions and deletions efficiently, scapegoat trees use both of the previous
techniques. We use partial rebuilding to re-balance the tree after insertions, and global rebuilding
to re-balance the tree after deletions. Each search takes O(log n) time in the worst case, and the
amortized time for any insertion or deletion is also O(log n). There are a few small technical
details left (which I won’t describe), but no new ideas are required.

Once we’ve done the analysis, we can actually simplify the data structure. It’s not hard to
prove that at most one subtree (the scapegoat) is rebuilt during any insertion. Less obviously, we
can even get the same amortized time bounds (except for a small constant factor) if we only
maintain the three integers in addition to the actual tree: the size of the entire tree, the height
of the entire tree, and the number of marked nodes. Whenever an insertion causes the tree to
become unbalanced, we can compute the sizes of all the subtrees on the search path, starting at
the new leaf and stopping at the scapegoat, in time proportional to the size of the scapegoat
subtree. Since we need that much time to re-balance the scapegoat subtree, this computation
increases the running time by only a small constant factor! Thus, unlike almost every other kind
of balanced trees, scapegoat trees require only O(1) extra space.

16.5 Rotations, Double Rotations, and Splaying

Another method for maintaining balance in binary search trees is by adjusting the shape of the
tree locally, using an operation called a rotation. A rotation at a node x decreases its depth by
one and increases its parent’s depth by one. Rotations can be performed in constant time, since
they only involve simple pointer manipulation.

left

right
x

yx

y

Figure 1. A right rotation at x and a left rotation at y are inverses.

For technical reasons, we will need to use rotations two at a time. There are two types of
double rotations, which might be called zig-zag and roller-coaster. A zig-zag at x consists of two
rotations at x , in opposite directions. A roller-coaster at a node x consists of a rotation at x ’s
parent followed by a rotation at x , both in the same direction. Each double rotation decreases
the depth of x by two, leaves the depth of its parent unchanged, and increases the depth of
its grandparent by either one or two, depending on the type of double rotation. Either type of
double rotation can be performed in constant time.

Finally, a splay operation moves an arbitrary node in the tree up to the root through a series
of double rotations, possibly with one single rotation at the end. Splaying a node v requires time
proportional to depth(v). (Obviously, this means the depth before splaying, since after splaying v
is the root and thus has depth zero!)

16.6 Splay Trees

A splay tree is a binary search tree that is kept more or less balanced by splaying. Intuitively, after
we access any node, we move it to the root with a splay operation. In more detail:
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zw
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w x
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z

Figure 2. A zig-zag at x . The symmetric case is not shown.
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Figure 3. A right roller-coaster at x and a left roller-coaster at z.
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Figure 4. Splaying a node. Irrelevant subtrees are omitted for clarity.

• Search: Find the node containing the key using the usual algorithm, or its predecessor or
successor if the key is not present. Splay whichever node was found.

• Insert: Insert a new node using the usual algorithm, then splay that node.

• Delete: Find the node x to be deleted, splay it, and then delete it. This splits the tree into
two subtrees, one with keys less than x , the other with keys bigger than x . Find the node
w in the left subtree with the largest key (the inorder predecessor of x in the original tree),
splay it, and finally join it to the right subtree.

x

x

w

w
w

Figure 5. Deleting a node in a splay tree.

Each search, insertion, or deletion consists of a constant number of operations of the form
walk down to a node, and then splay it up to the root. Since the walk down is clearly cheaper
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than the splay up, all we need to get good amortized bounds for splay trees is to derive good
amortized bounds for a single splay.

Believe it or not, the easiest way to do this uses the potential method. We define the rank of a
node v to be blg size(v)c, and the potential of a splay tree to be the sum of the ranks of its nodes:

Φ :=
∑

v

rank(v) =
∑

v

blg size(v)c

It’s not hard to observe that a perfectly balanced binary tree has potential Θ(n), and a linear
chain of nodes (a perfectly unbalanced tree) has potential Θ(n log n).

The amortized analysis of splay trees boils down to the following lemma. Here, rank(v)
denotes the rank of v before a (single or double) rotation, and rank′(v) denotes its rank afterwards.
Recall that the amortized cost is defined to be the number of rotations plus the drop in potential.

The Access Lemma. The amortized cost of a single rotation at any node v is at most 1 +
3 rank′(v) − 3 rank(v), and the amortized cost of a double rotation at any node v is at most
3 rank′(v)− 3 rank(v).

Proving this lemma is a straightforward but tedious case analysis of the different types of
rotations. For the sake of completeness, I’ll give a proof (of a generalized version) in the next
section.

By adding up the amortized costs of all the rotations, we find that the total amortized cost of
splaying a node v is at most 1+ 3 rank′(v)− 3 rank(v), where rank′(v) is the rank of v after the
entire splay. (The intermediate ranks cancel out in a nice telescoping sum.) But after the splay, v
is the root! Thus, rank′(v) = blg nc, which implies that the amortized cost of a splay is at most
3 lg n− 1= O(log n).

We conclude that every insertion, deletion, or search in a splay tree takes O(log n) amortized
time.

16.7 Other Optimality Properties?

In fact, splay trees are optimal in several other senses. Some of these optimality properties follow
easily from the following generalization of the Access Lemma.

Let’s arbitrarily assign each node v a non-negative real weight w(v). These weights are not
actually stored in the splay tree, nor do they affect the splay algorithm in any way; they are only
used to help with the analysis. We then redefine the size s(v) of a node v to be the sum of the
weights of the descendants of v, including v itself:

s(v) := w(v) + s(right(v)) + s(left(v)).

If w(v) = 1 for every node v, then the size of a node is just the number of nodes in its subtree, as
in the previous section. As before, we define the rank of any node v to be r(v) = lg s(v), and the
potential of a splay tree to be the sum of the ranks of all its nodes:

Φ=
∑

v

r(v) =
∑

v

lg s(v)

In the following lemma, r(v) denotes the rank of v before a (single or double) rotation, and r ′(v)
denotes its rank afterwards.
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The Generalized Access Lemma. For any assignment of non-negative weights to the nodes, the
amortized cost of a single rotation at any node x is at most 1+ 3r ′(x)− 3r(x), and the amortized
cost of a double rotation at any node v is at most 3r ′(x)− 3r(x).

Proof: First consider a single rotation, as shown in Figure 1.

1+Φ′ −Φ= 1+ r ′(x) + r ′(y)− r(x)− r(y) [only x and y change rank]

≤ 1+ r ′(x)− r(x) [r ′(y)≤ r(y)]

≤ 1+ 3r ′(x)− 3r(x) [r ′(x)≥ r(x)]

Now consider a zig-zag, as shown in Figure 2. Only w, x , and z change rank.

2+Φ′ −Φ
= 2+ r ′(w) + r ′(x) + r ′(z)− r(w)− r(x)− r(z) [only w, x , z change rank]

≤ 2+ r ′(w) + r ′(x) + r ′(z)− 2r(x) [r(x)≤ r(w) and r ′(x) = r(z)]

= 2+ (r ′(w)− r ′(x)) + (r ′(z)− r ′(x)) + 2(r ′(x)− r(x))

= 2+ lg
s′(w)
s′(x)

+ lg
s′(z)
s′(x)

+ 2(r ′(x)− r(x))

≤ 2+ 2 lg
s′(x)/2
s′(x)

+ 2(r ′(x)− r(x)) [s′(w) + s′(z)≤ s′(x), lg is concave]

= 2(r ′(x)− r(x))

≤ 3(r ′(x)− r(x)) [r ′(x)≥ r(x)]

Finally, consider a roller-coaster, as shown in Figure 3. Only x , y , and z change rank.

2+Φ′ −Φ
= 2+ r ′(x) + r ′(y) + r ′(z)− r(x)− r(y)− r(z) [only x , y, z change rank]

≤ 2+ r ′(x) + r ′(z)− 2r(x) [r ′(y)≤ r(z) and r(x)≥ r(y)]

= 2+ (r(x)− r ′(x)) + (r ′(z)− r ′(x)) + 3(r ′(x)− r(x))

= 2+ lg
s(x)
s′(x)

+ lg
s′(z)
s′(x)

+ 3(r ′(x)− r(x))

≤ 2+ 2 lg
s′(x)/2
s′(x)

+ 3(r ′(x)− r(x)) [s(x) + s′(z)≤ s′(x), lg is concave]

= 3(r ′(x)− r(x))

This completes the proof. ⁵ �

Observe that this argument works for arbitrary non-negative vertex weights. By adding up
the amortized costs of all the rotations, we find that the total amortized cost of splaying a node x
is at most 1+ 3r(root)− 3r(x). (The intermediate ranks cancel out in a nice telescoping sum.)

This analysis has several immediate corollaries. The first corollary is that the amortized
search time in a splay tree is within a constant factor of the search time in the best possible static

⁵This proof is essentially taken verbatim from the original Sleator and Tarjan paper. Another proof technique,
which may be more accessible, involves maintaining blg s(v)c tokens on each node v and arguing about the changes in
token distribution caused by each single or double rotation. But I haven’t yet internalized this approach enough to
include it here.
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binary search tree. Thus, if some nodes are accessed more often than others, the standard splay
algorithm automatically keeps those more frequent nodes closer to the root, at least most of the
time.

Static Optimality Theorem. Suppose each node x is accessed at least t(x) times, and let T =∑
x t(x). The amortized cost of accessing x is O(log T − log t(x)).

Proof: Set w(x) = t(x) for each node x . �

For any nodes x and z, let dist(x , z) denote the rank distance between x and y, that is,
the number of nodes y such that key(x) ≤ key(y) ≤ key(z) or key(x) ≥ key(y) ≥ key(z). In
particular, dist(x , x) = 1 for all x .

Static Finger Theorem. For any fixed node f (‘the finger’), the amortized cost of accessing x is
O(lgdist( f , x)).

Proof: Set w(x) = 1/dist(x , f )2 for each node x . Then s(root)≤∑∞i=1 2/i2 = π2/3= O(1), and
r(x)≥ lg w(x) = −2 lgdist( f , x). �

Here are a few more interesting properties of splay trees, which I’ll state without proof.⁶
The proofs of these properties (especially the dynamic finger theorem) are considerably more
complicated than the amortized analysis presented above.

Working Set Theorem [16]. The amortized cost of accessing node x is O(log D), where D is the
number of distinct items accessed since the last time x was accessed. (For the first access to x , we
set D = n.)

Scanning Theorem [18]. Splaying all nodes in a splay tree in order, starting from any initial tree,
requires O(n) total rotations.

Dynamic Finger Theorem [7, 6]. Immediately after accessing node y , the amortized cost of ac-
cessing node x is O(lgdist(x , y)).

16.8 Splay Tree Conjectures?

Splay trees are conjectured to have many interesting properties in addition to the optimality
properties that have been proved; I’ll describe just a few of the more important ones.

The Deque Conjecture [18] considers the cost of dynamically maintaining two fingers l and r,
starting on the left and right ends of the tree. Suppose at each step, we can move one of these
two fingers either one step left or one step right; in other words, we are using the splay tree
as a doubly-ended queue. Sundar* proved that the total cost of m deque operations on an
n-node splay tree is O((m+ n)α(m+ n)) [17]. More recently, Pettie later improved this bound to
O(mα∗(n)) [15]. The Deque Conjecture states that the total cost is actually O(m+ n).

The Traversal Conjecture [16] states that accessing the nodes in a splay tree, in the order
specified by a preorder traversal of any other binary tree with the same keys, takes O(n) time.
This is generalization of the Scanning Theorem.

The Unified Conjecture [13] states that the time to access node x is O(lgminy(D(y)+d(x , y))),
where D(y) is the number of distinct nodes accessed since the last time y was accessed. This

⁶This list and the following section are taken almost directly from Erik Demaine’s lecture notes [5].
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would immediately imply both the Dynamic Finger Theorem, which is about spatial locality, and
the Working Set Theorem, which is about temporal locality. Two other structures are known that
satisfy the unified bound [4, 13].

Finally, the most important conjecture about splay trees, and one of the most important open
problems about data structures, is that they are dynamically optimal [16]. Specifically, the cost of
any sequence of accesses to a splay tree is conjectured to be at most a constant factor more than
the cost of the best possible dynamic binary search tree that knows the entire access sequence in
advance. To make the rules concrete, we consider binary search trees that can undergo arbitrary
rotations after a search; the cost of a search is the number of key comparisons plus the number
of rotations. We do not require that the rotations be on or even near the search path. This is an
extremely strong conjecture!

No dynamically optimal binary search tree is known, even in the offline setting. However,
three very similar O(log log n)-competitive binary search trees have been discovered in the last
few years: Tango trees [9], multisplay trees [20], and chain-splay trees [12]. A recently-published
geometric formulation of dynamic binary search trees [8, 10] also offers significant hope for
future progress.
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binary search trees. Proc. 20th Ann. ACM-SIAM Symp. Discrete Algorithms, 496–505, 2009.

[9] Erik D. Demaine, Dion Harmon*, John Iacono, and Mihai Ptracu**. Dynamic optimality—almost.
Proc. 45th Annu. IEEE Sympos. Foundations Comput. Sci., 484–490, 2004.

[10] Jonathan Derryberry*, Daniel Dominic Sleator, and Chengwen Chris Wang*. A lower bound
framework for binary search trees with rotations. Tech. Rep. CMU-CS-05-187, Carnegie Mellon Univ.,
Nov. 2005. 〈http://reports-archive.adm.cs.cmu.edu/anon/2005/CMU-CS-05-187.pdf〉.

[11] Igal Galperin* and Ronald R. Rivest. Scapegoat trees. Proc. 4th Annu. ACM-SIAM Sympos. Discrete
Algorithms, 165–174, 1993.

[12] George F. Georgakopoulos. Chain-splay trees, or, how to achieve and prove log log N -competitiveness
by splaying. Inform. Proc. Lett. 106(1):37–43, 2008.

[13] John Iacono*. Alternatives to splay trees with O(log n) worst-case access times. Proc. 12th Annu.
ACM-SIAM Sympos. Discrete Algorithms, 516–522, 2001.

[14] Mark H. Overmars*. The Design of Dynamic Data Structures. Lecture Notes Comput. Sci. 156.
Springer-Verlag, 1983.

[15] Seth Pettie. Splay trees, Davenport-Schinzel sequences, and the deque conjecture. Proc. 19th Ann.
ACM-SIAM Symp. Discrete Algorithms, 1115–1124, 2008.

9



Algorithms Lecture 16: Scapegoat and Splay Trees [Fa’13]

[16] Daniel D. Sleator and Robert E. Tarjan. Self-adjusting binary search trees. J. ACM 32(3):652–686,
1985.

[17] Rajamani Sundar*. On the Deque conjecture for the splay algorithm. Combinatorica 12(1):95–124,
1992.

[18] Robert E. Tarjan. Sequential access in splay trees takes linear time. Combinatorica 5(5):367–378,
1985.

[19] Robert Endre Tarjan. Data Structures and Network Algorithms. CBMS-NSF Regional Conference
Series in Applied Mathematics 44. SIAM, 1983.

[20] Chengwen Chris Wang*, Jonathan Derryberry*, and Daniel Dominic Sleator. O(log log n)-competitive
dynamic binary search trees. Proc. 17th Annu. ACM-SIAM Sympos. Discrete Algorithms, 374–383, 2006.

*Starred authors were graduate students at the time that the cited work was published. **Double-starred
authors were undergraduates.

Exercises

1. (a) An n-node binary tree is perfectly balanced if either n ≤ 1, or its two subtrees are
perfectly balanced binary trees, each with at most bn/2c nodes. Prove that I(v)≤ 1
for every node v of any perfectly balanced tree.

(b) Prove that at most one subtree is rebalanced during a scapegoat tree insertion.

2. In a dirty binary search tree, each node is labeled either clean or dirty. The lazy deletion
scheme used for scapegoat trees requires us to purge the search tree, keeping all the clean
nodes and deleting all the dirty nodes, as soon as half the nodes become dirty. In addition,
the purged tree should be perfectly balanced.

(a) Describe and analyze an algorithm to purge an arbitrary n-node dirty binary search
tree in O(n) time. (Such an algorithm is necessary for scapegoat trees to achieve
O(log n) amortized insertion cost.)

?(b) Modify your algorithm so that is uses only O(log n) space, in addition to the tree itself.
Don’t forget to include the recursion stack in your space bound.

Æ(c) Modify your algorithm so that is uses only O(1) additional space. In particular, your
algorithm cannot call itself recursively at all.

3. Consider the following simpler alternative to splaying:

MoveToRoot(v):
while parent(v) 6= Null

rotate at v

Prove that the amortized cost of MoveToRoot in an n-node binary tree can be Ω(n). That
is, prove that for any integer k, there is a sequence of k MoveToRoot operations that
require Ω(kn) time to execute.

4. Let P be a set of n points in the plane. The staircase of P is the set of all points in the plane
that have at least one point in P both above and to the right.
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A set of points in the plane and its staircase (shaded).

(a) Describe an algorithm to compute the staircase of a set of n points in O(n log n) time.

(b) Describe and analyze a data structure that stores the staircase of a set of points, and
an algorithm Above?(x , y) that returns True if the point (x , y) is above the staircase,
or False otherwise. Your data structure should use O(n) space, and your Above?
algorithm should run in O(log n) time.

TRUE

FALSE

Two staircase queries.

(c) Describe and analyze a data structure that maintains a staircase as new points are
inserted. Specifically, your data structure should support a function Insert(x , y)
that adds the point (x , y) to the underlying point set and returns True or False to
indicate whether the staircase of the set has changed. Your data structure should use
O(n) space, and your Insert algorithm should run in O(log n) amortized time.

TRUE!

FALSE!

Two staircase insertions.

5. Suppose we want to maintain a dynamic set of values, subject to the following operations:

• Insert(x): Add x to the set (if it isn’t already there).

• Print&DeleteBetween(a, b): Print every element x in the range a ≤ x ≤ b, in
increasing order, and delete those elements from the set.

For example, if the current set is {1, 5, 3, 4,8}, then
• Print&DeleteBetween(4, 6) prints the numbers 4 and 5 and changes the set to
{1,3, 8};

• Print&DeleteBetween(6, 7) prints nothing and does not change the set;

• Print&DeleteBetween(0, 10) prints the sequence 1, 3, 4, 5, 8 and deletes every-
thing.
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(a) Suppose we store the set in our favorite balanced binary search tree, using the
standard Insert algorithm and the following algorithm for Print&DeleteBetween:

Print&DeleteBetween(a, b):
x ← Successor(a)
while x ≤ b

print x
Delete(x)
x ← Successor(a)

Here, Successor(a) returns the smallest element greater than or equal to a (or∞
if there is no such element), and Delete is the standard deletion algorithm. Prove
that the amortized time for Insert and Print&DeleteBetween is O(log N), where
N is the maximum number of items that are ever stored in the tree.

(b) Describe and analyze Insert and Print&DeleteBetween algorithms that run in
O(log n) amortized time, where n is the current number of elements in the set.

(c) What is the running time of your Insert algorithm in the worst case?

(d) What is the running time of your Print&DeleteBetween algorithm in the worst
case?

6. Say that a binary search tree is augmented if every node v also stores size(v), the number
of nodes in the subtree rooted at v.

(a) Show that a rotation in an augmented binary tree can be performed in constant time.

(b) Describe an algorithm ScapegoatSelect(k) that selects the kth smallest item in an
augmented scapegoat tree in O(log n) worst-case time. (The scapegoat trees presented
in these notes are already augmented.)

(c) Describe an algorithm SplaySelect(k) that selects the kth smallest item in an
augmented splay tree in O(log n) amortized time.

(d) Describe an algorithm TreapSelect(k) that selects the kth smallest item in an
augmented treap in O(log n) expected time.

7. Many applications of binary search trees attach a secondary data structure to each node in
the tree, to allow for more complicated searches. Let T be an arbitrary binary tree. The
secondary data structure at any node v stores exactly the same set of items as the subtree
of T rooted at v. This secondary structure has size O(size(v)) and can be built in O(size(v))
time, where size(v) denotes the number of descendants of v.

The primary and secondary data structures are typically defined by different attributes
of the data being stored. For example, to store a set of points in the plane, we could define
the primary tree T in terms of the x-coordinates of the points, and define the secondary
data structures in terms of their y-coordinate.

Maintaining these secondary structures complicates algorithms for keeping the top-level
search tree balanced. Specifically, performing a rotation at any node v in the primary tree
now requires O(size(v)) time, because we have to rebuild one of the secondary structures
(at the new child of v). When we insert a new item into T , we must also insert into one or
more secondary data structures.
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(a) Overall, how much space does this data structure use in the worst case?

(b) How much space does this structure use if the primary search tree is perfectly
balanced?

(c) Suppose the primary tree is a splay tree. Prove that the amortized cost of a splay (and
therefore of a search, insertion, or deletion) is Ω(n). [Hint: This is easy!]

(d) Now suppose the primary tree T is a scapegoat tree. How long does it take to rebuild
the subtree of T rooted at some node v, as a function of size(v)?

(e) Suppose the primary tree and all secondary trees are scapegoat trees. What is the
amortized cost of a single insertion?

?(f) Finally, suppose the primary tree and every secondary tree is a treap. What is the
worst-case expected time for a single insertion?

8. Suppose we want to maintain a collection of strings (sequences of characters) under the
following operations:

• NewString(a) creates a new string of length 1 containing only the character a and
returns a pointer to that string.

• Concat(S, T ) removes the strings S and T (given by pointers) from the data structure,
adds the concatenated string ST to the data structure, and returns a pointer to the
new string.

• Split(S, k) removes the strings S (given by a pointer) from the data structure, adds
the first k characters of S and the rest of S as two new strings in the data structure,
and returns pointers to the two new strings.

• Reverse(S) removes the string S (given by a pointer) from the data structure, adds
the reversal of S to the data structure, and returns a pointer to the new string.

• Lookup(S, k) returns the kth character in string S (given by a pointer), or Null if
the length of the S is less than k.

Describe and analyze a simple data structure that supports NewString and Reverse
in O(1) worst-case time, supports every other operation in O(log n) time (either worst-case,
expected, or amortized), and uses O(n) space, where n is the sum of the current string
lengths. [Hint: Why is this problem here?]

9. After the Great Academic Meltdown of 2020, you get a job as a cook’s assistant at Jumpin’
Jack’s Flapjack Stack Shack, which sells arbitrarily-large stacks of pancakes for just four
bits (50 cents) each. Jumpin’ Jack insists that any stack of pancakes given to one of his
customers must be sorted, with smaller pancakes on top of larger pancakes. Also, whenever
a pancake goes to a customer, at least the top side must not be burned.

The cook provides you with a unsorted stack of n perfectly round pancakes, of n
different sizes, possibly burned on one or both sides. Your task is to throw out the pancakes
that are burned on both sides (and only those) and sort the remaining pancakes so that
their burned sides (if any) face down. Your only tool is a spatula. You can insert the spatula
under any pancake and then either flip or discard the stack of pancakes above the spatula.

More concretely, we can represent a stack of pancakes by a sequence of distinct integers
between 1 and n, representing the sizes of the pancakes, with each number marked to
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Flipping the top four pancakes. Again.

indicate the burned side(s) of the corresponding pancake. For example, 1 4 3 2 represents
a stack of four pancakes: a one-inch pancake burned on the bottom; a four-inch pancake
burned on the top; an unburned three-inch pancake, and a two-inch pancake burned
on both sides. We store this sequence in a data structure that supports the following
operations:

• Position(x): Return the position of integer x in the current sequence, or 0 if x is
not in the sequence.

• Value(k): Return the kth integer in the current sequence, or 0 if the sequence has no
kth element. Value is essentially the inverse of Position.

• TopBurned(k): Return True if and only if the top side of the kth pancake in the
current sequence is burned.

• Flip(k): Reverse the order and the burn marks of the first k elements of the sequence.

• Discard(k): Discard the first k elements of the sequence.

(a) Describe an algorithm to filter and sort any stack of n burned pancakes using O(n) of
the operations listed above. Try to make the big-Oh constant small.

1 43 2
Flip(4) // 2 3 4 1

Discard(1) // 34 1
Flip(2) // 43 1

Flip(3) // 1 3 4

(b) Describe a data structure that supports each of the operations listed above in O(log n)
amortized time. Together with part (a), such a data structure gives us an algorithm
to filter and sort any stack of n burned pancakes in O(n log n) time.

10. Let X = 〈x1, x2, . . . , xm〉 be a sequence of m integers, each from the set {1, 2, . . . , n}. We
can visualize this sequence as a set of integer points in the plane, by interpreting each
element x i as the point (x i , i). The resulting point set, which we can also call X , has exactly
one point on each row of the n×m integer grid.

(a) Let Y be an arbitrary set of integer points in the plane. Two points (x1, y1) and
(x2, y2) in Y are isolated if (1) x1 6= x2 and y1 6= y2, and (2) there is no other point
(x , y) ∈ Y with x1 ≤ x ≤ x2 and y1 ≤ y ≤ y2. If the set Y contains no isolated pairs
of points, we call Y a commune.⁷

Let X be an arbitrary set of points on the n× n integer grid with exactly one point
per row. Show that there is a commune Y that contains X and consists of O(n log n)
points.

⁷Demaine et al. [8] refer to communes as arborally satisfied sets.
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(b) Consider the following model of self-adjusting binary search trees. We interpret X
as a sequence of accesses in a binary search tree. Let T0 denote the initial tree. In
the ith round, we traverse the path from the root to node x i, and then arbitrarily
reconfigure some subtree Si of the current search tree Ti−1 to obtain the next search
tree Ti . The only restriction is that the subtree Si must contain both x i and the root
of Ti−1. (For example, in a splay tree, Si is the search path to x i .) The cost of the ith
access is the number of nodes in the subtree Si .

Prove that the minimum cost of executing an access sequence X in this model is
at least the size of the smallest commune containing the corresponding point set X .
[Hint: Lowest common ancestor.]

?(c) Suppose X is a random permutation of the integers 1,2, . . . , n. Use the lower bound
in part (b) to prove that the expected minimum cost of executing X is Ω(n log n).

Æ(d) Describe a polynomial-time algorithm to compute (or even approximate up to constant
factors) the smallest commune containing a given set X of integer points, with at
most one point per row. Alternately, prove that the problem is NP-hard.
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E pluribus unum (Out of many, one)

— Official motto of the United States of America

John: Who’s your daddy? C’mon, you know who your daddy is!
Who’s your daddy? D’Argo, tell him who his daddy is!

D’Argo: I’m your daddy.

— Farscape, “Thanks for Sharing” (June 15, 2001)

What rolls down stairs, alone or in pairs, rolls over your neighbor’s dog?
What’s great for a snack, and fits on your back? It’s Log, Log, Log!

It’s Log! It’s Log! It’s big, it’s heavy, it’s wood!
It’s Log! It’s Log! It’s better than bad, it’s good!

— Ren & Stimpy, “Stimpy’s Big Day/The Big Shot" (August 11, 1991)
lyrics by John Kricfalusi

The thing’s hollow - it goes on forever - and - oh my God! - it’s full of stars!

— Capt. David Bowman’s last words(?)
2001: A Space Odyssey by Arthur C. Clarke (1968)

17 Data Structures for Disjoint Sets

In this lecture, we describe some methods for maintaining a collection of disjoint sets. Each set
is represented as a pointer-based data structure, with one node per element. We will refer to
the elements as either ‘objects’ or ‘nodes’, depending on whether we want to emphasize the set
abstraction or the actual data structure. Each set has a unique ‘leader’ element, which identifies
the set. (Since the sets are always disjoint, the same object cannot be the leader of more than
one set.) We want to support the following operations.

• MakeSet(x): Create a new set {x} containing the single element x . The object x must
not appear in any other set in our collection. The leader of the new set is obviously x .

• Find(x): Find (the leader of) the set containing x .

• Union(A, B): Replace two sets A and B in our collection with their union A∪ B. For
example, Union(A,MakeSet(x)) adds a new element x to an existing set A. The sets A
and B are specified by arbitrary elements, so Union(x , y) has exactly the same behavior as
Union(Find(x),Find(y)).

Disjoint set data structures have lots of applications. For instance, Kruskal’s minimum
spanning tree algorithm relies on such a data structure to maintain the components of the
intermediate spanning forest. Another application is maintaining the connected components
of a graph as new vertices and edges are added. In both these applications, we can use a
disjoint-set data structure, where we maintain a set for each connected component, containing
that component’s vertices.

17.1 Reversed Trees

One of the easiest ways to store sets is using trees, in which each node represents a single element
of the set. Each node points to another node, called its parent, except for the leader of each
set, which points to itself and thus is the root of the tree. MakeSet is trivial. Find traverses

© Copyright 2014 Jeff Erickson.
This work is licensed under a Creative Commons License (http://creativecommons.org/licenses/by-nc-sa/4.0/).
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parent pointers up to the leader. Union just redirects the parent pointer of one leader to the
other. Unlike most tree data structures, nodes do not have pointers down to their children.

MakeSet(x):
parent(x)← x

Find(x):
while x 6= parent(x)

x ← parent(x)
return x

Union(x , y):
x ← Find(x)
y ← Find(y)
parent(y)← x

p

q r

a

b

c

d

p

q ra

b

c

d

Merging two sets stored as trees. Arrows point to parents. The shaded node has a new parent.

Make-Set clearly takes Θ(1) time, and Union requires only O(1) time in addition to the two
Finds. The running time of Find(x) is proportional to the depth of x in the tree. It is not hard
to come up with a sequence of operations that results in a tree that is a long chain of nodes, so
that Find takes Θ(n) time in the worst case.

However, there is an easy change we can make to our Union algorithm, called union by depth,
so that the trees always have logarithmic depth. Whenever we need to merge two trees, we
always make the root of the shallower tree a child of the deeper one. This requires us to also
maintain the depth of each tree, but this is quite easy.

MakeSet(x):
parent(x)← x
depth(x)← 0

Find(x):
while x 6= parent(x)

x ← parent(x)
return x

Union(x , y)
x ← Find(x)
y ← Find(y)
if depth(x)> depth(y)

parent(y)← x
else

parent(x)← y
if depth(x) = depth(y)

depth(y)← depth(y) + 1

With this new rule in place, it’s not hard to prove by induction that for any set leader x , the
size of x ’s set is at least 2depth(x), as follows. If depth(x) = 0, then x is the leader of a singleton
set. For any d > 0, when depth(x) becomes d for the first time, x is becoming the leader of the
union of two sets, both of whose leaders had depth d − 1. By the inductive hypothesis, both
component sets had at least 2d−1 elements, so the new set has at least 2d elements. Later Union
operations might add elements to x ’s set without changing its depth, but that only helps us.

Since there are only n elements altogether, the maximum depth of any set is lg n. We conclude
that if we use union by depth, both Find and Union run in Θ(logn) time in the worst case.

17.2 Shallow Threaded Trees

Alternately, we could just have every object keep a pointer to the leader of its set. Thus, each set
is represented by a shallow tree, where the leader is the root and all the other elements are its
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children. With this representation, MakeSet and Find are completely trivial. Both operations
clearly run in constant time. Union is a little more difficult, but not much. Our algorithm sets
all the leader pointers in one set to point to the leader of the other set. To do this, we need a
method to visit every element in a set; we will ‘thread’ a linked list through each set, starting at
the set’s leader. The two threads are merged in the Union algorithm in constant time.

a

b c d

p

q r

a

p q r b c d

Merging two sets stored as threaded trees.
Bold arrows point to leaders; lighter arrows form the threads. Shaded nodes have a new leader.

MakeSet(x):
leader(x)← x
next(x)← x

Find(x):
return leader(x)

Union(x , y):
x ← Find(x)
y ← Find(y)

y ← y
leader(y)← x
while (next(y) 6= Null)

y ← next(y)
leader(y)← x

next(y)← next(x)
next(x)← y

The worst-case running time of Union is a constant times the size of the larger set. Thus, if we
merge a one-element set with another n-element set, the running time can be Θ(n). Generalizing
this idea, it is quite easy to come up with a sequence of n MakeSet and n− 1 Union operations
that requires Θ(n2) time to create the set {1, 2, . . . , n} from scratch.

WorstCaseSequence(n):
MakeSet(1)
for i← 2 to n

MakeSet(i)
Union(1, i)

We are being stupid in two different ways here. One is the order of operations inWorstCase-
Sequence. Obviously, it would be more efficient to merge the sets in the other order, or to use
some sort of divide and conquer approach. Unfortunately, we can’t fix this; we don’t get to decide
how our data structures are used! The other is that we always update the leader pointers in the
larger set. To fix this, we add a comparison inside the Union algorithm to determine which set is
smaller. This requires us to maintain the size of each set, but that’s easy.

MakeWeightedSet(x):
leader(x)← x
next(x)← x
size(x)← 1

WeightedUnion(x , y)
x ← Find(x)
y ← Find(y)
if size(x)> size(y)

Union(x , y)
size(x)← size(x) + size(y)

else
Union(y , x)
size(y)← size(x) + size(y)

3
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The new WeightedUnion algorithm still takes Θ(n) time to merge two n-element sets.
However, in an amortized sense, this algorithm is much more efficient. Intuitively, before we can
merge two large sets, we have to perform a large number of MakeWeightedSet operations.

Theorem 1. A sequence of m MakeWeightedSet operations and n WeightedUnion operations takes
O(m+ n log n) time in the worst case.

Proof: Whenever the leader of an object x is changed by a WeightedUnion, the size of the set
containing x increases by at least a factor of two. By induction, if the leader of x has changed k
times, the set containing x has at least 2k members. After the sequence ends, the largest set
contains at most n members. (Why?) Thus, the leader of any object x has changed at most blg nc
times.

Since each WeightedUnion reduces the number of sets by one, there are m − n sets at
the end of the sequence, and at most n objects are not in singleton sets. Since each of the
non-singleton objects had O(log n) leader changes, the total amount of work done in updating
the leader pointers is O(n log n). �

The aggregate method now implies that each WeightedUnion has amortized cost O(logn).

17.3 Path Compression

Using unthreaded tress, Find takes logarithmic time and everything else is constant; using
threaded trees, Union takes logarithmic amortized time and everything else is constant. A third
method allows us to get both of these operations to have almost constant running time.

We start with the original unthreaded tree representation, where every object points to a
parent. The key observation is that in any Find operation, once we determine the leader of an
object x , we can speed up future Finds by redirecting x ’s parent pointer directly to that leader.
In fact, we can change the parent pointers of all the ancestors of x all the way up to the root; this
is easiest if we use recursion for the initial traversal up the tree. This modification to Find is
called path compression.

p

q rabc

d

p

q ra

b

c

d

Path compression during Find(c). Shaded nodes have a new parent.

Find(x)
if x 6= parent(x)

parent(x)← Find(parent(x))
return parent(x)

If we use path compression, the ‘depth’ field we used earlier to keep the trees shallow is no
longer correct, and correcting it would take way too long. But this information still ensures
that Find runs in Θ(log n) time in the worst case, so we’ll just give it another name: rank. The
following algorithm is usually called union by rank:
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MakeSet(x):
parent(x)← x
rank(x)← 0

Union(x , y)
x ← Find(x)
y ← Find(y)
if rank(x)> rank(y)

parent(y)← x
else

parent(x)← y
if rank(x) = rank(y)

rank(y)← rank(y) + 1

Find still runs in O(log n) time in the worst case; path compression increases the cost by only
most a constant factor. But we have good reason to suspect that this upper bound is no longer
tight. Our new algorithm memoizes the results of each Find, so if we are asked to Find the
same item twice in a row, the second call returns in constant time. Splay trees used a similar
strategy to achieve their optimal amortized cost, but our up-trees have fewer constraints on their
structure than binary search trees, so we should get even better performance.

This intuition is exactly correct, but it takes a bit of work to define precisely how much better
the performance is. As a first approximation, we will prove below that the amortized cost of a
Find operation is bounded by the iterated logarithm of n, denoted log∗ n, which is the number of
times one must take the logarithm of n before the value is less than 1:

lg∗ n=

¨
1 if n≤ 2,

1+ lg∗(lg n) otherwise.

Our proof relies on several useful properties of ranks, which follow directly from the Union and
Find algorithms.

• If a node x is not a set leader, then the rank of x is smaller than the rank of its parent.

• Whenever parent(x) changes, the new parent has larger rank than the old parent.

• Whenever the leader of x ’s set changes, the new leader has larger rank than the old leader.

• The size of any set is exponential in the rank of its leader: size(x)≥ 2rank(x). (This is easy
to prove by induction, hint, hint.)

• In particular, since there are only n objects, the highest possible rank is blg nc.
• For any integer r, there are at most n/2r objects of rank r.

Only the last property requires a clever argument to prove. Fix your favorite integer r.
Observe that only set leaders can change their rank. Whenever the rank of any set leader x
changes from r − 1 to r, mark all the objects in x ’s set. Since leader ranks can only increase over
time, each object is marked at most once. There are n objects altogether, and any object with
rank r marks at least 2r objects. It follows that there are at most n/2r objects with rank r, as
claimed.

17.4 O(log∗ n) Amortized Time?

The following analysis of path compression was discovered just a few years ago by Raimund Seidel
and Micha Sharir.¹ Previous proofs² relied on complicated charging schemes or potential-function

¹Raimund Seidel and Micha Sharir. Top-down analysis of path compression. SIAM J. Computing 34(3):515–525,
2005.

²Robert E. Tarjan. Efficiency of a good but not linear set union algorithm. J. Assoc. Comput. Mach. 22:215–225, 1975.
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arguments; Seidel and Sharir’s analysis relies on a comparatively simple recursive decomposition.
(Of course, simple is in the eye of the beholder.)

Seidel and Sharir phrase their analysis in terms of two more general operations on set forests.
Their more general Compress operation compresses any directed path, not just paths that lead
to the root. The new Shatter operation makes every node on a root-to-leaf path into its own
parent.

Compress(x , y):
〈〈y must be an ancestor of x〉〉
if x 6= y

Compress(parent(x), y)
parent(x)← parent(y)

Shatter(x):
if parent(x) 6= x

Shatter(parent(x))
parent(x)← x

Clearly, the running time of Find(x) operation is dominated by the running time ofCompress(x , y),
where y is the leader of the set containing x . Thus, we can prove the upper bound by analyzing
an arbitrary sequence of Union and Compress operations. Moreover, we can assume that the
arguments of every Union operation are set leaders, so that each Union takes only constant
worst-case time.

Finally, since each call to Compress specifies the top node in the path to be compressed,
we can reorder the sequence of operations, so that every Union occurs before any Compress,
without changing the number of pointer assignments.

x

y
yx

yx

x

y

x

y
yx

Top row: A Compress followed by a Union. Bottom row: The same operations in the opposite order.

Each Union requires only constant time, so we only need to analyze the amortized cost of
Compress. The running time of Compress is proportional to the number of parent pointer
assignments, plus O(1) overhead, so we will phrase our analysis in terms of pointer assignments.
Let T(m,n, r ) denote the worst case number of pointer assignments in any sequence of at most m
Compress operations, executed on a forest of at most n nodes, in which each node has rank at
most r.

The following trivial upper bound will be the base case for our recursive argument.

Theorem 2. T (m, n, r)≤ nr

Proof: Each node can change parents at most r times, because each new parent has higher rank
than the previous parent. �

Fix a forest F of n nodes with maximum rank r, and a sequence C of m Compress operations
on F , and let T(F,C) denote the total number of pointer assignments executed by this sequence.
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Let s be an arbitrary positive rank. Partition F into two sub-forests: a ‘low’ forest F− containing
all nodes with rank at most s, and a ‘high’ forest F+ containing all nodes with rank greater than s.
Since ranks increase as we follow parent pointers, every ancestor of a high node is another high
node. Let n− and n+ denote the number of nodes in F− and F+, respectively. Finally, let m+
denote the number of Compress operations that involve any node in F+, and let m− = m−m+.

F+

F–
rank < s

rank ≥ s

rank < s

rank ≥ sF

Splitting the forest F (in this case, a single tree) into sub-forests F+ and F− at rank s.

Any sequence of Compress operations on F can be decomposed into a sequence of Compress
operations on F+, plus a sequence of Compress and Shatter operations on F−, with the same
total cost. This requires only one small modification to the code: We forbid any low node from
having a high parent. Specifically, if x is a low node and y is a high node, we replace any
assignment parent(x)← y with parent(x)← x .

A Compress operation in F splits into a Compress operation in F+ and a Shatter operation in F−

This modification is equivalent to the following reduction:

Compress(x , y, F): 〈〈y is an ancestor of x〉〉
if rank(x)> s

Compress(x , y, F+) 〈〈in C+〉〉
else if rank(y)≤ s

Compress(x , y, F−) 〈〈in C−〉〉
else

z← x
while rank(parentF (z))≤ s

z← parentF (z)

Compress(parentF (z), y, F+) 〈〈in C+〉〉
Shatter(x , z, F−)
parent(z)← z (!?)

The pointer assignment in the last line (!?) looks redundant, but it is actually necessary for the
analysis. Each execution of that line mirrors an assignment of the form parent(z)← w, where z
is a low node, w is a high node, and the previous parent of z was also a high node. Each of these

7
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‘redundant’ assignments happens immediately after a Compress in the top forest, so we perform
at most m+ redundant assignments.

Each node x is touched by at most one Shatter operation, so the total number of pointer
reassignments in all the Shatter operations is at most n.

Thus, by partitioning the forest F into F+ and F−, we have also partitioned the sequence C of
Compress operations into subsequences C+ and C−, with respective lengths m+ and m−, such
that the following inequality holds:

T (F, C)≤ T (F+, C+) + T (F−, C−) +m+ + n

Since there are only n/2i nodes of any rank i, we have n+ ≤
∑

i>s n/2i = n/2s. The number
of different ranks in F+ is r − s < r. Thus, Theorem 2 implies the upper bound

T (F+, C+)< rn/2s.

Let us fix s = lg r , so that T (F+, C+)≤ n. We can now simplify our earlier recurrence to

T (F, C)≤ T (F−, C−) +m+ + 2n,

or equivalently,
T (F, C)−m≤ T (F−, C−)−m− + 2n.

Since this argument applies to any forest F and any sequence C , we have just proved that

T ′(m, n, r)≤ T ′(m, n, blg rc) + 2n,

where T ′(m, n, r) = T (m, n, r)−m. The solution to this recurrence is T ′(n, m, r ) ≤ 2n lg∗ r .
Voilá!

Theorem 3. T (m, n, r)≤ m+ 2n lg∗ r

17.5 Turning the Crank?

There is one place in the preceding analysis where we have significant room for improvement.
Recall that we bounded the total cost of the operations on F+ using the trivial upper bound from
Theorem 2. But we just proved a better upper bound in Theorem 3! We can apply precisely the
same strategy, using Theorem 3 recursively instead of Theorem 2, to improve the bound even
more.

Suppose we fix s = lg∗ r, so that n+ = n/2lg∗ r . Theorem 3 implies that

T (F+, C+)≤ m+ + 2n
lg∗ r
2lg∗ r

≤ m+ + 2n.

This implies the recurrence

T (F, C)≤ T (F−, C−) + 2m+ + 3n,

which in turn implies that

T ′′(m, n, r)≤ T ′′(m, n, lg∗ r) + 3n,

8
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where T ′′(m, n, r) = T (m, n, r)−2m. The solution to this equation is T(m,n, r ) ≤ 2m+3n lg∗∗ r ,
where lg∗∗ r is the iterated iterated logarithm of r:

lg∗∗ r =

¨
1 if r ≤ 2,

1+ lg∗∗(lg∗ r) otherwise.

Naturally we can apply the same improvement strategy again, and again, as many times as
we like, each time producing a tighter upper bound. Applying the reduction c times, for any
positive integer c, gives us T(m, n, r ) ≤ cm + (c + 1)n lg∗

c
r , where

lg∗
c
r =





lg r if c = 0,

1 if r ≤ 2,

1+ lg∗
c
(lg∗

c−1
r) otherwise.

Each time we ‘turn the crank’, the dependence on m increases, while the dependence on n
and r decreases. For sufficiently large values of c, the cm term dominates the time bound, and
further iterations only make things worse. The point of diminishing returns can be estimated by
the minimum number of stars such that lg∗∗···∗ r is smaller than a constant:

α(r) =min
�

c ≥ 1
�� lg∗

c
n≤ 3

	
.

(The threshold value 3 is used here because lg∗
c
5≥ 2 for all c.) By setting c = α(r), we obtain

our final upper bound.

Theorem 4. T (m, n, r)≤ mα(r) + 3n(α(r) + 1)

We can assume without loss of generality that m≥ n by ignoring any singleton sets, so this
upper bound can be further simplified to T (m, n, r) = O(mα(r)) = O(mα(n)). It follows that if
we use union by rank, Find with path compression runs in O(α(n)) amortized time.

Even this upper bound is somewhat conservative if m is larger than n. A closer estimate is
given by the function

α(m, n) =min
�

c ≥ 1
�� lg∗

c
(lg n)≤ m/n

	
.

It’s not hard to prove that if m = Θ(n), then α(m, n) = Θ(α(n)). On the other hand, if
m≥ n lg∗∗∗∗∗ n, for any constant number of stars, then α(m, n) = O(1). So even if the number of
Find operations is only slightly larger than the number of nodes, the amortized cost of each Find
is constant.

O(α(m, n)) is actually a tight upper bound for the amortized cost of path compression; there
are no more tricks that will improve the analysis further. More surprisingly, this is the best
amortized bound we obtain for any pointer-based data structure for maintaining disjoint sets;
the amortized cost of every Find algorithm is at least Ω(α(m, n)). The proof of the matching
lower bound is, unfortunately, far beyond the scope of this class.³

³Robert E. Tarjan. A class of algorithms which require non-linear time to maintain disjoint sets. J. Comput. Syst.
Sci. 19:110–127, 1979.
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17.6 The Ackermann Function and its Inverse

The iterated logarithms that fell out of our analysis of path compression are the inverses of a
hierarchy of recursive functions defined by Wilhelm Ackermann in 1928.⁴

2 ↑c n :=





2 if n= 1

2n if c = 0

2 ↑c−1 (2 ↑c (n− 1)) otherwise

For each fixed integer c, the function 2 ↑c n is monotonically increasing in n, and these functions
grow incredibly faster as the index c increases. 2 ↑ n is the familiar power function 2n. 2 ↑↑ n is
the tower function:

2 ↑↑ n= 2 ↑ 2 ↑ . . . ↑ 2︸ ︷︷ ︸
n

= 222..
.2
ª

n

John Conway named 2 ↑↑↑ n the wower function:

2 ↑↑↑ n= 2 ↑↑ 2 ↑↑ · · · ↑↑ 2︸ ︷︷ ︸
n

.

And so on, et cetera, ad infinitum.
For any fixed c, the function log∗

c
n is the inverse of the function 2 ↑c+1 n, the (c + 1)th row

in the Ackerman hierarchy. Thus, for any remotely reasonable values of n, say n≤ 2256, we have
log∗ n≤ 5, log∗∗ n≤ 4, and log∗

c
n≤ 3 for any c ≥ 3.

The function α(n) is usually called the inverse Ackerman function.⁵ Our earlier definition is
equivalent to α(n) =min{c ≥ 1 | 2↑c+2 3≥ n}; in other words, α(n)+2 is the inverse of the third
column in the Ackermann hierarchy. The function α(n) grows much more slowly than log∗

c
n

for any fixed c; we have α(n)≤ 3 for all even remotely imaginable values of n. Nevertheless, the
function α(n) is eventually larger than any constant, so it is not O(1).

2 ↑c n n= 1 2 n= 3 n= 4 n= 5

2n 2 4 6 8 10

2 ↑ n 2 4 8 16 32

2 ↑↑ n 2 4 16 65536 265536

2 ↑↑↑ n 2 4 65536 222..
.2
ª

65536
222..

.2
ª

222..
.2
ª

65536

2 ↑↑↑↑ n 2 4 222..
.2
ª

65536
22...2

	
2...2
	

..
.
2...2
	

65536
��

222..
.2
ª

65536

〈〈Yeah, right.〉〉

2 ↑↑↑↑↑ n 2 4 22...2
	

2...2
	

..
.
2...2
	

65536
��

222..
.2
ª

65536

〈〈Very funny.〉〉 〈〈Argh! My eyes!〉〉
Small (!!) values of Ackermann’s functions.

⁴Ackermann didn’t define his functions this way—I’m actually describing a slightly cleaner hierarchy defined 35
years later by R. Creighton Buck—but the exact details of the definition are surprisingly irrelevant! The mnemonic
up-arrow notation for these functions was introduced by Don Knuth in the 1970s.

⁵Strictly speaking, the name ‘inverse Ackerman function’ is inaccurate. One good formal definition of the true
inverse Ackerman function is α̃(n) =min

�
c ≥ 1

�� lg∗
c
n≤ c

	
=min

�
c ≥ 1

�� 2 ↑c+2 c ≥ n
	
. However, it’s not hard to

prove that α̃(n)≤ α(n)≤ α̃(n) + 1 for all sufficiently large n, so the inaccuracy is completely forgivable. As I said in
the previous footnote, the exact details of the definition are surprisingly irrelevant!
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17.7 To infinity. . . and beyond!

Of course, one can generalize the inverse Ackermann function to functions that grow arbitrarily
more slowly, starting with the iterated inverse Ackermann function

α∗(n) =

¨
1 if n≤ 4,

1+α∗(α(n)) otherwise,

then the iterated iterated iterated inverse Ackermann function

α∗
c
(n) =





α(n) if c = 0,

1 if n≤ 4,

1+α∗
c
(α∗

c−1
(n)) otherwise,

and then the diagonalized inverse Ackermann function

Head-asplode(n) =min{c ≥ 1 | α∗c
n≤ 4},

and so on ad nauseam. Fortunately(?), such functions appear extremely rarely in algorithm anal-
ysis. Perhaps the only naturally-occurring example of a super-constant sub-inverse-Ackermann
function is a recent result of Seth Pettie⁶, who proved that if a splay tree is used as a double-ended
queue — insertions and deletions of only smallest or largest elements — then the amortized cost
of any operation is O(α∗(n))!

Exercises

1. Consider the following solution for the union-find problem, called union-by-weight. Each
set leader x stores the number of elements of its set in the field weight(x). Whenever we
Union two sets, the leader of the smaller set becomes a new child of the leader of the
larger set (breaking ties arbitrarily).

MakeSet(x):
parent(x)← x
weight(x)← 1

Find(x):
while x 6= parent(x)

x ← parent(x)
return x

Union(x , y)
x ← Find(x)
y ← Find(y)
if weight(x)> weight(y)

parent(y)← x
weight(x)← weight(x) +weight(y)

else
parent(x)← y
weight(x)← weight(x) +weight(y)

Prove that if we use union-by-weight, the worst-case running time of Find(x) is O(log n),
where n is the cardinality of the set containing x .

2. Consider a union-find data structure that uses union by depth (or equivalently union by
rank) without path compression. For all integers m and n such that m ≥ 2n, prove that
there is a sequence of n MakeSet operations, followed by m Union and Find operations,
that require Ω(m log n) time to execute.

⁶Splay trees, Davenport-Schinzel sequences, and the deque conjecture. Proceedings of the 19th Annual ACM-SIAM
Symposium on Discrete Algorithms, 1115–1124, 2008.
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3. Suppose you are given a collection of up-trees representing a partition of the set {1,2, . . . , n}
into disjoint subsets. You have no idea how these trees were constructed. You are
also given an array node[1 .. n], where node[i] is a pointer to the up-tree node containing
element i. Your task is to create a new array label[1 .. n] using the following algorithm:

LabelEverything:
for i← 1 to n

label[i]← Find(node[i])

(a) What is the worst-case running time of LabelEverything if we implement Find
without path compression?

(b) Prove that if we implement Find using path compression, LabelEverything runs in
O(n) time in the worst case.

4. Consider an arbitrary sequence of m MakeSet operations, followed by u Union operations,
followed by f Find operations, and let n= m+ u+ f . Prove that if we use union by rank
and Find with path compression, all n operations are executed in O(n) time.

5. Suppose we want to maintain an array X [1 .. n] of bits, which are all initially zero, subject
to the following operations.

• Lookup(i): Given an index i, return X [i].

• Blacken(i): Given an index i < n, set X [i]← 1.

• NextWhite(i): Given an index i, return the smallest index j ≥ i such that X [ j] = 0.
(Because we never change X [n], such an index always exists.)

If we use the array X [1 .. n] itself as the only data structure, it is trivial to implement
Lookup and Blacken in O(1) time and NextWhite in O(n) time. But you can do better!
Describe data structures that support Lookup in O(1) worst-case time and the other two
operations in the following time bounds. (We want a different data structure for each set
of time bounds, not one data structure that satisfies all bounds simultaneously!)

(a) The worst-case time for both Blacken and NextWhite is O(log n).

(b) The amortized time for both Blacken and NextWhite is O(log n). In addition, the
worst-case time for Blacken is O(1).

(c) The amortized time for Blacken is O(log n), and the worst-case time for NextWhite
is O(1).

(d) The worst-case time for Blacken is O(1), and the amortized time for NextWhite is
O(α(n)). [Hint: There is no Whiten.]

6. Suppose we want to maintain a collection of strings (sequences of characters) under the
following operations:

• NewString(a) creates a new string of length 1 containing only the character a and
returns a pointer to that string.

12
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• Concat(S, T ) removes the strings S and T (given by pointers) from the data structure,
adds the concatenated string ST to the data structure, and returns a pointer to the
new string.

• Reverse(S) removes the string S (given by a pointer) from the data structure, adds
the reversal of S to the data structure, and returns a pointer to the new string.

• Lookup(S, k) returns the kth character in string S (given by a pointer), or Null if
the length of the S is less than k.

Describe and analyze a simple data structure that supports Concat in O(log n) amortized
time, supports every other operation in O(1) worst-case time, and uses O(n) space, where n
is the sum of the current string lengths. Unlike the similar problem in the previous lecture
note, there is no Split operation. [Hint: Why is this problem here?]

7. (a) Describe and analyze an algorithm to compute the size of the largest connected
component of black pixels in an n× n bitmap B[1 .. n, 1 .. n].

For example, given the bitmap below as input, your algorithm should return the
number 9, because the largest conected black component (marked with white dots
on the right) contains nine pixels.

9

(b) Design and analyze an algorithm Blacken(i, j) that colors the pixel B[i, j] black and
returns the size of the largest black component in the bitmap. For full credit, the
amortized running time of your algorithm (starting with an all-white bitmap) must
be as small as possible.

For example, at each step in the sequence below, we blacken the pixel marked
with an X. The largest black component is marked with white dots; the number
underneath shows the correct output of the Blacken algorithm.

9 14 14 16 17

(c) What is the worst-case running time of your Blacken algorithm?

?8. Consider the following game. I choose a positive integer n and keep it secret; your goal is
to discover this integer. We play the game in rounds. In each round, you write a list of at
most n integers on the blackboard. If you write more than n numbers in a single round,
you lose. (Thus, in the first round, you must write only the number 1; do you see why?)
If n is one of the numbers you wrote, you win the game; otherwise, I announce which of
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the numbers you wrote is smaller or larger than n, and we proceed to the next round. For
example:

You Me
1 It’s bigger than 1.

4, 42 It’s between 4 and 42.
8, 15, 16, 23, 30 It’s between 8 and 15.

9, 10, 11, 12, 13, 14 It’s 11; you win!

Describe a strategy that allows you to win in O(α(n)) rounds!

© Copyright 2014 Jeff Erickson.
This work is licensed under a Creative Commons License (http://creativecommons.org/licenses/by-nc-sa/4.0/).

Free distribution is strongly encouraged; commercial distribution is expressly forbidden.
See http://www.cs.uiuc.edu/~jeffe/teaching/algorithms for the most recent revision.
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Thus you see, most noble Sir, how this type of solution bears little relationship to
mathematics, and I do not understand why you expect a mathematician to produce it,
rather than anyone else, for the solution is based on reason alone, and its discovery
does not depend on any mathematical principle. Because of this, I do not know why
even questions which bear so little relationship to mathematics are solved more quickly
by mathematicians than by others.

— Leonhard Euler, describing the Königsburg bridge problem
in a letter to Carl Leonhard Gottlieb Ehler (April 3, 1736)

I study my Bible as I gather apples.
First I shake the whole tree, that the ripest might fall.
Then I climb the tree and shake each limb,
and then each branch and then each twig,
and then I look under each leaf.

— Martin Luther

18 Basic Graph Algorithms

18.1 Definitions

A graph is normally defined as a pair of sets (V, E), where V is a set of arbitrary objects called
vertices¹ or nodes. E is a set of pairs of vertices, which we call edges or (more rarely) arcs. In
an undirected graph, the edges are unordered pairs, or just sets of two vertices; I usually write
uv instead of {u, v} to denote the undirected edge between u and v. In a directed graph, the
edges are ordered pairs of vertices; I usually write u�v instead of (u, v) to denote the directed
edge from u to v.

The definition of a graph as a pair of sets forbids graphs with loops (edges from a vertex to
itself) and/or parallel edges (multiple edges with the same endpoints). Graphs without loops
and parallel edges are often called simple graphs; non-simple graphs are sometimes called
multigraphs. Despite the formal definitional gap, most algorithms for simple graphs extend to
non-simple graphs with little or no modification.

Following standard (but admittedly confusing) practice, I’ll also use V to denote the number
of vertices in a graph, and E to denote the number of edges. Thus, in any undirected graph we
have 0≤ E ≤ �V

2

�
, and in any directed graph we have 0≤ E ≤ V (V − 1).

For any edge uv in an undirected graph, we call u a neighbor of v and vice versa. The degree
of a node is its number of neighbors. In directed graphs, we have two kinds of neighbors. For
any directed edge u�v, we call u a predecessor of v and v a successor of u. The in-degree of a
node is the number of predecessors, which is the same as the number of edges going into the
node. The out-degree is the number of successors, or the number of edges going out of the node.

A graph G′ = (V ′, E′) is a subgraph of G = (V, E) if V ′ ⊆ V and E′ ⊆ E.
Awalk in a graph is a sequence of edges, where each successive pair of edges shares one vertex;

a walk is called a path if it visits each vertex at most once. An undirected graph is connected if
there is a walk (and therefore a path) between any two vertices. A disconnected graph consists
of several components, which are its maximal connected subgraphs. Two vertices are in the

¹The singular of ‘vertices’ is vertex. The singular of ‘matrices’ is matrix. Unless you’re speaking Italian, there is no
such thing as a vertice, a matrice, an indice, an appendice, a helice, an apice, a vortice, a radice, a simplice, a codice,
a directrice, a dominatrice, a Unice, a Kleenice, an Asterice, an Obelice, a Dogmatice, a Getafice, a Cacofonice, a
Vitalstatistice, a Geriatrice, or Jimi Hendrice! You will lose points for using any of these so-called words.
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Free distribution is strongly encouraged; commercial distribution is expressly forbidden.
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same component if and only if there is a path between them. Components are sometimes called
“connected components”, but this usage is redundant; components are connected by definition.

A cycle is a path that starts and ends at the same vertex, and has at least one edge. An
undirected graph is acyclic if no subgraph is a cycle; acyclic graphs are also called forests. A tree
is a connected acyclic graph, or equivalently, one component of a forest. A spanning tree of a
graph G is a subgraph that is a tree and contains every vertex of G. A graph has a spanning tree
if and only if it is connected. A spanning forest of G is a collection of spanning trees, one for
each connected component of G.

Directed graphs can contain directed paths and directed cycles. A directed graph is strongly
connected if there is a directed path from any vertex to any other. A directed graph is acyclic if
it does not contain a directed cycle; directed acyclic graphs are often called dags.

18.2 Abstract Representations and Examples

The most common way to visually represent graphs is with an embedding. An embedding of
a graph maps each vertex to a point in the plane (typically drawn as a small circle) and each
edge to a curve or straight line segment between the two vertices. A graph is planar if it has an
embedding where no two edges cross. The same graph can have many different embeddings, so
it is important not to confuse a particular embedding with the graph itself. In particular, planar
graphs can have non-planar embeddings!
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A non-planar embedding of a planar graph with nine vertices, thirteen edges, and two components,
and a planar embedding of the same graph.

However, embeddings are not the only useful representation of graphs. For example, the
intersection graph of a collection of objects has a node for every object and an edge for every
intersecting pair. Whether a particular graph can be represented as an intersection graph depends
on what kind of object you want to use for the vertices. Different types of objects—line segments,
rectangles, circles, etc.—define different classes of graphs. One particularly useful type of
intersection graph is an interval graph, whose vertices are intervals on the real line, with an edge
between any two intervals that overlap.
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(a) (b) (c)

The example graph is also the intersection graph of (a) a set of line segments, (b) a set of circles, and
(c) a set of intervals on the real line (stacked for visibility).

Another good example is the dependency graph of a recursive algorithm. Dependency graphs
are directed acyclic graphs. The vertices are all the distinct recursive subproblems that arise
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when executing the algorithm on a particular input. There is an edge from one subproblem to
another if evaluating the second subproblem requires a recursive evaluation of the first. For
example, for the Fibonacci recurrence

Fn =





0 if n= 0,

1 if n= 1,

Fn−1 + Fn−2 otherwise,

the vertices of the dependency graph are the integers 0, 1,2, . . . , n, and the edges are the pairs
(i−1)�i and (i−2)�i for every integer i between 2 and n. As a more complex example, consider
the following recurrence, which solves a certain sequence-alignment problem called edit distance;
see the dynamic programming notes for details:

Edit(i, j) =





i if j = 0

j if i = 0

min





Edit(i − 1, j) + 1,

Edit(i, j − 1) + 1,

Edit(i − 1, j − 1) +
�
A[i] 6= B[ j]

�





otherwise

The dependency graph of this recurrence is an m × n grid of vertices (i, j) connected by
vertical edges (i − 1, j)�(i, j), horizontal edges (i, j − 1)�(i, j), and diagonal edges (i − 1, j −
1)�(i, j). Dynamic programming works efficiently for any recurrence that has a reasonably small
dependency graph; a proper evaluation order ensures that each subproblem is visited after its
predecessors.

Another interesting example is the configuration graph of a game, puzzle, or mechanism
like tic-tac-toe, checkers, the Rubik’s Cube, the Towers of Hanoi, or a Turing machine. The
vertices of the configuration graph are all the valid configurations of the puzzle; there is an edge
from one configuration to another if it is possible to transform one configuration into the other
with a simple move. (Obviously, the precise definition depends on what moves are allowed.)
Even for reasonably simple mechanisms, the configuration graph can be extremely complex, and
we typically only have access to local information about the configuration graph.

The configuration graph of the 4-disk Tower of Hanoi.

Finite-state automata used in formal language theory can be modeled as labeled directed
graphs. Recall that a deterministic finite-state automaton is formally defined as a 5-tuple
M = (Σ,Q, s, A,δ), where Σ is a finite set called the alphabet, Q is a finite set of states, s ∈Q is
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the start state, A⊆Q is the set of accepting states, and δ : Q×Σ→Q is a transition function. But
it is often more useful to think of M as a directed graph GM whose vertices are the states Q,
and whose edges have the form q�δ(q, a) for every state q ∈Q and symbol a ∈ Σ. Then basic
questions about the language accepted by M can be phrased as questions about the graph GM .
For example, the language accepted by M is empty if and only if there is no path in GM from the
start state/vertex q0 to an accepting state/vertex.

Finally, sometimes one graph can be used to implicitly represent other larger graphs. A good
example of this implicit representation is the subset construction used to convert NFAs into DFAs.
The subset construction can be generalized to arbitrary directed graphs as follows. Given any
directed graph G = (V, E), we can define a new directed graph G′ = (2V , E′) whose vertices are
all subsets of vertices in V , and whose edges E′ are defined as follows:

E′ :=
�
A�B

�� u�v ∈ E for some u ∈ A and v ∈ B
	

We can mechanically translate this definition into an algorithm to construct G′ from G, but strictly
speaking, this construction is unnecessary, because G is already an implicit representation of
G′. Viewed in this light, the incremental subset construction used to convert NFAs to DFAs without
unreachable states is just a breadth-first search of the implicitly-represented DFA.

It’s important not to confuse these examples/representations of graphs with the actual formal
definition: A graph is a pair of sets (V, E), where V is an arbitrary non-empty finite set, and E is a
set of pairs (either ordered or unordered) of elements of V .

18.3 Graph Data Structures

In practice, graphs are represented by two data structures: adjacency matrices² and adjacency
lists.

The adjacency matrix of a graph G is a V × V matrix, in which each entry indicates whether
a particular edge is or is not in the graph:

A[i, j] :=
�
(i, j) ∈ E

�
.

For undirected graphs, the adjacency matrix is always symmetric: A[i, j] = A[ j, i]. Since we don’t
allow edges from a vertex to itself, the diagonal elements A[i, i] are all zeros.

Given an adjacency matrix, we can decide in Θ(1) time whether two vertices are connected
by an edge just by looking in the appropriate slot in the matrix. We can also list all the neighbors
of a vertex in Θ(V ) time by scanning the corresponding row (or column). This is optimal in
the worst case, since a vertex can have up to V − 1 neighbors; however, if a vertex has few
neighbors, we may still have to examine every entry in the row to see them all. Similarly,
adjacency matrices require Θ(V 2) space, regardless of how many edges the graph actually has,
so it is only space-efficient for very dense graphs.

For sparse graphs—graphs with relatively few edges—adjacency lists are usually a better
choice. An adjacency list is an array of linked lists, one list per vertex. Each linked list stores the
neighbors of the corresponding vertex. For undirected graphs, each edge (u, v) is stored twice,
once in u’s neighbor list and once in v’s neighbor list; for directed graphs, each edge is stored
only once. Either way, the overall space required for an adjacency list is O(V + E). Listing the
neighbors of a node v takes O(1+ deg(v)) time; just scan the neighbor list. Similarly, we can
determine whether (u, v) is an edge in O(1+deg(u)) time by scanning the neighbor list of u. For

²See footnote 1.
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a b c d e f g h i
a 0 1 1 0 0 0 0 0 0
b 1 0 1 1 1 0 0 0 0
c 1 1 0 1 1 0 0 0 0
d 0 1 1 0 1 1 0 0 0
e 0 1 1 1 0 1 0 0 0
f 0 0 0 1 1 0 0 0 0
g 0 0 0 0 0 0 0 1 0
h 0 0 0 0 0 0 1 0 1
i 0 0 0 0 0 0 1 1 0
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a e
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Adjacency matrix and adjacency list representations for the example graph.

undirected graphs, we can improve the time to O(1+min{deg(u), deg(v)}) by simultaneously
scanning the neighbor lists of both u and v, stopping either we locate the edge or when we fall of
the end of a list.

The adjacency list data structure should immediately remind you of hash tables with chaining;
the two data structures are identical.³ Just as with chained hash tables, we can make adjacency
lists more efficient by using something other than a linked list to store the neighbors of each
vertex. For example, if we use a hash table with constant load factor, when we can detect edges
in O(1) time, just as with an adjacency matrix. (Most hash give us only O(1) expected time, but
we can get O(1) worst-case time using cuckoo hashing.)

The following table summarizes the performance of the various standard graph data structures.
Stars∗ indicate expected amortized time bounds for maintaining dynamic hash tables.

Adjacency Standard adjacency list Adjacency list
matrix (linked lists) (hash tables)

Space Θ(V 2) Θ(V + E) Θ(V + E)
Time to test if uv ∈ E O(1) O(1+min{deg(u), deg(v)}) = O(V ) O(1)
Time to test if u�v ∈ E O(1) O(1+ deg(u)) = O(V ) O(1)

Time to list the neighbors of v O(V ) O(1+ deg(v)) O(1+ deg(v))
Time to list all edges Θ(V 2) Θ(V + E) Θ(V + E)
Time to add edge uv O(1) O(1) O(1)∗

Time to delete edge uv O(1) O(deg(u) + deg(v)) = O(V ) O(1)∗

At this point, one might reasonably wonder why anyone would ever use an adjacency
matrix; after all, adjacency lists with hash tables support the same operations in the same time,
using less space. Similarly, why would anyone use linked lists in an adjacency list structure to
store neighbors, instead of hash tables? Although the main reason in practice is almost surely
tradition—If it was good enough for your grandfather’s code, it should be good enough for
yours!—there are some more principled arguments. One reason is that the standard adjacency
lists are usually good enough; most graph algorithms never actually ask whether a given edge is
present or absent! Another reason is that for sufficiently dense graphs, adjacency matrices are
simpler and more efficient in practice, because they avoid the overhead of chasing pointers or
computing hash functions.

But perhaps the most compelling reason is that many graphs are implicitly represented by
adjacency matrices and standard adjacency lists. For example, intersection graphs are usually
represented as a list of the underlying geometric objects. As long as we can test whether two

³For some reason, adjacency lists are always drawn with horizontal lists, while chained hash tables are always
drawn with vertical lists. Don’t ask me; I just work here.

5



Algorithms Lecture 18: Basic Graph Algorithms [Fa’14]

objects intersect in constant time, we can apply any graph algorithm to an intersection graph by
pretending that it is stored explicitly as an adjacency matrix.

Similarly, any data structure composed from records with pointers between them can be seen
as a directed graph; graph algorithms can be applied to these data structures by pretending that
the graph is stored in a standard adjacency list. Similarly, we can apply any graph algorithm
to a configuration graph as though it were given to us as a standard adjacency list, provided
we can enumerate all possible moves from a given configuration in constant time each. In both
of these contexts, we can enumerate the edges leaving any vertex in time proportional to its
degree, but we cannot necessarily determine in constant time if two vertices are connected. (Is
there a pointer from this record to that record? Can we get from this configuration to that
configuration in one move?) Thus, a standard adjacency list, with neighbors stored in linked
lists, is the appropriate model data structure.

18.4 Traversing Connected Graphs

To keep things simple, we’ll consider only undirected graphs for the rest of this lecture, although
the algorithms also work for directed graphs with minimal changes.

Suppose we want to visit every node in a connected graph (represented either explicitly or
implicitly). Perhaps the simplest graph-traversal algorithm is depth-first search. This algorithm
can be written either recursively or iteratively. It’s exactly the same algorithm either way; the
only difference is that we can actually see the “recursion” stack in the non-recursive version. Both
versions are initially passed a source vertex s.

RecursiveDFS(v):
if v is unmarked

mark v
for each edge vw

RecursiveDFS(w)

IterativeDFS(s):
Push(s)
while the stack is not empty

v← Pop
if v is unmarked

mark v
for each edge vw

Push(w)

Depth-first search is just one (perhaps the most common) species of a general family of graph
traversal algorithms. The generic graph traversal algorithm stores a set of candidate edges in
some data structure that I’ll call a “bag”. The only important properties of a “bag” are that we can
put stuff into it and then later take stuff back out. (In C++ terms, think of the bag as a template
for a real data structure.) A stack is a particular type of bag, but certainly not the only one. Here
is the generic traversal algorithm:

Traverse(s):
put s into the bag
while the bag is not empty

take v from the bag
if v is unmarked

mark v
for each edge vw

put w into the bag

This traversal algorithm clearly marks each vertex in the graph at most once. In order to show
that it visits every node in a connected graph at least once, we modify the algorithm slightly;
the modifications are highlighted in red. Instead of keeping vertices in the bag, the modified
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algorithm stores pairs of vertices. This modification allows us to remember, whenever we visit a
vertex v for the first time, which previously-visited neighbor vertex put v into the bag. We call
this earlier vertex the parent of v.

Traverse(s):
put (∅, s) in bag
while the bag is not empty

take (p, v) from the bag (?)
if v is unmarked

mark v
parent(v)← p
for each edge vw (†)

put (v, w) into the bag (??)

Lemma 1. Traverse(s) marks every vertex in any connected graph exactly once, and the set of pairs
(v,parent(v)) with parent(v) 6=∅ defines a spanning tree of the graph.

Proof: The algorithm marks s. Let v be any vertex other than s, and let (s, . . . , u, v) be the path
from s to v with the minimum number of edges. Since the graph is connected, such a path always
exists. (If s and v are neighbors, then u= s, and the path has just one edge.) If the algorithm
marks u, then it must put (u, v) into the bag, so it must later take (u, v) out of the bag, at which
point v must be marked. Thus, by induction on the shortest-path distance from s, the algorithm
marks every vertex in the graph, which implies that parent(v) is well-defined for every vertex v.

The algorithm clearly marks every vertex at most once, so it must mark every vertex exactly
once.

Call any pair (v,parent(v)) with parent(v) 6= ∅ a parent edge. For any node v, the path of
parent edges (v, parent(v), parent(parent(v)), . . . ) eventually leads back to s, so the set of parent
edges form a connected graph. Clearly, both endpoints of every parent edge are marked, and the
number of parent edges is exactly one less than the number of vertices. Thus, the parent edges
form a spanning tree. �

The exact running time of the traversal algorithm depends on how the graph is represented
and what data structure is used as the ‘bag’, but we can make a few general observations. Because
each vertex is marked at most once, the for loop (†) is executed at most V times. Each edge uv is
put into the bag exactly twice; once as the pair (u, v) and once as the pair (v, u), so line (??) is
executed at most 2E times. Finally, we can’t take more things out of the bag than we put in, so
line (?) is executed at most 2E + 1 times.

18.5 Examples

Let’s first assume that the graph is represented by a standard adjacency list, so that the overhead
of the for loop (†) is only constant time per edge.

• If we implement the ‘bag’ using a stack, we recover our original depth-first search algorithm.
Each execution of (?) or (??) takes constant time, so the algorithms runs in O(V + E) time
. If the graph is connected, we have V ≤ E + 1, and so we can simplify the running time to
O(E). The spanning tree formed by the parent edges is called a depth-first spanning tree.
The exact shape of the tree depends on the start vertex and on the order that neighbors are
visited in the for loop (†), but in general, depth-first spanning trees are long and skinny.
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• If we use a queue instead of a stack, we get breadth-first search. Again, each execution of
(?) or (??) takes constant time, so the overall running time for connected graphs is still
O(E). In this case, the breadth-first spanning tree formed by the parent edges contains
shortest paths from the start vertex s to every other vertex in its connected component.
We’ll see shortest paths again in a future lecture. Again, exact shape of a breadth-first
spanning tree depends on the start vertex and on the order that neighbors are visited in
the for loop (†), but in general, breadth-first spanning trees are short and bushy.
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A depth-first spanning tree and a breadth-first spanning tree
of one component of the example graph, with start vertex a.

• Now suppose the edges of the graph are weighted. If we implement the ‘bag’ using
a priority queue, always extracting the minimum-weight edge in line (?), the resulting
algorithm is reasonably called shortest-first search. In this case, each execution of (?) or
(??) takes O(log E) time, so the overall running time is O(V + E log E), which simplifies
to O(E log E) if the graph is connected. For this algorithm, the set of parent edges form
the minimum spanning tree of the connected component of s. Surprisingly, as long as all
the edge weights are distinct, the resulting tree does not depend on the start vertex or the
order that neighbors are visited; in this case, there is only one minimum spanning tree.
We’ll see minimum spanning trees again in the next lecture.

If the graph is represented using an adjacency matrix instead of an adjacency list, finding all
the neighbors of each vertex in line (†) takes O(V ) time. Thus, depth- and breadth-first search
each run in O(V 2) time, and ‘shortest-first search’ runs in O(V 2 + E log E) = O(V 2 log V ) time.

18.6 Searching Disconnected Graphs

If the graph is disconnected, then Traverse(s) only visits the nodes in the connected component
of the start vertex s. If we want to visit all the nodes in every component, we can use the following
‘wrapper’ around our generic traversal algorithm. Since Traverse computes a spanning tree of
one component, TraverseAll computes a spanning forest of the entire graph.

TraverseAll(s):
for all vertices v

if v is unmarked
Traverse(v)

Surprisingly, a few well-known algorithms textbooks claim that this wrapper can only be used
with depth-first search. They’re wrong.

Exercises

1. Prove that the following definitions are all equivalent.

• A tree is a connected acyclic graph.
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• A tree is one component of a forest.

• A tree is a connected graph with at most V − 1 edges.

• A tree is a minimal connected graph; removing any edgemakes the graph disconnected.

• A tree is an acyclic graph with at least V − 1 edges.

• A tree is a maximal acyclic graph; adding an edge between any two vertices creates a
cycle.

2. Prove that any connected acyclic graph with n≥ 2 vertices has at least two vertices with
degree 1. Do not use the words “tree” or “leaf”, or any well-known properties of trees;
your proof should follow entirely from the definitions of “connected” and “acyclic”.

3. Let G be a connected graph, and let T be a depth-first spanning tree of G rooted at some
node v. Prove that if T is also a breadth-first spanning tree of G rooted at v, then G = T .

4. Whenever groups of pigeons gather, they instinctively establish a pecking order. For any
pair of pigeons, one pigeon always pecks the other, driving it away from food or potential
mates. The same pair of pigeons always chooses the same pecking order, even after years
of separation, no matter what other pigeons are around. Surprisingly, the overall pecking
order can contain cycles—for example, pigeon A pecks pigeon B, which pecks pigeon C ,
which pecks pigeon A.

(a) Prove that any finite set of pigeons can be arranged in a row from left to right so that
every pigeon pecks the pigeon immediately to its left. Pretty please.

(b) Suppose you are given a directed graph representing the pecking relationships among
a set of n pigeons. The graph contains one vertex per pigeon, and it contains an edge
i� j if and only if pigeon i pecks pigeon j. Describe and analyze an algorithm to
compute a pecking order for the pigeons, as guaranteed by part (a).

5. A graph (V, E) is bipartite if the vertices V can be partitioned into two subsets L and R,
such that every edge has one vertex in L and the other in R.

(a) Prove that every tree is a bipartite graph.

(b) Describe and analyze an efficient algorithm that determines whether a given undi-
rected graph is bipartite.

6. An Euler tour of a graph G is a closed walk through G that traverses every edge of G
exactly once.

(a) Prove that a connected graph G has an Euler tour if and only if every vertex has even
degree.

(b) Describe and analyze an algorithm to compute an Euler tour in a given graph, or
correctly report that no such graph exists.
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7. The d-dimensional hypercube is the graph defined as follows. There are 2d vertices, each
labeled with a different string of d bits. Two vertices are joined by an edge if their labels
differ in exactly one bit.

(a) A Hamiltonian cycle in a graph G is a cycle of edges in G that visits every vertex of G
exactly once. Prove that for all d ≥ 2, the d-dimensional hypercube has a Hamiltonian
cycle.

(b) Which hypercubes have an Euler tour (a closed walk that traverses every edge exactly
once)? [Hint: This is very easy.]

8. Snakes and Ladders is a classic board game, originating in India no later than the 16th
century. The board consists of an n× n grid of squares, numbered consecutively from 1
to n2, starting in the bottom left corner and proceeding row by row from bottom to top,
with rows alternating to the left and right. Certain pairs of squares in this grid, always in
different rows, are connected by either “snakes” (leading down) or “ladders” (leading up).
Each square can be an endpoint of at most one snake or ladder.

1 2 3 4 5 6 7 8 9 10

20 19 18 17 16 15 14 13 12 11

21 22 23 24 25 26 27 28 29 30

40 39 38 37 36 35 34 33 32 31

41 42 43 44 45 46 47 48 49 50

60 59 58 57 56 55 54 53 52 51

61 62 63 64 65 66 67 68 69 70

80 79 78 77 76 75 74 73 72 71

81 82 83 84 85 86 87 88 89 90

100 99 98 97 96 95 94 93 92 91
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41 42 43 44 45 46 47 48 49 50

60 59 58 57 56 55 54 53 52 51

61 62 63 64 65 66 67 68 69 70

80 79 78 77 76 75 74 73 72 71

81 82 83 84 85 86 87 88 89 90

100 99 98 97 96 95 94 93 92 91
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60 59 58 57 56 55 54 53 52 51

61 62 63 64 65 66 67 68 69 70

80 79 78 77 76 75 74 73 72 71

81 82 83 84 85 86 87 88 89 90

100 99 98 97 96 95 94 93 92 91
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41 42 43 44 45 46 47 48 49 50
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61 62 63 64 65 66 67 68 69 70

80 79 78 77 76 75 74 73 72 71

81 82 83 84 85 86 87 88 89 90

100 99 98 97 96 95 94 93 92 91

1 2 3 4 5 6 7 8 9 10

20 19 18 17 16 15 14 13 12 11

21 22 23 24 25 26 27 28 29 30

40 39 38 37 36 35 34 33 32 31

41 42 43 44 45 46 47 48 49 50

60 59 58 57 56 55 54 53 52 51

61 62 63 64 65 66 67 68 69 70

80 79 78 77 76 75 74 73 72 71

81 82 83 84 85 86 87 88 89 90

100 99 98 97 96 95 94 93 92 91

A typical Snakes and Ladders board.
Upward straight arrows are ladders; downward wavy arrows are snakes.

You start with a token in cell 1, in the bottom left corner. In each move, you advance
your token up to k positions, for some fixed constant k. If the token ends the move at the
top end of a snake, it slides down to the bottom of that snake. Similarly, if the token ends
the move at the bottom end of a ladder, it climbs up to the top of that ladder.

Describe and analyze an algorithm to compute the smallest number of moves required
for the token to reach the last square of the grid.

9. A number maze is an n×n grid of positive integers. A token starts in the upper left corner;
your goal is to move the token to the lower-right corner. On each turn, you are allowed to
move the token up, down, left, or right; the distance you may move the token is determined
by the number on its current square. For example, if the token is on a square labeled 3,
then you may move the token three steps up, three steps down, three steps left, or three
steps right. However, you are never allowed to move the token off the edge of the board.

Describe and analyze an efficient algorithm that either returns the minimum number
of moves required to solve a given number maze, or correctly reports that the maze has no
solution.
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A 5× 5 number maze that can be solved in eight moves.

10. The following puzzle was invented by the infamous Mongolian puzzle-warrior Vidrach Itky
Leda in the year 1473. The puzzle consists of an n× n grid of squares, where each square
is labeled with a positive integer, and two tokens, one red and the other blue. The tokens
always lie on distinct squares of the grid. The tokens start in the top left and bottom right
corners of the grid; the goal of the puzzle is to swap the tokens.

In a single turn, you may move either token up, right, down, or left by a distance
determined by the other token. For example, if the red token is on a square labeled 3,
then you may move the blue token 3 steps up, 3 steps left, 3 steps right, or 3 steps down.
However, you may not move a token off the grid or to the same square as the other token.

1 2 4 3

3 4 1 2

3 1 2 3

2 3 1 2

1 2 4 3

3 4 1 2

3 1 2 3

2 3 1 2

1 2 4 3

3 4 1 2

3 1 2 3

2 3 1 2

1 2 4 3

3 4 1 2

3 1 2 3

2 3 1 2

1 2 4 3

3 4 1 2

3 1 2 3

2 3 1 2

1 2 4 3

3 4 1 2

3 1 2 3

2 3 1 2

A five-move solution for a 4× 4 Vidrach Itky Leda puzzle.

Describe and analyze an efficient algorithm that either returns the minimum number
of moves required to solve a given Vidrach Itky Leda puzzle, or correctly reports that the
puzzle has no solution. For example, given the puzzle above, your algorithm would return
the number 5.

11. A rolling die maze is a puzzle involving a standard six-sided die (a cube with numbers on
each side) and a grid of squares. You should imagine the grid lying on top of a table; the
die always rests on and exactly covers one square. In a single step, you can roll the die 90
degrees around one of its bottom edges, moving it to an adjacent square one step north,
south, east, or west.

Rolling a die.

Some squares in the grid may be blocked; the die can never rest on a blocked square.
Other squares may be labeled with a number; whenever the die rests on a labeled square,
the number of pips on the top face of the die must equal the label. Squares that are neither
labeled nor marked are free. You may not roll the die off the edges of the grid. A rolling
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die maze is solvable if it is possible to place a die on the lower left square and roll it to the
upper right square under these constraints.

For example, here are two rolling die mazes. Black squares are blocked. The maze on
the left can be solved by placing the die on the lower left square with 1 pip on the top face,
and then rolling it north, then north, then east, then east. The maze on the right is not
solvable.

1

1

1

1
Two rolling die mazes. Only the maze on the left is solvable.

(a) Suppose the input is a two-dimensional array L[1 .. n][1 .. n], where each entry L[i][ j]
stores the label of the square in the ith row and jth column, where 0 means the square
is free and −1 means the square is blocked. Describe and analyze a polynomial-time
algorithm to determine whether the given rolling die maze is solvable.

?(b) Now suppose the maze is specified implicitly by a list of labeled and blocked squares.
Specifically, suppose the input consists of an integer M , specifying the height and
width of the maze, and an array S[1 .. n], where each entry S[i] is a triple (x , y, L)
indicating that square (x , y) has label L. As in the explicit encoding, label−1 indicates
that the square is blocked; free squares are not listed in S at all. Describe and analyze
an efficient algorithm to determine whether the given rolling die maze is solvable.
For full credit, the running time of your algorithm should be polynomial in the input
size n.

[Hint: You have some freedom in how to place the initial die. There are rolling die mazes
that can only be solved if the initial position is chosen correctly.]

12. Racetrack (also known as Graph Racers and Vector Rally) is a two-player paper-and-pencil
racing game that Jeff played on the bus in 5th grade.⁴ The game is played with a track
drawn on a sheet of graph paper. The players alternately choose a sequence of grid points
that represent the motion of a car around the track, subject to certain constraints explained
below.

Each car has a position and a velocity, both with integer x- and y-coordinates. A subset
of grid squares is marked as the starting area, and another subset is marked as the finishing
area. The initial position of each car is chosen by the player somewhere in the starting
area; the initial velocity of each car is always (0, 0). At each step, the player optionally
increments or decrements either or both coordinates of the car’s velocity; in other words,
each component of the velocity can change by at most 1 in a single step. The car’s new
position is then determined by adding the new velocity to the car’s previous position. The
new position must be inside the track; otherwise, the car crashes and that player loses the
race. The race ends when the first car reaches a position inside the finishing area.

⁴The actual game is a bit more complicated than the version described here. See http://harmmade.com/vectorracer/
for an excellent online version.
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Suppose the racetrack is represented by an n × n array of bits, where each 0 bit
represents a grid point inside the track, each 1 bit represents a grid point outside the track,
the ‘starting area’ is the first column, and the ‘finishing area’ is the last column.

Describe and analyze an algorithm to find the minimum number of steps required to
move a car from the starting line to the finish line of a given racetrack. [Hint: Build a
graph. What are the vertices? What are the edges? What problem is this?]

velocity position

(0, 0) (1,5)
(1, 0) (2,5)
(2,−1) (4,4)
(3, 0) (7,4)
(2, 1) (9,5)
(1, 2) (10,7)
(0, 3) (10,10)
(−1, 4) (9,14)
(0, 3) (9,17)
(1,2) (10,19)
(2,2) (12,21)
(2,1) (14,22)
(2,0) (16,22)
(1,−1) (17,21)
(2,−1) (19,20)
(3,0) (22,20)
(3,1) (25,21)

ST
A
RT

FIN
ISH

A 16-step Racetrack run, on a 25× 25 track. This is not the shortest run on this track.

?13. Draughts (also known as checkers) is a game played on an m×m grid of squares, alternately
colored light and dark. (The game is usually played on an 8× 8 or 10× 10 board, but
the rules easily generalize to any board size.) Each dark square is occupied by at most
one game piece (usually called a checker in the U.S.), which is either black or white; light
squares are always empty. One player (‘White’) moves the white pieces; the other (‘Black’)
moves the black pieces.

Consider the following simple version of the game, essentially American checkers or
British draughts, but where every piece is a king.⁵ Pieces can be moved in any of the four
diagonal directions, either one or two steps at a time. On each turn, a player either moves
one of her pieces one step diagonally into an empty square, or makes a series of jumps
with one of her checkers. In a single jump, a piece moves to an empty square two steps
away in any diagonal direction, but only if the intermediate square is occupied by a piece
of the opposite color; this enemy piece is captured and immediately removed from the
board. Multiple jumps are allowed in a single turn as long as they are made by the same
piece. A player wins if her opponent has no pieces left on the board.

⁵Most other variants of draughts have ‘flying kings’, which behave very differently than what’s described here. In
particular, if we allow flying kings, it is actually NP-hard to determine which move captures the most enemy pieces.
The most common international version of draughts also has a forced-capture rule, which requires each player to
capture the maximum possible number of enemy pieces in each move. Thus, just following the rules is NP-hard!
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Describe an algorithm that correctly determines whether White can capture every black
piece, thereby winning the game, in a single turn. The input consists of the width of the
board (m), a list of positions of white pieces, and a list of positions of black pieces. For
full credit, your algorithm should run in O(n) time, where n is the total number of pieces.
[Hint: The greedy strategy—make arbitrary jumps until you get stuck—does not always find
a winning sequence of jumps even when one exists. See problem ??. Parity, parity, parity.]

1

5

6

4

8

7

9

2

3

10

11

White wins in one turn.

White cannot win in one turn from either of these positions.

© Copyright 2014 Jeff Erickson.
This work is licensed under a Creative Commons License (http://creativecommons.org/licenses/by-nc-sa/4.0/).

Free distribution is strongly encouraged; commercial distribution is expressly forbidden.
See http://www.cs.uiuc.edu/~jeffe/teaching/algorithms for the most recent revision.

14



Algorithms Lecture 19: Depth-First Search [Fa’14]

Ts’ui Pe must have said once: I am withdrawing to write a book.
And another time: I am withdrawing to construct a labyrinth.
Every one imagined two works;
to no one did it occur that the book and the maze were one and the same thing.

— Jorge Luis Borges, “El jardín de senderos que se bifurcan” (1942)
English translation (“The Garden of Forking Paths”) by Donald A. Yates (1958)

“Com’è bello il mondo e come sono brutti i labirinti!” dissi sollevato.
“Come sarebbe bello il mondo se ci fosse una regola per girare nei labirinti,”
rispose il mio maestro.

[“How beautiful the world is, and how ugly labyrinths are,” I said, relieved.
“How beautiful the world would be if there were a procedure for moving through labyrinths,”
my master replied.]

— Umberto Eco, Il nome della rosa (1980)
English translation (The Name of the Rose) by William Weaver (1983)

At some point, the learning stops and the pain begins.

— Rao Kosaraju

19 Depth-First Search

Recall from the previous lecture the recursive formulation of depth-first search in undirected
graphs.

DFS(v):
if v is unmarked

mark v
for each edge vw

DFS(w)

We can make this algorithm slightly faster (in practice) by checking whether a node is marked
before we recursively explore it. This modification ensures that we call DFS(v) only once for
each vertex v. We can further modify the algorithm to define parent pointers and other useful
information about the vertices. This additional information is computed by two black-box
subroutines PreVisit and PostVisit, which we leave unspecified for now.

DFS(v):
mark v
PreVisit(v)
for each edge vw

if w is unmarked
parent(w )← v
DFS(w)

PostVisit(v)

We can search any connected graph by unmarking all vertices and then calling DFS(s) for an
arbitrary start vertex s. As we argued in the previous lecture, the subgraph of all parent edges
v�parent(v) defines a spanning tree of the graph, which we consider to be rooted at the start
vertex s.

© Copyright 2014 Jeff Erickson.
This work is licensed under a Creative Commons License (http://creativecommons.org/licenses/by-nc-sa/4.0/).

Free distribution is strongly encouraged; commercial distribution is expressly forbidden.
See http://www.cs.uiuc.edu/~jeffe/teaching/algorithms for the most recent revision.
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Lemma 1. Let T be a depth-first spanning tree of a connected undirected graph G, computed by
calling DFS(s). For any node v, the vertices that are marked during the execution of DFS(v) are the
proper descendants of v in T .

Proof: T is also the recursion tree for DFS(s). �

Lemma 2. Let T be a depth-first spanning tree of a connected undirected graph G. For every edge
vw in G, either v is an ancestor of w in T , or v is a descendant of w in T .

Proof: Assume without loss of generality that v is marked before w. Then w is unmarked when
DFS(v) is invoked, but marked when DFS(v) returns, so the previous lemma implies that w is a
proper descendant of v in T . �

Lemma 2 implies that any depth-first spanning tree T divides the edges of G into two classes:
tree edges, which appear in T , and back edges, which connect some node in T to one of its
ancestors.

19.1 Counting and Labeling Components

For graphs that might be disconnected, we can compute a depth-first spanning forest by calling
the following wrapper function; again, we introduce a generic black-box subroutine Preprocess
to perform any necessary preprocessing for the PostVisit and PostVisit functions.

DFSAll(G):
Preprocess(G)
for all vertices v

unmark v
for all vertices v

if v is unmarked
DFS(v)

With very little additional effort, we can count the components of a graph; we simply
increment a counter inside the wrapper function. Moreover, we can also record which component
contains each vertex in the graph by passing this counter to DFS. The single line comp(v)← count
is a trivial example of PreVisit. (And the absence of code after the for loop is a vacuous example
of PostVisit.)

CountAndLabel(G):
count← 0
for all vertices v

unmark v
for all vertices v

if v is unmarked
count← count+ 1
LabelComponent(v, count)

return count

LabelComponent(v, count):
mark v
comp(v)← count
for each edge vw

if w is unmarked
LabelComponent(w, count)

It should be emphasized that depth-first search is not specifically required here; any other
instantiation of our earlier generic traversal algorithm (“whatever-first search”) can be used to
count components in the same asymptotic running time. However, most of the other algorithms
we consider in this note do specifically require depth-first search.
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19.2 Preorder and Postorder Labeling

You should already be familiar with preorder and postorder traversals of rooted trees, both of
which can be computed using from depth-first search. Similar traversal orders can be defined for
arbitrary graphs by passing around a counter as follows:

PrePostLabel(G):
for all vertices v

unmark v
clock← 0
for all vertices v

if v is unmarked
clock← LabelComponent(v, clock)

LabelComponent(v, clock):
mark v
pre(v)← clock
clock← clock+ 1
for each edge vw

if w is unmarked
clock← LabelComponent(w, clock)

post(v)← clock
clock← clock+ 1
return clock

Equivalently, if we’re willing to use (shudder) global variables, we can use our generic depth-
first-search algorithm with the following subroutines Preprocess, PreVisit, and PostVisit.

Preprocess(G):
clock← 0

PreVisit(v):
pre(v)← clock
clock← clock+ 1

PostVisit(v):
post(v)← clock
clock← clock+ 1

Consider two vertices u and v, where u is marked after v. Then we must have pre(u)< pre(v).
Moreover, Lemma 1 implies that if v is a descendant of u, then post(u)> post(v), and otherwise,
pre(v) > post(u). Thus, for any two vertices u and v, the intervals [pre(u),post(u)] and
[pre(v),post(v)] are either disjoint or nested; in particular, if uv is an edge, Lemma 2 implies that
the intervals must be nested.

19.3 Directed Graphs and Reachability

The recursive algorithm requires only one minor change to handle directed graphs:

DFSAll(G):
for all vertices v

unmark v
for all vertices v

if v is unmarked
DFS(v)

DFS(v):
mark v
PreVisit(v)
for each edge v�w

if w is unmarked
DFS(w)

PostVisit(v)

However, we can no longer use this modified algorithm to count components. Suppose G is a
single directed path. Depending on the order that we choose to visit the nodes in DFSAll, we
may discover any number of “components” between 1 and n. All that we can guarantee is that
the “component” numbers computed by DFSAll do not increase as we traverse the path. In fact,
the real problem is that the definition of “component” is only suitable for undirected graphs.

Instead, for directed graphs we rely on a more subtle notion of reachability. We say that
a node v is reachable from another node u in a directed graph G—or more simply, that u can
reach v—if and only if there is a directed path in G from u to v. Let Reach(u) denote the set of
vertices that are reachable from u (including u itself). A simple inductive argument proves that
Reach(u) is precisely the subset of nodes that are marked by calling DFS(u).

3



Algorithms Lecture 19: Depth-First Search [Fa’14]

19.4 Directed Acyclic Graphs

A directed acyclic graph or dag is a directed graph with no directed cycles. Any vertex in a dag
that has no incoming vertices is called a source; any vertex with no outgoing edges is called a
sink. Every dag has at least one source and one sink (Do you see why?), but may have more than
one of each. For example, in the graph with n vertices but no edges, every vertex is a source and
every vertex is a sink.

We can check whether a given directed graph G is a dag in O(V + E) time as follows. First, to
simplify the algorithm, we add a single artificial source s, with edges from s to every other vertex.
Let G + s denote the resulting augmented graph. Because s has no outgoing edges, no directed
cycle in G + s goes through s, which implies that G + s is a dag if and only if G is a dag. Then we
preform a depth-first search of G + s starting at the new source vertex s; by construction every
other vertex is reachable from s, so this search visits every node in the graph.

Instead of vertices being merely marked or unmarked, each vertex has one of three statuses—
New, Active, or Done—which depend on whether we have started or finished the recursive
depth-first search at that vertex. (Since this algorithm never uses parent pointers, I’ve removed
the line “parent(w)← v”.)

IsAcyclic(G):
add vertex s
for all vertices v 6= s

add edge s�v
status(v)← New

return IsAcyclicDFS(s)

IsAcyclicDFS(v):
status(v)← Active
for each edge v�w

if status(w) = Active
return False

else if status(w) = New
if IsAcyclicDFS(w) = False

return False
status(v)← Done
return True

Suppose the algorithm returns False. Then the algorithm must discover an edge v�w such
that status(w) = Active. The active vertices are precisely the vertices currently on the recursion
stack, which are all ancestors of the current vertex v. Thus, there is a directed path from w to v,
and so the graph has a directed cycle.

On the other hand, suppose G has a directed cycle. Let w be the first vertex in this cycle that
we visit, and let v�w be the edge leading into v in the same cycle. Because there is a directed
path from w to v, we must call IsAcyclicDFS(v) during the execution of IsAcyclicDFS(w), unless
we discover some other cycle first. During the execution of IsAcyclicDFS(v), we consider the
edge v�w, discover that status(w) = Active. The return value False bubbles up through all the
recursive calls to the top level.

We conclude that IsAcyclic(G) returns True if and only if G is a dag.

19.5 Topological Sort

A topological ordering of a directed graph G is a total order ≺ on the vertices such that u≺ v
for every edge u�v. Less formally, a topological ordering arranges the vertices along a horizontal
line so that all edges point from left to right. A topological ordering is clearly impossible if the
graph G has a directed cycle—the rightmost vertex of the cycle would have an edge pointing to
the left! On the other hand, every dag has a topological order, which can be computed by either
of the following algorithms.
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TopologicalSort(G) :
n← |V |
for i← 1 to n

v← any source in G
S[i]← v
delete v and all edges leaving v

return S[1 .. n]

TopologicalSort(G) :
n← |V |
for i← n down to 1

v← any sink in G
S[1]← v
delete v and all edges entering v

return S[1 .. n]

The correctness of these algorithms follow inductively from the observation that deleting a
vertex cannot create a cycle.

This simple algorithm has two major disadvantages. First, the algorithm actually destroys the
input graph. This destruction can be avoided by simply marking the “deleted” vertices, instead
of actually deleting them, and defining a vertex to be a source (sink) if none of its incoming
(outgoing) edges come from (lead to) an unmarked vertex. The more serious problem is that
finding a source vertex seems to require Θ(V ) time in the worst case, which makes the running
time of this algorithm Θ(V 2). In fact, a careful implementation of this algorithm computes a
topological ordering in O(V + E) time without removing any edges.

But there is a simpler linear-time algorithm based on our earlier algorithm for deciding
whether a directed graph is acyclic. The new algorithm is based on the following observation:

Lemma 3. For any directed acyclic graph G, the first vertex marked Done by IsAcyclic(G) must be
a sink.

Proof: Let v be the first vertex marked Done during an execution of IsAcyclic. For the sake of
argument, suppose v has an outgoing edge v�w. When IsAcyclicDFS first considers the edge
v�w, there are three cases to consider.

• If status(w) = Done, then w is marked Done before v, which contradicts the definition of
v.

• If status(w) = New, the algorithm calls TopoSortDFS(w), which (among other computa-
tion) marks w Done. Thus, w is marked Done before v, which contradicts the definition of
v.

• If status(w) = Active, then G has a directed cycle, contradicting our assumption that G is
acyclic.

In all three cases, we have a contradiction, so v must be a sink. �

Thus, to topologically sort a dag G, it suffice to list the vertices in the reverse order of being
marked Done. For example, we could push each vertex onto a stack when we mark it Done, and
then pop every vertex off the stack.

TopologicalSort(G):
add vertex s
for all vertices v 6= s

add edge s�v
status(v)← New

TopoSortDFS(s)

for i ← 1 to V
S[i]← Pop

return S[1 .. V]

TopoSortDFS(v):
status(v)← Active
for each edge v�w

if status(w) = New
ProcessBackwardDFS(w)

else if status(w) = Active
fail gracefully

status(v)← Done
Push(v)
return True

5



Algorithms Lecture 19: Depth-First Search [Fa’14]

But maintaining a separate data structure is actually overkill. In most applications of
topological sort, an explicit sorted list of the vertices is not our actual goal; instead, we want to
performing some fixed computation at each vertex of the graph, either in topological order or
in reverse topological order. In this case, it is not necessary to record the topological order. To
process the graph in reverse topological order, we can just process each vertex at the end of its
recursive depth-first search.

ProcessBackward(G):
add vertex s
for all vertices v 6= s

add edge s�v
status(v)← New

ProcessBackwardDFS(s)

ProcessBackwardDFS(v):
status(v)← Active
for each edge v�w

if status(w) = New
ProcessBackwardDFS(w)

else if status(w) = Active
fail gracefully

status(v)← Done
Process(v)

If we already know that the input graph is acyclic, we can simplify the algorithm by simply
marking vertices instead of labeling them Active or Done.

ProcessDagBackward(G):
add vertex s
for all vertices v 6= s

add edge s�v
unmark v

ProcessDagBackwardDFS(s)

ProcessDagBackwardDFS(v):
mark v
for each edge v�w

if w is unmarked
ProcessDagBackwardDFS(w)

Process(v)

Except for the addition of the artificial source vertex s, which we need to ensure that every vertex
is visited, this is just the standard depth-first search algorithm, with PostVisit renamed to
Process!

The simplest way to process a dag in forward topological order is to construct the reversal of
the input graph, which is obtained by replacing each each v�w with its reversal w�v. Reversing
a directed cycle gives us another directed cycle with the opposite orientation, so the reversal
of a dag is another dag. Every source in G becomes a sink in the reversal of G and vice versa;
it follows inductively that every topological ordering for the reversal of G is the reversal of a
topological ordering of G. The reversal of any directed graph can be computed in O(V + E) time;
the details of this construction are left as an easy exercise.

19.6 Every Dynamic Programming Algorithm?

Our topological sort algorithm is arguably the model fora wide class of dynamic programming
algorithms. Recall that the dependency graph of a recurrence has a vertex for every recursive
subproblem and an edge from one subproblem to another if evaluating the first subproblem
requires a recursive evaluation of the second. The dependency graph must be acyclic, or the
naïve recursive algorithm would never halt. Evaluating any recurrence with memoization is
exactly the same as performing a depth-first search of the dependency graph. In particular, a
vertex of the dependency graph is ‘marked’ if the value of the corresponding subproblem has
already been computed, and the black-box subroutine Process is a placeholder for the actual
value computation.

However, there are some minor differences between most dynamic programming algorithms
and topological sort.
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• First, in most dynamic programming algorithms, the dependency graph is implicit—the
nodes and edges are not given as part of the input. But this difference really is minor; as
long as we can enumerate recursive subproblems in constant time each, we can traverse
the dependency graph exactly as if it were explicitly stored in an adjacency list.

• More significantly, most dynamic programming recurrences have highly structured depen-
dency graphs. For example, the dependency graph for edit distance is a regular grid with
diagonals, and the dependency graph for optimal binary search trees is an upper triangular
grid with all possible rightward and upward edges. This regular structure lets us hard-wire
a topological order directly into the algorithm, so we don’t have to compute it at run time.

Conversely, we can use depth-first search to build dynamic programming algorithms for
problems with less structured dependency graphs. For example, consider the longest path
problem, which asks for the path of maximum total weight from one node s to another node t
in a directed graph G with weighted edges. The longest path problem is NP-hard in general
directed graphs, by an easy reduction from the traveling salesman problem, but it is easy to solve
in linear time if the input graph G is acyclic, as follows. For any node s, let LLP(s, t) denote the
Length of the Longest Path in G from s to t. If G is a dag, this function satisfies the recurrence

LLP(s, t) =

¨
0 if s = t,

maxs�v (`(s�v) + LLP(v, t)) otherwise,

where `(v�w) is the given weight (“length”) of edge v�w. In particular, if s is a sink but not
equal to t, then LLP(s, t) =∞. The dependency graph for this recurrence is the input graph G
itself: subproblem LLP(u, t) depends on subproblem LLP(v, t) if and only if u�v is an edge in
G. Thus, we can evaluate this recursive function in O(V + E) time by performing a depth-first
search of G, starting at s.

LongestPath(s, t):
if s = t

return 0

if LLP(s) is undefined
LLP(s)←∞
for each edge s�v

LLP(s)←max {LLP(v), `(s�v) + LongestPath(v, t)}
return LLP(s)

A surprisingly large number of dynamic programming problems (but not all) can be recast as
optimal path problems in the associated dependency graph.

19.7 Strong Connectivity

Let’s go back to the proper definition of connectivity in directed graphs. Recall that one vertex u
can reach another vertex v in a graph G if there is a directed path in G from u to v, and that
Reach(u) denotes the set of all vertices that u can reach. Two vertices u and v are strongly
connected if u can reach v and v can reach u. Tedious definition-chasing implies that strong
connectivity is an equivalence relation over the set of vertices of any directed graph, just as
connectivity is for undirected graphs. The equivalence classes of this relation are called the
strongly connected components (or more simply, the strong components) of G. If G has a single
strong component, we call it strongly connected. G is a directed acyclic graph if and only if
every strong component of G is a single vertex.
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It is straightforward to compute the strong component containing a single vertex v in O(V+E)
time. First we compute Reach(v) by calling DFS(v). Then we compute Reach−1(v) = {u | v ∈
Reach(u)} by searching the reversal of G. Finally, the strong component of v is the intersection
Reach(v) ∩ Reach−1(v). In particular, we can determine whether the entire graph is strongly
connected in O(V + E) time.

We can compute all the strong components in a directed graph by wrapping the single-strong-
component algorithm in a wrapper function, just as we did for depth-first search in undirected
graphs. However, the resulting algorithm runs in O(V E) time; there are at most V strong
components, and each requires O(E) time to discover. Surely we can do better! After all, we only
need O(V + E) time to decide whether every strong component is a single vertex.

19.8 Strong Components in Linear Time

For any directed graph G, the strong component graph scc(G) is another directed graph obtained
by contracting each strong component of G to a single (meta-)vertex and collapsing parallel
edges. The strong component graph is sometimes also called the meta-graph or condensation of
G. It’s not hard to prove (hint, hint) that scc(G) is always a dag. Thus, in principle, it is possible
to topologically order the strong components of G; that is, the vertices can be ordered so that
every backward edge joins two edges in the same strong component.

Let C be any strong component of G that is a sink in scc(G); we call C a sink component.
Every vertex in C can reach every other vertex in C , so a depth-first search from any vertex in C
visits every vertex in C . On the other hand, because C is a sink component, there is no edge
from C to any other strong component, so a depth-first search starting in C visits only vertices in
C . So if we can compute all the strong components as follows:

StrongComponents(G):
count← 0
while G is non-empty

count← count+ 1
v← any vertex in a sink component of G
C ← OneComponent(v, count)
remove C and incoming edges from G

At first glance, finding a vertex in a sink component quickly seems quite hard. However, we
can quickly find a vertex in a source component using the standard depth-first search. A source
component is a strong component of G that corresponds to a source in scc(G). Specifically, we
compute finishing times (otherwise known as post-order labeling) for the vertices of G as follows.

DFSAll(G):
for all vertices v

unmark v
clock← 0
for all vertices v

if v is unmarked
clock← DFS(v, clock)

DFS(v, clock):
mark v
for each edge v�w

if w is unmarked
clock← DFS(w, clock)

clock← clock+ 1
finish(v)← clock
return clock

Lemma 4. The vertex with largest finishing time lies in a source component of G.

Proof: Let v be the vertex with largest finishing time. Then DFS(v, clock) must be the last direct
call to DFS made by the wrapper algorithm DFSAll.
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Let C be the strong component of G that contains v. For the sake of argument, suppose there
is an edge x�y such that x 6∈ C and y ∈ C . Because v and y are strongly connected, y can
reach v, and therefore x can reach v. There are two cases to consider.

• If x is already marked when DFS(v) begins, then v must have been marked during the
execution of DFS(x), because x can reach v. But then v was already marked when DFS(v)
was called, which is impossible.

• If x is not marked when DFS(v) begins, then x must be marked during the execution of
DFS(v), which implies that v can reach x . Since x can also reach v, we must have x ∈ C ,
contradicting the definition of x .

We conclude that C is a source component of G. �

Essentially the same argument implies the following more general result.

Lemma 5. For any edge v�w in G, if finish(v) < finish(w), then v and w are strongly connected
in G.

Proof: Let v�w be an arbitrary edge of G. There are three cases to consider.If w is unmarked
when DFS(v) begins, then the recursive call to DFS(w) finishes w, which implies that finish(w)<
finish(v). If w is still active when DFS(v) begins, there must be a path from w to v, which implies
that v and w are strongly connected. Finally, if w is finished when DFS(v) begins, then clearly
finish(w)< finish(v). �

This observation is consistent with our earlier topological sorting algorithm; for every edge
v�w in a directed acyclic graph, we have finish(v)> finish(w).

It is easy to check (hint, hint) that any directed G has exactly the same strong components as
its reversal rev(G); in fact, we have rev(scc(G)) = scc(rev(G)). Thus, if we order the vertices of G
by their finishing times in DFSAll(rev(G)), the last vertex in this order lies in a sink component
of G. Thus, if we run DFSAll(G), visiting vertices in reverse order of their finishing times in
DFSAll(rev(G)), then each call to DFS visits exactly one strong component of G.

Putting everything together, we obtain the following algorithm to count and label the strong
components of a directed graph in O(V + E) time, first discovered (but never published) by
Rao Kosaraju in 1978, and then independently rediscovered by Micha Sharir in 1981. The
Kosaraju-Sharir algorithm has two phases. The first phase performs a depth-first search of the
reversal of G, pushing each vertex onto a stack when it is finished. In the second phase, we
perform another depth-first search of the original graph G, considering vertices in the order they
appear on the stack.

9
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KosarajuSharir(G):
〈〈Phase 1: Push in finishing order〉〉
unmark all vertices
for all vertices v

if v is unmarked
clock← RevPushDFS(v)

〈〈Phase 2: DFS in stack order〉〉
unmark all vertices
count← 0
while the stack is non-empty

v ← Pop
if v is unmarked

count← count+ 1
LabelOneDFS(v, count)

RevPushDFS(v):
mark v
for each edge v�u in rev(G)

if u is unmarked
RevPushDFS(u)

Push(v)

LabelOneDFS(v, count):
mark v
label(v)← count
for each edge v�w in G

if w is unmarked
LabelOneDFS(w, count)

With further minor modifications, we can also compute the strongly connected component
graph scc(G) in O(V + E) time.

Exercises

0. (a) Describe an algorithm to compute the reversal rev(G) of a directed graph in O(V + E)
time.

(b) Prove that for any directed graph G, the strong component graph scc(G) is a dag.

(c) Prove that for any directed graph G, we have scc(rev(G)) = rev(scc(G)).

(d) Suppose S and T are two strongly connected components in a directed graph G.
Prove that finish(u)< finish(v) for all vertices u ∈ S and v ∈ T .

1. A polygonal path is a sequence of line segments joined end-to-end; the endpoints of these
line segments are called the vertices of the path. The length of a polygonal path is the sum
of the lengths of its segments. A polygonal path with vertices (x1, y1), (x2, y2), . . . , (xk, yk)
is monotonically increasing if x i < x i+1 and yi < yi+1 for every index i—informally, each
vertex of the path is above and to the right of its predecessor.

A monotonically increasing polygonal path with seven vertices through a set of points

Suppose you are given a set S of n points in the plane, represented as two arrays
X [1 .. n] and Y [1 .. n]. Describe and analyze an algorithm to compute the length of the
maximum-length monotonically increasing path with vertices in S. Assume you have
a subroutine Length(x , y, x ′, y ′) that returns the length of the segment from (x , y) to
(x ′, y ′).
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2. Let G = (V, E) be a given directed graph.

(a) The transitive closure GT is a directed graph with the same vertices as G, that contains
any edge u�v if and only if there is a directed path from u to v in G. Describe an
efficient algorithm to compute the transitive closure of G.

(b) A transitive reduction GTR is a graph with the smallest possible number of edges whose
transitive closure is GT . (The same graph may have several transitive reductions.)
Describe an efficient algorithm to compute the transitive reduction of G.

3. One of the oldest¹ algorithms for exploring graphs was proposed by Gaston Tarry in 1895.
The input to Tarry’s algorithm is a directed graph G that contains both directions of every
edge; that is, for every edge u�v in G, its reversal v�u is also an edge in G.

Tarry(G):
unmark all vertices of G
color all edges of G white
s← any vertex in G
RecTarry(s)

RecTarry(v):
mark v 〈〈“visit v”〉〉
if there is a white arc v�w

if w is unmarked
color w�v green

color v�w red ©
〈〈“traverse v�w”〉〉RecTarry(w)

else if there is a green arc v�w
color v�w red ©

〈〈“traverse v�w”〉〉RecTarry(w)

We informally say that Tarry’s algorithm “visits” vertex v every time it marks v, and it
“traverses” edge v�w when it colors that edge red and recursively calls RecTarry(w).

(a) Describe how to implement Tarry’s algorithm so that it runs in O(V + E) time.

(b) Prove that no directed edge in G is traversed more than once.

(c) When the algorithm visits a vertex v for the kth time, exactly how many edges into v
are red, and exactly how many edges out of v are red? [Hint: Consider the starting
vertex s separately from the other vertices.]

(d) Prove each vertex v is visited at most deg(v) times, except the starting vertex s, which
is visited at most deg(s) + 1 times. This claim immediately implies that Tarry(G)
terminates.

(e) Prove that when Tarry(G) ends, the last visited vertex is the starting vertex s.

(f) For every vertex v that Tarry(G) visits, prove that all edges into v and out of v are red
when Tarry(G) halts. [Hint: Consider the vertices in the order that they are marked
for the first time, starting with s, and prove the claim by induction.]

(g) Prove that Tarry(G) visits every vertex of G. This claim and the previous claim imply
that Tarry(G) traverses every edge of G exactly once.

4. Consider the following variant of Tarry’s graph-traversal algorithm; this variant traverses
green edges without recoloring them red and assigns two numerical labels to every vertex:

¹Even older graph-traversal algorithms were described by Charles Trémaux in 1882, by Christian Wiener in 1873,
and (implicitly) by Leonhard Euler in 1736. Wiener’s algorithm is equivalent to depth-first search in a connected
undirected graph.
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Tarry2(G):
unmark all vertices of G
color all edges of G white
s← any vertex in G
RecTarry(s, 1)

RecTarry2(v, clock):
if v is unmarked

pre(v)← clock; clock← clock+ 1
mark v

if there is a white arc v�w
if w is unmarked

color w�v green
color v�w red
RecTarry2(w, clock)

else if there is a green arc v�w
post(v)← clock; clock← clock+ 1
RecTarry2(w, clock)

Prove or disprove the following claim: When Tarry2(G) halts, the green edges define a
spanning tree and the labels pre(v) and post(v) define a preorder and postorder labeling
that are all consistent with a single depth-first search of G. In other words, prove or
disprove that Tarry2 produces the same output as depth-first search.

5. For any two nodes u and v in a directed acyclic graph G, the interval G[u, v] is the union
of all directed paths in G from u to v. Equivalently, G[u, v] consists of all vertices x such
that x ∈ Reach(u) and v ∈ Reach(x), together with all the edges in G connecting those
vertices.

Suppose we are given a directed acyclic graph G, in which every edge has a numerical
weight, which may be positive, negative, or zero. Describe an efficient algorithm to find
the maximum-weight interval in G, where the weight of any interval is the sum of the
weights of its vertices. [Hint: Don’t try to be clever.]

6. Let G be a directed acyclic graph with a unique source s and a unique sink t.

(a) A Hamiltonian path in G is a directed path in G that contains every vertex in G.
Describe an algorithm to determine whether G has a Hamiltonian path.

(b) Suppose the vertices of G have weights. Describe an efficient algorithm to find the
path from s to t with maximum total weight.

(c) Suppose we are also given an integer `. Describe an efficient algorithm to find
the maximum-weight path from s to t, such that the path contains at most ` edges.
(Assume there is at least one such path.)

(d) Suppose the vertices of G have integer labels, where label(s) = −∞ and label(t) =∞.
Describe an algorithm to find the path from s to t with the maximum number of
edges, such that the vertex labels define an increasing sequence.

(e) Describe an algorithm to compute the number of distinct paths from s to t in G.
(Assume that you can add arbitrarily large integers in O(1) time.)

7. Let G and H be directed acyclic graphs, whose vertices have labels from some fixed alphabet,
and let A[1 ..`] be a string over the same alphabet. Any directed path in G has a label,
which is a string obtained by concatenating the labels of its vertices.

(a) Describe an algorithm that either finds a path in G whose label is A or correctly
reports that there is no such path.
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(b) Describe an algorithm to find the number of paths in G whose label is A. (Assume
that you can add arbitrarily large integers in O(1) time.)

(c) Describe an algorithm to find the longest path in G whose label is a subsequence of A.

(d) Describe an algorithm to find the shortest path in G whose label is a supersequence of
A.

(e) Describe an algorithm to find a path in G whose label has minimum edit distance
from A.

(f) Describe an algorithm to find the longest string that is both a label of a directed path
in G and the label of a directed path in H.

(g) Describe an algorithm to find the longest string that is both a subsequence of the label
of a directed path in G and a subsequence of the label of a directed path in H.

(h) Describe an algorithm to find the shortest string that is both a supersequence of the
label of a directed path in G and a supersequence of the label of a directed path in H.

(i) Describe an algorithm to find the longest path in G whose label is a palindrome.

(j) Describe an algorithm to find the longest palindrome that is a subsequence of the
label of a path in G.

(k) Describe an algorithm to find the shortest palindrome that is a supersequence of the
label of a path in G.

8. Suppose two players are playing a turn-based game on a directed acyclic graph G with
a unique source s. Each vertex v of G is labeled with a real number `(v), which could
be positive, negative, or zero. The game starts with three tokens at s. In each turn, the
current player moves one of the tokens along a directed edge from its current node to
another node, and the current player’s score is increased by `(u) · `(v), where u and v are
the locations of the two tokens that did not move. At most one token is allowed on any
node except s at any time. The game ends when the current player is unable to move (for
example, when all three tokens lie on sinks); at that point, the player with the higher score
is the winner.

Describe an efficient algorithm to determine who wins this game on a given labeled
graph, assuming both players play optimally.

?9. Let x = x1 x2 . . . xn be a given n-character string over some finite alphabet Σ, and let A be
a deterministic finite-state machine with m states over the same alphabet.

(a) Describe and analyze an algorithm to compute the length of the longest subsequence
of x that is accepted by A. For example, if A accepts the language (AR)∗ and
x = ABRACADABRA, your algorithm should output the number 4, which is the length
of the subsequence ARAR.

(b) Describe and analyze an algorithm to compute the length of the shortest supersequence
of x that is accepted by A. For example, if A accepts the language (ABCDR)∗ and
x = ABRACADABRA, your algorithm should output the number 25, which is the length
of the supersequence ABCDRABCDRABCDRABCDRABCDR.
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10. Not every dynamic programming algorithm can be modeled as finding an optimal path
through a directed acyclic graph; the most obvious counterexample is the optimal binary
search tree problem. But every dynamic programming problem does traverse a dependency
graph in reverse topological order, performing some additional computation at every vertex.

(a) Suppose we are given a directed acyclic graph G where every node stores a numerical
search key. Describe and analyze an algorithm to find the largest binary search tree
that is a subgraph of G.

(b) Let G be a directed acyclic graph with the following features:

• G has a single source s and several sinks t1, t2, . . . , tk.
• Each edge v�w has an associated numerical value p(v�w) between 0 and 1.
• For each non-sink vertex v, we have

∑
w p(v�w) = 1.

The values p(v�w) define a random walk in G from the source s to some sink t i; after
reaching any non-sink vertex v, the walk follows edge v�w with probability p(v�w).
Describe and analyze an algorithm to compute the probability that this random walk
reaches sink t i, for every index i. (Assume that any arithmetic operation requires
O(1) time.)

© Copyright 2014 Jeff Erickson.
This work is licensed under a Creative Commons License (http://creativecommons.org/licenses/by-nc-sa/4.0/).

Free distribution is strongly encouraged; commercial distribution is expressly forbidden.
See http://www.cs.uiuc.edu/~jeffe/teaching/algorithms for the most recent revision.

14



Algorithms Lecture 20: Minimum Spanning Trees [Fa’14]

We must all hang together, gentlemen, or else we shall most assuredly hang
separately.

— Benjamin Franklin, at the signing of the
Declaration of Independence (July 4, 1776)

It is a very sad thing that nowadays there is so little useless information.

— Oscar Wilde

A ship in port is safe, but that is not what ships are for.

— Rear Admiral Grace Murray Hopper

20 Minimum Spanning Trees

20.1 Introduction

Suppose we are given a connected, undirected, weighted graph. This is a graph G = (V, E)
together with a function w: E → R that assigns a real weight w(e) to each edge e, which may
be positive, negative, or zero. Our task is to find the minimum spanning tree of G, that is, the
spanning tree T that minimizes the function

w(T ) =
∑
e∈T

w(e).

To keep things simple, I’ll assume that all the edge weights are distinct: w(e) 6= w(e′) for any
pair of edges e and e′. Distinct weights guarantee that the minimum spanning tree of the graph
is unique. Without this condition, there may be several different minimum spanning trees. For
example, if all the edges have weight 1, then every spanning tree is a minimum spanning tree
with weight V − 1.
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A weighted graph and its minimum spanning tree.

If we have an algorithm that assumes the edge weights are unique, we can still use it on
graphs where multiple edges have the same weight, as long as we have a consistent method for
breaking ties. One way to break ties consistently is to use the following algorithm in place of a
simple comparison. ShorterEdge takes as input four integers i, j, k, l, and decides which of the
two edges (i, j) and (k, l) has “smaller” weight.
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ShorterEdge(i, j, k, l)
if w(i, j)< w(k, l) then return (i, j)
if w(i, j)> w(k, l) then return (k, l)
if min(i, j)<min(k, l) then return (i, j)
if min(i, j)>min(k, l) then return (k, l)
if max(i, j)<max(k, l) then return (i, j)
〈〈if max(i,j) < max(k,l) 〉〉 return (k, l)

20.2 The Only Minimum Spanning Tree Algorithm

There are several different methods for computing minimum spanning trees, but really they are
all instances of the following generic algorithm. The situation is similar to the previous lecture,
where we saw that depth-first search and breadth-first search were both instances of a single
generic traversal algorithm.

The generic minimum spanning tree algorithm maintains an acyclic subgraph F of the input
graph G, which we will call an intermediate spanning forest. F is a subgraph of the minimum
spanning tree of G, and every component of F is a minimum spanning tree of its vertices. Initially,
F consists of n one-node trees. The generic algorithm merges trees together by adding certain
edges between them. When the algorithm halts, F consists of a single n-node tree, which must
be the minimum spanning tree. Obviously, we have to be careful about which edges we add to
the evolving forest, since not every edge is in the minimum spanning tree.

The intermediate spanning forest F induces two special types of edges. An edge is useless if it
is not an edge of F , but both its endpoints are in the same component of F . For each component
of F , we associate a safe edge—the minimum-weight edge with exactly one endpoint in that
component. Different components might or might not have different safe edges. Some edges are
neither safe nor useless—we call these edges undecided.

All minimum spanning tree algorithms are based on two simple observations.

Lemma 1. The minimum spanning tree contains every safe edge.

Proof: In fact we prove the following stronger statement: For any subset S of the vertices of G,
the minimum spanning tree of G contains the minimum-weight edge with exactly one endpoint
in S. We prove this claim using a greedy exchange argument.

Let S be an arbitrary subset of vertices of G; let e be the lightest edge with exactly one
endpoint in S; and let T be an arbitrary spanning tree that does not contain e. Because T is
connected, it contains a path from one endpoint of e to the other. Because this path starts at
a vertex of S and ends at a vertex not in S, it must contain at least one edge with exactly one
endpoint in S; let e′ be any such edge. Because T is acyclic, removing e′ from T yields a spanning
forest with exactly two components, one containing each endpoint of e. Thus, adding e to this
forest gives us a new spanning tree T ′ = T − e′ + e. The definition of e implies w(e′) > w(e),
which implies that T ′ has smaller total weight than T . We conclude that T is not the minimum
spanning tree, which completes the proof. �

Lemma 2. The minimum spanning tree contains no useless edge.

Proof: Adding any useless edge to F would introduce a cycle. �

Our generic minimum spanning tree algorithm repeatedly adds one or more safe edges to the
evolving forest F . Whenever we add new edges to F , some undecided edges become safe, and
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e’

e

Proving that every safe edge is in the minimum spanning tree. Black vertices are in the subset S.

others become useless. To specify a particular algorithm, we must decide which safe edges to
add, and we must describe how to identify new safe and new useless edges, at each iteration of
our generic template.

20.3 Borvka’s Algorithm

The oldest and arguably simplest minimum spanning tree algorithm was discovered by Borvka in
1926, long before computers even existed, and practically before the invention of graph theory!¹
The algorithm was rediscovered by Choquet in 1938; again by Florek, Łukaziewicz, Perkal,
Stienhaus, and Zubrzycki in 1951; and again by Sollin some time in the early 1960s. Because
Sollin was the only Western computer scientist in this list—Choquet was a civil engineer; Florek
and his co-authors were anthropologists—this is often called “Sollin’s algorithm”, especially in
the parallel computing literature.

The Borvka/Choquet/Florek/Łukaziewicz/Perkal/Stienhaus/Zubrzycki/Sollin algorithm can
be summarized in one line:

Borvka: Add ALL the safe edges² and recurse.

We can find all the safe edge in the graph in O(E) time as follows. First, we count the
components of F using whatever-first search, using the standard wrapper function. As we count,
we label every vertex with its component number; that is, every vertex in the first traversed
component gets label 1, every vertex in the second component gets label 2, and so on.

If F has only one component, we’re done. Otherwise, we compute an array S[1 .. V ] of edges,
where S[i] is the minimum-weight edge with one endpoint in the ith component (or a sentinel
value Null if there are less than i components). To compute this array, we consider each edge uv
in the input graph G. If the endpoints u and v have the same label, then uv is useless. Otherwise,
we compare the weight of uv to the weights of S[label(u)] and S[label(v)] and update the array
entries if necessary.

¹Leonard Euler published the first graph theory result, his famous theorem about the bridges of Königsburg, in
1736. However, the first textbook on graph theory, written by Dénes König, was not published until 1936.

²See also: Allie Brosh, “This is Why I’ll Never be an Adult”, Hyperbole and a Half, June 17, 2010. Actually, just go
see everything in Hyperbole and a Half. And then go buy the book. And an extra copy for your cat.
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Borůvka’s algorithm run on the example graph. Thick edges are in F .
Arrows point along each component’s safe edge. Dashed (gray) edges are useless.

Borvka(V, E):
F = (V,∅)
count← CountAndLabel(F)
while count> 1

AddAllSafeEdges(E, F, count)
count← CountAndLabel(F)

return F

AddAllSafeEdges(E, F, count):
for i← 1 to count

S[i]← Null 〈〈sentinel: w(Null) :=∞〉〉
for each edge uv ∈ E

if label(u) 6= label(v)
if w(uv)< w(S[label(u)])

S[label(u)]← uv
if w(uv)< w(S[label(v)])

S[label(v)]← uv
for i← 1 to count

if S[i] 6= Null
add S[i] to F

Each call to TraverseAll requires O(V ) time, because the forest F has at most V − 1 edges.
Assuming the graph is represented by an adjacency list, the rest of each iteration of the main
while loop requires O(E) time, because we spend constant time on each edge. Because the graph
is connected, we have V ≤ E + 1, so each iteration of the while loop takes O(E) time.

Each iteration reduces the number of components of F by at least a factor of two—the worst
case occurs when the components coalesce in pairs. Since F initially has V components, the
while loop iterates at most O(log V ) times. Thus, the overall running time of Borvka’s algorithm
is O(E log V).

Despite its relatively obscure origin, early algorithms researchers were aware of Borvka’s
algorithm, but dismissed it as being “too complicated”! As a result, despite its simplicity and
efficiency, Borvka’s algorithm is rarely mentioned in algorithms and data structures textbooks.
On the other hand, Borvka’s algorithm has several distinct advantages over other classical MST
algorithms.

• Borvka’s algorithm often runs faster than the O(E log V ) worst-case running time. In
arbitrary graphs, the number of components in F can drop by significantly more than a
factor of 2 in a single iteration, reducing the number of iterations below the worst-case
dlog2 V e. A slight reformulation of Borvka’s algorithm (actually closer to Borvka’s original
presentation) actually runs in O(E) time for a broad class of interesting graphs, including
graphs that can be drawn in the plane without edge crossings. In contrast, the time analysis
for the other two algorithms applies to all graphs.

• Borvka’s algorithm allows for significant parallelism; in each iteration, each component of
F can be handled in a separate independent thread. This implicit parallelism allows for
even faster performance on multicore or distributed systems. In contrast, the other two
classical MST algorithms are intrinsically serial.
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• There are several more recent minimum-spanning-tree algorithms that are faster even in
the worst case than the classical algorithms described here. All of these faster algorithms
are generalizations of Borvka’s algorithm.

In short, if you ever need to implement a minimum-spanning-tree algorithm, use Borvka. On
the other hand, if you want to prove things about minimum spanning trees effectively, you really
need to know the next two algorithms as well.

20.4 Jarník’s (“Prim’s”) Algorithm

The next oldest minimum spanning tree algorithm was first described by the Czech mathematician
Vojtch Jarník in a 1929 letter to Borvka; Jarník published his discovery the following year. The
algorithm was independently rediscovered by Kruskal in 1956, by Prim in 1957, by Loberman and
Weinberger in 1957, and finally by Dijkstra in 1958. Prim, Loberman, Weinberger, and Dijkstra all
(eventually) knew of and even cited Kruskal’s paper, but since Kruskal also described two other
minimum-spanning-tree algorithms in the same paper, this algorithm is usually called “Prim’s
algorithm”, or sometimes “the Prim/Dijkstra algorithm”, even though by 1958 Dijkstra already
had another algorithm (inappropriately) named after him.

In Jarník’s algorithm, the forest F contains only one nontrivial component T ; all the other
components are isolated vertices. Initially, T consists of an arbitrary vertex of the graph. The
algorithm repeats the following step until T spans the whole graph:

Jarník: Repeatedly add T ’s safe edge to T .
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Jarník’s algorithm run on the example graph, starting with the bottom vertex.
At each stage, thick edges are in T , an arrow points along T ’s safe edge, and dashed edges are useless.

To implement Jarník’s algorithm, we keep all the edges adjacent to T in a priority queue.
When we pull the minimum-weight edge out of the priority queue, we first check whether both
of its endpoints are in T . If not, we add the edge to T and then add the new neighboring edges
to the priority queue. In other words, Jarník’s algorithm is another instance of the generic graph
traversal algorithm we saw last time, using a priority queue as the “bag”! If we implement the
algorithm this way, the algorithm runs in O(E log E) = O(E log V) time.
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20.5 Improving Jarník’s Algorithm?

We can improve Jarník’s algorithm using a more advanced priority queue data structure called
a Fibonacci heap, first described by Michael Fredman and Robert Tarjan in 1984. Fibonacci
heaps support the standard priority queue operations Insert, ExtractMin, and DecreaseKey.
However, unlike standard binary heaps, which require O(log n) time for every operation, Fibonacci
heaps support Insert and DecreaseKey in constant amortized time. The amortized cost of
ExtractMin is still O(log n).

To apply this faster data structure, we keep vertices in the priority queue instead of edge,
where the key for each vertex v is either the minimum-weight edge between v and the evolving
tree T , or∞ if there is no such edge. We can Insert all the vertices into the priority queue
at the beginning of the algorithm; then, whenever we add a new edge to T , we may need to
decrease the keys of some neighboring vertices.

To make the description easier, we break the algorithm into two parts. Jarník Init initializes
the priority queue; Jarník Loop is the main algorithm. The input consists of the vertices and
edges of the graph, plus the start vertex s. For each vertex v, we maintain both its key key(v)
and the incident edge edge(v) such that w(edge(v)) = key(v).

Jarník(V, E, s):
JarníkInit(V, E, s)
JarníkLoop(V, E, s)

JarníkInit(V, E, s):
for each vertex v ∈ V \ {s}

if (v, s) ∈ E
edge(v)← (v, s)
key(v)← w(v, s)

else
edge(v)← Null
key(v)←∞

Insert(v)

JarníkLoop(V, E, s):
T ← ({s},∅)
for i← 1 to |V | − 1

v← ExtractMin
add v and edge(v) to T
for each neighbor u of v

if u /∈ T and key(u)> w(uv)
edge(u)← uv
DecreaseKey(u, w(uv))

The operations Insert and ExtractMin are each called O(V ) times once for each vertex
except s, and DecreaseKey is called O(E) times, at most twice for each edge. Thus, if we use
a Fibonacci heap, the improved algorithm runs in O(E + V log V) time, which is faster than
Borvka’s algorithm unless E = O(V ).

In practice, however, this improvement is rarely faster than the naive implementation using a
binary heap, unless the graph is extremely large and dense. The Fibonacci heap algorithms are
quite complex, and the hidden constants in both the running time and space are significant—not
outrageous, but certainly bigger than the hidden constant 1 in the O(log n) time bound for binary
heap operations.

20.6 Kruskal’s Algorithm

The last minimum spanning tree algorithm I’ll discuss was first described by Kruskal in 1956, in the
same paper where he rediscovered Jarnik’s algorithm. Kruskal was motivated by “a typewritten
translation (of obscure origin)” of Borvka’s original paper, claiming that Borvka’s algorithm
was “unnecessarily elaborate”.³ This algorithm was also rediscovered in 1957 by Loberman and

³To be fair, Borvka’s original paper was unnecessarily elaborate, but in his followup paper, also published in 1927,
simplified his algorithm essentially to its current modern form. Kruskal was apparently unaware of Borvka’s second
paper. Stupid Iron Curtain.
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Weinberger, but somehow avoided being renamed after them.

Kruskal: Scan all edges in increasing weight order; if an edge is safe, add it to F .
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Kruskal’s algorithm run on the example graph. Thick edges are in F . Dashed edges are useless.

Since we examine the edges in order from lightest to heaviest, any edge we examine is safe if
and only if its endpoints are in different components of the forest F . To prove this, suppose the
edge e joins two components A and B but is not safe. Then there would be a lighter edge e′ with
exactly one endpoint in A. But this is impossible, because (inductively) any previously examined
edge has both endpoints in the same component of F .

Just as in Borvka’s algorithm, each component of F has a “leader” node. An edge joins two
components of F if and only if the two endpoints have different leaders. But unlike Borvka’s
algorithm, we do not recompute leaders from scratch every time we add an edge. Instead, when
two components are joined, the two leaders duke it out in a nationally-televised no-holds-barred
steel-cage grudge match.⁴ One of the two emerges victorious as the leader of the new larger
component. More formally, we will use our earlier algorithms for the Union-Find problem,
where the vertices are the elements and the components of F are the sets. Here’s a more formal
description of the algorithm:

Kruskal(V, E):
sort E by increasing weight
F ← (V,∅)
for each vertex v ∈ V

MakeSet(v)
for i← 1 to |E|

uv← ith lightest edge in E
if Find(u) 6= Find(v)

Union(u, v)
add uv to F

return F

⁴Live at the Assembly Hall! Only $49.95 on Pay-Per-View!⁵
⁵Is Pay-Per-View still a thing?
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In our case, the sets are components of F , and n= V . Kruskal’s algorithm performs O(E) Find
operations, two for each edge in the graph, and O(V ) Union operations, one for each edge in the
minimum spanning tree. Using union-by-rank and path compression allows us to perform each
Union or Find in O(α(E, V )) time, where α is the not-quite-constant inverse-Ackerman function.
So ignoring the cost of sorting the edges, the running time of this algorithm is O(Eα(E, V )).

We need O(E log E) = O(E log V ) additional time just to sort the edges. Since this is bigger
than the time for the Union-Find data structure, the overall running time of Kruskal’s algorithm
is O(E log V), exactly the same as Borvka’s algorithm, or Jarník’s algorithm with a normal
(non-Fibonacci) heap.

Exercises

1. Most classical minimum-spanning-tree algorithms use the notions of “safe” and “useless”
edges described in the lecture notes, but there is an alternate formulation. Let G be a
weighted undirected graph, where the edge weights are distinct. We say that an edge e is
dangerous if it is the longest edge in some cycle in G, and useful if it does not lie in any
cycle in G.

(a) Prove that the minimum spanning tree of G contains every useful edge.

(b) Prove that the minimum spanning tree of G does not contain any dangerous edge.

(c) Describe and analyze an efficient implementation of the “anti-Kruskal” MST algorithm:
Examine the edges of G in decreasing order; if an edge is dangerous, remove it from
G. [Hint: It won’t be as fast as Kruskal’s algorithm.]

2. Let G = (V, E) be an arbitrary connected graph with weighted edges.

(a) Prove that for any partition of the vertices V into two disjoint subsets, the minimum
spanning tree of G includes the minimum-weight edge with one endpoint in each
subset.

(b) Prove that for any cycle in G, the minimum spanning tree of G excludes the maximum-
weight edge in that cycle.

(c) Prove or disprove: The minimum spanning tree of G includes the minimum-weight
edge in every cycle in G.

3. Throughout this lecture note, we assumed that no two edges in the input graph have
equal weights, which implies that the minimum spanning tree is unique. In fact, a weaker
condition on the edge weights implies MST uniqueness.

(a) Describe an edge-weighted graph that has a unique minimum spanning tree, even
though two edges have equal weights.

(b) Prove that an edge-weighted graph G has a unique minimum spanning tree if and
only if the following conditions hold:

• For any partition of the vertices of G into two subsets, the minimum-weight edge
with one endpoint in each subset is unique.

• The maximum-weight edge in any cycle of G is unique.

8
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(c) Describe and analyze an algorithm to determine whether or not a graph has a unique
minimum spanning tree.

4. Consider a path between two vertices s and t in an undirected weighted graph G. The
bottleneck length of this path is the maximum weight of any edge in the path. The bottleneck
distance between s and t is the minimum bottleneck length of any path from s to t. (If
there are no paths from s to t, the bottleneck distance between s and t is∞.)
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The bottleneck distance between s and t is 5.

Describe an algorithm to compute the bottleneck distance between every pair of vertices
in an arbitrary undirected weighted graph. Assume that no two edges have the same
weight.

5. (a) Describe and analyze an algorithm to compute the maximum-weight spanning tree of
a given edge-weighted graph.

(b) A feedback edge set of an undirected graph G is a subset F of the edges such that every
cycle in G contains at least one edge in F . In other words, removing every edge in F
makes the graph G acyclic. Describe and analyze a fast algorithm to compute the
minimum weight feedback edge set of of a given edge-weighted graph.

6. Suppose we are given both an undirected graph G with weighted edges and a minimum
spanning tree T of G.

(a) Describe an algorithm to update the minimum spanning tree when the weight of a
single edge e is decreased.

(b) Describe an algorithm to update the minimum spanning tree when the weight of a
single edge e is increased.

In both cases, the input to your algorithm is the edge e and its new weight; your algorithms
should modify T so that it is still a minimum spanning tree. [Hint: Consider the cases e ∈ T
and e 6∈ T separately.]

7. (a) Describe and analyze and algorithm to find the second smallest spanning tree of a
given graph G, that is, the spanning tree of G with smallest total weight except for
the minimum spanning tree.

?(b) Describe and analyze an efficient algorithm to compute, given a weighted undirected
graph G and an integer k, the k spanning trees of G with smallest weight.

9
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8. We say that a graph G = (V, E) is dense if E = Θ(V 2). Describe a modification of Jarník’s
minimum-spanning tree algorithm that runs in O(V 2) time (independent of E) when the
input graph is dense, using only simple data structures (and in particular, without using a
Fibonacci heap).

9. (a) Prove that the minimum spanning tree of a graph is also a spanning tree whose
maximum-weight edge is minimal.

?(b) Describe an algorithm to compute a spanning tree whose maximum-weight edge is
minimal, in O(V +E) time. [Hint: Start by computing the median of the edge weights.]

10. Consider the following variant of Borvka’s algorithm. Instead of counting and labeling
components of F to find safe edges, we use a standard disjoint set data structure. Each
component of F is represented by an up-tree; each vertex v stores a pointer parent(v) to
its parent in the up-tree containing v. Each leader vertex v̄ also maintains an edge safe(v̄),
which is (eventually) the lightest edge with one endpoint in v̄’s component of F .

Borvka(V, E):
F =∅
for each vertex v ∈ V

parent(v)← v
while FindSafeEdges(V, E)

AddSafeEdges(V, E, F)
return F

FindSafeEdges(V, E):
for each vertex v ∈ V

safe(v)← Null
found← False
for each edge uv ∈ E

ū← Find(u); v̄← Find(v)
if ū 6= v̄

if w(uv)< w(safe(ū))
safe(ū)← uv

if w(uv)< w(safe(v̄))
safe(v̄)← uv

found← True
return done

AddSafeEdges(V, E, F):
for each vertex v ∈ V

if safe(v) 6= Null
x y ← safe(v)
if Find(x) 6= Find(y)

Union(x , y)
add x y to F

Prove that if Find uses path compression, then each call to FindSafeEdges and
AddSafeEdges requires only O(V + E) time. [Hint: It doesn’t matter how Union is
implemented! What is the depth of the up-trees when FindSafeEdges ends?]

11. Minimum-spanning tree algorithms are often formulated using an operation called edge
contraction. To contract the edge uv, we insert a new node, redirect any edge incident to u
or v (except uv) to this new node, and then delete u and v. After contraction, there may
be multiple parallel edges between the new node and other nodes in the graph; we remove
all but the lightest edge between any two nodes.
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Contracting an edge and removing redundant parallel edges.

The three classical minimum-spanning tree algorithms can be expressed cleanly in terms of
contraction as follows. All three algorithms start by making a clean copy G′ of the input
graph G and then repeatedly contract safe edges in G; the minimum spanning tree consists
of the contracted edges.

• Borvka: Mark the lightest edge leaving each vertex, contract all marked edges, and
recurse.

• Jarník: Repeatedly contract the lightest edge incident to some fixed root vertex.
• Kruskal: Repeatedly contract the lightest edge in the graph.

(a) Describe an algorithm to execute a single pass of Borvka’s contraction algorithm in
O(V + E) time. The input graph is represented in an adjacency list.

(b) Consider an algorithm that first performs k passes of Borvka’s contraction algorithm,
and then runs Jarník’s algorithm (with a Fibonacci heap) on the resulting contracted
graph.

i. What is the running time of this hybrid algorithm, as a function of V , E, and k?
ii. For which value of k is this running time minimized? What is the resulting

running time?

(c) Call a family of graphs nice if it has the following properties:

• A nice graph with n vertices has only O(n) edges.
• Contracting an edge of a nice graph yields another nice graph.

For example, graphs that can be drawn in the plane without crossing edges are nice;
Euler’s formula implies that any planar graph with n vertices has at most 3n−6 edges.
Prove that Borüvka’s contraction algorithm computes the minimum spanning tree of
any nice n-vertex graph in O(n) time.

© Copyright 2014 Jeff Erickson.
This work is licensed under a Creative Commons License (http://creativecommons.org/licenses/by-nc-sa/4.0/).
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Well, ya turn left by the fire station in the village and take the old post road by
the reservoir and. . . no, that won’t do.

Best to continue straight on by the tar road until you reach the schoolhouse and
then turn left on the road to Bennett’s Lake until. . . no, that won’t work either.

East Millinocket, ya say? Come to think of it, you can’t get there from here.

— Robert Bryan and Marshall Dodge,
Bert and I and Other Stories from Down East (1961)

Hey farmer! Where does this road go?
Been livin’ here all my life, it ain’t gone nowhere yet.

Hey farmer! How do you get to Little Rock?
Listen stranger, you can’t get there from here.

Hey farmer! You don’t know very much do you?
No, but I ain’t lost.

— Michelle Shocked, “Arkansas Traveler" (1992)

21 Shortest Paths

21.1 Introduction

Suppose we are given a weighted directed graph G = (V, E, w) with two special vertices, and we
want to find the shortest path from a source vertex s to a target vertex t. That is, we want to find
the directed path p starting at s and ending at t that minimizes the function

w(p) :=
∑

u�v∈p

w(u�v).

For example, if I want to answer the question “What’s the fastest way to drive from my old
apartment in Champaign, Illinois to my wife’s old apartment in Columbus, Ohio?”, I might use
a graph whose vertices are cities, edges are roads, weights are driving times, s is Champaign,
and t is Columbus.¹ The graph is directed, because driving times along the same road might
be different in different directions. (At one time, there was a speed trap on I-70 just east of the
Indiana/Ohio border, but only for eastbound traffic.)

Perhaps counter to intuition, we will allow the weights on the edges to be negative. Negative
edges make our lives complicated, because the presence of a negative cycle might imply that
there is no shortest path. In general, a shortest path from s to t exists if and only if there is at
least one path from s to t, but there is no path from s to t that touches a negative cycle. If any
negative cycle is reachable from s and can reach t, we can always find a shorter path by going
around the cycle one more time.

Almost every algorithm known for solving this problem actually solves (large portions of)
the following more general single source shortest path or SSSP problem: Find the shortest path
from the source vertex s to every other vertex in the graph. This problem is usually solved by
finding a shortest path tree rooted at s that contains all the desired shortest paths.

It’s not hard to see that if shortest paths are unique, then they form a tree, because any
subpath of a shortest path is itself a shortest path. If there are multiple shortest paths to some

¹West on Church, north on Prospect, east on I-74, south on I-465, east on Airport Expressway, north on I-65, east on
I-70, north on Grandview, east on 5th, north on Olentangy River, east on Dodridge, north on High, west on Kelso,
south on Neil. Depending on traffic. We both live in Urbana now.

© Copyright 2014 Jeff Erickson.
This work is licensed under a Creative Commons License (http://creativecommons.org/licenses/by-nc-sa/4.0/).

Free distribution is strongly encouraged; commercial distribution is expressly forbidden.
See http://www.cs.uiuc.edu/~jeffe/teaching/algorithms for the most recent revision.
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There is no shortest path from s to t.

vertices, we can always choose one shortest path to each vertex so that the union of the paths is a
tree. If there are shortest paths to two vertices u and v that diverge, then meet, then diverge
again, we can modify one of the paths without changing its length so that the two paths only
diverge once.

s
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v

a

b c

d

x y

If s�a�b�c�d�v and s�a�x�y�d�u are shortest paths,
then s�a�b�c�d�u is also a shortest path.

Although they are both optimal spanning trees, shortest-path trees and minimum spanning
trees are very different creatures. Shortest-path trees are rooted and directed; minimum spanning
trees are unrooted and undirected. Shortest-path trees are most naturally defined for directed
graphs; only undirected graphs have minimum spanning trees. If edge weights are distinct, there
is only one minimum spanning tree, but every source vertex induces a different shortest-path
tree; moreover, it is possible for every shortest path tree to use a different set of edges from the
minimum spanning tree.
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A minimum spanning tree and a shortest path tree (rooted at the top vertex) of the same undirected graph.

21.2 Warning!

Throughout this lecture, we will explicitly consider only directed graphs. All of the algorithms
described in this lecture also work for undirected graphs with some minor modifications, but only
if negative edges are prohibited. Dealing with negative edges in undirected graphs is considerably
more subtle. We cannot simply replace every undirected edge with a pair of directed edges,
because this would transform any negative edge into a short negative cycle. Subpaths of
an undirected shortest path that contains a negative edge are not necessarily shortest paths;
consequently, the set of all undirected shortest paths from a single source vertex may not define a
tree, even if shortest paths are unique.
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An undirected graph where shortest paths from s are unique but do not define a tree.

A complete treatment of undirected graphs with negative edges is beyond the scope of this
lecture (if not the entire course). I will only mention that a single shortest path in an undirected
graph with negative edges can be computed in O(V E+V 2 log V ) time, by a reduction to maximum
weighted matching.

21.3 The Only SSSP Algorithm

Just like graph traversal and minimum spanning trees, there are several different SSSP algorithms,
but they are all special cases of the a single generic algorithm, first proposed by Lester Ford in
1956, and independently by George Dantzig in 1957.² Each vertex v in the graph stores two
values, which (inductively) describe a tentative shortest path from s to v.

• dist(v) is the length of the tentative shortest s v path, or∞ if there is no such path.

• pred(v) is the predecessor of v in the tentative shortest s v path, or Null if there is no
such vertex.

In fact, the predecessor pointers automatically define a tentative shortest path tree; they play
exactly the same role as the parent pointers in our generic graph traversal algorithm. At the
beginning of the algorithm, we already know that dist(s) = 0 and pred(s) = Null. For every
vertex v 6= s, we initially set dist(v) =∞ and pred(v) = Null to indicate that we do not know of
any path from s to v.

During the execution of the algorithm, we call an edge u�v tense if dist(u)+w(u�v)< dist(v).
If u�v is tense, the tentative shortest path s v is clearly incorrect, because the path s u�v is
shorter. Our generic algorithm repeatedly finds a tense edge in the graph and relaxes it:

Relax(u�v):
dist(v)← dist(u) +w(u�v)
pred(v)← u

When there are no tense edges, the algorithm halts, and we have our desired shortest path tree.
The correctness of Ford’s generic relaxation algorithm follows from the following series of

claims:

1. For every vertex v, the distance dist(v) is either∞ or the length of some walk from s to v.
This claim can be proved by induction on the number of relaxations.

2. If the graph has no negative cycles, then dist(v) is either∞ or the length of some simple
path from s to v. Specifically, if dist(v) is the length of a walk from s to v that contains a
directed cycle, that cycle must have negative weight. This claim implies that if G has no
negative cycles, the relaxation algorithm eventually halts, because there are only a finite
number of simple paths in G.

²Specifically, Dantzig showed that the shortest path problem can be phrased as a linear programming problem, and
then described an interpretation of his simplex method in terms of the original graph. His description is equivalent to
Ford’s relaxation strategy.
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3. If no edge in G is tense, then for every vertex v, the distance dist(v) is the length of the
predecessor path s� · · ·pred(pred(v))�pred(v)�v. Specifically, if v violates this condition
but its predecessor pred(v) does not, the edge pred(v)�v is tense.

4. If no edge in G is tense, then for every vertex v, the path s� · · ·pred(pred(v))�pred(v)�v
is a shortest path from s to v. Specifically, if v violates this condition but its predecessor u
in some shortest path does not, the edge u�v is tense. This claim also implies that if the G
has a negative cycle, then some edge is always tense, so the generic algorithm never halts.

So far I haven’t said anything about how we detect which edges can be relaxed, or in what
order we relax them. To make this easier, we refine the relaxation algorithm slightly, into
something closely resembling the generic graph traversal algorithm. We maintain a “bag” of
vertices, initially containing just the source vertex s. Whenever we take a vertex u from the
bag, we scan all of its outgoing edges, looking for something to relax. Finally, whenever we
successfully relax an edge u�v, we put v into the bag. Unlike our generic graph traversal
algorithm, we do not mark vertices when we visit them; the same vertex could be visited many
times, and the same edge could be relaxed many times.

InitSSSP(s):
dist(s)← 0
pred(s)← Null
for all vertices v 6= s

dist(v)←∞
pred(v)← Null

GenericSSSP(s):
InitSSSP(s)
put s in the bag
while the bag is not empty

take u from the bag
for all edges u�v

if u�v is tense
Relax(u�v)
put v in the bag

Just as with graph traversal, different “bag” data structures for the give us different algorithms.
There are three obvious choices to try: a stack, a queue, and a priority queue. Unfortunately,
if we use a stack, the resulting algorithm performs Θ(2V ) relaxation steps in the worst case!
(Proving this is a good homework problem.) The other two possibilities are much more efficient.

21.4 Dijkstra’s Algorithm

If we implement the bag using a priority queue, where the key of a vertex v is its tentative distance
dist(v), we obtain an algorithm first “published” in 1957 by a team of researchers at the Case
Institute of Technology, in an annual project report for the Combat Development Department
of the US Army Electronic Proving Ground. The same algorithm was later independently
rediscovered and actually publicly published by Edsger Dijkstra in 1959. A nearly identical
algorithm was also described by George Dantzig in 1958.

Dijkstra’s algorithm, as it is universally known³, is particularly well-behaved if the graph has
no negative-weight edges. In this case, it’s not hard to show (by induction, of course) that the
vertices are scanned in increasing order of their shortest-path distance from s. It follows that each
vertex is scanned at most once, and thus that each edge is relaxed at most once. Since the key of
each vertex in the heap is its tentative distance from s, the algorithm performs a DecreaseKey
operation every time an edge is relaxed. Thus, the algorithm performs at most E DecreaseKeys.

³I will follow this common convention, despite the historical inaccuracy, partly because I don’t think anybody wants
to read about the “Leyzorek-Gray-Johnson-Ladew-Meaker-Petry-Seitz algorithm”, and partly because papers that
aren’t actually publically published don’t count.
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Similarly, there are at most V Insert and ExtractMin operations. Thus, if we store the vertices
in a Fibonacci heap, the total running time of Dijkstra’s algorithm is O(E + V log V); if we use a
regular binary heap, the running time is O(E log V).

This analysis assumes that no edge has negative weight. Dijkstra’s algorithm (in the form
I’m presenting here⁴) is still correct if there are negative edges, but the worst-case running time
could be exponential. (Proving this unfortunate fact is a good homework problem.) On the other
hand, in practice, Dijkstra’s algorithm is usually quite fast even for graphs with negative edges.
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Four phases of Dijkstra’s algorithm run on a graph with no negative edges.
At each phase, the shaded vertices are in the heap, and the bold vertex has just been scanned.

The bold edges describe the evolving shortest path tree.

21.5 The A∗ Heuristic

A slight generalization of Dijkstra’s algorithm, commonly known as the A∗ algorithm, is frequently
used to find a shortest path from a single source node s to a single target node t. This heuristic
was first described in 1968 by Peter Hart, Nils Nilsson, and Bertram Raphael. A∗ uses a black-box
function GuessDistance(v, t) that returns an estimate of the distance from v to t. The only
difference between Dijkstra and A∗ is that the key of a vertex v is dist(v) +GuessDistance(v, t).

The function GuessDistance is called admissible if GuessDistance(v, t) never overestimates
the actual shortest path distance from v to t. If GuessDistance is admissible and the actual
edge weights are all non-negative, the A∗ algorithm computes the actual shortest path from s to t
at least as quickly as Dijkstra’s algorithm. In practice, the closer GuessDistance(v, t) is to the
real distance from v to t, the faster the algorithm. However, in the worst case, the running time
is still O(E + V log V ).

The heuristic is especially useful in situations where the actual graph is not known. For
example, A∗ can be used to find optimal solutions to many puzzles (15-puzzle, Freecell, Shanghai,

⁴Most algorithms textbooks, Wikipedia, and even Dijkstra’s original paper present a version of Dijkstra’s algorithm
that gives incorrect results for graphs with negative edges, because it never visits the same vertex more than once. I’ve
taken the liberty of correcting Dijkstra’s mistake. Even Dijkstra would agree that a correct algorithm that is sometimes
slow (and in practice, rarely slow) is better than a fast algorithm that doesn’t always work.
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Sokoban, Atomix, Rush Hour, Rubik’s Cube, Racetrack, . . . ) and other path planning problems
where the starting and goal configurations are given, but the graph of all possible configurations
and their connections is not given explicitly.

21.6 Shimbel’s Algorithm

If we replace the heap in Dijkstra’s algorithm with a FIFO queue, we obtain an algorithm first
sketched by Shimbel in 1954, described in more detail by Moore in 1957, then independently
rediscovered by Woodbury and Dantzig in 1957 and again by Bellman in 1958. Because Bellman
explicitly used Ford’s formulation of relaxing edges, this algorithm is almost universally called
“Bellman-Ford”, although some early sources refer to “Bellman-Shimbel”. Shimbel’s algorithm is
efficient even if there are negative edges, and it can be used to quickly detect the presence of
negative cycles. If there are no negative edges, however, Dijkstra’s algorithm is faster. (In fact, in
practice, Dijkstra’s algorithm is often faster even for graphs with negative edges.)

The easiest way to analyze the algorithm is to break the execution into phases, by introducing
an imaginary token. Before we even begin, we insert the token into the queue. The current phase
ends when we take the token out of the queue; we begin the next phase by reinserting the token
into the queue. The 0th phase consists entirely of scanning the source vertex s. The algorithm
ends when the queue contains only the token. A simple inductive argument (hint, hint) implies
the following invariant for every integer i and vertex v:

After i phases of the algorithm, dist(v) is at most the length of
the shortest walk from s to v consisting of at most i edges.

Since a shortest path can only pass through each vertex once, either the algorithm halts
before the V th phase, or the graph contains a negative cycle. In each phase, we scan each vertex
at most once, so we relax each edge at most once, so the running time of a single phase is O(E).
Thus, the overall running time of Shimbel’s algorithm is O(VE).

Once we understand how the phases of Shimbel’s algorithm behave, we can simplify the
algorithm considerably by producing the same behavior on purpose. Instead of performing a
partial breadth-first search of the graph in each phase, we can simply scan through the adjacency
list directly, relaxing every tense edge we find in the graph.

Shimbel: Relax ALL the tense edges and recurse.

6



Algorithms Lecture 21: Shortest Paths [Fa’14]

−2

1

2

0 5

4

6 3

s
0

−3

−18

a

b

c

d

e

f 1

2

0 5

4

6 3

s
0

−3

−18

a

b

c

d

e

f

1

2

0 5

4

6 3

s
0

∞

−3

−18

a

b

c

d

e

f1

2

0 5

4

6 3

s
0

∞

∞

∞

∞

∞

∞ −3

−18

a

b

c

d

e

f 1

2

0 5

4

6 3

s
0

∞

∞

∞

−3

−18

a

b

c

d

e

f

6

4

3 6

2

3

74

3

2

2 7

9
−8−8

−8−8−8

−3 −3

−3 −3

−3

1

9

7

2

3

1

Four phases of Shimbel’s algorithm run on a directed graph with negative edges.
Nodes are taken from the queue in the order s � a b c � d f b � a e d � d a � �, where � is the end-of-phase token.
Shaded vertices are in the queue at the end of each phase. The bold edges describe the evolving shortest path tree.

ShimbelSSSP(s)
InitSSSP(s)
repeat V times:

for every edge u�v
if u�v is tense

Relax(u�v)
for every edge u�v

if u�v is tense
return “Negative cycle!”

This is how most textbooks present “Bellman-Ford”.⁵ The O(V E) running time of this
formulation of the algorithm should be obvious, but it may be less clear that the algorithm is still
correct. In fact, correctness follows from exactly the same invariant as before:

After i phases of the algorithm, dist(v) is at most the length of
the shortest walk from s to v consisting of at most i edges.

As before, it is straightforward to prove by induction (hint, hint) that this invariant holds for
every integer i and vertex v.

21.7 Shimbel’s Algorithm as Dynamic Programming

Shimbel’s algorithm can also be recast as a dynamic programming algorithm. Let disti(v) denote
the length of the shortest path s v consisting of at most i edges. It’s not hard to see that this

⁵In fact, this is essentially the formulation proposed by both Shimbel and Bellman. Bob Tarjan recognized in the
early 1980s that Shimbel’s algorithm is equivalent to Dijkstra’s algorithm with a queue instead of a heap.
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function obeys the following recurrence:

disti(v) =





0 if i = 0 and v = s

∞ if i = 0 and v 6= s

min

¨
disti−1(v),

min
u�v∈E

(disti−1(u) +w(u�v))

«
otherwise

For the moment, let’s assume the graph has no negative cycles; our goal is to compute distV−1(t).
We can clearly memoize this two-parameter function into a two-dimensional array. A straightfor-
ward dynamic programming evaluation of this recurrence looks like this:

ShimbelDP(s)
dist[0, s]← 0
for every vertex v 6= s

dist[0, v]←∞
for i← 1 to V − 1

for every vertex v
dist[i, v]← dist[i − 1, v]
for every edge u�v

if dist[i, v]> dist[i − 1, u] +w(u�v)
dist[i, v]← dist[i − 1, u] +w(u�v)

Now let us make two minor changes to this algorithm. First, we remove one level of
indentation from the last three lines. This may change the order in which we examine edges, but
the modified algorithm still computes disti(v) for all i and v. Second, we change the indices in
the last two lines from i − 1 to i. This change may cause the distances dist[i, v] to approach the
true shortest-path distances more quickly than before, but the algorithm is still correct.

ShimbelDP2(s)
dist[0, s]← 0
for every vertex v 6= s

dist[0, v]←∞
for i← 1 to V − 1

for every vertex v
dist[i, v]← dist[i − 1, v]

for every edge u�v
if dist[i, v]> dist[i, u] +w(u�v)

dist[i, v]← dist[i, u] +w(u�v)

Now notice that the iteration index i is completely redundant! We really only need to keep a
one-dimensional array of distances, which means we don’t need to scan the vertices in each
iteration of the main loop.

ShimbelDP3(s)
dist[s]← 0
for every vertex v 6= s

dist[v]←∞
for i← 1 to V − 1

for every edge u�v
if dist[v]> dist[u] +w(u�v)

dist[v]← dist[u] +w(u�v)

8



Algorithms Lecture 21: Shortest Paths [Fa’14]

The resulting algorithm is almost identical to our earlier algorithm ShimbelSSSP! The first three
lines initialize the shortest path distances, and the last two lines check whether an edge is tense,
and if so, relaxes it. The only feature missing from the new algorithm is explicit maintenance of
predecessors, but that’s easy to add.

Exercises

0. Prove that the following invariant holds for every integer i and every vertex v: After i
phases of Shimbel’s algorithm (in either formulation), dist(v) is at most the length of the
shortest path s v consisting of at most i edges.

1. Let G be a directed graph with edge weights (which may be positive, negative, or zero),
and let s be an arbitrary vertex of G.

(a) Suppose every vertex v stores a number dist(v). Describe and analyze an algorithm to
determine whether dist(v) is the shortest-path distance from s to v, for every vertex v.

(b) Suppose instead that every vertex v 6= s stores a pointer pred(v) to another vertex
in G. Describe and analyze an algorithm to determine whether these predecessor
pointers define a single-source shortest path tree rooted at s.

Do not assume that G contains no negative cycles.

2. A looped tree is a weighted, directed graph built from a binary tree by adding an edge from
every leaf back to the root. Every edge has a non-negative weight.

5 8

17 0 1

23 9 14

42416 7

A looped tree.

(a) How much time would Dijkstra’s algorithm require to compute the shortest path
between two vertices u and v in a looped tree with n nodes?

(b) Describe and analyze a faster algorithm.

3. Suppose we are given an undirected graph G in which every vertex has a positive weight.

(a) Describe and analyze an algorithm to find a spanning tree of G with minimum total
weight. (The total weight of a spanning tree is the sum of the weights of its vertices.)

(b) Describe and analyze an algorithm to find a path in G from one given vertex s to
another given vertex t with minimum total weight. (The total weight of a path is the
sum of the weights of its vertices.)

9
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4. For any edge e in any graph G, let G \ e denote the graph obtained by deleting e from G.

(a) Suppose we are given a directed graph G in which the shortest path σ from vertex s
to vertex t passes through every vertex of G. Describe an algorithm to compute the
shortest-path distance from s to t in G \ e, for every edge e of G, in O(E log V ) time.
Your algorithm should output a set of E shortest-path distances, one for each edge of
the input graph. You may assume that all edge weights are non-negative. [Hint: If
we delete an edge of the original shortest path, how do the old and new shortest paths
overlap?]

?(b) Let s and t be arbitrary vertices in an arbitrary undirected graph G. Describe an
algorithm to compute the shortest-path distance from s to t in G \ e, for every edge e of
G, in O(E log V ) time. Again, you may assume that all edge weights are non-negative.

5. Let G = (V, E) be a connected directed graph with non-negative edge weights, let s and t
be vertices of G, and let H be a subgraph of G obtained by deleting some edges. Suppose
we want to reinsert exactly one edge from G back into H, so that the shortest path from s
to t in the resulting graph is as short as possible. Describe and analyze an algorithm that
chooses the best edge to reinsert, in O(E log V ) time.

6. When there is more than one shortest path from one node s to another node t, it is often
convenient to choose a shortest path with the fewest edges; call this the best path from s
to t. Suppose we are given a directed graph G with positive edge weights and a source
vertex s in G. Describe and analyze an algorithm to compute best paths in G from s to
every other vertex.

?7. (a) Prove that Ford’s generic shortest-path algorithm (while the graph contains a tense
edge, relax it) can take exponential time in the worst case when implemented with a
stack instead of a priority queue (like Dijkstra) or a queue (like Shimbel). Specifically,
for every positive integer n, construct a weighted directed n-vertex graph Gn, such
that the stack-based shortest-path algorithm call Relax Ω(2n) times when Gn is the
input graph. [Hint: Towers of Hanoi.]

(b) Prove that Dijkstra’s shortest-path algorithm can require exponential time in the
worst case when edges are allowed to have negative weight. Specifically, for every
positive integer n, construct a weighted directed n-vertex graph Gn, such that Dijkstra’s
algorithm calls Relax Ω(2n) times when Gn is the input graph. [Hint: This is relatively
easy if you’ve already solved part (a).]

8. (a) Describe and analyze a modification of Shimbel’s shortest-path algorithm that actually
returns a negative cycle if any such cycle is reachable from s, or a shortest-path tree if
there is no such cycle. The modified algorithm should still run in O(V E) time.

(b) Describe and analyze a modification of Shimbel’s shortest-path algorithm that com-
putes the correct shortest path distances from s to every other vertex of the input
graph, even if the graph contains negative cycles. Specifically, if any walk from s to v
contains a negative cycle, your algorithm should end with dist(v) = −∞; otherwise,
dist(v) should contain the length of the shortest path from s to v. The modified
algorithm should still run in O(V E) time.

10



Algorithms Lecture 21: Shortest Paths [Fa’14]

?(c) Repeat parts (a) and (b), but for Ford’s generic shortest-path algorithm. You may
assume that the unmodified algorithm halts in O(2V ) steps if there is no negative
cycle; your modified algorithms should also run in O(2V ) time.

?9. Describe and analyze an efficient algorithm to compute the number of shortest paths
between two specified vertices s and t in a directed graph G whose edges have positive
weights. [Hint: Which edges of G can lie on a shortest path from s to t?]

10. You just discovered your best friend from elementary school on Twitbook. You both want to
meet as soon as possible, but you live in two different cites that are far apart. To minimize
travel time, you agree to meet at an intermediate city, and then you simultaneously hop in
your cars and start driving toward each other. But where exactly should you meet?

You are given a weighted graph G = (V, E), where the vertices V represent cities and
the edges E represent roads that directly connect cities. Each edge e has a weight w(e)
equal to the time required to travel between the two cities. You are also given a vertex
p, representing your starting location, and a vertex q, representing your friend’s starting
location.

Describe and analyze an algorithm to find the target vertex t that allows you and your
friend to meet as quickly as possible.

11. After a grueling algorithms midterm, you decide to take the bus home. Since you planned
ahead, you have a schedule that lists the times and locations of every stop of every bus
in Champaign-Urbana. Unfortunately, there isn’t a single bus that visits both your exam
building and your home; you must transfer between bus lines at least once.

Describe and analyze an algorithm to determine the sequence of bus rides that will get
you home as early as possible, assuming there are b different bus lines, and each bus stops
n times per day. Your goal is to minimize your arrival time, not the time you actually spend
traveling. Assume that the buses run exactly on schedule, that you have an accurate watch,
and that you are too tired to walk between bus stops.

12. After graduating you accept a job with Aerophobes- R-Us, the leading traveling agency for
people who hate to fly. Your job is to build a system to help customers plan airplane trips
from one city to another. All of your customers are afraid of flying (and by extension,
airports), so any trip you plan needs to be as short as possible. You know all the departure
and arrival times of all the flights on the planet.

Suppose one of your customers wants to fly from city X to city Y . Describe an algorithm
to find a sequence of flights that minimizes the total time in transit—the length of time from
the initial departure to the final arrival, including time at intermediate airports waiting for
connecting flights. [Hint: Modify the input data and apply Dijkstra’s algorithm.]

13. Mulder and Scully have computed, for every road in the United States, the exact probability
that someone driving on that road won’t be abducted by aliens. Agent Mulder needs to
drive from Langley, Virginia to Area 51, Nevada. What route should he take so that he has
the least chance of being abducted?

11
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More formally, you are given a directed graph G = (V, E), where every edge e has
an independent safety probability p(e). The safety of a path is the product of the safety
probabilities of its edges. Design and analyze an algorithm to determine the safest path
from a given start vertex s to a given target vertex t.

0.2

0.7

0.50.9

0.1

0.5
Langley, VA

Area 51, AZ

Memphis, TN

Las Vegas, NV

For example, with the probabilities shown above, if Mulder tries to drive directly from
Langley to Area 51, he has a 50% chance of getting there without being abducted. If he
stops in Memphis, he has a 0.7× 0.9= 63% chance of arriving safely. If he stops first in
Memphis and then in Las Vegas, he has a 1− 0.7× 0.1× 0.5 = 96.5% chance of being
abducted! (That’s how they got Elvis, you know.) Although this example is a dag, your
algorithm must handle arbitrary directed graphs.

14. On an overnight camping trip in Sunnydale National Park, you are woken from a restless
sleep by a scream. As you crawl out of your tent to investigate, a terrified park ranger runs
out of the woods, covered in blood and clutching a crumpled piece of paper to his chest.
As he reaches your tent, he gasps, “Get out. . . while. . . you. . . ”, thrusts the paper into your
hands, and falls to the ground. Checking his pulse, you discover that the ranger is stone
dead.

You look down at the paper and recognize a map of the park, drawn as an undirected
graph, where vertices represent landmarks in the park, and edges represent trails between
those landmarks. (Trails start and end at landmarks and do not cross.) You recognize one
of the vertices as your current location; several vertices on the boundary of the map are
labeled EXIT.

On closer examination, you notice that someone (perhaps the poor dead park ranger)
has written a real number between 0 and 1 next to each vertex and each edge. A scrawled
note on the back of the map indicates that a number next to an edge is the probability of
encountering a vampire along the corresponding trail, and a number next to a vertex is the
probability of encountering a vampire at the corresponding landmark. (Vampires can’t
stand each other’s company, so you’ll never see more than one vampire on the same trail or
at the same landmark.) The note warns you that stepping off the marked trails will result
in a slow and painful death.

You glance down at the corpse at your feet. Yes, his death certainly looked painful.
Wait, was that a twitch? Are his teeth getting longer? After driving a tent stake through
the undead ranger’s heart, you wisely decide to leave the park immediately.

Describe and analyze an efficient algorithm to find a path from your current location to
an arbitrary EXIT node, such that the total expected number of vampires encountered along
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the path is as small as possible. Be sure to account for both the vertex probabilities and the
edge probabilities!

— Randall Munroe, xkcd (http://xkcd.com/69/)
Reproduced under a Creative Commons Attribution-NonCommercial 2.5 License

© Copyright 2014 Jeff Erickson.
This work is licensed under a Creative Commons License (http://creativecommons.org/licenses/by-nc-sa/4.0/).

Free distribution is strongly encouraged; commercial distribution is expressly forbidden.
See http://www.cs.uiuc.edu/~jeffe/teaching/algorithms for the most recent revision.
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The tree which fills the arms grew from the tiniest sprout;
the tower of nine storeys rose from a (small) heap of earth;
the journey of a thousand li commenced with a single step.

— Lao-Tzu, Tao Te Ching, chapter 64 (6th century BC),
translated by J. Legge (1891)

And I would walk five hundred miles,
And I would walk five hundred more,
Just to be the man who walks a thousand miles
To fall down at your door.

— The Proclaimers, “Five Hundred Miles (I’m Gonna Be)”,
Sunshine on Leith (2001)

Almost there. . . Almost there. . .

— Red Leader [Drewe Henley], Star Wars (1977)

22 All-Pairs Shortest Paths

In the previous lecture, we saw algorithms to find the shortest path from a source vertex s to a
target vertex t in a directed graph. As it turns out, the best algorithms for this problem actually
find the shortest path from s to every possible target (or from every possible source to t) by
constructing a shortest path tree. The shortest path tree specifies two pieces of information for
each node v in the graph:

• dist(v) is the length of the shortest path (if any) from s to v;

• pred(v) is the second-to-last vertex (if any) the shortest path (if any) from s to v.

In this lecture, we want to generalize the shortest path problem even further. In the all pairs
shortest path problem, we want to find the shortest path from every possible source to every
possible destination. Specifically, for every pair of vertices u and v, we need to compute the
following information:

• dist(u, v) is the length of the shortest path (if any) from u to v;

• pred(u, v) is the second-to-last vertex (if any) on the shortest path (if any) from u to v.

For example, for any vertex v, we have dist(v, v) = 0 and pred(v, v) = Null. If the shortest path
from u to v is only one edge long, then dist(u, v) = w(u�v) and pred(u, v) = u. If there is no
shortest path from u to v—either because there’s no path at all, or because there’s a negative
cycle—then dist(u, v) =∞ and pred(v, v) = Null.

The output of our shortest path algorithms will be a pair of V × V arrays encoding all V 2

distances and predecessors. Many maps include a distance matrix—to find the distance from
(say) Champaign to (say) Columbus, you would look in the row labeled ‘Champaign’ and the
column labeled ‘Columbus’. In these notes, I’ll focus almost exclusively on computing the distance
array. The predecessor array, from which you would compute the actual shortest paths, can be
computed with only minor additions to the algorithms I’ll describe (hint, hint).

© Copyright 2014 Jeff Erickson.
This work is licensed under a Creative Commons License (http://creativecommons.org/licenses/by-nc-sa/4.0/).

Free distribution is strongly encouraged; commercial distribution is expressly forbidden.
See http://www.cs.uiuc.edu/~jeffe/teaching/algorithms for the most recent revision.
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22.1 Lots of Single Sources

The obvious solution to the all-pairs shortest path problem is just to run a single-source shortest
path algorithm V times, once for every possible source vertex! Specifically, to fill in the one-
dimensional subarray dist[s, ·], we invoke either Dijkstra’s or Shimbel’s algorithm starting at the
source vertex s.

ObviousAPSP(V, E, w):
for every vertex s

dist[s, ·]← SSSP(V, E, w, s)

The running time of this algorithm depends on which single-source shortest path algorithm we
use. If we use Shimbel’s algorithm, the overall running time is Θ(V2E)= O(V 4). If all the edge
weights are non-negative, we can use Dijkstra’s algorithm instead, which decreases the running
time to Θ(VE + V2 log V)= O(V 3). For graphs with negative edge weights, Dijkstra’s algorithm
can take exponential time, so we can’t get this improvement directly.

22.2 Reweighting

One idea that occurs to most people is increasing the weights of all the edges by the same amount
so that all the weights become positive, and then applying Dijkstra’s algorithm. Unfortunately,
this simple idea doesn’t work. Different paths change by different amounts, which means the
shortest paths in the reweighted graph may not be the same as in the original graph.

2 2

4 4

3

s t

Increasing all the edge weights by 2 changes the shortest path s to t.

However, there is a more complicated method for reweighting the edges in a graph. Suppose
each vertex v has some associated cost c(v), which might be positive, negative, or zero. We can
define a new weight function w′ as follows:

w′(u�v) = c(u) +w(u�v)− c(v)

To give some intuition, imagine that when we leave vertex u, we have to pay an exit tax of c(u),
and when we enter v, we get c(v) as an entrance gift.

Now it’s not too hard to show that the shortest paths with the new weight function w′ are
exactly the same as the shortest paths with the original weight function w. In fact, for any
path u  v from one vertex u to another vertex v, we have

w′(u  v) = c(u) +w(u  v)− c(v).

We pay c(u) in exit fees, plus the original weight of of the path, minus the c(v) entrance gift. At
every intermediate vertex x on the path, we get c(x) as an entrance gift, but then immediately
pay it back as an exit tax!

22.3 Johnson’s Algorithm

Johnson’s all-pairs shortest path algorithm finds a cost c(v) for each vertex, so that when the
graph is reweighted, every edge has non-negative weight.

2
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Suppose the graph has a vertex s that has a path to every other vertex. Johnson’s algorithm
computes the shortest paths from s to every other vertex, using Shimbel’s algorithm (which
doesn’t care if the edge weights are negative), and then sets c(v)← dist(s, v), so the new weight
of every edge is

w′(u�v) = dist(s, u) +w(u�v)− dist(s, v).

Why are all these new weights non-negative? Because otherwise, Shimbel’s algorithm wouldn’t be
finished! Recall that an edge u�v is tense if dist(s, u)+w(u�v)< dist(s, v), and that single-source
shortest path algorithms eliminate all tense edges. The only exception is if the graph has a
negative cycle, but then shortest paths aren’t defined, and Johnson’s algorithm simply aborts.

But what if the graph doesn’t have a vertex s that can reach everything? No matter where we
start Shimbel’s algorithm, some of those vertex costs will be infinite. Johnson’s algorithm avoids
this problem by adding a new vertex s to the graph, with zero-weight edges going from s to every
other vertex, but no edges going back into s. This addition doesn’t change the shortest paths
between any other pair of vertices, because there are no paths into s.

So here’s Johnson’s algorithm in all its glory.

JohnsonAPSP(V, E, w) :
create a new vertex s
for every vertex v

w(s�v)← 0
w(v�s)←∞

dist[s, ·]← Shimbel(V, E, w, s)
if Shimbel found a negative cycle

fail gracefully
for every edge (u, v) ∈ E

w′(u�v)← dist[s, u] +w(u�v)− dist[s, v]
for every vertex u

dist[u, ·]← Dijkstra(V, E, w′, u)
for every vertex v

dist[u, v]← dist[u, v]− dist[s, u] + dist[s, v]

The algorithm spends Θ(V ) time adding the artificial start vertex s, Θ(V E) time running
Shimbel, O(E) time reweighting the graph, and then Θ(V E + V 2 log V ) running V passes of
Dijkstra’s algorithm. Thus, the overall running time is Θ(VE + V2 log V).

22.4 Dynamic Programming

There’s a completely different solution to the all-pairs shortest path problem that uses dynamic
programming instead of a single-source algorithm. For dense graphs where E = Ω(V 2), the
dynamic programming approach eventually leads to the same O(V 3) running time as Johnson’s
algorithm, but with a much simpler algorithm. In particular, the new algorithm avoids Dijkstra’s
algorithm, which gets its efficiency from Fibonacci heaps, which are rather easy to screw up in
the implementation. In the rest of this lecture, I will assume that the input graph contains
no negative cycles.

As usual for dynamic programming algorithms, we first need to come up with a recursive
formulation of the problem. Here is an “obvious" recursive definition for dist(u, v):

dist(u, v) =

¨
0 if u= v

min
x�v

�
dist(u, x) +w(x�v)

�
otherwise
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In other words, to find the shortest path from u to v, we consider all possible last edges x�v
and recursively compute the shortest path from u to x . Unfortunately, this recurrence doesn’t
work! To compute dist(u, v), we may need to compute dist(u, x) for every other vertex x . But to
compute dist(u, x), we may need to compute dist(u, v). We’re stuck in an infinite loop!

To avoid this circular dependency, we need an additional parameter that decreases at each
recursion, eventually reaching zero at the base case. One possibility is to include the number
of edges in the shortest path as this third magic parameter, just as we did in the dynamic
programming formulation of Shimbel’s algorithm. Let dist(u, v, k) denote the length of the
shortest path from u to v that uses at most k edges. Since we know that the shortest path between
any two vertices has at most V − 1 vertices, dist(u, v, V − 1) is the actual shortest-path distance.
As in the single-source setting, we have the following recurrence:

dist(u, v, k) =





0 if u= v

∞ if k = 0 and u 6= v

min
x�v

�
dist(u, x , k− 1) +w(x�v)

�
otherwise

Turning this recurrence into a dynamic programming algorithm is straightforward. To make the
algorithm a little shorter, let’s assume that w(v�v) = 0 for every vertex v. Assuming the graph is
stored in an adjacency list, the resulting algorithm runs in Θ(V2E) time.

DynamicProgrammingAPSP(V, E, w):
for all vertices u

for all vertices v
if u= v

dist[u, v, 0]← 0
else

dist[u, v, 0]←∞
for k← 1 to V − 1

for all vertices u
dist[u, u, k]← 0
for all vertices v 6= u

dist[u, v, k]←∞
for all edges x�v

if dist[u, v, k]> dist[u, x , k− 1] +w(x�v)
dist[u, v, k]← dist[u, x , k− 1] +w(x�v)

This algorithm was first sketched by Shimbel in 1955; in fact, this algorithm is just running
V different instances of Shimbel’s single-source algorithm, one for each possible source vertex.
Just as in the dynamic programming development of Shimbel’s single-source algorithm, we don’t
actually need the inner loop over vertices v, and we only need a two-dimensional table. After the
kth iteration of the main loop in the following algorithm, dist[u, v] lies between the true shortest
path distance from u to v and the value dist[u, v, k] computed in the previous algorithm.
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ShimbelAPSP(V, E, w):
for all vertices u

for all vertices v
if u= v

dist[u, v]← 0
else

dist[u, v]←∞
for k← 1 to V − 1

for all vertices u
for all edges x�v

if dist[u, v]> dist[u, x] +w(x�v)
dist[u, v]← dist[u, x] +w(x�v)

22.5 Divide and Conquer

But we can make a more significant improvement. The recurrence we just used broke the shortest
path into a slightly shorter path and a single edge, by considering all predecessors. Instead, let’s
break it into two shorter paths at the middle vertex of the path. This idea gives us a different
recurrence for dist(u, v, k). Once again, to simplify things, let’s assume w(v�v) = 0.

dist(u, v, k) =

¨
w(u�v) if k = 1

min
x

�
dist(u, x , k/2) + dist(x , v, k/2)

�
otherwise

This recurrence only works when k is a power of two, since otherwise we might try to find
the shortest path with a fractional number of edges! But that’s not really a problem, since
dist(u, v, 2dlg V e) gives us the overall shortest distance from u to v. Notice that we use the base
case k = 1 instead of k = 0, since we can’t use half an edge.

Once again, a dynamic programming solution is straightforward. Even before we write down
the algorithm, we can tell the running time is Θ(V3 log V)—we consider V possible values of
u, v, and x , but only dlg V e possible values of k.

FastDynamicProgrammingAPSP(V, E, w):
for all vertices u

for all vertices v
dist[u, v, 0]← w(u�v)

for i← 1 to dlg V e 〈〈k = 2i〉〉
for all vertices u

for all vertices v
dist[u, v, i]←∞
for all vertices x

if dist[u, v, i]> dist[u, x , i − 1] + dist[x , v, i − 1]
dist[u, v, i]← dist[u, x , i − 1] + dist[x , v, i − 1]

This algorithm is not the same as V invocations of any single-source algorithm; in particular,
the innermost loop does not simply relax tense edges. However, we can remove the last dimension
of the table, using dist[u, v] everywhere in place of dist[u, v, i], just as in Shimbel’s single-source
algorithm, thereby reducing the space from O(V 3) to O(V 2).

5



Algorithms Lecture 22: All-Pairs Shortest Paths [Fa’14]

FastShimbelAPSP(V, E, w):
for all vertices u

for all vertices v
dist[u, v]← w(u�v)

for i← 1 to dlg V e
for all vertices u

for all vertices v
for all vertices x

if dist[u, v]> dist[u, x] + dist[x , v]
dist[u, v]← dist[u, x] + dist[x , v]

This faster algorithm was discovered by Leyzorek et al. in 1957, in the same paper where they
describe Dijkstra’s algorithm.

22.6 Aside: ‘Funny’ Matrix Multiplication

There is a very close connection (first observed by Shimbel, and later independently by Bellman)
between computing shortest paths in a directed graph and computing powers of a square matrix.
Compare the following algorithm for multiplying two n× n matrices A and B with the inner loop
of our first dynamic programming algorithm. (I’ve changed the variable names in the second
algorithm slightly to make the similarity clearer.)

MatrixMultiply(A, B):
for i← 1 to n

for j← 1 to n
C[i, j]← 0
for k← 1 to n

C[i, j]← C[i, j] + A[i, k] · B[k, j]

APSPInnerLoop:
for all vertices u

for all vertices v
D′[u, v]←∞
for all vertices x

D′[u, v]←min
�

D′[u, v], D[u, x] +w[x , v]
	

The only difference between these two algorithms is that we use addition instead of multiplication
and minimization instead of addition. For this reason, the shortest path inner loop is often
referred to as ‘funny’ matrix multiplication.

DynamicProgrammingAPSP is the standard iterative algorithm for computing the (V − 1)th
‘funny power’ of the weight matrix w. The first set of for loops sets up the ‘funny identity matrix’,
with zeros on the main diagonal and infinity everywhere else. Then each iteration of the second
main for loop computes the next ‘funny power’. FastDynamicProgrammingAPSP replaces
this iterative method for computing powers with repeated squaring, exactly like we saw at the
beginning of the semester. The fast algorithm is simplified slightly by the fact that unless there
are negative cycles, every ‘funny power’ after the V th is the same.

There are faster methods for multiplying matrices, similar to Karatsuba’s divide-and-conquer
algorithm for multiplying integers. (Google for ‘Strassen’s algorithm’.) Unfortunately, these
algorithms us subtraction, and there’s no ‘funny’ equivalent of subtraction. (What’s the inverse
operation for min?) So at least for general graphs, there seems to be no way to speed up the
inner loop of our dynamic programming algorithms.
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Fortunately, this isn’t true. There a beautiful randomized algorithm, discovered by Alon,
Galil, Margalit, and Noar¹, that computes all-pairs shortest paths in undirected graphs in
O(M(V ) log2 V ) expected time, where M(V ) is the time to multiply two V × V integer matrices.
A simplified version of this algorithm for unweighted graphs was discovered by Seidel.²

22.7 Floyd-(Roy-Kleene-)Warshall

Our fast dynamic programming algorithm is still a factor of O(log V ) slower than Johnson’s
algorithm. A different formulation that removes this logarithmic factor was proposed in 1962
by Robert Floyd, slightly generalizing an algorithm of Stephen Warshall published earlier in the
same year. (In fact, Warshall’s algorithm was independently discovered by Bernard Roy in 1959,
but the underlying technique was used even earlier by Stephen Kleene³ in 1951.) Warshall’s (and
Roy’s and Kleene’s) insight was to use a different third parameter in the dynamic programming
recurrence.

Number the vertices arbitrarily from 1 to V . For every pair of vertices u and v and every
integer r, we define a path π(u, v, r) as follows:

π(u, v, r) := the shortest path from u to v where every intermediate vertex (that is,
every vertex except u and v) is numbered at most r.

If r = 0, we aren’t allowed to use any intermediate vertices, so π(u, v, 0) is just the edge
(if any) from u to v. If r > 0, then either π(u, v, r) goes through the vertex numbered r, or it
doesn’t. If π(u, v, r) does contain vertex r, it splits into a subpath from u to r and a subpath
from r to v, where every intermediate vertex in these two subpaths is numbered at most r − 1.
Moreover, the subpaths are as short as possible with this restriction, so they must be π(u, r, r − 1)
and π(r, v, r − 1). On the other hand, if π(u, v, r) does not go through vertex r, then every
intermediate vertex in π(u, v, r) is numbered at most r − 1; since π(u, v, r) must be the shortest
such path, we have π(u, v, r) = π(u, v, r − 1).

u v
intermediate nodes ≤ r

u v

r

intermediate nodes ≤ r-1

interm
ediate

nodes ≤
 r-1

intermediate

nodes ≤ r-1

— or —=

Recursive structure of the restricted shortest path π(u, v, r).

This recursive structure implies the following recurrence for the length of π(u, v, r), which
we will denote by dist(u, v, r):

dist(u, v, r) =

(
w(u�v) if r = 0

min
�
dist(u, v, r − 1), dist(u, r, r − 1) + dist(r, v, r − 1)

	
otherwise

¹Noga Alon, Zvi Galil, Oded Margalit*, and Moni Naor. Witnesses for Boolean matrix multiplication and for shortest
paths. Proc. 33rd FOCS 417-426, 1992. See also Noga Alon, Zvi Galil, Oded Margalit*. On the exponent of the all pairs
shortest path problem. Journal of Computer and System Sciences 54(2):255–262, 1997.

²Raimund Seidel. On the all-pairs-shortest-path problem in unweighted undirected graphs. Journal of Computer
and System Sciences, 51(3):400-403, 1995. This is one of the few algorithms papers where (in the conference version at
least) the algorithm is completely described and analyzed in the abstract of the paper.

³Pronounced “clay knee”, not “clean” or “clean-ee” or “clay-nuh” or “dimaggio”.
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We need to compute the shortest path distance from u to v with no restrictions, which is just
dist(u, v, V ). Once again, we should immediately see that a dynamic programming algorithm
will implement this recurrence in Θ(V3) time.

FloydWarshall(V, E, w):
for all vertices u

for all vertices v
dist[u, v, 0]← w(u�v)

for r ← 1 to V
for all vertices u

for all vertices v
if dist[u, v, r − 1]< dist[u, r, r − 1] + dist[r, v, r − 1]

dist[u, v, r]← dist[u, v, r − 1]
else

dist[u, v, r]← dist[u, r, r − 1] + dist[r, v, r − 1]

Just like our earlier algorithms, we can simplify the algorithm by removing the third dimension
of the memoization table. Also, because the vertex numbering was chosen arbitrarily, there’s no
reason to refer to it explicitly in the pseudocode.

FloydWarshall2(V, E, w):
for all vertices u

for all vertices v
dist[u, v]← w(u�v)

for all vertices r
for all vertices u

for all vertices v
if dist[u, v]> dist[u, r] + dist[r, v]

dist[u, v]← dist[u, r] + dist[r, v]

Now compare this algorithm with FastShimbelAPSP. Instead of O(log V ) passes through all
triples of vertices, FloydWarshall2 only requires a single pass, but only because it uses a
different nesting order for the three for-loops!

22.8 Converting DFAs to regular expressions

Floyd’s algorithm is a special case of a more general method for solving problems involving
paths between vertices in graphs. The earliest example (that I know of) of this technique is an
1951 algorithm of Stephen Kleene to convert a deterministic finite automaton into an equivalent
regular expression.

Recall that a deterministic finite automaton (DFA) formally consists of the following compo-
nents:

• A finite set Σ, called the alphabet, and whose elements we call symbols.

• A finite set Q, whose elements are called states.

• An initial state s ∈Q.

• A subset A⊆Q of accepting states.

• A transition function δ : Q×Σ→Q.
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The extended transition function δ∗ : Q×Σ∗→Q is recursively defined as follows:

δ∗(q, w) :=

¨
q if w= ε,
δ∗(δ(q, a), x) if w= ax for some a ∈ Σ and x ∈ Σ∗.

Finally, a DFA accepts a string w ∈ Σ∗ if and only if δ∗(s, w) ∈ A.
Equivalently, a DFA is a directed (multi-)graph with labeled edges whose vertices are the

states, such that each vertex (state) has exactly one outgoing edge (transition) labeled with each
symbol in Σ. There is a special “start” vertex s, and a subset A of the vertices are marked as
“accepting”. For any string w ∈ Σ∗, there is a unique walk starting at s whose sequence of edge
labels is w. The DFA accepts w if and only if this walk ends at a state in A.

Kleene described the following algorithm to convert DFAs into equivalent regular expressions.
Suppose we are given a DFA M with n states, where (without loss of generality) each state is
identified by an integer between 1 and n. Let L(i, j , r ) denote the set of all strings that describe
walks in M that start at state i and end at state j, such that every intermediate state has index at
most r. Thus, the language accepted by M is precisely

L(M) =
⋃
q∈A

L(s, q, n).

We prove inductively that every language L(i, j, r) is regular, by recursively constructing a regular
expression R(i, j, r) that represents L(i, j, r). There are two cases to consider.

• First, suppose r = 0. The language L(i, j, 0) contains the labels walks from state i to state
j that do not pass through any intermediate states. Thus, every string in L(i, j, 0) has
length at most 1. Specifically, for any symbol a ∈ Σ, we have a ∈ L(i, j, 0) if and only if
δ(i, a) = j, and we have ε ∈ L(i, j, 0) if and only if i = j. Thus, L(i, j, 0) is always finite,
and therefore regular.

311 2
1

0

0,10

An example DFA

For example, the DFA sown on the next page defines the following regular languages
L(i, j, 0).

R[1, 1,0] = ε + 0 R[2,1, 0] = 0 R[3, 1, 0] =∅
R[1, 2,0] = 1 R[2, 2, 0] = ε R[3, 2, 0] =∅
R[1, 3,0] =∅ R[2,3, 0] = 1 R[3, 3, 0] = ε + 0+ 1

• Now suppose r > 0. Each string w ∈ L(i, j, r) describes a walk from state i to state j where
every intermediate state has index at most r. If this walk does not pass through state r,
then w ∈ L(i, j, r−1) by definition. Otherwise, we can split w into a sequence of substrings
w = w1 · w2 · · ·w` at the points where the walk visits state r. These substrings have the
following properties:

– The prefix w1 describes a walk from state i to state r and thus belongs to L(i, r, r −1).
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– The suffix w` describes a walk from state r to state j and thus belongs to L(r, j, r−1).
– For every other index k, the substring wk describes a walk from state r to state r and

thus belongs to L(r, r, r − 1).

We conclude that

L(i, j, r) = L(i, j, r − 1) ∪ L(i, r, r − 1) • L(r, r, r − 1)∗ • L(r, j, r − 1).

i j
intermediate states ≤ r

i j

r

intermediate states ≤ r-1

intermediate

states ≤
 r-1

intermediate

states ≤ r-1

— or —=

intermediate
states ≤ r-1

Recursive structure of the regular language L(i, j, r).

Putting these pieces together, we can recursively define a regular expression R(i, j, r) that
describes the language L(i, j, r), as follows:

R(i, j, r) :=





ε +
∑
δ(i,a)= j a if r = 0 and i = j

∑
δ(i,a)= j a if r = 0 and i 6= j

R(i, j, r − 1) + R(i, r, r − 1) • R(r, r, r − 1)∗ • R(r, j, r − 1) otherwise

Kleene’s algorithm evaluates this recurrence bottom-up using the natural dynamic programming al-
gorithm. We memoize the previous recurrence into a three-dimensional array R[1 .. n, 1 .. n, 0 .. n],
which we traverse by increasing r in the outer loop, and in arbitrary order in the inner two loops.

Kleene(Σ, n,δ, F):
〈〈Base cases〉〉
for i← 1 to n

for j← 1 to n
if i = j then R[i, j, 0]← ε else R[i, j, 0]←∅
for all symbols a ∈ Σ

if δ[i, a] = j
R[i, j, 0]← R[i, j, 0] + a

〈〈Recursive cases〉〉
for r ← 1 to n

for i← 1 to n
for j← 1 to n

R[i, j, r]← R[i, j, r − 1] + R[i, r, r − 1] • R[r, r, r − 1]∗ • R[r, j, r − 1]

〈〈Assemble the final result〉〉
R←∅
for q← 0 to n− 1

if q ∈ F
R← R+ R[1, q, n− 1]

return R

For purposes of analysis, let’s assume the alphabet Σ has constant size. Assuming each
alternation (+), concatenation (•), and Kleene closure (∗) operation requires constant time, the
entire algorithm runs in O(n3) time.
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However, regular expressions over an alphabet Σ are normally represented either as standard
strings (arrays) over the larger alphabet Σ∪{+,•,*,(,), 3}, or as regular expression trees, whose
internal nodes are +, •, and ∗ operators and whose leaves are symbols and εs. In either
representation, the regular expressions in Kleene’s algorithm grow in size by roughly a factor of
4 in each iteration of the outer loop, at least in the worst case. Thus, in the worst case, each
regular expression R[i, j, r] has size O(4r), the size of the final output expression is O(4nn), and
entire algorithm runs in O(4nn2) time.

So we shouldn’t do this. After all, the running time is exponential, and exponential time
is bad. Right? Moreover, this exponential dependence is unavoidable; Hermann Gruber and
Markus Holzer proved in 2008⁴ that there are n-state DFAs over the binary alphabet {0,1} such
that any equivalent regular expression has length 2Ω(n).

Well, maybe it’s not so bad. The output regular expression has exponential size because
it contains multiple copies of the same subexpressions; similarly, the regular expression tree has
exponential size because it contains multiples copies of several subtrees. But it’s precisely this
exponential behavior that we use dynamic programming to avoid! In fact, it’s not hard to modify
Kleene’s algorithm to compute a regular expression dag of size O(n3), in O(n3) time, that
(intuitively) contains each subexpression R[i, j, r] only once. This regular expression dag has
exactly the same relationship to the regular expression tree as the dependency graph of Kleene’s
algorithm has to the recursion tree of its underlying recurrence.

Exercises

1. All of the algorithms discussed in this lecture fail if the graph contains a negative cycle.
Johnson’s algorithm detects the negative cycle in the initialization phase (via Shimbel’s
algorithm) and aborts; the dynamic programming algorithms just return incorrect results.
However, all of these algorithms can be modified to return correct shortest-path distances,
even in the presence of negative cycles. Specifically, if there is a path from vertex u to a
negative cycle and a path from that negative cycle to vertex v, the algorithm should report
that dist[u, v] = −∞. If there is no directed path from u to v, the algorithm should return
dist[u, v] =∞. Otherwise, dist[u, v] should equal the length of the shortest directed path
from u to v.

(a) Describe how to modify Johnson’s algorithm to return the correct shortest-path
distances, even if the graph has negative cycles.

(b) Describe how to modify the Floyd-Warshall algorithm (FloydWarshall2) to return
the correct shortest-path distances, even if the graph has negative cycles.

2. All of the shortest-path algorithms described in this note can also be modified to return
an explicit description of some negative cycle, instead of simply reporting that a negative
cycle exists.

(a) Describe how to modify Johnson’s algorithm to return either the matrix of shortest-
path distances or a negative cycle.

(b) Describe how to modify the Floyd-Warshall algorithm (FloydWarshall2) to return
either the matrix of shortest-path distances or a negative cycle.

⁴Hermann Gruber and Markus Holzer. Finite automata, digraph connectivity, and regular expression size. Proc.
35th ICALP, 39–50, 2008.
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If the graph contains more than one negative cycle, your algorithms may choose one
arbitrarily.

3. Let G = (V, E) be a directed graph with weighted edges; edge weights could be positive,
negative, or zero. Suppose the vertices of G are partitioned into k disjoint subsets
V1, V2, . . . , Vk; that is, every vertex of G belongs to exactly one subset Vi . For each i and j,
let δ(i, j) denote the minimum shortest-path distance between vertices in Vi and vertices
in Vj:

δ(i, j) =min
�
dist(u, v)

�� u ∈ Vi and v ∈ Vj

	
.

Describe an algorithm to compute δ(i, j) for all i and j in time O(V 2 + kE log E).

4. Let G = (V, E) be a directed graph with weighted edges; edge weights could be positive,
negative, or zero.

(a) How could we delete an arbitrary vertex v from this graph, without changing the
shortest-path distance between any other pair of vertices? Describe an algorithm that
constructs a directed graph G′ = (V ′, E′)with weighted edges, where V ′ = V \{v}, and
the shortest-path distance between any two nodes in H is equal to the shortest-path
distance between the same two nodes in G, in O(V 2) time.

(b) Now suppose we have already computed all shortest-path distances in G′. Describe
an algorithm to compute the shortest-path distances from v to every other vertex,
and from every other vertex to v, in the original graph G, in O(V 2) time.

(c) Combine parts (a) and (b) into another all-pairs shortest path algorithm that runs in
O(V 3) time. (The resulting algorithm is not the same as Floyd-Warshall!)

5. In this problem we will discover how you, too, can be employed by Wall Street and cause a
major economic collapse! The arbitrage business is a money-making scheme that takes
advantage of differences in currency exchange. In particular, suppose that 1 US dollar
buys 120 Japanese yen; 1 yen buys 0.01 euros; and 1 euro buys 1.2 US dollars. Then,
a trader starting with $1 can convert his money from dollars to yen, then from yen to
euros, and finally from euros back to dollars, ending with $1.44! The cycle of currencies
$→ ¥→€→ $ is called an arbitrage cycle. Of course, finding and exploiting arbitrage
cycles before the prices are corrected requires extremely fast algorithms.

Suppose n different currencies are traded in your currency market. You are given the
matrix R[1 .. n, 1 .. n] of exchange rates between every pair of currencies; for each i and j,
one unit of currency i can be traded for R[i, j] units of currency j. (Do not assume that
R[i, j] · R[ j, i] = 1.)

(a) Describe an algorithm that returns an array V [1 .. n], where V [i] is the maximum
amount of currency i that you can obtain by trading, starting with one unit of currency
1, assuming there are no arbitrage cycles.

(b) Describe an algorithm to determine whether the given matrix of currency exchange
rates creates an arbitrage cycle.

(c) Modify your algorithm from part (b) to actually return an arbitrage cycle, if it exists.
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?6. Let G = (V, E) be an undirected, unweighted, connected, n-vertex graph, represented by
the adjacency matrix A[1 .. n, 1 .. n]. In this problem, we will derive Seidel’s sub-cubic
algorithm to compute the n× n matrix D[1 .. n, 1 .. n] of shortest-path distances using fast
matrix multiplication. Assume that we have a subroutine MatrixMultiply that multiplies
two n× n matrices in Θ(nω) time, for some unknown constant ω≥ 2.⁵

(a) Let G2 denote the graph with the same vertices as G, where two vertices are
connected by a edge if and only if they are connected by a path of length at most 2 in
G. Describe an algorithm to compute the adjacency matrix of G2 using a single call
to MatrixMultiply and O(n2) additional time.

(b) Suppose we discover that G2 is a complete graph. Describe an algorithm to compute
the matrix D of shortest path distances in O(n2) additional time.

(c) Let D2 denote the (recursively computed) matrix of shortest-path distances in G2.
Prove that the shortest-path distance from node i to node j is either 2 · D2[i, j] or
2 · D2[i, j]− 1.

(d) Suppose G2 is not a complete graph. Let X = D2 ·A, and let deg(i) denote the degree
of vertex i in the original graph G. Prove that the shortest-path distance from node i
to node j is 2 · D2[i, j] if and only if X [i, j]≥ D2[i, j] · deg(i).

(e) Describe an algorithm to compute the matrix of shortest-path distances in G in
O(nω log n) time.

⁵The matrix multiplication algorithm you already know runs in Θ(n3) time, but this is not the fastest algorithm
known. The current record is ω≈ 2.3727, due to Virginia Vassilevska Williams. Determining the smallest possible
value of ω is a long-standing open problem; many people believe there is an undiscovered O(n2)-time algorithm for
matrix multiplication.

© Copyright 2014 Jeff Erickson.
This work is licensed under a Creative Commons License (http://creativecommons.org/licenses/by-nc-sa/4.0/).

Free distribution is strongly encouraged; commercial distribution is expressly forbidden.
See http://www.cs.uiuc.edu/~jeffe/teaching/algorithms for the most recent revision.
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A process cannot be understood by stopping it. Understanding must
move with the flow of the process, must join it and flow with it.

— The First Law of Mentat, in Frank Herbert’s Dune (1965)

There’s a difference between knowing the path and walking the path.

— Morpheus [Laurence Fishburne], The Matrix (1999)

23 Maximum Flows and Minimum Cuts

In the mid-1950s, Air Force researcher Theodore E. Harris and retired army general Frank S.
Ross published a classified report studying the rail network that linked the Soviet Union to its
satellite countries in Eastern Europe. The network was modeled as a graph with 44 vertices,
representing geographic regions, and 105 edges, representing links between those regions in the
rail network. Each edge was given a weight, representing the rate at which material could be
shipped from one region to the next. Essentially by trial and error, they determined both the
maximum amount of stuff that could be moved from Russia into Europe, as well as the cheapest
way to disrupt the network by removing links (or in less abstract terms, blowing up train tracks),
which they called ‘the bottleneck’. Their results, including the drawing of the network below,
were only declassified in 1999.¹

Figure 2
From Harris and Ross [1955]: Schematic diagram of the railway network of the Western So-
viet Union and Eastern European countries, with a maximum flow of value 163,000 tons from
Russia to Eastern Europe, and a cut of capacity 163,000 tons indicated as ‘The bottleneck’.

The max-flow min-cut theorem

In the RAND Report of 19 November 1954, Ford and Fulkerson [1954] gave (next to defining
the maximum flow problem and suggesting the simplex method for it) the max-flow min-
cut theorem for undirected graphs, saying that the maximum flow value is equal to the
minimum capacity of a cut separating source and terminal. Their proof is not constructive,
but for planar graphs, with source and sink on the outer boundary, they give a polynomial-
time, constructive method. In a report of 26 May 1955, Robacker [1955a] showed that the
max-flow min-cut theorem can be derived also from the vertex-disjoint version of Menger’s
theorem.

As for the directed case, Ford and Fulkerson [1955] observed that the max-flow min-cut
theorem holds also for directed graphs. Dantzig and Fulkerson [1955] showed, by extending
the results of Dantzig [1951a] on integer solutions for the transportation problem to the

25

Harris and Ross’s map of the Warsaw Pact rail network

This one of the first recorded applications of the maximum flow and minimum cut problems.
For both problems, the input is a directed graph G = (V, E), along with special vertices s and t
called the source and target. As in the previous lectures, I will use u�v to denote the directed
edge from vertex u to vertex v. Intuitively, the maximum flow problem asks for the largest

¹Both the map and the story were taken from Alexander Schrijver’s fascinating survey ‘On the history of
combinatorial optimization (till 1960)’.

© Copyright 2014 Jeff Erickson.
This work is licensed under a Creative Commons License (http://creativecommons.org/licenses/by-nc-sa/4.0/).

Free distribution is strongly encouraged; commercial distribution is expressly forbidden.
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amount of material that can be transported from s to t; the minimum cut problem asks for the
minimum damage needed to separate s from t.

23.1 Flows

An (s , t )-flow (or just a flow if the source and target are clear from context) is a function
f : E→ R≥0 that satisfies the following conservation constraint at every vertex v except possibly
s and t: ∑

u

f (u�v) =
∑

w

f (v�w).

In English, the total flow into v is equal to the total flow out of v. To keep the notation simple,
we define f (u�v) = 0 if there is no edge u�v in the graph. The value of the flow f , denoted | f |,
is the total net flow out of the source vertex s:

| f | :=
∑

w

f (s�w)−
∑

u

f (u�s).

It’s not hard to prove that | f | is also equal to the total net flow into the target vertex t, as
follows. To simplify notation, let ∂ f (v) denote the total net flow out of any vertex v:

∂ f (v) :=
∑

u

f (u�v)−
∑

w

f (v�w).

The conservation constraint implies that ∂ f (v) = 0 or every vertex v except s and t, so
∑

v

∂ f (v) = ∂ f (s) + ∂ f (t).

On the other hand, any flow that leaves one vertex must enter another vertex, so we must have∑
v ∂ f (v) = 0. It follows immediately that | f |= ∂ f (s) = −∂ f (t).
Now suppose we have another function c : E→ R≥0 that assigns a non-negative capacity c(e)

to each edge e. We say that a flow f is feasible (with respect to c) if f (e)≤ c(e) for every edge e.
Most of the time we will consider only flows that are feasible with respect to some fixed capacity
function c. We say that a flow f saturates edge e if f (e) = c(e), and avoids edge e if f (e) = 0.
The maximum flow problem is to compute a feasible (s, t)-flow in a given directed graph, with
a given capacity function, whose value is as large as possible.

s t

10/20

0/10

10/10

0/5

10/10

5/15

5/10

5/20

0/15

An (s, t)-flow with value 10. Each edge is labeled with its flow/capacity.

23.2 Cuts

An (s , t )-cut (or just cut if the source and target are clear from context) is a partition of the
vertices into disjoint subsets S and T—meaning S ∪ T = V and S ∩ T = ∅—where s ∈ S and
t ∈ T .
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If we have a capacity function c : E→ R≥0, the capacity of a cut is the sum of the capacities
of the edges that start in S and end in T :

‖S, T‖ :=
∑
v∈S

∑
w∈T

c(v�w).

(Again, if v�w is not an edge in the graph, we assume c(v�w) = 0.) Notice that the definition is
asymmetric; edges that start in T and end in S are unimportant. The minimum cut problem is
to compute an (s, t)-cut whose capacity is as large as possible.

s t

20

10

10

5

10

15

10

20

15

An (s, t)-cut with capacity 15. Each edge is labeled with its capacity.

Intuitively, the minimum cut is the cheapest way to disrupt all flow from s to t. Indeed, it
is not hard to show that the value of any feasible (s , t )-flow is at most the capacity of any
(s , t )-cut. Choose your favorite flow f and your favorite cut (S, T ), and then follow the bouncing
inequalities:

| f |=
∑

w

f (s�w)−
∑

u

f (u�s) by definition

=
∑
v∈S

�∑
w

f (v�w)−
∑

u

f (u�v)

�
by the conservation constraint

=
∑
v∈S

�∑
w∈T

f (v�w)−
∑
u∈T

f (u�v)

�
removing duplicate edges

≤
∑
v∈S

∑
w∈T

f (v�w) since f (u�v)≥ 0

≤
∑
v∈S

∑
w∈T

c(v�w) since f (u�v)≤ c(v�w)

= ‖S, T‖ by definition

Our derivation actually implies the following stronger observation: | f | = ‖S, T‖ if and only if
f saturates every edge from S to T and avoids every edge from T to S. Moreover, if we have
a flow f and a cut (S, T ) that satisfies this equality condition, f must be a maximum flow, and
(S, T ) must be a minimum cut.

23.3 The Maxflow Mincut Theorem

Surprisingly, for any weighted directed graph, there is always a flow f and a cut (S, T ) that
satisfy the equality condition. This is the famous max-flow min-cut theorem, first proved by Lester
Ford (of shortest path fame) and Delbert Ferguson in 1954 and independently by Peter Elias,
Amiel Feinstein, and and Claude Shannon (of information theory fame) in 1956.
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The Maxflow Mincut Theorem. In any flow network with source s and target t, the value of the
maximum (s, t)-flow is equal to the capacity of the minimum (s, t)-cut.

Ford and Fulkerson proved this theorem as follows. Fix a graph G, vertices s and t, and a
capacity function c : E→ R≥0. The proof will be easier if we assume that the capacity function
is reduced: For any vertices u and v, either c(u�v) = 0 or c(v�u) = 0, or equivalently, if an
edge appears in G, then its reversal does not. This assumption is easy to enforce. Whenever an
edge u�v and its reversal v�u are both the graph, replace the edge u�v with a path u�x�v of
length two, where x is a new vertex and c(u�x) = c(x�v) = c(u�v). The modified graph has
the same maximum flow value and minimum cut capacity as the original graph.

Enforcing the one-direction assumption.

Let f be a feasible flow. We define a new capacity function c f : V × V → R, called the
residual capacity, as follows:

c f (u�v) =





c(u�v)− f (u�v) if u�v ∈ E

f (v�u) if v�u ∈ E

0 otherwise

.

Since f ≥ 0 and f ≤ c, the residual capacities are always non-negative. It is possible to have
c f (u�v) > 0 even if u�v is not an edge in the original graph G. Thus, we define the residual
graph G f = (V, E f ), where E f is the set of edges whose residual capacity is positive. Notice that
the residual capacities are not necessarily reduced; it is quite possible to have both c f (u�v)> 0
and c f (v�u)> 0.

s t

10/20

0/10

10/10

0/5

10/10

5/15

5/10

5/20

0/15
s t
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10

5

10

515 5

10

5

15

5

10

10

A flow f in a weighted graph G and the corresponding residual graph G f .

Suppose there is no path from the source s to the target t in the residual graph G f . Let S
be the set of vertices that are reachable from s in G f , and let T = V \ S. The partition (S, T ) is
clearly an (s, t)-cut. For every vertex u ∈ S and v ∈ T , we have

c f (u�v) = (c(u�v)− f (u�v)) + f (v�u) = 0,

which implies that c(u�v)− f (u�v) = 0 and f (v�u) = 0. In other words, our flow f saturates
every edge from S to T and avoids every edge from T to S. It follows that | f |= ‖S, T‖. Moreover,
f is a maximum flow and (S, T ) is a minimum cut.

On the other hand, suppose there is a path s = v0�v1� · · ·�vr = t in G f . We refer to
v0�v1� · · ·�vr as an augmenting path. Let F =mini c f (vi�vi+1) denote the maximum amount
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s t

10

10

5

10

515 5

10

5

15

5

10

10

s t

10/20

5/10

5/10

5/5

10/10

5/15

0/10

10/20

0/15

An augmenting path in G f with value F = 5 and the augmented flow f ′.

of flow that we can push through the augmenting path in G f . We define a new flow function
f ′ : E→ R as follows:

f ′(u�v) =





f (u�v) + F if u�v is in the augmenting path

f (u�v)− F if v�u is in the augmenting path

f (u�v) otherwise

To prove that the flow f ′ is feasible with respect to the original capacities c, we need to verify
that f ′ ≥ 0 and f ′ ≤ c. Consider an edge u�v in G. If u�v is in the augmenting path, then
f ′(u�v)> f (u�v)≥ 0 and

f ′(u�v) = f (u�v) + F by definition of f ′

≤ f (u�v) + c f (u�v) by definition of F

= f (u�v) + c(u�v)− f (u�v) by definition of c f

= c(u�v) Duh.

On the other hand, if the reversal v�u is in the augmenting path, then f ′(u�v) < f (u�v) ≤
c(u�v), which implies that

f ′(u�v) = f (u�v)− F by definition of f ′

≥ f (u�v)− c f (v�u) by definition of F

= f (u�v)− f (u�v) by definition of c f

= 0 Duh.

Finally, we observe that (without loss of generality) only the first edge in the augmenting path
leaves s, so | f ′|= | f |+ F > 0. In other words, f is not a maximum flow.

This completes the proof!

23.4 Ford and Fulkerson’s augmenting-path algorithm

Ford and Fulkerson’s proof of the Maxflow-Mincut Theorem translates immediately to an
algorithm to compute maximum flows: Starting with the zero flow, repeatedly augment the flow
along any path from s to t in the residual graph, until there is no such path.

This algorithm has an important but straightforward corollary:

Integrality Theorem. If all capacities in a flow network are integers, then there is a maximum
flow such that the flow through every edge is an integer.
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Proof: We argue by induction that after each iteration of the augmenting path algorithm, all
flow values and residual capacities are integers. Before the first iteration, residual capacities are
the original capacities, which are integral by definition. In each later iteration, the induction
hypothesis implies that the capacity of the augmenting path is an integer, so augmenting changes
the flow on each edge, and therefore the residual capacity of each edge, by an integer.

In particular, the algorithm increases the overall value of the flow by a positive integer, which
implies that the augmenting path algorithm halts and returns a maximum flow. �

If every edge capacity is an integer, the algorithm halts after | f ∗| iterations, where f ∗ is
the actual maximum flow. In each iteration, we can build the residual graph G f and perform a
whatever-first-search to find an augmenting path in O(E) time. Thus, for networks with integer
capacities, the Ford-Fulkerson algorithm runs in O(E| f ∗|) time in the worst case.

The following example shows that this running time analysis is essentially tight. Consider
the 4-node network illustrated below, where X is some large integer. The maximum flow in this
network is clearly 2X . However, Ford-Fulkerson might alternate between pushing 1 unit of flow
along the augmenting path s�u�v�t and then pushing 1 unit of flow along the augmenting path
s�v�u�t, leading to a running time of Θ(X ) = Ω(| f ∗|).

ts

X

X

1

X

X
u

v

A bad example for the Ford-Fulkerson algorithm.

Ford and Fulkerson’s algorithm works quite well in many practical situations, or in settings
where the maximum flow value | f ∗| is small, but without further constraints on the augmenting
paths, this is not an efficient algorithm in general. The example network above can be described
using only O(log X ) bits; thus, the running time of Ford-Fulkerson is actually exponential in the
input size.

23.5 Irrational Capacities

If we multiply all the capacities by the same (positive) constant, the maximum flow increases
everywhere by the same constant factor. It follows that if all the edge capacities are rational,
then the Ford-Fulkerson algorithm eventually halts, although still in exponential time.

However, if we allow irrational capacities, the algorithm can actually loop forever, always
finding smaller and smaller augmenting paths! Worse yet, this infinite sequence of augmentations
may not even converge to the maximum flow, or even to a significant fraction of the maximum
flow! Perhaps the simplest example of this effect was discovered by Uri Zwick.

Consider the six-node network shown on the next page. Six of the nine edges have some
large integer capacity X , two have capacity 1, and one has capacity φ = (

p
5−1)/2≈ 0.618034,

chosen so that 1−φ = φ2. To prove that the Ford-Fulkerson algorithm can get stuck, we can
watch the residual capacities of the three horizontal edges as the algorithm progresses. (The
residual capacities of the other six edges will always be at least X − 3.)

Suppose the Ford-Fulkerson algorithm starts by choosing the central augmenting path, shown
in the large figure on the next page. The three horizontal edges, in order from left to right, now
have residual capacities 1, 0, and φ. Suppose inductively that the horizontal residual capacities
are φk−1, 0, φk for some non-negative integer k.
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1. Augment along B, adding φk to the flow; the residual capacities are now φk+1,φk, 0.

2. Augment along C , adding φk to the flow; the residual capacities are now φk+1, 0,φk.

3. Augment along B, adding φk+1 to the flow; the residual capacities are now 0,φk+1,φk+2.

4. Augment along A, adding φk+1 to the flow; the residual capacities are now φk+1, 0,φk+2.

It follows by induction that after 4n+ 1 augmentation steps, the horizontal edges have residual
capacities φ2n−2, 0,φ2n−1. As the number of augmentations grows to infinity, the value of the
flow converges to

1+ 2
∞∑
i=1

φ i = 1+
2

1−φ = 4+
p

5< 7,

even though the maximum flow value is clearly 2X + 1� 7.

X X

X

X

X X

ϕ11

A B C

t

s

Uri Zwick’s non-terminating flow example, and three augmenting paths.

Picky students might wonder at this point why we care about irrational capacities; after all,
computers can’t represent anything but (small) integers or (dyadic) rationals exactly. Good
question! One reason is that the integer restriction is literally artificial; it’s an artifact of actual
computational hardware², not an inherent feature of the abstract mathematical problem. Another
reason, which is probably more convincing to most practical computer scientists, is that the
behavior of the algorithm with irrational inputs tells us something about its worst-case behavior in
practice given floating-point capacities—terrible! Even with very reasonable capacities, a careless
implementation of Ford-Fulkerson could enter an infinite loop simply because of round-off error.

23.6 Edmonds and Karp’s Algorithms

Ford and Fulkerson’s algorithm does not specify which path in the residual graph to augment,
and the poor behavior of the algorithm can be blamed on poor choices for the augmenting path.
In the early 1970s, Jack Edmonds and Richard Karp analyzed two natural rules for choosing
augmenting paths, both of which led to more efficient algorithms.

²...or perhaps the laws of physics. Yeah, whatever. Like reality actually matters in this class.
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23.6.1 Fat Pipes

Edmonds and Karp’s first rule is essentially a greedy algorithm:

Choose the augmenting path with largest bottleneck value.

It’s a fairly easy to show that the maximum-bottleneck (s, t)-path in a directed graph can be
computed in O(E log V ) time using a variant of Jarník’s minimum-spanning-tree algorithm, or
of Dijkstra’s shortest path algorithm. Simply grow a directed spanning tree T , rooted at s.
Repeatedly find the highest-capacity edge leaving T and add it to T , until T contains a path
from s to t. Alternately, one could emulate Kruskal’s algorithm—insert edges one at a time in
decreasing capacity order until there is a path from s to t—although this is less efficient, at least
when the graph is directed.

We can now analyze the algorithm in terms of the value of the maximum flow f ∗. Let f
be any flow in G, and let f ′ be the maximum flow in the current residual graph G f . (At the
beginning of the algorithm, G f = G and f ′ = f ∗.) Let e be the bottleneck edge in the next
augmenting path. Let S be the set of vertices reachable from s through edges in G f with capacity
greater than c f (e) and let T = V \ S. By construction, T is non-empty, and every edge from S to
T has capacity at most c f (e). Thus, the capacity of the cut (S, T ) is at most c f (e) · E. On the other
hand, the maxflow-mincut theorem implies that ‖S, T‖ ≥ | f ′|. We conclude that c(e)≥ | f ′|/E.

The preceding argument implies that augmenting f along the maximum-bottleneck path in
G f multiplies the maximum flow value in G f by a factor of at most 1− 1/E. In other words, the
residual maximum flow value decays exponentially with the number of iterations. After E · ln| f ∗|
iterations, the maximum flow value in G f is at most

| f ∗| · (1− 1/E)E·ln| f
∗| < | f ∗| e− ln| f ∗| = 1.

(That’s Euler’s constant e, not the edge e. Sorry.) In particular, if all the capacities are integers,
then after E · ln| f ∗| iterations, the maximum capacity of the residual graph is zero and f is a
maximum flow.

We conclude that for graphs with integer capacities, the Edmonds-Karp ‘fat pipe’ algorithm
runs in O(E2 log E log| f ∗|) time, which is actually a polynomial function of the input size.

23.6.2 Short Pipes

The second Edmonds-Karp rule was actually proposed by Ford and Fulkerson in their original
max-flow paper; a variant of this rule was independently considered by the Russian mathematician
Yefim Dinits around the same time as Edmonds and Karp.

Choose the augmenting path with the smallest number of edges.

The shortest augmenting path can be found in O(E) time by running breadth-first search in the
residual graph. Surprisingly, the resulting algorithm halts after a polynomial number of iterations,
independent of the actual edge capacities!

The proof of this polynomial upper bound relies on two observations about the evolution of the
residual graph. Let fi be the current flow after i augmentation steps, let Gi be the corresponding
residual graph. In particular, f0 is zero everywhere and G0 = G. For each vertex v, let leveli(v)
denote the unweighted shortest path distance from s to v in Gi , or equivalently, the level of v in a
breadth-first search tree of Gi rooted at s.

Our first observation is that these levels can only increase over time.
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Lemma 1. leveli+1(v)≥ leveli(v) for all vertices v and integers i.

Proof: The claim is trivial for v = s, since leveli(s) = 0 for all i. Choose an arbitrary vertex
v 6= s, and let s� · · ·�u�v be a shortest path from s to v in Gi+1. (If there is no such
path, then leveli+1(v) = ∞, and we’re done.) Because this is a shortest path, we have
leveli+1(v) = leveli+1(u) + 1, and the inductive hypothesis implies that leveli+1(u)≥ leveli(u).

We now have two cases to consider. If u�v is an edge in Gi, then leveli(v) ≤ leveli(u) + 1,
because the levels are defined by breadth-first traversal.

On the other hand, if u�v is not an edge in Gi, then v�u must be an edge in the ith
augmenting path. Thus, v�u must lie on the shortest path from s to t in Gi , which implies that
leveli(v) = leveli(u)− 1≤ leveli(u) + 1.

In both cases, we have leveli+1(v) = leveli+1(u) + 1≥ leveli(u) + 1≥ leveli(v). �

Whenever we augment the flow, the bottleneck edge in the augmenting path disappears from
the residual graph, and some other edge in the reversal of the augmenting path may (re-)appear.
Our second observation is that an edge cannot appear or disappear too many times.

Lemma 2. During the execution of the Edmonds-Karp short-pipe algorithm, any edge u�v disap-
pears from the residual graph G f at most V/2 times.

Proof: Suppose u�v is in two residual graphs Gi and G j+1, but not in any of the intermediate
residual graphs Gi+1, . . . , G j, for some i < j. Then u�v must be in the ith augmenting path, so
leveli(v) = leveli(u)+1, and v�u must be on the jth augmenting path, so level j(v) = level j(u)−1.
By the previous lemma, we have

level j(u) = level j(v) + 1≥ leveli(v) + 1= leveli(u) + 2.

In other words, the distance from s to u increased by at least 2 between the disappearance
and reappearance of u�v. Since every level is either less than V or infinite, the number of
disappearances is at most V/2. �

Now we can derive an upper bound on the number of iterations. Since each edge can
disappear at most V/2 times, there are at most EV/2 edge disappearances overall. But at least
one edge disappears on each iteration, so the algorithm must halt after at most EV/2 iterations.
Finally, since each iteration requires O(E) time, this algorithm runs in O(VE2) time overall.

23.7 Further Progress

This is nowhere near the end of the story for maximum-flow algorithms. Decades of further
research have led to a number of even faster algorithms, some of which are summarized in the
table below.³ All of the algorithms listed below compute a maximum flow in several iterations.
Each algorithm has two variants: a simpler version that performs each iteration by brute force,
and a faster variant that uses sophisticated data structures to maintain a spanning tree of the flow
network, so that each iteration can be performed (and the spanning tree updated) in logarithmic
time. There is no reason to believe that the best algorithms known so far are optimal; indeed,
maximum flows are still a very active area of research.

³To keep the table short, I have deliberately omitted algorithms whose running time depends on the maximum
capacity, the sum of the capacities, or the maximum flow value. Even with this restriction, the table is incomplete!

9



Algorithms Lecture 23: Maximum Flows and Minimum Cuts [Fa’13]

Technique Direct With dynamic trees Sources

Blocking flow O(V 2E) O(V E log V ) [Dinits; Sleator and Tarjan]

Network simplex O(V 2E) O(V E log V ) [Dantzig; Goldfarb and Hao;

Goldberg, Grigoriadis, and Tarjan]

Push-relabel (generic) O(V 2E) — [Goldberg and Tarjan]

Push-relabel (FIFO) O(V 3) O(V 2 log(V 2/E)) [Goldberg and Tarjan]

Push-relabel (highest label) O(V 2
p

E) — [Cheriyan and Maheshwari; Tunçel]

Pseudoflow O(V 2E) O(V E log V ) [Hochbaum]

Compact abundance graphs O(V E) [Orlin 2012]

Several purely combinatorial maximum-flow algorithms and their running times.

The fastest known maximum flow algorithm, announced by James Orlin in 2012, runs in
O(VE) time. The details of Orlin’s algorithm are far beyond the scope of this course; in addition
to his own new techniques, Orlin uses several existing algorithms and data structures as black
boxes, most of which are themselves quite complicated. Nevertheless, for purposes of analyzing
algorithms that use maximum flows, this is the time bound you should cite. So write the following
sentence on your cheat sheets and cite it in your homeworks:

Maximum flows can be computed in O(VE) time.

Exercises

1. Suppose you are given a directed graph G = (V, E), two vertices s and t, a capacity function
c : E→ R+, and a second function f : E→ R. Describe an algorithm to determine whether
f is a maximum (s, t)-flow in G.

2. Let (S, T ) and (S′, T ′) be minimum (s, t)-cuts in some flow network G. Prove that (S ∩ S′,
T ∪ T ′) and (S ∪ S′, T ∩ T ′) are also minimum (s, t)-cuts in G.

3. Suppose (S, T ) is the unique minimum (s, t)-cut in some flow network. Prove that (S, T ) is
also a minimum (x , y)-cut for all vertices x ∈ S and y ∈ T .

4. Cuts are sometimes defined as subsets of the edges of the graph, instead of as partitions of
its vertices. In this problem, you will prove that these two definitions are almost equivalent.

We say that a subset X of (directed) edges separates s and t if every directed path from
s to t contains at least one (directed) edge in X . For any subset S of vertices, let δS denote
the set of directed edges leaving S; that is, δS := {u�v | u ∈ S, v 6∈ S}.

(a) Prove that if (S, T ) is an (s, t)-cut, then δS separates s and t.

(b) Let X be an arbitrary subset of edges that separates s and t. Prove that there is an
(s, t)-cut (S, T ) such that δS ⊆ X .

(c) Let X be a minimal subset of edges that separates s and t. (Such a set of edges is
sometimes called a bond.) Prove that there is an (s, t)-cut (S, T ) such that δS = X .

10



Algorithms Lecture 23: Maximum Flows and Minimum Cuts [Fa’13]

5. A flow f is acyclic if the subgraph of directed edges with positive flow contains no directed
cycles.

(a) Prove that for any flow f , there is an acyclic flow with the same value as f . (In
particular, this implies that some maximum flow is acyclic.)

(b) A path flow assigns positive values only to the edges of one simple directed path from
s to t. Prove that every acyclic flow can be written as the sum of O(E) path flows.

(c) Describe a flow in a directed graph that cannot be written as the sum of path flows.

(d) A cycle flow assigns positive values only to the edges of one simple directed cycle.
Prove that every flow can be written as the sum of O(E) path flows and cycle flows.

(e) Prove that every flow with value 0 can be written as the sum of O(E) cycle flows.
(Zero-value flows are also called circulations.)

6. Suppose instead of capacities, we consider networks where each edge u�v has a non-
negative demand d(u�v). Now an (s, t)-flow f is feasible if and only if f (u�v)≥ d(u�v)
for every edge u�v. (Feasible flow values can now be arbitrarily large.) A natural problem
in this setting is to find a feasible (s, t)-flow of minimum value.

(a) Describe an efficient algorithm to compute a feasible (s, t)-flow, given the graph, the
demand function, and the vertices s and t as input. [Hint: Find a flow that is non-zero
everywhere, and then scale it up to make it feasible.]

(b) Suppose you have access to a subroutine MaxFlow that computes maximum flows in
networks with edge capacities. Describe an efficient algorithm to compute aminimum
flow in a given network with edge demands; your algorithm should call MaxFlow
exactly once.

(c) State and prove an analogue of the max-flow min-cut theorem for this setting. (Do
minimum flows correspond to maximum cuts?)

7. For any flow network G and any vertices u and v, let bottleneckG(u, v) denote the maximum,
over all paths π in G from u to v, of the minimum-capacity edge along π.

(a) Describe and analyze an algorithm to compute bottleneckG(s, t) in O(E log V ) time.

(b) Describe an algorithm to construct a spanning tree T of G such that bottleneckT (u, v) =
bottleneckG(u, v) for all vertices u and v. (Edges in T inherit their capacities from G.)

8. Describe an efficient algorithm to determine whether a given flow network contains a
unique maximum flow.

9. Suppose you have already computed a maximum flow f ∗ in a flow network G with integer
edge capacities.

(a) Describe and analyze an algorithm to update the maximum flow after the capacity of
a single edge is increased by 1.

(b) Describe and analyze an algorithm to update the maximum flow after the capacity of
a single edge is decreased by 1.

11
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Both algorithms should be significantly faster than recomputing the maximum flow from
scratch.

10. Let G be a network with integer edge capacities. An edge in G is upper-binding if increasing
its capacity by 1 also increases the value of the maximum flow in G. Similarly, an edge is
lower-binding if decreasing its capacity by 1 also decreases the value of the maximum flow
in G.

(a) Does every network G have at least one upper-binding edge? Prove your answer is
correct.

(b) Does every network G have at least one lower-binding edge? Prove your answer is
correct.

(c) Describe an algorithm to find all upper-binding edges in G, given both G and a
maximum flow in G as input, in O(E) time.

(d) Describe an algorithm to find all lower-binding edges in G, given both G and a
maximum flow in G as input, in O(EV ) time.

11. A given flow network G may have more than one minimum (s, t)-cut. Let’s define the best
minimum (s, t)-cut to be any minimum cut with the smallest number of edges.

(a) Describe an efficient algorithm to determine whether a given flow network contains
a unique minimum (s, t)-cut.

(b) Describe an efficient algorithm to find the best minimum (s, t)-cut when the capacities
are integers.

(c) Describe an efficient algorithm to find the best minimum (s, t)-cut for arbitrary edge
capacities.

(d) Describe an efficient algorithm to determine whether a given flow network contains
a unique best minimum (s, t)-cut.

12. A new assistant professor, teaching maximum flows for the first time, suggests the following
greedy modification to the generic Ford-Fulkerson augmenting path algorithm. Instead
of maintaining a residual graph, just reduce the capacity of edges along the augmenting
path! In particular, whenever we saturate an edge, just remove it from the graph.

GreedyFlow(G, c, s, t):
for every edge e in G

f (e)← 0

while there is a path from s to t
π← an arbitrary path from s to t
F ← minimum capacity of any edge in π
for every edge e in π

f (e)← f (e) + F
if c(e) = F

remove e from G
else

c(e)← c(e)− F

return f

12
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(a) Show that this algorithm does not always compute a maximum flow.

(b) Prove that for any flow network, if the Greedy Path Fairy tells you precisely which
path π to use at each iteration, then GreedyFlow does compute a maximum flow.
(Sadly, the Greedy Path Fairy does not actually exist.)

13. We can speed up the Edmonds-Karp ‘fat pipe’ heuristic, at least for integer capacities, by
relaxing our requirements for the next augmenting path. Instead of finding the augmenting
path with maximum bottleneck capacity, we find a path whose bottleneck capacity is at
least half of maximum, using the following capacity scaling algorithm.

The algorithm maintains a bottleneck threshold ∆; initially, ∆ is the maximum capacity
among all edges in the graph. In each phase, the algorithm augments along paths from s to
t in which every edge has residual capacity at least ∆. When there is no such path, the
phase ends, we set ∆← b∆/2c, and the next phase begins.

(a) How many phases will the algorithm execute in the worst case, if the edge capacities
are integers?

(b) Let f be the flow at the end of a phase for a particular value of ∆. Let S be the nodes
that are reachable from s in the residual graph G f using only edges with residual
capacity at least ∆, and let T = V \ S. Prove that the capacity (with respect to G’s
original edge capacities) of the cut (S, T ) is at most | f |+ E ·∆.

(c) Prove that in each phase of the scaling algorithm, there are at most 2E augmentations.

(d) What is the overall running time of the scaling algorithm, assuming all the edge
capacities are integers?

14. In 1980 Maurice Queyranne published the following example of a flow network where
Edmonds and Karp’s “fat pipe” heuristic does not halt. Here, as in Zwick’s bad example
for the original Ford-Fulkerson algorithm, φ denotes the inverse golden ratio (

p
5− 1)/2.

The three vertical edges play essentially the same role as the horizontal edges in Zwick’s
example.
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Queyranne’s network, and a sequence of “fat-pipe” augmentations.

(a) Show that the following infinite sequence of path augmentations is a valid execution
of the Edmonds-Karp algorithm. (See the figure above.)
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QueyranneFatPipes:
for i← 1 to∞

push φ3i−2 units of flow along s�a� f �g�b�h�c�d�t
push φ3i−1 units of flow along s� f �a�b�g�h�c�t
push φ3i units of flow along s�e� f �a�g�b�c�h�t

forever

(b) Describe a sequence of O(1) path augmentations that yields a maximum flow in
Queyranne’s network.

15. An (s , t )-series-parallel graph is an directed acyclic graph with two designated vertices s
(the source) and t (the target or sink) and with one of the following structures:

• Base case: A single directed edge from s to t.

• Series: The union of an (s, u)-series-parallel graph and a (u, t)-series-parallel graph
that share a common vertex u but no other vertices or edges.

• Parallel: The union of two smaller (s, t)-series-parallel graphs with the same source
s and target t, but with no other vertices or edges in common.

Describe an efficient algorithm to compute a maximum flow from s to t in an (s, t)-series-
parallel graph with arbitrary edge capacities.
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For a long time it puzzled me how something so expensive, so leading edge,
could be so useless, and then it occurred to me that a computer is a stupid
machine with the ability to do incredibly smart things, while computer pro-
grammers are smart people with the ability to do incredibly stupid things.
They are, in short, a perfect match.

— Bill Bryson, Notes from a Big Country (1999)

24 Applications of Maximum Flow

24.1 Edge-Disjoint Paths

One of the easiest applications of maximum flows is computing the maximum number of edge-
disjoint paths between two specified vertices s and t in a directed graph G using maximum flows.
A set of paths in G is edge-disjoint if each edge in G appears in at most one of the paths; several
edge-disjoint paths may pass through the same vertex, however.

If we give each edge capacity 1, then the maxflow from s to t assigns a flow of either 0 or 1
to every edge. Since any vertex of G lies on at most two saturated edges (one in and one out, or
none at all), the subgraph S of saturated edges is the union of several edge-disjoint paths and
cycles. Moreover, the number of paths is exactly equal to the value of the flow. Extracting the
actual paths from S is easy—just follow any directed path in S from s to t, remove that path from
S, and recurse.

Conversely, we can transform any collection of k edge-disjoint paths into a flow by pushing
one unit of flow along each path from s to t; the value of the resulting flow is exactly k. It follows
that any maxflow algorithm actually computes the largest possible set of edge-disjoint paths.

If we use Orlin’s algorithm to compute the maximum (s, t)-flow, we can compute edge-disjoint
paths in O(VE) time, but Orlin’s algorithm is overkill for this simple application. The cut
({s}, V \ {s}) has capacity at most V − 1, so the maximum flow has value at most V − 1. Thus,
Ford and Fulkerson’s original augmenting path algorithm also runs in O(| f ∗|E) = O(V E) time.

The same algorithm can also be used to find edge-disjoint paths in undirected graphs. We
simply replace every undirected edge in G with a pair of directed edges, each with unit capacity,
and compute a maximum flow from s to t in the resulting directed graph G′ using the Ford-
Fulkerson algorithm. For any edge uv in G, if our max flow saturates both directed edges u�v
and v�u in G′, we can remove both edges from the flow without changing its value. Thus,
without loss of generality, the maximum flow assigns a direction to every saturated edge, and we
can extract the edge-disjoint paths by searching the graph of directed saturated edges.

24.2 Vertex Capacities and Vertex-Disjoint Paths

Suppose we have capacities on the vertices as well as the edges. Here, in addition to our other
constraints, we require that for any vertex v other than s and t, the total flow into v (and
therefore the total flow out of v) is at most some non-negative value c(v). How can we compute
a maximum flow with these new constraints?

The simplest method is to transform the input into a traditional flow network, with only edge
capacities. Specifically, we replace every vertex v with two vertices vin and vout, connected by
an edge vin�vout with capacity c(v), and then replace every directed edge u�v with the edge
uout�vin (keeping the same capacity). Finally, we compute the maximum flow from sout to tin in
this modified flow network.
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It is now easy to compute the maximum number of vertex-disjoint paths from s to t in any
directed graph. Simply give every vertex capacity 1, and compute a maximum flow!

ÆÆÆ Figure!

24.3 Maximum Matchings in Bipartite Graphs

Another natural application of maximum flows is finding large matchings in bipartite graphs. A
matching is a subgraph in which every vertex has degree at most one, or equivalently, a collection
of edges such that no two share a vertex. The problem is to find the matching with the maximum
number of edges in a given bipartite graph.

We can solve this problem by reducing it to a maximum flow problem as follows. Let G be the
given bipartite graph with vertex set U ∪W , such that every edge joins a vertex in U to a vertex
in W . We create a new directed graph G′ by (1) orienting each edge from U to W , (2) adding
two new vertices s and t, (3) adding edges from s to every vertex in U , and (4) adding edges
from each vertex in W to t. Finally, we assign every edge in G′ a capacity of 1.

Any matching M in G can be transformed into a flow fM in G′ as follows: For each edge uw
in M , push one unit of flow along the path s�u�w�t. These paths are disjoint except at s and t,
so the resulting flow satisfies the capacity constraints. Moreover, the value of the resulting flow is
equal to the number of edges in M .

Conversely, consider any (s, t)-flow f in G′ computed using the Ford-Fulkerson augmenting
path algorithm. Because the edge capacities are integers, the Ford-Fulkerson algorithm assigns
an integer flow to every edge. (This is easy to verify by induction, hint, hint.) Moreover, since
each edge has unit capacity, the computed flow either saturates ( f (e) = 1) or avoids ( f (e) = 0)
every edge in G′. Finally, since at most one unit of flow can enter any vertex in U or leave any
vertex in W , the saturated edges from U to W form a matching in G. The size of this matching is
exactly | f |.

Thus, the size of the maximum matching in G is equal to the value of the maximum flow in
G′, and provided we compute the maxflow using augmenting paths, we can convert the actual
maxflow into a maximum matching in O(E) time. Again, we can compute the maximum flow in
O(VE) time using either Orlin’s algorithm or off-the-shelf Ford-Fulkerson.

s t

A maximum matching in a bipartite graph G, and the corresponding maximum flow in G′.

24.4 Assignment Problems

Maximum-cardinality matchings are a special case of a general family of so-called assignment
problems.¹ An unweighted binary assignment problem involves two disjoint finite sets X and Y ,

¹Most authors refer to finding a maximum-weight matching in a bipartite graph as the assignment problem.
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which typically represent two different kinds of resources, such as web pages and servers, jobs
and machines, rows and columns of a matrix, hospitals and interns, or customers and ice cream
flavors. Our task is to choose the largest possible collection of pairs (x , y) as possible, where
x ∈ X and y ∈ Y , subject to several constraints of the following form:

• Each element x ∈ X can appear in at most c(x) pairs.

• Each element y ∈ Y can appear in at most c(y) pairs.

• Each pair (x , y) ∈ X × Y can appear in the output at most c(x , y) times.

Each upper bound c(x), c(y), and c(x , y) is either a (typically small) non-negative integer or∞.
Intuitively, we create each pair in our output by assigning an element of X to an element of Y .

The maximum-matching problem is a special case, where c(z) = 1 for all z ∈ X ∪ Y , and each
c(x , y) is either 0 or 1, depending on whether the pair x y defines an edge in the underlying
bipartite graph.

Here is a slightly more interesting example. A nearby school, famous for its onerous
administrative hurdles, decides to organize a dance. Every pair of students (one boy, one girl)
who wants to dance must register in advance. School regulations limit each boy-girl pair to at
most three dances together, and limits each student to at most ten dances overall. How can
we maximize the number of dances? This is a binary assignment problem for the set X of girls
and the set Y of boys, where for each girl x and boy y, we have c(x) = c(y) = 10 and either
c(x , y) = 3 (if x and y registered to dance) or c(x , y) = 0 (if they didn’t register).

Every binary assignment problem can be reduced to a standard maximum flow problem as
follows. We construct a flow network G = (V, E) with vertices X ∪ Y ∪ {s, t} and the following
edges:

• an edge s�x with capacity c(x) for each x ∈ X ,

• an edge y�t with capacity c(y) for each y ∈ Y .

• an edge x�y with capacity c(x , y) for each x ∈ X and y ∈ Y , and

Because all the edges have integer capacities, the any augmenting-path algorithm constructs
an integer maximum flow f ∗, which can be decomposed into the sum of | f ∗| paths of the form
s�x�y�t for some x ∈ X and y ∈ Y . For each such path, we report the pair (x , y). (Thus, the
pair (x , y) appears in our output collection exactly f (x�y) times.

It is easy to verify (hint, hint) that this collection of pairs satisfies all the necessary constraints.
Conversely, any legal collection of r pairs can be transformed into a feasible integer flow in G
with value r. Thus, the largest legal collection of pairs corresponds to a maximum flow in G.
So our algorithm is correct. If we use Orlin’s algorithm to compute the maximum flow, this
assignment algorithm runs in O(VE) = O(n3) time, where n= |X |+ |Y |.

24.5 Baseball Elimination

Every year millions of baseball fans eagerly watch their favorite team, hoping they will win a
spot in the playoffs, and ultimately the World Series. Sadly, most teams are “mathematically
eliminated" days or even weeks before the regular season ends. Often, it is easy to spot when
a team is eliminated—they can’t win enough games to catch up to the current leader in their
division. But sometimes the situation is more subtle.

For example, here are the actual standings from the American League East on August 30,
1996.
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Team Won–Lost Left NYY BAL BOS TOR DET

New York Yankees 75–59 28 3 8 7 3
Baltimore Orioles 71–63 28 3 2 7 4

Boston Red Sox 69–66 27 8 2 0 0
Toronto Blue Jays 63–72 27 7 7 0 0

Detroit Tigers 49–86 27 3 4 0 0

Detroit is clearly behind, but some die-hard Tigers fans may hold out hope that their team can
still win. After all, if Detroit wins all 27 of their remaining games, they will end the season
with 76 wins, more than any other team has now. So as long as every other team loses every
game. . . but that’s not possible, because some of those other teams still have to play each other.
Here is one complete argument:²

By winning all of their remaining games, Detroit can finish the season with a record of 76 and 86. If the
Yankees win just 2 more games, then they will finish the season with a 77 and 85 record which would put
them ahead of Detroit. So, let’s suppose the Tigers go undefeated for the rest of the season and the Yankees
fail to win another game.

The problem with this scenario is that New York still has 8 games left with Boston. If the Red Sox win
all of these games, they will end the season with at least 77 wins putting them ahead of the Tigers. Thus,
the only way for Detroit to even have a chance of finishing in first place, is for New York to win exactly one
of the 8 games with Boston and lose all their other games. Meanwhile, the Sox must loss all the games
they play agains teams other than New York. This puts them in a 3-way tie for first place. . . .

Now let’s look at what happens to the Orioles and Blue Jays in our scenario. Baltimore has 2 games
left with with Boston and 3 with New York. So, if everything happens as described above, the Orioles will
finish with at least 76 wins. So, Detroit can catch Baltimore only if the Orioles lose all their games to teams
other than New York and Boston. In particular, this means that Baltimore must lose all 7 of its remaining
games with Toronto. The Blue Jays also have 7 games left with the Yankees and we have already seen that
for Detroit to finish in first place, Toronto must will all of these games. But if that happens, the Blue Jays
will win at least 14 more games giving them at final record of 77 and 85 or better which means they will
finish ahead of the Tigers. So, no matter what happens from this point in the season on, Detroit can not
finish in first place in the American League East.

There has to be a better way to figure this out!
Here is a more abstract formulation of the problem. Our input consists of two arrays W [1 .. n]

and G[1 .. n, 1 .. n], where W [i] is the number of games team i has already won, and G[i, j] is
the number of upcoming games between teams i and j. We want to determine whether team n
can end the season with the most wins (possibly tied with other teams).³

In the mid-1960s, Benjamin Schwartz showed that this question can be modeled as an
assignment problem: We want to assign a winner to each game, so that team n comes in first
place. We have an assignment problem! Let R[i] =

∑
j G[i, j] denote the number of remaining

games for team i. We will assume that team n wins all R[n] of its remaining games. Then team
n can come in first place if and only if every other team i wins at most W [n] +R[n]−W [i] of its
R[i] remaining games.

Since we want to assign winning teams to games, we start by building a bipartite graph,
whose nodes represent the games and the teams. We have

�n
2

�
game nodes gi, j, one for each

pair 1 ≤ i < j < n, and n− 1 team nodes t i, one for each 1 ≤ i < n. For each pair i, j, we add
edges gi, j�t i and gi, j�t j with infinite capacity. We add a source vertex s and edges s�gi, j with
capacity G[i, j] for each pair i, j. Finally, we add a target node t and edges t i�t with capacity
W [n]−W [i] + R[n] for each team i.

²Both the example and this argument are taken from http://riot.ieor.berkeley.edu/~baseball/detroit.html.
³We assume here that no games end in a tie (always true for Major League Baseball), and that every game is

actually played (not always true).
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Theorem. Team n can end the season in first place if and only if there is a feasible flow in this
graph that saturates every edge leaving s.

Proof: Suppose it is possible for team n to end the season in first place. Then every team i < n
wins at most W [n] + R[n]−W [i] of the remaining games. For each game between team i and
team j that team i wins, add one unit of flow along the path s�gi, j�t i�t. Because there are
exactly G[i, j] games between teams i and j, every edge leaving s is saturated. Because each
team i wins at most W [n] + R[n]−W [i] games, the resulting flow is feasible.

Conversely, Let f be a feasible flow that saturates every edge out of s. Suppose team
i wins exactly f (gi, j�t i) games against team j, for all i and j. Then teams i and j play
f (gi, j�t i)+ f (gi, j�t j) = f (s�gi, j) = G[i, j] games, so every upcoming game is played. Moreover,
each team i wins a total of

∑
j f (gi, j�t i) = f (t i�t) ≤ W [n] + R[n]−W [i] upcoming games,

and therefore at most W [n] +R[n] games overall. Thus, if team n win all their upcoming games,
they end the season in first place. �

So, to decide whether our favorite team can win, we construct the flow network, compute a
maximum flow, and report whether than maximum flow saturates the edges leaving s. The flow
network has O(n2) vertices and O(n2) edges, and it can be constructed in O(n2) time. Using
Orlin’s algorithm, we can compute the maximum flow in O(V E) = O(n4) time.

The graph derived from the 1996 American League East standings is shown below. The total
capacity of the edges leaving s is 27 (there are 27 remaining games), but the total capacity of
the edges entering t is only 26. So the maximum flow has value at most 26, which means that
Detroit is mathematically eliminated.
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The flow graph for the 1996 American League East standings. Unlabeled edges have infinite capacity.

More recently, Kevin Wayne⁴ proved that one can determine all the teams that are mathe-
matically eliminated in only O(n3) time, essentially using a single maximum-flow computation.

24.6 Project Selection

In our final example, suppose we are given a set of n projects that we could possibly perform; for
simplicity, we identify each project by an integer between 1 and n. Some projects cannot be
started until certain other projects are completed. This set of dependencies is described by a
directed acyclic graph, where an edge i� j indicates that project i depends on project j. Finally,
each project i has an associated profit pi which is given to us if the project is completed; however,
some projects have negative profits, which we interpret as positive costs. We can choose to finish

⁴Kevin D. Wayne. A new property and a faster algorithm for baseball elimination. SIAM J. Discrete Math
14(2):223–229, 2001.
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any subset X of the projects that includes all its dependents; that is, for every project x ∈ X ,
every project that x depends on is also in X . Our goal is to find a valid subset of the projects
whose total profit is as large as possible. In particular, if all of the jobs have negative profit, the
correct answer is to do nothing.

4 6 2 3

-2 -3 -5 -8

A dependency graph for a set of projects. Circles represent profitable projects; squares represent costly projects.

At a high level, our task to partition the projects into two subsets S and T , the jobs we Select
and the jobs we Turn down. So intuitively, we’d like to model our problem as a minimum cut
problem in a certain graph. But in which graph? How do we enforce prerequisites? We want to
maximize profit, but we only know how to find minimum cuts. And how do we convert negative
profits into positive capacities?

We define a new graph G by adding a source vertex s and a target vertex t to the dependency
graph, with an edge s� j for every profitable job (with p j > 0), and an edge i�t for every costly
job (with pi < 0). Intuitively, we can think of s as a new job (“To the bank!”) with profit/cost 0
that we must perform last. We assign edge capacities as follows:

• c(s� j) = p j for every profitable job j;

• c(i�t) = −pi for every costly job i;

• c(i� j) =∞ for every dependency edge i� j.

All edge-capacities are positive, so this is a legal input to the maximum cut problem.
Now consider an (s, t)-cut (S, T ) in G. If the capacity ‖S, T‖ is finite, then for every

dependency edge i� j, projects i and j are on the same side of the cut, which implies that S
is a valid solution. Moreover, we claim that selecting the jobs in S earns us a total profit of
C −‖S, T‖, where C is the sum of all the positive profits. This claim immediately implies that we
can maximize our total profit by computing a minimum cut in G.

4 6 2 3

-2 -3 -5 -8

s

4 26 3

t

2 853

∞∞

∞

∞

∞

∞ ∞ ∞

The flow network for the example dependency graph, along with its minimum cut.
The cut has capacity 13 and C = 15, so the total profit for the selected jobs is 2.
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We prove our key claim as follows. For any subset A of projects, we define three functions:

cost(A) :=
∑

i∈A: pi<0

−pi =
∑
i∈A

c(i�t)

benefit(A) :=
∑

j∈A: pi>0

p j =
∑
j∈A

c(s� j)

profit(A) :=
∑
i∈A

pi = benefit(A)− cost(A).

By definition, C = benefit(S)+benefit(T ). Because the cut (S, T ) has finite capacity, only edges of
the form s� j and i�t can cross the cut. By construction, every edge s� j points to a profitable job
and each edge i�t points from a costly job. Thus, ‖S, T‖= cost(S)+benefit(T ). We immediately
conclude that C − ‖S, T‖= benefit(S)− cost(S) = profit(S), as claimed.

Exercises

1. Given an undirected graph G = (V, E), with three vertices u, v, and w, describe and analyze
an algorithm to determine whether there is a path from u to w that passes through v.

2. Let G = (V, E) be a directed graph where for each vertex v, the in-degree and out-degree
of v are equal. Let u and v be two vertices G, and suppose G contains k edge-disjoint paths
from u to v. Under these conditions, must G also contain k edge-disjoint paths from v to
u? Give a proof or a counterexample with explanation.

3. Consider a directed graph G = (V, E)with multiple source vertices s1, s2, . . . , sσ and multiple
target vertices t1, t1, . . . , tτ, where no vertex is both a source and a target. A multiterminal
flow is a function f : E→ R≥0 that satisfies the flow conservation constraint at every vertex
that is neither a source nor a target. The value | f | of a multiterminal flow is the total
excess flow out of all the source vertices:

| f | :=
σ∑

i=1

�∑
w

f (si�w)−
∑

u

f (u�si)

�

As usual, we are interested in finding flows with maximum value, subject to capacity
constraints on the edges. (In particular, we don’t care how much flow moves from any
particular source to any particular target.)

(a) Consider the following algorithm for computing multiterminal flows. The variables f
and f ′ represent flow functions. The subroutineMaxFlow(G, s, t) solves the standard
maximum flow problem with source s and target t.

MaxMultiFlow(G, s[1 ..σ], t[1 ..τ]):
f ← 0 〈〈Initialize the flow〉〉
for i← 1 to σ

for j← 1 to τ
f ′←MaxFlow(G f , s[i], t[ j])
f ← f + f ′ 〈〈Update the flow〉〉

return f

7
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Prove that this algorithm correctly computes a maximum multiterminal flow in G.

(b) Describe a more efficient algorithm to compute a maximum multiterminal flow in G.

4. A cycle cover of a given directed graph G = (V, E) is a set of vertex-disjoint cycles that cover
all the vertices. Describe and analyze an efficient algorithm to find a cycle cover for a given
graph, or correctly report that no cycle cover exists. [Hint: Use bipartite matching!]

5. The Island of Sodor is home to a large number of towns and villages, connected by an
extensive rail network. Recently, several cases of a deadly contagious disease (either swine
flu or zombies; reports are unclear) have been reported in the village of Ffarquhar. The
controller of the Sodor railway plans to close down certain railway stations to prevent the
disease from spreading to Tidmouth, his home town. No trains can pass through a closed
station. To minimize expense (and public notice), he wants to close down as few stations
as possible. However, he cannot close the Ffarquhar station, because that would expose
him to the disease, and he cannot close the Tidmouth station, because then he couldn’t
visit his favorite pub.

Describe and analyze an algorithm to find the minimum number of stations that must
be closed to block all rail travel from Ffarquhar to Tidmouth. The Sodor rail network is
represented by an undirected graph, with a vertex for each station and an edge for each
rail connection between two stations. Two special vertices f and t represent the stations
in Ffarquhar and Tidmouth.

For example, given the following input graph, your algorithm should return the
number 2.

f t

6. The UIUC Computer Science Department is installing a mini-golf course in the basement
of the Siebel Center! The playing field is a closed polygon bounded by m horizontal and
vertical line segments, meeting at right angles. The course has n starting points and n
holes, in one-to-one correspondence. It is always possible hit the ball along a straight line
directly from each starting point to the corresponding hole, without touching the boundary
of the playing field. (Players are not allowed to bounce golf balls off the walls; too much
glass.) The n starting points and n holes are all at distinct locations.

A minigolf course with five starting points (?) and five holes (◦), and a legal correspondence between them.
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Sadly, the architect’s computer crashed just as construction was about to begin. Thanks
to the herculean efforts of their sysadmins, they were able to recover the locations of the
starting points and the holes, but all information about which starting points correspond to
which holes was lost!

Describe and analyze an algorithm to compute a one-to-one correspondence between
the starting points and the holes that meets the straight-line requirement, or to report
that no such correspondence exists. The input consists of the x- and y-coordinates of
the m corners of the playing field, the n starting points, and the n holes. Assume you
can determine in constant time whether two line segments intersect, given the x- and
y-coordinates of their endpoints.

7. Suppose you are given an n× n checkerboard with some of the squares deleted. You have a
large set of dominos, just the right size to cover two squares of the checkerboard. Describe
and analyze an algorithm to determine whether one tile the board with dominos—each
domino must cover exactly two undeleted squares, and each undeleted square must be
covered by exactly one domino.

Your input is a two-dimensional arrayDeleted[1 .. n, 1 .. n] of bits, whereDeleted[i, j] = True
if and only if the square in row i and column j has been deleted. Your output is a single
bit; you do not have to compute the actual placement of dominos. For example, for the
board shown above, your algorithm should return True.

8. Suppose we are given an n× n square grid, some of whose squares are colored black and
the rest white. Describe and analyze an algorithm to determine whether tokens can be
placed on the grid so that

• every token is on a white square;

• every row of the grid contains exactly one token; and

• every column of the grid contains exactly one token.

9
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Your input is a two dimensional array IsWhite[1 .. n, 1 .. n] of booleans, indicating which
squares are white. Your output is a single boolean. For example, given the grid above as
input, your algorithm should return True.

9. An n× n grid is an undirected graph with n2 vertices organized into n rows and n columns.
We denote the vertex in the ith row and the jth column by (i, j). Every vertex in the grid
have exactly four neighbors, except for the boundary vertices, which are the vertices (i, j)
such that i = 1, i = n, j = 1, or j = n.

Let (x1, y1), (x2, y2), . . . , (xm, ym) be distinct vertices, called terminals, in the n×n grid.
The escape problem is to determine whether there are m vertex-disjoint paths in the grid
that connect the terminals to any m distinct boundary vertices. Describe and analyze an
efficient algorithm to solve the escape problem.

A positive instance of the escape problem, and its solution.

10. The UIUC Faculty Senate has decided to convene a committee to determine whether
Chief Illiniwek should become the official mascot symbol of the University of Illinois
Global Campus.⁵ Exactly one faculty member must be chosen from each academic
department to serve on this committee. Some faculty members have appointments in
multiple departments, but each committee member will represent only one department.
For example, if Prof. Blagojevich is affiliated with both the Department of Corruption and
the Department of Stupidity, and he is chosen as the Stupidity representative, then someone
else must represent Corruption. Finally, University policy requires that any committee on
virtual mascots symbols must contain the same number of assistant professors, associate
professors, and full professors. Fortunately, the number of departments is a multiple of 3.

Describe an efficient algorithm to select the membership of the Global Illiniwek
Committee. Your input is a list of all UIUC faculty members, their ranks (assistant,
associate, or full), and their departmental affiliation(s). There are n faculty members and
3k departments.

11. You’re organizing the First Annual UIUC Computer Science 72-Hour Dance Exchange, to be
held all day Friday, Saturday, and Sunday. Several 30-minute sets of music will be played
during the event, and a large number of DJs have applied to perform. You need to hire DJs
according to the following constraints.

• Exactly k sets of music must be played each day, and thus 3k sets altogether.

⁵Thankfully, the Global Campus has faded into well-deserved obscurity, thanks in part to the 2009 admissions
scandal. Imagine MOOCs, but with the same business model and faculty oversight as the University of Phoenix.
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• Each set must be played by a single DJ in a consistent music genre (ambient,
bubblegum, dubstep, horrorcore, hyphy, trip-hop, Nitzhonot, Kwaito, J-pop, Nashville
country, . . . ).

• Each genre must be played at most once per day.

• Each candidate DJ has given you a list of genres they are willing to play.

• Each DJ can play at most three sets during the entire event.

Suppose there are n candidate DJs and g different musical genres available. Describe and
analyze an efficient algorithm that either assigns a DJ and a genre to each of the 3k sets,
or correctly reports that no such assignment is possible.

12. The University of Southern North Dakota at Hoople has hired you to write an algorithm to
schedule their final exams. Each semester, USNDH offers n different classes. There are r
different rooms on campus and t different time slots in which exams can be offered. You
are given two arrays E[1 .. n] and S[1 .. r], where E[i] is the number of students enrolled
in the ith class, and S[ j] is the number of seats in the jth room. At most one final exam
can be held in each room during each time slot. Class i can hold its final exam in room j
only if E[i]< S[ j].

Describe and analyze an efficient algorithm to assign a room and a time slot to each
class (or report correctly that no such assignment is possible).

13. Suppose you are running a web site that is visited by the same set of people every day. Each
visitor claims membership in one or more demographic groups; for example, a visitor might
describe himself as male, 40–50 years old, a father, a resident of Illinois, an academic,
a blogger, and a fan of Joss Whedon.⁶ Your site is supported by advertisers. Each advertiser
has told you which demographic groups should see its ads and how many of its ads you must
show each day. Altogether, there are n visitors, k demographic groups, and m advertisers.

Describe an efficient algorithm to determine, given all the data described in the
previous paragraph, whether you can show each visitor exactly one ad per day, so that
every advertiser has its desired number of ads displayed, and every ad is seen by someone
in an appropriate demographic group.

14. Suppose we are given an array A[1 .. m][1 .. n] of non-negative real numbers. We want to
round A to an integer matrix, by replacing each entry x in A with either bxc or dxe, without
changing the sum of entries in any row or column of A. For example:




1.2 3.4 2.4
3.9 4.0 2.1
7.9 1.6 0.5


 7−→




1 4 2
4 4 2
8 1 1




(a) Describe and analyze an efficient algorithm that either rounds A in this fashion, or
reports correctly that no such rounding is possible.

?(b) Suppose we are guaranteed that none of the entries in the input matrix A are integers.
Describe and analyze an even faster algorithm that either rounds A or reports correctly

⁶Har har har! Mine is an evil laugh! Now die!
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that no such rounding is possible. For full credit, your algorithm must run in O(mn)
time. [Hint: Don’t use flows.]

15. Ad-hoc networks are made up of low-powered wireless devices. In principle⁷, these networks
can be used on battlefields, in regions that have recently suffered from natural disasters,
and in other hard-to-reach areas. The idea is that a large collection of cheap, simple devices
could be distributed through the area of interest (for example, by dropping them from an
airplane); the devices would then automatically configure themselves into a functioning
wireless network.

These devices can communicate only within a limited range. We assume all the devices
are identical; there is a distance D such that two devices can communicate if and only if
the distance between them is at most D.

We would like our ad-hoc network to be reliable, but because the devices are cheap
and low-powered, they frequently fail. If a device detects that it is likely to fail, it should
transmit its information to some other backup device within its communication range. We
require each device x to have k potential backup devices, all within distance D of x; we call
these k devices the backup set of x . Also, we do not want any device to be in the backup
set of too many other devices; otherwise, a single failure might affect a large fraction of
the network.

So suppose we are given the communication radius D, parameters b and k, and an
array d[1 .. n, 1 .. n] of distances, where d[i, j] is the distance between device i and device
j. Describe an algorithm that either computes a backup set of size k for each of the n
devices, such that no device appears in more than b backup sets, or reports (correctly) that
no good collection of backup sets exists.

?16. A rooted tree is a directed acyclic graph, in which every vertex has exactly one incoming
edge, except for the root, which has no incoming edges. Equivalently, a rooted tree consists
of a root vertex, which has edges pointing to the roots of zero or more smaller rooted trees.
Describe a polynomial-time algorithm to compute, given two rooted trees A and B, the
largest common rooted subtree of A and B.

[Hint: Let LCS(u, v) denote the largest common subtree whose root in A is u and whose
root in B is v. Your algorithm should compute LCS(u, v) for all vertices u and v using dynamic
programming. This would be easy if every vertex had O(1) children, and still straightforward
if the children of each node were ordered from left to right and the common subtree had
to respect that ordering. But for unordered trees with large degree, you need another trick
to combine recursive subproblems efficiently. Don’t waste your time trying to reduce the
polynomial running time.]

⁷but not really in practice
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“Who are you?" said Lunkwill, rising angrily from his seat. “What do you want?"
“I am Majikthise!" announced the older one.
“And I demand that I am Vroomfondel!" shouted the younger one.
Majikthise turned on Vroomfondel. “It’s alright," he explained angrily, “you don’t

need to demand that."
“Alright!" bawled Vroomfondel banging on an nearby desk. “I am Vroomfondel, and

that is not a demand, that is a solid fact! What we demand is solid facts!"
“No we don’t!" exclaimed Majikthise in irritation. “That is precisely what we don’t

demand!"
Scarcely pausing for breath, Vroomfondel shouted, “We don’t demand solid facts!

What we demand is a total absence of solid facts. I demand that I may or may not be
Vroomfondel!"

— Douglas Adams, The Hitchhiker’s Guide to the Galaxy (1979)

25 Extensions of Maximum Flow?

25.1 Maximum Flows with Edge Demands

Now suppose each directed edge e in has both a capacity c(e) and a demand d(e)≤ c(e), and we
want a flow f of maximum value that satisfies d(e)≤ f (e)≤ c(e) at every edge e. We call a flow
that satisfies these constraints a feasible flow. In our original setting, where d(e) = 0 for every
edge e, the zero flow is feasible; however, in this more general setting, even determining whether
a feasible flow exists is a nontrivial task.

Perhaps the easiest way to find a feasible flow (or determine that none exists) is to reduce the
problem to a standard maximum flow problem, as follows. The input consists of a directed graph
G = (V, E), nodes s and t, demand function d : E→ R, and capacity function c : E→ R. Let D
denote the sum of all edge demands in G:

D :=
∑

u�v∈E

d(u�v).

We construct a new graph G′ = (V ′, E′) from G by adding new source and target vertices s′

and t ′, adding edges from s′ to each vertex in V , adding edges from each vertex in V to t ′, and
finally adding an edge from t to s. We also define a new capacity function c′ : E′→ R as follows:

• For each vertex v ∈ V , we set c′(s′�v) =
∑

u∈V d(u�v) and c′(v�t ′) =
∑

w∈V d(v�w).

• For each edge u�v ∈ E, we set c′(u�v) = c(u�v)− d(u�v).

• Finally, we set c′(t�s) =∞.

Intuitively, we construct G′ by replacing any edge u�v in G with three edges: an edge u�v
with capacity c(u�v)− d(u�v), an edge s′�v with capacity d(u�v), and an edge u�t ′ with
capacity d(u�v). If this construction produces multiple edges from s′ to the same vertex v (or to
t ′ from the same vertex v), we merge them into a single edge with the same total capacity.

In G′, the total capacity out of s′ and the total capacity into t ′ are both equal to D. We
call a flow with value exactly D a saturating flow, since it saturates all the edges leaving s′ or
entering t ′. If G′ has a saturating flow, it must be a maximum flow, so we can find it using any
max-flow algorithm.

© Copyright 2014 Jeff Erickson.
This work is licensed under a Creative Commons License (http://creativecommons.org/licenses/by-nc-sa/4.0/).

Free distribution is strongly encouraged; commercial distribution is expressly forbidden.
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A flow network G with demands and capacities (written d .. c), and the transformed network G′.

Lemma 1. G has a feasible (s, t)-flow if and only if G′ has a saturating (s′, t ′)-flow.

Proof: Let f : E → R be a feasible (s, t)-flow in the original graph G. Consider the following
function f ′ : E′→ R:

f ′(u�v) = f (u�v)− d(u�v) for all u�v ∈ E

f ′(s′�v) =
∑
u∈V

d(u�v) for all v ∈ V

f ′(v�t ′) =
∑
w∈V

d(u→ w) for all v ∈ V

f ′(t�s) = | f |

We easily verify that f ′ is a saturating (s′, t ′)-flow in G. The admissibility of f implies that
f (e)≥ d(e) for every edge e ∈ E, so f ′(e)≥ 0 everywhere. Admissibility also implies f (e)≤ c(e)
for every edge e ∈ E, so f ′(e)≤ c′(e) everywhere. Tedious algebra implies that

∑
u∈V ′

f ′(u�v) =
∑
w∈V ′

f (v�w)

for every vertex v ∈ V (including s and t). Thus, f ′ is a legal (s′, t ′)-flow, and every edge out
of s′ or into t ′ is clearly saturated. Intuitively, f ′ diverts d(u�v) units of flow from u directly to
the new target t ′, and injects the same amount of flow into v directly from the new source s′.

The same tedious algebra implies that for any saturating (s′, t ′)-flow f ′ : E′→ R for G′, the
function f = f ′|E + d is a feasible (s, t)-flow in G. �
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Thus, we can compute a feasible (s, t)-flow for G, if one exists, by searching for a maximum
(s′, t ′)-flow in G′ and checking that it is saturating. Once we’ve found a feasible (s, t)-flow in G,
we can transform it into a maximum flow using an augmenting-path algorithm, but with one
small change. To ensure that every flow we consider is feasible, we must redefine the residual
capacity of an edge as follows:

c f (u�v) =





c(u�v)− f (u�v) if u�v ∈ E,

f (v�u)− d(v�u) if v�u ∈ E,

0 otherwise.

Otherwise, the algorithm is unchanged. If we use the Dinitz/Edmonds-Karp fat-pipe algorithm,
we get an overall running time of O(VE2).
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A saturating flow f ′ in G′, the corresponding feasible flow f in G, and the corresponding residual network G f .

25.2 Node Supplies and Demands

Another useful variant to consider allows flow to be injected or extracted from the flow network
at vertices other than s or t. Let x : (V \ {s, t})→ R be an excess function describing how much
flow is to be injected (or extracted if the value is negative) at each vertex. We now want a
maximum ‘flow’ that satisfies the variant balance condition

∑
u∈V

f (u�v)−
∑
w∈V

f (v�w) = x(v)

for every node v except s and t, or prove that no such flow exists. As above, call such a function
f a feasible flow.
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As for flows with edge demands, the only real difficulty in finding a maximum flow under
these modified constraints is finding a feasible flow (if one exists). We can reduce this problem to
a standard max-flow problem, just as we did for edge demands.

To simplify the transformation, let us assume without loss of generality that the total excess
in the network is zero:

∑
v x(v) = 0. If the total excess is positive, we add an infinite capacity

edge t� t̃, where t̃ is a new target node, and set x(t) = −∑v x(v). Similarly, if the total
excess is negative, we add an infinite capacity edge s̃�s, where s̃ is a new source node, and
set x(s) = −∑v x(v). In both cases, every feasible flow in the modified graph corresponds to a
feasible flow in the original graph.

As before, we modify G to obtain a new graph G′ by adding a new source s′, a new target t ′,
an infinite-capacity edge t�s from the old target to the old source, and several edges from s′ and
to t ′. Specifically, for each vertex v, if x(v)> 0, we add a new edge s′�v with capacity x(v), and
if x(v)< 0, we add an edge v�t ′ with capacity −x(v). As before, we call an (s′, t ′)-flow in G′

saturating if every edge leaving s′ or entering t ′ is saturated; any saturating flow is a maximum
flow. It is easy to check that saturating flows in G′ are in direct correspondence with feasible
flows in G; we leave details as an exercise (hint, hint).

Similar reductions allow us to several other variants of the maximum flow problem using the
same path-augmentation techniques. For example, we could associate capacities and demands
with the vertices instead of (or in addition to) the edges, as well as a range of excesses with every
vertex, instead of a single excess value.

25.3 Minimum-Cost Flows

Now imagine that each edge e in the network has both a capacity c(e) and a cost $(e). The cost
function describes the cost of sending a unit of flow through the edges; thus, the cost any flow f
is defined as follows:

$( f ) =
∑
e∈E

$(e) · f (e).

The minimum-cost maximum-flow problem is to compute a maximum flow of minimum cost.
If the network has only one maximum flow, that’s what we want, but if there is more than one
maximum flow, we want the maximum flow whose cost is as small as possible. Costs can either
be positive, negative, or zero. However, if an edge u�v and its reversal v�u both appear in the
graph, their costs must sum to zero: $(u�v) = −$(v�u). Otherwise, we could make an infinite
profit by pushing flow back and forth along the edge!

Each augmentation step in the standard Ford-Fulkerson algorithm both increases the value
of the flow and changes its cost. If the total cost of the augmenting path is positive, the cost
of the flow decreases; conversely, if the total cost of the augmenting path is negative, the cost
of the flow decreases. We can also change the cost of the flow without changing its value, by
augmenting along a directed cycle in the residual graph. Again, augmenting along a negative-cost
cycle decreases the cost of the flow, and augmenting along a positive-cost cycle increases the cost
of the flow.

It follows immediately that a flow f is a minimum-cost maximum flow in G if and only if the
residual graph G f has no directed paths from s to t and no negative-cost cycles.

We can compute a min-cost max-flow using the so-called cycle cancelling algorithm first
proposed by Morton Klein in 1967. The algorithm has two phases; in the first, we compute an
arbitrary maximum flow f , using any method we like. The second phase repeatedly decreases
the cost of f , by augmenting f along a negative-cost cycle in the residual graph G f , until no such
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cycle exists. As in Ford-Fulkerson, the amount of flow we push around each cycle is equal to the
minimum residual capacity of any edge on the cycle.

In each iteration of the second phase, we can use a modification of Shimbel’s shortest path
algorithm (often called “Bellman-Ford”) to find a negative-cost cycle in O(V E) time. To bound
the number of iterations in the second phase, we assume that both the capacity and the cost of
each edge is an integer, and we define

C =max
e∈E

c(e) and D =max
e∈E
|$(e)|.

The cost of any feasible flow is clearly between −EC D and EC D, and each augmentation step
decreases the cost of the flow by a positive integer, and therefore by at least 1. We conclude that
the second phase requires at most 2EC D iterations, and therefore runs in O(VE2CD) time. As
with the raw Ford-Fulkerson algorithm, this running time is exponential in the complexity of the
input, and it may never terminate if the capacities and/or costs are irrational.

Like Ford-Fulkerson, more careful choices of which cycle to cancel can lead to more efficient
algorithms. Unfortunately, some obvious choices are NP-hard to compute, including the cycle
with most negative cost and the negative cycle with the fewest edges. In the late 1980s, Andrew
Goldberg and Bob Tarjan developed a min-cost flow algorithm that repeatedly cancels the so-called
minimum-mean cycle, which is the cycle whose average cost per edge is smallest. By combining an
algorithm of Karp to compute minimum-mean cycles in O(EV ) time, efficient dynamic tree data
structures, and other sophisticated techniques that are (unfortunately) beyond the scope of this
class, their algorithm achieves a running time of O(E2V log2 V). The fastest min-cost max-flow
algorithm currently known,¹ due to James Orlin, reduces the problem to O(E log V ) iterations of
Dijkstra’s shortest-path algorithm; Orlin’s algorithm runs in O(E2 log V + EV log2 V) time.

25.4 Maximum-Weight Matchings

Recall from the previous lecture that we can find a maximum-cardinality matching in any bipartite
graph in O(V E) time by reduction to the standard maximum flow problem.

Now suppose the input graph has weighted edges, and we want to find the matching with
maximum totalweight. Given a bipartite graph G = (U×W, E) and a non-negative weight function
w: E → R, the goal is to compute a matching M whose total weight w(M) =

∑
uw∈M w(uw) is

as large as possible. Max-weight matchings can’t be found directly using standard max-flow
algorithms², but we can modify the algorithm for maximum-cardinality matchings described
above.

It will be helpful to reinterpret the behavior of our earlier algorithm directly in terms of
the original bipartite graph instead of the derived flow network. Our algorithm maintains a
matching M , which is initially empty. We say that a vertex is matched if it is an endpoint of an
edge in M . At each iteration, we find an alternating path π that starts and ends at unmatched
vertices and alternates between edges in E \ M and edges in M . Equivalently, let GM be the
directed graph obtained by orienting every edge in M from W to U , and every edge in E \M
from U to W . An alternating path is just a directed path in GM between two unmatched vertices.
Any alternating path has odd length and has exactly one more edge in E \M than in M . The
iteration ends by setting M ← M ⊕ π, thereby increasing the number of edges in M by one.
The max-flow/min-cut theorem implies that when there are no more alternating paths, M is a
maximum matching.

¹at least, among algorithms whose running times do not depend on C and D
²However, max-flow algorithms can be modified to compute maximum weighted flows, where every edge has both

a capacity and a weight, and the goal is to maximize
∑

u�v w(u�v) f (u�v).

5



Algorithms Lecture 25: Extensions of Maximum Flow [Faâ13]

A matching M with 5 edges, an alternating path π, and the augmented matching M ⊕π with 6 edges.

If the edges of G are weighted, we only need to make two changes to the algorithm. First,
instead of looking for an arbitrary alternating path at each iteration, we look for the alternating
path π such that M ⊕π has largest weight. Suppose we weight the edges in the residual graph
GM as follows:

w′(u�w) = −w(uw) for all uw 6∈ M

w′(w�u) = w(uw) for all uw ∈ M

We now have w(M ⊕ π) = w(M)−w′(π). Thus, the correct augmenting path π must be
the directed path in GM with minimum total residual weight w ′(π). Second, because the
matching with the maximum weight may not be the matching with the maximum cardinality, we
return the heaviest matching considered in any iteration of the algorithm.

3 2

10

35

3 2

10

35

A maximum-weight matching is not necessarily a maximum-cardinality matching.

Before we determine the running time of the algorithm, we need to check that it actually
finds the maximum-weight matching. After all, it’s a greedy algorithm, and greedy algorithms
don’t work unless you prove them into submission! Let Mi denote the maximum-weight matching
in G with exactly i edges. In particular, M0 =∅, and the global maximum-weight matching is
equal to Mi for some i. (The figure above show M1 and M2 for the same graph.) Let Gi denote
the directed residual graph for Mi , let wi denote the residual weight function for Mi as defined
above, and let πi denote the directed path in Gi such that wi(πi) is minimized. To simplify the
proof, I will assume that there is a unique maximum-weight matching Mi of any particular size;
this assumption can be enforced by applying a consistent tie-breaking rule. With this assumption
in place, the correctness of our algorithm follows inductively from the following lemma.

Lemma 2. If G contains a matching with i + 1 edges, then Mi+1 = Mi ⊕πi .

Proof: I will prove the equivalent statement Mi+1 ⊕ Mi = πi−1. To simplify notation, call an
edge in Mi+1 ⊕Mi red if it is an edge in Mi+1, and blue if it is an edge in Mi .

The graph Mi+1⊕Mi has maximum degree 2, and therefore consists of pairwise disjoint paths
and cycles, each of which alternates between red and blue edges. Since G is bipartite, every cycle
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must have even length. The number of edges in Mi+1 ⊕Mi is odd; specifically, Mi+1 ⊕Mi has
2i + 1− 2k edges, where k is the number of edges that are in both matchings. Thus, Mi+1 ⊕Mi
contains an odd number of paths of odd length, some number of paths of even length, and some
number of cycles of even length.

Let γ be a cycle in Mi+1 ⊕Mi . Because γ has an equal number of edges from each matching,
Mi⊕γ is anothermatchingwith i edges. The total weight of this matching is exactly w(Mi)−wi(γ),
which must be less than w(Mi), so wi(γ) must be positive. On the other hand, Mi+1 ⊕ γ is a
matching with i + 1 edges whose total weight is w(Mi+1) +wi(γ)< w(Mi+1), so wi(γ) must be
negative! We conclude that no such cycle γ exists; Mi+1 ⊕Mi consists entirely of disjoint paths.

Exactly the same reasoning implies that no path in Mi+1 ⊕Mi has an even number of edges.
Finally, since the number of red edges in Mi+1 ⊕ Mi is one more than the number of blue

edges, the number of paths that start with a red edge is exactly one more than the number of
paths that start with a blue edge. The same reasoning as above implies that Mi+1 ⊕Mi does not
contain a blue-first path, because we can pair it up with a red-first path.

We conclude that Mi+1 ⊕Mi consists of a single alternating path π whose first edge is red.
Since w(Mi+1) = w(Mi)−wi(π), the path π must be the one with minimum weight wi(π). �

We can find the alternating path πi using a single-source shortest path algorithm. Modify the
residual graph Gi by adding zero-weight edges from a new source vertex s to every unmatched
node in U , and from every unmatched node in W to a new target vertex t, exactly as in out
unweighted matching algorithm. Then πi is the shortest path from s to t in this modified graph.
Since Mi is the maximum-weight matching with i vertices, Gi has no negative cycles, so this
shortest path is well-defined. We can compute the shortest path in Gi in O(V E) time using
Shimbel’s algorithm, so the overall running time our algorithm is O(V2E).

The residual graph Gi has negative-weight edges, so we can’t speed up the algorithm by
replacing Shimbel’s algorithm with Dijkstra’s. However, we can use a variant of Johnson’s all-pairs
shortest path algorithm to improve the running time to O(VE + V2 log V). Let di(v) denote the
distance from s to v in the residual graph Gi, using the distance function wi. Let w̃i denote
the modified distance function w̃i(u�v) = di−1(u) + wi(u�v)− di−1(v). As we argued in the
discussion of Johnson’s algorithm, shortest paths with respect to wi are still shortest paths with
respect to w̃i . Moreover, w̃i(u�v)> 0 for every edge u�v in Gi:

• If u�v is an edge in Gi−1, then wi(u�v) = wi−1(u�v) and di−1(v)≤ di−1(u)+wi−1(u�v).

• If u�v is not in Gi−1, then wi(u�v) = −wi−1(v�u) and v�u is an edge in the shortest
path πi−1, so di−1(u) = di−1(v) +wi−1(v�u).

Let d̃i(v) denote the shortest path distance from s to v with respect to the distance function w̃i .
Because w̃i is positive everywhere, we can quickly compute d̃i(v) for all v using Dijkstra’s algorithm.
This gives us both the shortest alternating path πi and the distances di(v) = d̃i(v) + di−1(v)
needed for the next iteration.

Exercises

1. Suppose we are given a directed graph G = (V, E), two vertices s an t, and a capacity
function c : V → R+. A flow f is feasible if the total flow into every vertex v is at most c(v):

∑
u

f (u�v)≤ c(v) for every vertex v.

7



Algorithms Lecture 25: Extensions of Maximum Flow [Faâ13]

Describe and analyze an efficient algorithm to compute a feasible flow of maximum value.

2. Suppose we are given an n×n grid, some of whose cells are marked; the grid is represented
by an array M[1 .. n, 1 .. n] of booleans, where M[i, j] = True if and only if cell (i, j) is
marked. A monotone path through the grid starts at the top-left cell, moves only right or
down at each step, and ends at the bottom-right cell. Our goal is to cover the marked cells
with as few monotone paths as possible.

Greedily covering the marked cells in a grid with four monotone paths.

(a) Describe an algorithm to find a monotone path that covers the largest number of
marked cells.

(b) There is a natural greedy heuristic to find a small cover by monotone paths: If there
are any marked cells, find a monotone path π that covers the largest number of
marked cells, unmark any cells covered by π those marked cells, and recurse. Show
that this algorithm does not always compute an optimal solution.

(c) Describe and analyze an efficient algorithm to compute the smallest set of monotone
paths that covers every marked cell.

3. Suppose we are given a set of boxes, each specified by their height, width, and depth in
centimeters. All three side lengths of every box lie strictly between 10cm and 20cm. As you
should expect, one box can be placed inside another if the smaller box can be rotated so
that its height, width, and depth are respectively smaller than the height, width, and depth
of the larger box. Boxes can be nested recursively. Call a box is visible if it is not inside
another box.

Describe and analyze an algorithm to nest the boxes so that the number of visible boxes
is as small as possible.

4. Let G be a directed flow network whose edges have costs, but which contains no negative-
cost cycles. Prove that one can compute a minimum-cost maximum flow in G using a
variant of Ford-Fulkerson that repeatedly augments the (s, t)-path of minimum total cost in
the current residual graph. What is the running time of this algorithm?

5. An (s , t )-series-parallel graph is an directed acyclic graph with two designated vertices s
(the source) and t (the target or sink) and with one of the following structures:

• Base case: A single directed edge from s to t.

• Series: The union of an (s, u)-series-parallel graph and a (u, t)-series-parallel graph
that share a common vertex u but no other vertices or edges.
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• Parallel: The union of two smaller (s, t)-series-parallel graphs with the same source
s and target t, but with no other vertices or edges in common.

(a) Describe an efficient algorithm to compute a maximum flow from s to t in an
(s, t)-series-parallel graph with arbitrary edge capacities.

(b) Describe an efficient algorithm to compute a minimum-cost maximum flow from s to
t in an (s, t)-series-parallel graph whose edges have unit capacity and arbitrary costs.

?(c) Describe an efficient algorithm to compute a minimum-cost maximum flow from s to
t in an (s, t)-series-parallel graph whose edges have arbitrary capacities and costs.

© Copyright 2014 Jeff Erickson.
This work is licensed under a Creative Commons License (http://creativecommons.org/licenses/by-nc-sa/4.0/).
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The greatest flood has the soonest ebb;
the sorest tempest the most sudden calm;
the hottest love the coldest end; and
from the deepest desire oftentimes ensues the deadliest hate.

— Socrates

Th’ extremes of glory and of shame,
Like east and west, become the same.

— Samuel Butler, Hudibras Part II, Canto I (c. 1670)

Extremes meet, and there is no better example
than the haughtiness of humility.

— Ralph Waldo Emerson, “Greatness”,
in Letters and Social Aims (1876)

26 Linear Programming?

The maximum flow/minimum cut problem is a special case of a very general class of problems
called linear programming. Many other optimization problems fall into this class, including
minimum spanning trees and shortest paths, as well as several common problems in scheduling,
logistics, and economics. Linear programming was used implicitly by Fourier in the early
1800s, but it was first formalized and applied to problems in economics in the 1930s by Leonid
Kantorovich. Kantorivich’s work was hidden behind the Iron Curtain (where it was largely
ignored) and therefore unknown in the West. Linear programming was rediscovered and applied
to shipping problems in the early 1940s by Tjalling Koopmans. The first complete algorithm
to solve linear programming problems, called the simplex method, was published by George
Dantzig in 1947. Koopmans first proposed the name “linear programming" in a discussion with
Dantzig in 1948. Kantorovich and Koopmans shared the 1975 Nobel Prize in Economics “for
their contributions to the theory of optimum allocation of resources”. Dantzig did not; his work
was apparently too pure. Koopmans wrote to Kantorovich suggesting that they refuse the prize
in protest of Dantzig’s exclusion, but Kantorovich saw the prize as a vindication of his use of
mathematics in economics, which his Soviet colleagues had written off as “a means for apologists
of capitalism”.

A linear programming problem asks for a vector x ∈ Rd that maximizes (or equivalently,
minimizes) a given linear function, among all vectors x that satisfy a given set of linear inequalities.
The general form of a linear programming problem is the following:

maximize
d∑

j=1

c j x j

subject to
d∑

j=1

ai j x j ≤ bi for each i = 1 .. p

d∑
j=1

ai j x j = bi for each i = p+ 1 .. p+ q

d∑
j=1

ai j x j ≥ bi for each i = p+ q+ 1 .. n

© Copyright 2014 Jeff Erickson.
This work is licensed under a Creative Commons License (http://creativecommons.org/licenses/by-nc-sa/4.0/).
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Here, the input consists of a matrix A= (ai j) ∈ Rn×d , a column vector b ∈ Rn, and a row vector
c ∈ Rd . Each coordinate of the vector x is called a variable. Each of the linear inequalities is
called a constraint. The function x 7→ c · x is called the objective function. I will always use d to
denote the number of variables, also known as the dimension of the problem. The number of
constraints is usually denoted n.

A linear programming problem is said to be in canonical form¹ if it has the following structure:

maximize
d∑

j=1

c j x j

subject to
d∑

j=1

ai j x j ≤ bi for each i = 1 .. n

x j ≥ 0 for each j = 1 .. d

We can express this canonical formmore compactly as follows. For two vectors x = (x1, x2, . . . , xd)
and y = (y1, y2, . . . , yd), the expression x ≥ y means that x i ≥ yi for every index i.

max c · x
s.t. Ax≤ b

x≥ 0

Any linear programming problem can be converted into canonical form as follows:

• For each variable x j , add the equality constraint x j = x+j − x−j and the inequalities x+j ≥ 0
and x−j ≥ 0.

• Replace any equality constraint
∑

j ai j x j = bi with two inequality constraints
∑

j ai j x j ≥ bi

and
∑

j ai j x j ≤ bi .

• Replace any upper bound
∑

j ai j x j ≥ bi with the equivalent lower bound
∑

j −ai j x j ≤ −bi .

This conversion potentially double the number of variables and the number of constraints;
fortunately, it is rarely necessary in practice.

Another useful format for linear programming problems is slack form², in which every
inequality is of the form x j ≥ 0:

max c · x
s.t. Ax= b

x≥ 0

It’s fairly easy to convert any linear programming problem into slack form. Slack form is especially
useful in executing the simplex algorithm (which we’ll see in the next lecture).

26.1 The Geometry of Linear Programming

A point x ∈ Rd is feasible with respect to some linear programming problem if it satisfies all the
linear constraints. The set of all feasible points is called the feasible region for that linear program.

¹Confusingly, some authors call this standard form.
²Confusingly, some authors call this standard form.
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The feasible region has a particularly nice geometric structure that lends some useful intuition to
the linear programming algorithms we’ll see later.

Any linear equation in d variables defines a hyperplane in Rd ; think of a line when d = 2,
or a plane when d = 3. This hyperplane divides Rd into two halfspaces; each halfspace is
the set of points that satisfy some linear inequality. Thus, the set of feasible points is the
intersection of several hyperplanes (one for each equality constraint) and halfspaces (one for
each inequality constraint). The intersection of a finite number of hyperplanes and halfspaces is
called a polyhedron. It’s not hard to verify that any halfspace, and therefore any polyhedron, is
convex—if a polyhedron contains two points x and y , then it contains the entire line segment x y .

A two-dimensional polyhedron (white) defined by 10 linear inequalities.

By rotating Rd (or choosing a coordinate frame) so that the objective function points
downward, we can express any linear programming problem in the following geometric form:

Find the lowest point in a given polyhedron.

With this geometry in hand, we can easily picture two pathological cases where a given linear
programming problem has no solution. The first possibility is that there are no feasible points; in
this case the problem is called infeasible. For example, the following LP problem is infeasible:

maximize x − y

subject to 2x + y ≤ 1

x + y ≥ 2

x , y ≥ 0

An infeasible linear programming problem; arrows indicate the constraints.

The second possibility is that there are feasible points at which the objective function is
arbitrarily large; in this case, we call the problem unbounded. The same polyhedron could be
unbounded for some objective functions but not others, or it could be unbounded for every
objective function.
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A two-dimensional polyhedron (white) that is unbounded downward but bounded upward.

26.2 Example 1: Shortest Paths

We can compute the length of the shortest path from s to t in a weighted directed graph by
solving the following very simple linear programming problem.

maximize dt

subject to ds = 0

dv − du ≤ `u�v for every edge u�v

Here, `u�v is the length of the edge u�v. Each variable dv represents a tentative shortest-path
distance from s to v. The constraints mirror the requirement that every edge in the graph must be
relaxed. These relaxation constraints imply that in any feasible solution, dv is at most the shortest
path distance from s to v. Thus, somewhat counterintuitively, we are correctly maximizing the
objective function to compute the shortest path! In the optimal solution, the objective function dt
is the actual shortest-path distance from s to t, but for any vertex v that is not on the shortest
path from s to t, dv may be an underestimate of the true distance from s to v. However, we can
obtain the true distances from s to every other vertex by modifying the objective function:

maximize
∑

v

dv

subject to ds = 0

dv − du ≤ `u�v for every edge u�v

There is another formulation of shortest paths as an LP minimization problem using an
indicator variable xu�v for each edge u�v.

minimize
∑
u�v

`u�v · xu�v

subject to
∑

u

xu�s −
∑

w

xs�w = 1

∑
u

xu�t −
∑

w

x t�w = −1

∑
u

xu�v −
∑

w

xv�w = 0 for every vertex v 6= s, t

xu�v ≥ 0 for every edge u�v

Intuitively, xu�v = 1 means u�v lies on the shortest path from s to t, and xu�v = 0 means u�v
does not lie on this shortest path. The constraints merely state that the path should start at s, end
at t, and either pass through or avoid every other vertex v. Any path from s to t—in particular,
the shortest path—clearly implies a feasible point for this linear program.
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However, there are other feasible solutions, possibly even optimal solutions, with non-integral
values that do not represent paths. Nevertheless, there is always an optimal solution in which
every xe is either 0 or 1 and the edges e with xe = 1 comprise the shortest path. (This fact is by
no means obvious, but a proof is beyond the scope of these notes.) Moreover, in any optimal
solution, even if not every xe is an integer, the objective function gives the shortest path distance!

26.3 Example 2: Maximum Flows and Minimum Cuts

Recall that the input to the maximum (s, t)-flow problem consists of a weighted directed graph
G = (V, E), two special vertices s and t, and a function assigning a non-negative capacity ce to
each edge e. Our task is to choose the flow fe across each edge e, as follows:

maximize
∑

w

fs�w −
∑

u

fu�s

subject to
∑

w

fv�w −
∑

u

fu�v = 0 for every vertex v 6= s, t

fu�v ≤ cu�v for every edge u�v

fu�v ≥ 0 for every edge u�v

Similarly, the minimum cut problem can be formulated using ‘indicator’ variables similarly to
the shortest path problem. We have a variable Sv for each vertex v, indicating whether v ∈ S or
v ∈ T , and a variable Xu�v for each edge u�v, indicating whether u ∈ S and v ∈ T , where (S, T )
is some (s, t)-cut.³

minimize
∑
u�v

cu�v · Xu�v

subject to Xu�v + Sv − Su ≥ 0 for every edge u�v

Xu�v ≥ 0 for every edge u�v

Ss = 1

St = 0

Like the minimization LP for shortest paths, there can be optimal solutions that assign fractional
values to the variables. Nevertheless, the minimum value for the objective function is the cost
of the minimum cut, and there is an optimal solution for which every variable is either 0 or 1,
representing an actual minimum cut. No, this is not obvious; in particular, my claim is not a
proof!

26.4 Linear Programming Duality

Each of these pairs of linear programming problems is related by a transformation called duality.
For any linear programming problem, there is a corresponding dual linear program that can be
obtained by a mechanical translation, essentially by swapping the constraints and the variables.

³These two linear programs are not quite syntactic duals; I’ve added two redundant variables Ss and St to the
min-cut program to increase readability.
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The translation is simplest when the LP is in canonical form:

Primal (Π)

max c · x
s.t. Ax≤ b

x≥ 0

⇐⇒
Dual (q)

min y · b
s.t. yA≥ c

y≥ 0

We can also write the dual linear program in exactly the same canonical form as the primal, by
swapping the coefficient vector c and the objective vector b, negating both vectors, and replacing
the constraint matrix A with its negative transpose.⁴

Primal (Π)

max c · x
s.t. Ax≤ b

x≥ 0

⇐⇒
Dual (q)

max −b> · y>
s.t. −A> y>≤ −c

y>≥ 0

Written in this form, it should be immediately clear that duality is an involution: The dual of the
dual linear program q is identical to the primal linear program Π. The choice of which LP to call
the ‘primal’ and which to call the ‘dual’ is totally arbitrary.⁵

The Fundamental Theorem of Linear Programming. A linear program Π has an optimal so-
lution x∗ if and only if the dual linear program q has an optimal solution y∗ such that c · x∗ =
y∗Ax∗ = y∗ · b.

The weak form of this theorem is trivial to prove.

Weak Duality Theorem. If x is a feasible solution for a canonical linear program Π and y is a
feasible solution for its dual q, then c · x ≤ yAx ≤ y · b.

Proof: Because x is feasible for Π, we have Ax ≤ b. Since y is positive, we can multiply both
sides of the inequality to obtain yAx ≤ y · b. Conversely, y is feasible for q and x is positive, so
yAx ≥ c · x . �

It immediately follows that if c · x = y · b, then x and y are optimal solutions to their
respective linear programs. This is in fact a fairly common way to prove that we have the optimal
value for a linear program.

⁴For the notational purists: In these formulations, x and b are column vectors, and y and c are row vectors. This
is a somewhat nonstandard choice. Yes, that means the dot in c · x is redundant. Sue me.

⁵For historical reasons, maximization LPs tend to be called ‘primal’ and minimization LPs tend to be called ‘dual’.
This is a pointless religious tradition, nothing more. Duality is a relationship between LP problems, not a type of LP
problem.
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26.5 Duality Example

Before I prove the stronger duality theorem, let me first provide some intuition about where this
duality thing comes from in the first place.⁶ Consider the following linear programming problem:

maximize 4x1 + x2 + 3x3

subject to x1 + 4x2 ≤ 2

3x1 − x2 + x3 ≤ 4

x1, x2, x3 ≥ 0

Let σ∗ denote the optimum objective value for this LP. The feasible solution x = (1, 0, 0) gives us
a lower bound σ∗ ≥ 4. A different feasible solution x = (0,0, 3) gives us a better lower bound
σ∗ ≥ 9. We could play this game all day, finding different feasible solutions and getting ever
larger lower bounds. How do we know when we’re done? Is there a way to prove an upper
bound on σ∗?

In fact, there is. Let’s multiply each of the constraints in our LP by a new non-negative scalar
value yi:

maximize 4x1 + x2 + 3x3

subject to y1( x1 + 4x2 )≤ 2y1

y2(3x1 − x2 + x3)≤ 4y2

x1, x2, x3 ≥ 0

Because each yi is non-negative, we do not reverse any of the inequalities. Any feasible solution
(x1, x2, x3) must satisfy both of these inequalities, so it must also satisfy their sum:

(y1 + 3y2)x1 + (4y1 − y2)x2 + y2 x3 ≤ 2y1 + 4y2.

Now suppose that each yi is larger than the ith coefficient of the objective function:

y1 + 3y2 ≥ 4, 4y1 − y2 ≥ 1, y2 ≥ 3.

This assumption lets us derive an upper bound on the objective value of any feasible solution:

4x1 + x2 + 3x3 ≤ (y1 + 3y2)x1 + (4y1 − y2)x2 + y2 x3 ≤ 2y1 + 4y2. (∗)
In particular, by plugging in the optimal solution (x∗1, x∗2, x∗3) for the original LP, we obtain the
following upper bound on σ∗:

σ∗ = 4x∗1 + x∗2 + 3x∗3 ≤ 2y1 + 4y2.

Now it’s natural to ask how tight we can make this upper bound. How small can we make
the expression 2y1 + 4y2 without violating any of the inequalities we used to prove the upper
bound? This is just another linear programming problem.

minimize 2y1 + 4y2

subject to y1 + 3y2 ≥ 4

4y1 − y2 ≥ 1

y2 ≥ 3

y1, y2 ≥ 0

⁶This example is taken from Robert Vanderbei’s excellent textbook Linear Programming: Foundations and Extensions
[Springer, 2001], but the idea appears earlier in Jens Clausen’s 1997 paper ‘Teaching Duality in Linear Programming:
The Multiplier Approach’.
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In fact, this is precisely the dual of our original linear program! Moreover, inequality (∗) is just
an instantiation of the Weak Duality Theorem.

26.6 Strong Duality

The Fundamental Theorem can be rephrased in the following form:

Strong Duality Theorem. If x∗ is an optimal solution for a canonical linear program Π, then
there is an optimal solution y∗ for its dual q, such that c · x∗ = y∗Ax∗ = y∗ · b.

Proof (sketch): I’ll prove the theorem only for non-degenerate linear programs, in which (a)
the optimal solution (if one exists) is a unique vertex of the feasible region, and (b) at most d
constraint hyperplanes pass through any point. These non-degeneracy assumptions are relatively
easy to enforce in practice and can be removed from the proof at the expense of some technical
detail. I will also prove the theorem only for the case n≥ d; the argument for under-constrained
LPs is similar (if not simpler).

To develop some intuition, let’s first consider the very special case where x∗ = (0, 0, . . . , 0).
Let ei denote the ith standard basis vector, whose ith coordinate is 1 and all other coordinates
are 0. Because x∗i = 0 for all i, our non-degeneracy assumption implies the strict inequality
ai · x∗ < bi for all i. Thus, any sufficiently small ball around the origin does not intersect any
other constraint hyperplane ai · x = bi . Thus, for all i, and for any sufficiently small δ > 0, the
vector δei is feasible. Because x∗ is the unique optimum, we must have δci = c · (δei)< c · x∗ = 0.
We conclude that ci < 0 for all i.

Now let y = (0,0, . . . , 0) as well. We immediately observe that yA≥ c and y ≥ 0; in other
words, y is a feasible solution for the dual linear program q. But y · b = 0= c · x∗, so the weak
duality theorem implies that y is an optimal solution to q, and the proof is complete for this very
special case.

Now let us consider the more general case. Let x∗ be the optimal solution for the linear
program Π; our non-degeneracy assumption implies that this solution is unique, and that exactly
d of the n linear constraints are satisfied with equality. Without loss of generality (by permuting
the constraints and possibly changing coordinates), we can assume that these are the first d
constraints. Thus, we have

ai · x∗= bi for all i ≤ d,

ai · x∗< bi for all i ≥ d + 1,

where ai denotes the ith row of A. Let A• denote the d × d matrix containing the first d rows of
A. Our non-degeneracy assumption implies that A• has full rank, and thus has a well-defined
inverse V = A−1

• .
Now define a vector y ∈ Rn by setting

y j := c · v j for all j ≤ d,

y j := 0 for all j ≥ d + 1,

where v j denotes the jth column of V = A−1
• . Note that ai · v j = 0 if i 6= j, and ai · v j = 1 if i = j.

To simplify notation, let y• = (y1, y2, . . . , yd) and let b• = (b1, b2, . . . , bd) = A•x∗. Because
yi = 0 for all i ≥ d + 1, we immediately have

y · b = y• · b• = cV b• = cA−1
• b• = c · x∗
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and
yA= y•A• = cVA• = cA−1

• A• = c.

The point x∗ lies on exactly d constraint hyperplanes; moreover, any sufficiently small ball
around x∗ intersects only those d constraint hyperplanes. Consider the point x̃ = x∗ − εv j, for
some index 1≤ j ≤ d and some sufficiently small ε > 0. We have ai · x̃ = ai · x∗ − ε(ai · v j) = bi
for all i 6= j, and a j · x̃ = a j · x∗−ε(a j · v j) = b j−ε < b j . Thus, x̃ is a feasible point for Π. Because
x∗ is the unique optimum for Π, we must have c · x̃ = c · x∗ − ε(c · v j)< c · x∗. We conclude that
y j = c · v j > 0 for all j.

We have shown that yA≥ c and y ≥ 0, so y is a feasible solution for the dual linear program
q. We have also shown that y · b = c · x∗, so by the Weak Duality Theorem, y is also an optimal
solution for q, and the proof is complete! �

We can also give a useful geometric interpretation to the vector y• ∈ Rd . Each linear equation
ai · x = bi defines a hyperplane in Rd with normal vector ai. The normal vectors a1, . . . , ad are
linearly independent (by non-degeneracy) and therefore describe a coordinate frame for the
vector space Rd . The definition of y• implies that c = y•A• =

∑d
i=1 yiai . In other words, y• lists

the coefficients of the objective vector c in the coordinate frame a1, . . . , ad .

26.7 Complementary Slackness

Complementary Slackness Theorem. Let x∗ be an optimal solution to a canonical linear pro-
gram Π, and let y∗ be an optimal solution to its dual q. Then for every index i, we have y∗i > 0 if
and only if ai · x∗ = bi . Symmetrically, for every index j, we have x∗j > 0 if and only if y∗ · a j = c j .

To be written

Exercises

1. (a) Describe how to transform any linear program written in general form into an
equivalent linear program written in slack form.

maximize
d∑

j=1
c j x j

subject to
d∑

j=1
ai j x j≤ bi for each i = 1 .. p

d∑
j=1

ai j x j= bi for each i = p+ 1 .. p+ q

d∑
j=1

ai j x j≥ bi for each i = p+ q+ 1 .. n

Z=⇒
max c · x
s.t. Ax= b

x≥ 0

(b) Describe precisely how to dualize a linear program written in slack form.

(c) Describe precisely how to dualize a linear program written in general form:

In all cases, keep the number of variables in the resulting linear program as small as
possible.
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2. A matrix A = (ai j) is skew-symmetric if and only if a ji = −ai j for all indices i 6= j; in
particular, every skew-symmetric matrix is square. A canonical linear program max{c · x |
Ax ≤ b; x ≥ 0} is self-dual if the matrix A is skew-symmetric and the objective vector c is
equal to the constraint vector b.

(a) Prove that any self-dual linear program Π is syntactically equivalent to its dual
program q.

(b) Show that any linear programΠwith d variables and n constraints can be transformed
into a self-dual linear program with n+d variables and n+d constraints. The optimal
solution to the self-dual program should include both the optimal solution for Π (in
d of the variables) and the optimal solution for the dual program q (in the other n
variables).

3. (a) Give a linear-programming formulation of themaximum-cardinality bipartite matching
problem. The input is a bipartite graph G = (U ∪ V ; E), where E ⊆ U × V ; the output
is the largest matching in G. Your linear program should have one variable for each
edge.

(b) Now dualize the linear program from part (a). What do the dual variables represent?
What does the objective function represent? What problem is this!?

4. Give a linear-programming formulation of the minimum-cost feasible circulation problem.
Here you are given a flow network whose edges have both capacities and costs, and your
goal is to find a feasible circulation (flow with value 0) whose cost is as small as possible.

5. An integer program is a linear program with the additional constraint that the variables
must take only integer values.

(a) Prove that deciding whether an integer program has a feasible solution is NP-complete.

(b) Prove that finding the optimal feasible solution to an integer program is NP-hard.

[Hint: Almost any NP-hard decision problem can be formulated as an integer program. Pick
your favorite.]

?6. Helly’s theorem states that for any collection of convex bodies in Rd , if every d + 1 of them
intersect, then there is a point lying in the intersection of all of them. Prove Helly’s theorem
for the special case where the convex bodies are halfspaces. Equivalently, show that if a
system of linear inequalities Ax ≤ b does not have a solution, then we can select d + 1 of
the inequalities such that the resulting subsystem also does not have a solution. [Hint:
Construct a dual LP from the system by choosing a 0 cost vector.]

7. Given points (x1, y1), (x2, y2), . . . , (xn, yn) in the plane, the linear regression problem asks
for real numbers a and b such that the line y = ax + b fits the points as closely as possible,
according to some criterion. The most common fit criterion is minimizing the L2 error,
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defined as follows:⁷

ε2(a, b) =
n∑

i=1

(yi − ax i − b)2.

But there are several other fit criteria, some of which can be optimized via linear program-
ming.

(a) The L1 error (or total absolute deviation) of the line y = ax + b is defined as follows:

ε1(a, b) =
n∑

i=1

|yi − ax i − b| .

Describe a linear program whose solution (a, b) describes the line with minimum L1
error.

(b) The L∞ error (or maximum absolute deviation) of the line y = ax + b is defined as
follows:

ε∞(a, b) =
n

max
i=1
|yi − ax i − b| .

Describe a linear program whose solution (a, b) describes the line with minimum L∞
error.

⁷This measure is also known as sum of squared residuals, and the algorithm to compute the best fit is normally
called (ordinary/linear) least squares fitting.
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Simplicibus itaque verbis gaudet Mathematica Veritas, cum etiam per
se simplex sit Veritatis oratio. [And thus Mathematical Truth prefers
simple words, because the language of Truth is itself simple.]

— Tycho Brahe (quoting Seneca (quoting Euripides))
Epistolarum astronomicarum liber primus (1596)

When a jar is broken, the space that was inside
Merges into the space outside.
In the same way, my mind has merged in God;
To me, there appears no duality.

— Sankara, Viveka-Chudamani (c. 700), translator unknown

27 Linear Programming Algorithms?

In this lecture, we’ll see a few algorithms for actually solving linear programming problems. The
most famous of these, the simplex method, was proposed by George Dantzig in 1947. Although
most variants of the simplex algorithm performs well in practice, no deterministic simplex variant
is known to run in sub-exponential time in the worst case.¹ However, if the dimension of the
problem is considered a constant, there are several linear programming algorithms that run in
linear time. I’ll describe a particularly simple randomized algorithm due to Raimund Seidel.

My approach to describing these algorithms will rely much more heavily on geometric
intuition than the usual linear-algebraic formalism. This works better for me, but your mileage
may vary. For a more traditional description of the simplex algorithm, see Robert Vanderbei’s
excellent textbook Linear Programming: Foundations and Extensions [Springer, 2001], which can
be freely downloaded (but not legally printed) from the author’s website.

27.1 Bases, Feasibility, and Local Optimality

Consider the canonical linear program max{c · x | Ax ≤ b, x ≥ 0}, where A is an n× d constraint
matrix, b is an n-dimensional coefficient vector, and c is a d-dimensional objective vector. We will
interpret this linear program geometrically as looking for the lowest point in a convex polyhedron
in Rd , described as the intersection of n+ d halfspaces. As in the last lecture, we will consider
only non-degenerate linear programs: Every subset of d constraint hyperplanes intersects in a
single point; at most d constraint hyperplanes pass through any point; and objective vector is
linearly independent from any d − 1 constraint vectors.

A basis is a subset of d constraints, which by our non-degeneracy assumption must be linearly
independent. The location of a basis is the unique point x that satisfies all d constraints with
equality; geometrically, x is the unique intersection point of the d hyperplanes. The value of a
basis is c · x , where x is the location of the basis. There are precisely

�n+d
d

�
bases. Geometrically,

the set of constraint hyperplanes defines a decomposition of Rd into convex polyhedra; this cell
decomposition is called the arrangement of the hyperplanes. Every subset of d hyperplanes
(that is, every basis) defines a vertex of this arrangement (the location of the basis). I will use the
words ‘vertex’ and ‘basis’ interchangeably.

¹However, there are randomized variants of the simplex algorithm that run in subexponential expected time, most
notably the RandomFacet algorithm analyzed by Gil Kalai in 1992, and independently by Jií Matoušek, Micha
Sharir, and Emo Welzl in 1996. No randomized variant is known to run in polynomial time. In particular, in 2010,
Oliver Friedmann, Thomas Dueholm Hansen, and Uri Zwick proved that the worst-case expected running time of
RandomFacet is superpolynomial.
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A basis is feasible if its location x satisfies all the linear constraints, or geometrically, if
the point x is a vertex of the polyhedron. If there are no feasible bases, the linear program is
infeasible.

A basis is locally optimal if its location x is the optimal solution to the linear program
with the same objective function and only the constraints in the basis. Geometrically, a basis is
locally optimal if its location x is the lowest point in the intersection of those d halfspaces. A
careful reading of the proof of the Strong Duality Theorem reveals that local optimality is the
dual equivalent of feasibility; a basis is locally feasible for a linear program Π if and only if the
same basis is feasible for the dual linear program q. For this reason, locally optimal bases are
sometimes also called dual feasible. If there are no locally optimal bases, the linear program is
unbounded.²

Two bases are neighbors if they have d−1 constraints in common. Equivalently, in geometric
terms, two vertices are neighbors if they lie on a line determined by some d − 1 constraint
hyperplanes. Every basis is a neighbor of exactly dn other bases; to change a basis into one of its
neighbors, there are d choices for which constraint to remove and n choices for which constraint
to add. The graph of vertices and edges on the boundary of the feasible polyhedron is a subgraph
of the basis graph.

The Weak Duality Theorem implies that the value of every feasible basis is less than or equal
to the value of every locally optimal basis; equivalently, every feasible vertex is higher than every
locally optimal vertex. The Strong Duality Theorem implies that (under our non-degeneracy
assumption), if a linear program has an optimal solution, it is the unique vertex that is both
feasible and locally optimal. Moreover, the optimal solution is both the lowest feasible vertex and
the highest locally optimal vertex.

27.2 The Primal Simplex Algorithm: Falling Marbles

From a geometric standpoint, Dantzig’s simplex algorithm is very simple. The input is a set H of
halfspaces; we want the lowest vertex in the intersection of these halfspaces.

Simplex1(H):
if ∩H =∅

return Infeasible
x ← any feasible vertex
while x is not locally optimal
〈〈pivot downward, maintaining feasibility〉〉
if every feasible neighbor of x is higher than x

return Unbounded
else

x ← any feasible neighbor of x that is lower than x
return x

Let’s ignore the first three lines for the moment. The algorithm maintains a feasible vertex
x . At each so-called pivot operation, the algorithm moves to a lower vertex, so the algorithm
never visits the same vertex more than once. Thus, the algorithm must halt after at most

�n+d
d

�
pivots. When the algorithm halts, either the feasible vertex x is locally optimal, and therefore the
optimum vertex, or the feasible vertex x is not locally optimal but has no lower feasible neighbor,
in which case the feasible region must be unbounded.

²For non-degenerate linear programs, the feasible region is unbounded in the objective direction if and only if
no basis is locally optimal. However, there are degenerate linear programs with no locally optimal basis that are
infeasible.
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Notice that we have not specified which neighbor to choose at each pivot. Many different
pivoting rules have been proposed, but for almost every known pivot rule, there is an input
polyhedron that requires an exponential number of pivots under that rule. No pivoting rule is
known that guarantees a polynomial number of pivots in the worst case, or even in expectation.³

27.3 The Dual Simplex Algorithm: Rising Bubbles

We can also geometrically interpret the execution of the simplex algorithm on the dual linear
program q. Again, the input is a set H of halfspaces, and we want the lowest vertex in the
intersection of these halfspaces. By the Strong Duality Theorem, this is the same as the highest
locally-optimal vertex in the hyperplane arrangement.

Simplex2(H):
if there is no locally optimal vertex

return Unbounded
x ← any locally optimal vertex
while x is not feasbile
〈〈pivot upward, maintaining local optimality〉〉
if every locally optimal neighbor of x is lower than x

return Infeasible
else

x ← any locally-optimal neighbor of x that is higher than x
return x

Let’s ignore the first three lines for the moment. The algorithm maintains a locally optimal
vertex x . At each pivot operation, it moves to a higher vertex, so the algorithm never visits the
same vertex more than once. Thus, the algorithm must halt after at most

�n+d
d

�
pivots. When the

algorithm halts, either the locally optimal vertex x is feasible, and therefore the optimum vertex,
or the locally optimal vertex x is not feasible but has no higher locally optimal neighbor, in which
case the problem must be infeasible.

The primal simplex (falling marble) algorithm in action. The dual simplex (rising bubble) algorithm in action.

From the standpoint of linear algebra, there is absolutely no difference between running
Simplex1 on any linear program Π and running Simplex2 on the dual linear program q. The

³In 1957, Hirsch conjectured that for any linear programming instance with d variables and n+ d constraints,
starting at any feasible basis, there is a sequence of at most n pivots that leads to the optimal basis. This long-standing
conjecture was finally disproved in 2010 by Fransisco Santos, who described an counterexample with 43 variables, 86
facets, and diameter 44.
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actual code is identical. The only difference between the two algorithms is how we interpret the
linear algebra geometrically.

27.4 Computing the Initial Basis

To complete our description of the simplex algorithm, we need to describe how to find the initial
vertex x . Our algorithm relies on the following simple observations.

First, the feasibility of a vertex does not depend at all on the choice of objective vector; a
vertex is either feasible for every objective function or for none. No matter how we rotate the
polyhedron, every feasible vertex stays feasible. Conversely (or by duality, equivalently), the local
optimality of a vertex does not depend on the exact location of the d hyperplanes, but only on
their normal directions and the objective function. No matter how we translate the hyperplanes,
every locally optimal vertex stays locally optimal. In terms of the original matrix formulation,
feasibility depends on A and b but not c, and local optimality depends on A and c but not b.

The second important observation is that every basis is locally optimal for some objective
function. Specifically, it suffices to choose any vector that has a positive inner product with each
of the normal vectors of the d chosen hyperplanes. Equivalently, we can make any basis feasible
by translating the hyperplanes appropriately. Specifically, it suffices to translate the chosen d
hyperplanes so that they pass through the origin, and then translate all the other halfspaces so
that they strictly contain the origin.

Our strategy for finding our initial feasible vertex is to choose any vertex, choose a new
objective function that makes that vertex locally optimal, and then find the optimal vertex for
that objective function by running the (dual) simplex algorithm. This vertex must be feasible,
even after we restore the original objective function!

(a) (b) (c)

(a) Choose any basis. (b) Rotate objective to make it locally optimal, and pivot ’upward’ to find a feasible basis.
(c) Pivot downward to the optimum basis for the original objective.

Equivalently, to find an initial locally optimal vertex, we choose any vertex, translate the
hyperplanes so that that vertex becomes feasible, and then find the optimal vertex for those
translated constraints using the (primal) simplex algorithm. This vertex must be locally optimal,
even after we restore the hyperplanes to their original locations!

Here are more complete descriptions of the simplex algorithm with this initialization rule, in
both primal and dual forms. As usual, the input is a set H of halfspaces, and the algorithms either
return the lowest vertex in the intersection of these halfspaces or report that no such vertex exists.
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(a) (b) (c)

(a) Choose any basis. (b) Translate constraints to make it feasible, and pivot downward to find a locally optimal basis.
(c) Pivot upward to the optimum basis for the original constraints.

Simplex1(H):
x ← any vertex
H̃ ← any rotation of H that makes x locally optimal

while x is not feasible
if every locally optimal neighbor of x is lower (wrt H̃) than x

return Infeasible
else

x ← any locally optimal neighbor of x that is higher (wrt H̃) than x

while x is not locally optimal
if every feasible neighbor of x is higher than x

return Unbounded
else

x ← any feasible neighbor of x that is lower than x
return x

Simplex2(H):
x ← any vertex
H̃ ← any translation of H that makes x feasible

while x is not locally optimal
if every feasible neighbor of x is higher (wrt H̃) than x

return Unbounded
else

x ← any feasible neighbor of x that is lower (wrt H̃) than x

while x is not feasible
if every locally optimal neighbor of x is lower than x

return Infeasible
else

x ← any locally-optimal neighbor of x that is higher than x
return x

27.5 Linear Expected Time for Fixed Dimensions

In most geometric applications of linear programming, the number of variables is a small constant,
but the number of constraints may still be very large.

The input to the following algorithm is a set H of n halfspaces and a set B of b hyperplanes.
(B stands for basis.) The algorithm returns the lowest point in the intersection of the halfspaces
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in H and the hyperplanes B. At the top level of recursion, B is empty. I will implicitly assume that
the linear program is both feasible and bounded. (If necessary, we can guarantee boundedness
by adding a single halfspace to H, and we can guarantee feasibility by adding a dimension.) A
point x violates a constraint h if it is not contained in the corresponding halfspace.

SeidelLP(H, B) :
if |B|= d

return
⋂

B
if |H ∪ B|= d

return
⋂
(H ∪ B)

h← random element of H
x ← SeidelLP(H \ h, B) (∗)
if x violates h

return SeidelLP(H \ h, B ∪ ∂ h)
else

return x

The point x recursively computed in line (∗) is the optimal solution if and only if the random
halfspace h is not one of the d halfspaces that define the optimal solution. In other words, the
probability of calling SeidelLP(H, B ∪ h) is exactly (d − b)/n. Thus, we have the following
recurrence for the expected number of recursive calls for this algorithm:

T (n, b) =





1 if b = d or n+ b = d

T (n− 1, b) +
d − b

n
· T (n− 1, b+ 1) otherwise

The recurrence is somewhat simpler if we write δ = d − b:

T (n,δ) =





1 if δ = 0 or n= δ

T (n− 1,δ) +
δ

n
· T (n− 1,δ− 1) otherwise

It’s easy to prove by induction that T (n,δ) = O(δ! n):

T (n,δ) = T (n− 1,δ) +
δ

n
· T (n− 1,δ− 1)

≤ δ! (n− 1) +
δ

n
(δ− 1)! · (n− 1) [induction hypothesis]

= δ! (n− 1) +δ!
n− 1

n
≤ δ! n

At the top level of recursion, we perform one violation test in O(d) time. In each of the base
cases, we spend O(d3) time computing the intersection point of d hyperplanes, and in the first
base case, we spend O(dn) additional time testing for violations. More careful analysis implies
that the algorithm runs in O(d! · n) expected time.

Exercises

1. Fix a non-degenerate linear program in canonical formwith d variables and n+d constraints.

6



Algorithms Lecture 27: Linear Programming Algorithms [Fa’13]

(a) Prove that every feasible basis has exactly d feasible neighbors.

(b) Prove that every locally optimal basis has exactly n locally optimal neighbors.

2. Suppose you have a subroutine that can solve linear programs in polynomial time, but
only if they are both feasible and bounded. Describe an algorithm that solves arbitrary
linear programs in polynomial time. Your algorithm should return an optimal solution if
one exists; if no optimum exists, your algorithm should report that the input instance is
Unbounded or Infeasible, whichever is appropriate. [Hint: Add one variable and one
constraint.]

3. (a) Give an example of a non-empty polyhedron Ax ≤ b that is unbounded for every
objective vector c.

(b) Give an example of an infeasible linear program whose dual is also infeasible.

In both cases, your linear program will be degenerate.

4. Describe and analyze an algorithm that solves the following problem in O(n) time: Given
n red points and n blue points in the plane, either find a line that separates every red point
from every blue point, or prove that no such line exists.

5. The single-source shortest path problem can be formulated as a linear programming
problem, with one variable dv for each vertex v 6= s in the input graph, as follows:

maximize
∑

v

dv

subject to dv ≤ `s→v for every edge s→ v

dv − du ≤ `u→v for every edge u→ v with u 6= s

dv ≥ 0 for every vertex v 6= s

This problem asks you to describe the behavior of the simplex algorithm on this linear
program in terms of distances. Assume that the edge weights `u→v are all non-negative
and that there is a unique shortest path between any two vertices in the graph.

(a) What is a basis for this linear program? What is a feasible basis? What is a locally
optimal basis?

(b) Show that in the optimal basis, every variable dv is equal to the shortest-path distance
from s to v.

(c) Describe the primal simplex algorithm for the shortest-path linear program directly in
terms of vertex distances. In particular, what does it mean to pivot from a feasible
basis to a neighboring feasible basis, and how can we execute such a pivot quickly?

(d) Describe the dual simplex algorithm for the shortest-path linear program directly in
terms of vertex distances. In particular, what does it mean to pivot from a locally
optimal basis to a neighboring locally optimal basis, and how can we execute such a
pivot quickly?

(e) Is Dijkstra’s algorithm an instance of the simplex method? Justify your answer.

7



Algorithms Lecture 27: Linear Programming Algorithms [Fa’13]

(f) Is Shimbel’s algorithm an instance of the simplex method? Justify your answer.

6. The maximum (s, t)-flow problem can be formulated as a linear programming problem,
with one variable fu→v for each edge u→ v in the input graph:

maximize
∑

w

fs→w −
∑

u

fu→s

subject to
∑

w

fv→w −
∑

u

fu→v = 0 for every vertex v 6= s, t

fu→v ≤ cu→v for every edge u→ v

fu→v ≥ 0 for every edge u→ v

This problem asks you to describe the behavior of the simplex algorithm on this linear
program in terms of flows.

(a) What is a basis for this linear program? What is a feasible basis? What is a locally
optimal basis?

(b) Show that the optimal basis represents a maximum flow.

(c) Describe the primal simplex algorithm for the flow linear program directly in terms of
flows. In particular, what does it mean to pivot from a feasible basis to a neighboring
feasible basis, and how can we execute such a pivot quickly?

(d) Describe the dual simplex algorithm for the flow linear program directly in terms
of flows. In particular, what does it mean to pivot from a locally optimal basis to a
neighboring locally optimal basis, and how can we execute such a pivot quickly?

(e) Is the Ford-Fulkerson augmenting path algorithm an instance of the simplex method?
Justify your answer. [Hint: There is a one-line argument.]

7. (a) Formulate the minimum spanning tree problem as an instance of linear programming.
Try to minimize the number of variables and constraints.

(b) In your MST linear program, what is a basis? What is a feasible basis? What is a
locally optimal basis?

(c) Describe the primal simplex algorithm for your MST linear program directly in terms
of the input graph. In particular, what does it mean to pivot from a feasible basis to a
neighboring feasible basis, and how can we execute such a pivot quickly?

(d) Describe the dual simplex algorithm for your MST linear program directly in terms of
the input graph. In particular, what does it mean to pivot from a locally optimal basis
to a neighboring locally optimal basis, and how can we execute such a pivot quickly?

(e) Which of the classical MST algorithms (Borvka, Jarník, Kruskal, reverse greedy), if
any, are instances of the simplex method? Justify your answer.
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It was a Game called Yes and No, where Scrooge’s nephew had to think of something, and the rest
must find out what; he only answering to their questions yes or no, as the case was. The brisk
fire of questioning to which he was exposed, elicited from him that he was thinking of an animal,
a live animal, rather a disagreeable animal, a savage animal, an animal that growled and grunted
sometimes, and talked sometimes, and lived in London, and walked about the streets, and wasn’t
made a show of, and wasn’t led by anybody, and didn’t live in a menagerie, and was never killed
in a market, and was not a horse, or an ass, or a cow, or a bull, or a tiger, or a dog, or a pig, or
a cat, or a bear. At every fresh question that was put to him, this nephew burst into a fresh roar of
laughter; and was so inexpressibly tickled, that he was obliged to get up off the sofa and stamp. At
last the plump sister, falling into a similar state, cried out :

“ I have found it out ! I know what it is, Fred ! I know what it is !”

“ What is it ?” cried Fred.

“ It’s your Uncle Scro-o-o-o-oge !”

Which it certainly was. Admiration was the universal sentiment, though some objected that
the reply to “ Is it a bear?” ought to have been “Yes;" inasmuch as an answer in the negative
was sufficient to have diverted their thoughts from Mr Scrooge, supposing they had ever had any
tendency that way.

— Charles Dickens, A Christmas Carol (1843)

28 Lower Bounds

28.1 Huh? Whuzzat?

So far in this class we’ve been developing algorithms and data structures to solve certain problems
as quickly as possible. Starting with this lecture, we’ll turn the tables, by proving that certain
problems cannot be solved as quickly as we might like them to be.

Let TA(X ) denote the running time of algorithm A given input X . For most of the semester,
we’ve been concerned with the the worst-case running time of A as a function of the input size:

TA(n) := max
|X |=n

TA(X ).

The worst-case complexity of a problem Π is the worst-case running time of the fastest algorithm
for solving it:

TΠ(n) := min
A solves Π

TA(n) = min
A solves Π

max
|X |=n

TA(X ).

Any algorithm A that solves Π immediately implies an upper bound on the complexity of Π; the
inequality TΠ(n) ≤ TA(n) follows directly from the definition of TΠ. Just as obviously, faster
algorithms give us better (smaller) upper bounds. In other words, whenever we give a running
time for an algorithm, what we’re really doing—and what most computer scientists devote their
entire careers doing¹—is bragging about how easy some problem is.

Now, instead of bragging about how easy problems are, we will argue that certain problems
are hard, by proving lower bounds on their complexity. This is considerably harder than proving

¹This sometimes leads to long sequences of results that sound like an obscure version of “Name that Tune”:

Lennes: “I can triangulate that polygon in O(n2) time.”
Shamos: “I can triangulate that polygon in O(n log n) time.”
Tarjan: “I can triangulate that polygon in O(n log log n) time.”
Seidel: “I can triangulate that polygon in O(n log∗ n) time.” [Audience gasps.]
Chazelle: “I can triangulate that polygon in O(n) time.” [Audience gasps and applauds.]
“Triangulate that polygon!”
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an upper bound, because it’s no longer enough to examine a single algorithm. To prove an
inequality of the form TΠ(n) = Ω( f (n)), we must prove that every algorithm that solves Π has a
worst-case running time Ω( f (n)), or equivalently, that no algorithm runs in o( f (n)) time.

28.2 Decision Trees

Unfortunately, there is no formal definition of the phrase ‘all algorithms’!² So when we derive
lower bounds, we first have to specify precisely what kinds of algorithms we will consider and
precisely how to measure their running time. This specification is called a model of computation.

One rather powerful model of computation—and the only model we’ll talk about in this
lecture—is the decision treemodel. A decision tree is, as the name suggests, a tree. Each internal
node in the tree is labeled by a query, which is just a question about the input. The edges out of
a node correspond to the possible answers to that node’s query. Each leaf of the tree is labeled
with an output. To compute with a decision tree, we start at the root and follow a path down to
a leaf. At each internal node, the answer to the query tells us which node to visit next. When we
reach a leaf, we output its label.

For example, the guessing game where one person thinks of an animal and the other person
tries to figure it out with a series of yes/no questions can be modeled as a decision tree. Each
internal node is labeled with a question and has two edges labeled ‘yes’ and ‘no’. Each leaf is
labeled with an animal.

Does it live in the water?

Does it have scales? Does it have more than four legs?

Does it have wings?Does it have wings?

YES
NO

NO
YE
S

fish frog

gnu eaglefly spider

YE
S N
O
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S N

O

YE
S N

O

A decision tree to choose one of six animals.

Here’s another simple and familiar example, called the dictionary problem. Let A be a fixed
array with n numbers. Suppose we want to determine, given a number x , the position of x
in the array A, if any. One solution to the dictionary problem is to sort A (remembering every
element’s original position) and then use binary search. The (implicit) binary search tree can be
used almost directly as a decision tree. Each internal node in the search tree stores a key k; the
corresponding node in the decision tree stores the question ‘Is x < k?’. Each leaf in the search
tree stores some value A[i]; the corresponding node in the decision tree asks ‘Is x = A[i]?’ and
has two leaf children, one labeled ‘i’ and the other ‘none’.

We define the running time of a decision tree algorithm for a given input to be the number of
queries in the path from the root to the leaf. For example, in the ‘Guess the animal’ tree above,

²Complexity-theory snobs purists sometimes argue that ‘all algorithms’ is just a synonym for ‘all Turing machines’.
This is utter nonsense; Turing machines are just another model of computation. Turing machinesmight be a reasonable
abstraction of physically realizable computation—that’s the Church-Turing thesis—but it has a few problems. First,
computation is an abstract mathematical process, not a physical process. Algorithms that use physically unrealistic
components (like exact real numbers, or unbounded memory) are still mathematically well-defined and still provide
useful intuition about real-world computation. Moreover, Turing machines don’t accurately reflect the complexity of
physically realizable algorithms, because (for example) they can’t do arithmetic or access arbitrary memory locations
in constant time. At best, they estimate algorithmic complexity up to polynomial factors (although even that is
unknown).
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Left: A binary search tree for the first eight primes.
Right: The corresponding binary decision tree for the dictionary problem (- = ‘none’).

T (frog) = 2. Thus, the worst-case running time of the algorithm is just the depth of the tree. This
definition ignores other kinds of operations that the algorithm might perform that have nothing
to do with the queries. (Even the most efficient binary search problem requires more than one
machine instruction per comparison!) But the number of decisions is certainly a lower bound on
the actual running time, which is good enough to prove a lower bound on the complexity of a
problem.

Both of the examples describe binary decision trees, where every query has only two answers.
We may sometimes want to consider decision trees with higher degree. For example, we might
use queries like ‘Is x greater than, equal to, or less than y?’ or ‘Are these three points in clockwise
order, colinear, or in counterclockwise order?’ A k-ary decision tree is one where every query has
(at most) k different answers. From now on, I will only consider k-ary decision trees where
k is a constant.

28.3 Information Theory

Most lower bounds for decision trees are based on the following simple observation: The answers
to the queries must give you enough information to specify any possible output. If a problem
has N different outputs, then obviously any decision tree must have at least N leaves. (It’s
possible for several leaves to specify the same output.) Thus, if every query has at most k possible
answers, then the depth of the decision tree must be at least dlogk Ne= Ω(log N).

Let’s apply this to the dictionary problem for a set S of n numbers. Since there are n+ 1
possible outputs, any decision tree must have at least n+ 1 leaves, and thus any decision tree
must have depth at least dlogk(n+ 1)e= Ω(log n). So the complexity of the dictionary problem,
in the decision-tree model of computation, is Ω(log n). This matches the upper bound O(log n)
that comes from a perfectly-balanced binary search tree. That means that the standard binary
search algorithm, which runs in O(log n) time, is optimal—there is no faster algorithm in this
model of computation.

28.4 But wait a second. . .

We can solve the membership problem in O(1) expected time using hashing. Isn’t this inconsistent
with the Ω(log n) lower bound?

No, it isn’t. The reason is that hashing involves a query with more than a constant number of
outcomes, specifically ‘What is the hash value of x?’ In fact, if we don’t restrict the degree of the
decision tree, we can get constant running time even without hashing, by using the obviously
unreasonable query ‘For which index i (if any) is A[i] = x?’. No, I am not cheating — remember
that the decision tree model allows us to ask any question about the input!
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This example illustrates a common theme in proving lower bounds: choosing the right model
of computation is absolutely crucial. If you choose a model that is too powerful, the problem
you’re studying may have a completely trivial algorithm. On the other hand, if you consider more
restrictive models, the problem may not be solvable at all, in which case any lower bound will be
meaningless! (In this class, we’ll just tell you the right model of computation to use.)

28.5 Sorting

Now let’s consider the classical sorting problem — Given an array of n numbers, arrange them in
increasing order. Unfortunately, decision trees don’t have any way of describing moving data
around, so we have to rephrase the question slightly:

Given a sequence 〈x1, x2, . . . , xn〉 of n distinct numbers, find the permutation π such
that xπ(1) < xπ(2) < · · ·< xπ(n).

Now a k-ary decision-tree lower bound is immediate. Since there are n! possible permutations π,
any decision tree for sorting must have at least n! leaves, and so must have depth Ω(log(n!)). To
simplify the lower bound, we apply Stirling’s approximation

n!=
�n

e

�np
2πn

�
1+Θ

�
1
n

��
>
�n

e

�n
.

This gives us the lower bound
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logk(n!)

�
>
l
logk

�n
e

�nm
=
�
n logk n− n logk e

�
= Ω(n log n).

This matches the O(n log n) upper bound that we get from mergesort, heapsort, or quicksort, so
those algorithms are optimal. The decision-tree complexity of sorting is Θ(n log n).

Well. . . we’re not quite done. In order to say that those algorithms are optimal, we have
to demonstrate that they fit into our model of computation. A few minutes of thought will
convince you that they can be described as a special type of decision tree called a comparison
tree, where every query is of the form ‘Is x i bigger or smaller than x j?’ These algorithms treat
any two input sequences exactly the same way as long as the same comparisons produce exactly
the same results. This is a feature of any comparison tree. In other words, the actual input
values don’t matter, only their order. Comparison trees describe almost all well-known sorting
algorithms: bubble sort, selection sort, insertion sort, shell sort, quicksort, heapsort, mergesort,
and so forth—but not radix sort or bucket sort.

28.6 Finding the Maximum and Adversaries

Finally let’s consider the maximum problem: Given an array X of n numbers, find its largest
entry. Unfortunately, there’s no hope of proving a lower bound in this formulation, since there
are an infinite number of possible answers, so let’s rephrase it slightly.

Given a sequence 〈x1, x2, . . . , xn〉 of n distinct numbers, find the index m such that
xm is the largest element in the sequence.

We can get an upper bound of n − 1 comparisons in several different ways. The easiest
is probably to start at one end of the sequence and do a linear scan, maintaining a current
maximum. Intuitively, this seems like the best we can do, but the information-theoretic bound is
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only dlog2 ne. And in fact, this bound is tight! We can locate the maximum element by asking
only dlog2 ne ‘unreasonable’ questions like “Is the index of the maximum element odd?” No, this
is not cheating—the decision tree model allows arbitrary questions.

To prove a non-trivial lower bound for this problem, we must do two things. First, we need
to consider a more reasonable model of computation, by restricting the kinds of questions the
algorithm is allowed to ask. We will consider the comparison tree model, where every query
must have the form “Is x i > x j?”. Since most algorithms³ for finding the maximum rely on
comparisons to make control-flow decisions, this does not seem like an unreasonable restriction.

Second, we will use something called an adversary argument. The idea is that an all-
powerful malicious adversary pretends to choose an input for the algorithm. When the algorithm
asks a question about the input, the adversary answers in whatever way will make the algorithm
do the most work. If the algorithm does not ask enough queries before terminating, then there
will be several different inputs, each consistent with the adversary’s answers, that should result
in different outputs. In this case, whatever the algorithm outputs, the adversary can ‘reveal’ an
input that is consistent with its answers, but contradicts the algorithm’s output, and then claim
that that was the input that he was using all along.

For the maximum problem, the adversary originally pretends that x i = i for all i, and answers
all comparison queries accordingly. Whenever the adversary reveals that x i < x j , he marks x i as
an item that the algorithm knows (or should know) is not the maximum element. At most one
element x i is marked after each comparison. Note that xn is never marked. If the algorithm
does less than n− 1 comparisons before it terminates, the adversary must have at least one other
unmarked element xk 6= xn. In this case, the adversary can change the value of xk from k to
n+ 1, making xk the largest element, without being inconsistent with any of the comparisons
that the algorithm has performed. In other words, the algorithm cannot tell that the adversary
has cheated. However, xn is the maximum element in the original input, and xk is the largest
element in the modified input, so the algorithm cannot possibly give the correct answer for both
cases. Thus, in order to be correct, any algorithm must perform at least n− 1 comparisons.

The adversary argument we described has two very important properties. First, no algorithm
can distinguish between a malicious adversary and an honest user who actually chooses an input
in advance and answers all queries truthfully. But much more importantly, the adversary makes
absolutely no assumptions about the order in which the algorithm performs comparisons.
The adversary forces any comparison-based algorithm⁴ to either perform n− 1 comparisons, or
to give the wrong answer for at least one input sequence.

Exercises

0. Simon bar Kokhba thinks of an integer between 1 and 1,000,000 (or so he claims). You are
trying to determine his number by asking as few yes/no questions as possible. How many
yes/no questions are required to determine Simon’s number in the worst case? Give both
an upper bound (supported by an algorithm) and a lower bound.

1. Consider the following multi-dictionary problem. Let A[1 .. n] be a fixed array of distinct
integers. Given an array X [1 .. k], we want to find the position (if any) of each integer

³but not all—see Exercise 4
⁴In fact, the n− 1 lower bound for finding the maximum holds in a more powerful model called algebraic decision

trees, which are binary trees where every query is a comparison between two polynomial functions of the input values,
such as ‘Is x2

1 − 3x2 x3 + x17
4 bigger or smaller than 5+ x1 x5

3 x2
5 − 2x42

7 ?’
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X [i] in the array A. In other words, we want to compute an array I[1 .. k] where for each i,
either I[i] = 0 (so zero means ‘none’) or A[I[i]] = X [i]. Determine the exact complexity
of this problem, as a function of n and k, in the binary decision tree model.

2. We say that an array A[1 .. n] is k-sorted if it can be divided into k blocks, each of size n/k,
such that the elements in each block are larger than the elements in earlier blocks, and
smaller than elements in later blocks. The elements within each block need not be sorted.

For example, the following array is 4-sorted:

1 2 4 3 7 6 8 5 10 11 9 12 15 13 16 14

(a) Describe an algorithm that k-sorts an arbitrary array in O(n log k) time.

(b) Prove that any comparison-based k-sorting algorithm requires Ω(n log k) comparisons
in the worst case.

(c) Describe an algorithm that completely sorts an already k-sorted array in O(n log(n/k))
time.

(d) Prove that any comparison-based algorithm to completely sort a k-sorted array
requires Ω(n log(n/k)) comparisons in the worst case.

In all cases, you can assume that n/k is an integer.

3. Recall the nuts-and-bolts problem from the lecture on randomized algorithms. We are
given n bolts and n nuts of different sizes, where each bolt exactly matches one nut. Our
goal is to find the matching nut for each bolt. The nuts and bolts are too similar to compare
directly; however, we can test whether any nut is too big, too small, or the same size as
any bolt.

(a) Prove that in the worst case, Ω(n log n) nut-bolt tests are required to correctly match
up the nuts and bolts.

(b) Now suppose we would be happy to find most of the matching pairs. Prove that in the
worst case, Ω(n log n) nut-bolt tests are required even to find n/2 arbitrary matching
nut-bolt pairs.

?(c) Prove that in the worst case, Ω(n + k log n) nut-bolt tests are required to find k
arbitrary matching pairs. [Hint: Use an adversary argument for the Ω(n) term.]

?(d) Describe a randomized algorithm that finds k matching nut-bolt pairs in O(n+k log n)
expected time.

?4. Suppose you want to determine the largest number in an n-element set X = {x1, x2, . . . , xn},
where each element x i is an integer between 1 and 2m − 1. Describe an algorithm that
solves this problem in O(n+m) steps, where at each step, your algorithm compares one of
the elements x i with a constant. In particular, your algorithm must never actually compare
two elements of X ! [Hint: Construct and maintain a nested set of ‘pinning intervals’ for
the numbers that you have not yet removed from consideration, where each interval but the
largest is either the upper half or lower half of the next larger block.]

© Copyright 2014 Jeff Erickson.
This work is licensed under a Creative Commons License (http://creativecommons.org/licenses/by-nc-sa/4.0/).

Free distribution is strongly encouraged; commercial distribution is expressly forbidden.
See http://www.cs.uiuc.edu/~jeffe/teaching/algorithms for the most recent revision.
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An adversary means opposition and competition,
but not having an adversary means grief and loneliness.

— Zhuangzi (Chuang-tsu) c. 300 BC

It is possible that the operator could be hit by an asteroid and your $20
could fall off his cardboard box and land on the ground, and while you were
picking it up, $5 could blow into your hand. You therefore could win $5 by a
simple twist of fate.

— Penn Jillette, explaining how to win at Three-Card Monte (1999)

29 Adversary Arguments

29.1 Three-Card Monte

Until Times Square was turned into a glitzy sanitized tourist trap, you could often find dealers
stealing tourists’ money using a game called “Three Card Monte” or “Spot the Lady”. The dealer
show the tourist three cards, say the Queen of Hearts, the two of spades, and three of clubs.
The dealer shuffles the cards face down on a table (usually slowly enough that the tourist can
follow the Queen), and then asks the tourist to bet on which card is the Queen. In principle, the
tourist’s odds of winning are at least one in three, more if the tourist was carefully watching the
movement of the cards.

In practice, however, the tourist never wins, because the dealer cheats. The dealer actually
holds at least four cards; before he even starts shuffling the cards, the dealer palms the queen or
sticks it up his sleeve. No matter what card the tourist bets on, the dealer turns over a black card
(which might be the two of clubs, but most tourists won’t notice that wasn’t one o the original
cards). If the tourist gives up, the dealer slides the queen under one of the cards and turns it
over, showing the tourist ‘where the queen was all along’. If the dealer is really good, the tourist
won’t see the dealer changing the cards and will think maybe the queen was there all along and
he just wasn’t smart enough to figure that out. As long as the dealer doesn’t reveal all the black
cards at once, the tourist has no way to prove that the dealer cheated!¹

29.2 n-Card Monte

Now let’s consider a similar game, but with an algorithm acting as the tourist and with bits
instead of cards. Suppose we have an array of n bits and we want to determine if any of them is
a 1. Obviously we can figure this out by just looking at every bit, but can we do better? Is there
maybe some complicated tricky algorithm to answer the question “Any ones?” without looking at
every bit? Well, of course not, but how do we prove it?

The simplest proof technique is called an adversary argument. The idea is that an all-powerful
malicious adversary (the dealer) pretends to choose an input for the algorithm (the tourist).
When the algorithm wants looks at a bit (a card), the adversary sets that bit to whatever value
will make the algorithm do the most work. If the algorithm does not look at enough bits before
terminating, then there will be several different inputs, each consistent with the bits already seen,

¹Even if the dealer is a sloppy magician, he’ll cheat anyway. The dealer is almost always surrounded by shills; these
are the “tourists” who look like they’re actually winning, who turn over cards when the dealer “isn’t looking”, who
casually mention how easy the game is to win, and so on. The shills physically protect the dealer from any angry
tourists who notice the dealer cheating, and shake down any tourists who refuse to pay after making a bet. Really,
you cannot win this game, ever.

© Copyright 2014 Jeff Erickson.
This work is licensed under a Creative Commons License (http://creativecommons.org/licenses/by-nc-sa/4.0/).

Free distribution is strongly encouraged; commercial distribution is expressly forbidden.
See http://www.cs.uiuc.edu/~jeffe/teaching/algorithms/ for the most recent revision.
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the should result in different outputs. Whatever the algorithm outputs, the adversary can ‘reveal’
an input that is has all the examined bits but contradicts the algorithm’s output, and then claim
that that was the input that he was using all along. Since the only information the algorithm has
is the set of bits it examined, the algorithm cannot distinguish between a malicious adversary
and an honest user who actually chooses an input in advance and answers all queries truthfully.

For the n-card monte problem, the adversary originally pretends that the input array is all
zeros—whenever the algorithm looks at a bit, it sees a 0. Now suppose the algorithms stops
before looking at all three bits. If the algorithm says ‘No, there’s no 1,’ the adversary changes
one of the unexamined bits to a 1 and shows the algorithm that it’s wrong. If the algorithm says
‘Yes, there’s a 1,’ the adversary reveals the array of zeros and again proves the algorithm wrong.
Either way, the algorithm cannot tell that the adversary has cheated.

One absolutely crucial feature of this argument is that the adversary makes absolutely no
assumptions about the algorithm. The adversary strategy can’t depend on some predetermined
order of examining bits, and it doesn’t care about anything the algorithm might or might not do
when it’s not looking at bits. Any algorithm that doesn’t examine every bit falls victim to the
adversary.

29.3 Finding Patterns in Bit Strings

Let’s make the problem a little more complicated. Suppose we’re given an array of n bits and
we want to know if it contains the substring 01, a zero followed immediately by a one. Can we
answer this question without looking at every bit?

It turns out that if n is odd, we don’t have to look at all the bits. First we look the bits in every
even position: B[2], B[4], . . . , B[n− 1]. If we see B[i] = 0 and B[ j] = 1 for any i < j, then we
know the pattern 01 is in there somewhere—starting at the last 0 before B[ j]—so we can stop
without looking at any more bits. If we see only 1s followed by 0s, we don’t have to look at the
bit between the last 0 and the first 1. If every even bit is a 0, we don’t have to look at B[1], and
if every even bit is a 1, we don’t have to look at B[n]. In the worst case, our algorithm looks at
only n− 1 of the n bits.

But what if n is even? In that case, we can use the following adversary strategy to show that
any algorithm does have to look at every bit. The adversary will attempt to produce an ‘input’
string B without the substring 01; all such strings have the form 11 . . . 100 . . . 0. The adversary
maintains two indices ` and r and pretends that the prefix B[1 ..`] contains only 1s and the
suffix B[r .. n] contains only 0s. Initially `= 0 and r = n+ 1.

111111������0000↑ ↑
` r

What the adversary is thinking; � represents an unknown bit.

The adversary maintains the invariant that r − `, the length of the undecided portion of the
‘input’ string, is even. When the algorithm looks at a bit between ` and r, the adversary chooses
whichever value preserves the parity of the intermediate chunk of the array, and then moves
either ` or r. Specifically, here’s what the adversary does when the algorithm examines bit B[i].
(Note that I’m specifying the adversary strategy as an algorithm!)
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Hide01(i):
if i ≤ `

B[i]← 1
else if i ≥ r

B[i]← 0
else if i − ` is even

B[i]← 0
r ← i

else
B[i]← 1
`← i

It’s fairly easy to prove that this strategy forces the algorithm to examine every bit. If the
algorithm doesn’t look at every bit to the right of r, the adversary could replace some unexamined
bit with a 1. Similarly, if the algorithm doesn’t look at every bit to the left of `, the adversary could
replace some unexamined bit with a zero. Finally, if there are any unexamined bits between `
and r, there must be at least two such bits (since r − ` is always even) and the adversary can put
a 01 in the gap.

In general, we say that a bit pattern is evasive if we have to look at every bit to decide if a
string of n bits contains the pattern. So the pattern 1 is evasive for all n, and the pattern 01 is
evasive if and only if n is even. It turns out that the only patterns that are evasive for all values of
n are the one-bit patterns 0 and 1.

29.4 Evasive Graph Properties

Another class of problems for which adversary arguments give good lower bounds is graph
problems where the graph is represented by an adjacency matrix, rather than an adjacency list.
Recall that the adjacency matrix of an undirected n-vertex graph G = (V, E) is an n× n matrix A,
where A[i, j] =

�
(i, j) ∈ E

�
. We are interested in deciding whether an undirected graph has or

does not have a certain property. For example, is the input graph connected? Acyclic? Planar?
Complete? A tree? We call a graph property evasive if we have to look look at all

�n
2

�
entries in

the adjacency matrix to decide whether a graph has that property.
An obvious example of an evasive graph property is emptiness: Does the graph have any

edges at all? We can show that emptiness is evasive using the following simple adversary strategy.
The adversary maintains two graphs E and G. E is just the empty graph with n vertices. Initially
G is the complete graph on n vertices. Whenever the algorithm asks about an edge, the adversary
removes that edge from G (unless it’s already gone) and answers ‘no’. If the algorithm terminates
without examining every edge, then G is not empty. Since both G and E are consistent with all
the adversary’s answers, the algorithm must give the wrong answer for one of the two graphs.

29.5 Connectedness Is Evasive

Now let me give a more complicated example, connectedness. Once again, the adversary maintains
two graphs, Y and M (‘yes’ and ‘maybe’). Y contains all the edges that the algorithm knows are
definitely in the input graph. M contains all the edges that the algorithm thinks might be in the
input graph, or in other words, all the edges of Y plus all the unexamined edges. Initially, Y is
empty and M is complete.

Here’s the strategy that adversary follows when the adversary asks whether the input graph
contains the edge e. I’ll assume that whenever an algorithm examines an edge, it’s in M but not
in Y ; in other words, algorithms never ask about the same edge more than once.
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HideConnectedness(e):
if M \ {e} is connected

remove (i, j) from M
return 0

else
add e to Y
return 1

Notice that the graphs Y and M are both consistent with the adversary’s answers at all times.
The adversary strategy maintains a few other simple invariants.

• Y is a subgraph of M . This is obvious.

• M is connected. This is also obvious.

• If M has a cycle, none of its edges are in Y . If M has a cycle, then deleting any edge in
that cycle leaves M connected.

• Y is acyclic. This follows directly from the previous invariant.

• If Y 6= M , then Y is disconnected. The only connected acyclic graph is a tree. Suppose
Y is a tree and some edge e is in M but not in Y . Then there is a cycle in M that contains
e, all of whose other edges are in Y . This violated our third invariant.

We can also think about the adversary strategy in terms of minimum spanning trees. Recall
the anti-Kruskal algorithm for computing the maximum spanning tree of a graph: Consider the
edges one at a time in increasing order of length. If removing an edge would disconnect the
graph, declare it part of the spanning tree (by adding it to Y ); otherwise, throw it away (by
removing it from M). If the algorithm examines all

�n
2

�
possible edges, then Y and M are both

equal to the maximum spanning tree of the complete n-vertex graph, where the weight of an
edge is the time when the algorithm asked about it.

Now, if an algorithm terminates before examining all
�n

2

�
edges, then there is at least one edge

in M that is not in Y . Since the algorithm cannot distinguish between M and Y , even though M
is connected and Y is not, the algorithm cannot possibly give the correct output for both graphs.
Thus, in order to be correct, any algorithm must examine every edge—Connectedness is evasive!

29.6 An Evasive Conjecture

A graph property is nontrivial is there is at least one graph with the property and at least one
graph without the property. (The only trivial properties are ‘Yes’ and ‘No’.) A graph property is
monotone if it is closed under taking subgraphs — if G has the property, then any subgraph of
G has the property. For example, emptiness, planarity, acyclicity, and non-connectedness are
monotone. The properties of being a tree and of having a vertex of degree 3 are not monotone.

Conjecture 1 (Aanderraa, Karp, and Rosenberg). Every nontrivial monotone property of n-vertex
graphs is evasive.

The Aanderraa-Karp-Rosenberg conjecture has been proven when n= pe for some prime p and
positive integer exponent e—the proof uses some interesting results from algebraic topology²—but
it is still open for other values of n.

²Let ∆ be a contractible simplicial complex whose automorphism group Aut(∆) is vertex-transitive, and let Γ be a
vertex-transitive subgroup of Aut(∆). If there are normal subgroups Γ1 Ã Γ2 Ã Γ such that |Γ1|= pα for some prime p
and integer α, |Γ/Γ2|= qβ for some prime q and integer β , and Γ2/Γ1 is cyclic, then ∆ is a simplex.

No, this will not be on the final exam.
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There are non-trivial non-evasive graph properties, but all known examples are non-monotone.
One such property—‘scorpionhood’—is described in an exercise at the end of this lecture note.

29.7 Finding the Minimum and Maximum

Last time, we saw an adversary argument that finding the largest element of an unsorted set of n
numbers requires at least n− 1 comparisons. Let’s consider the complexity of finding the largest
and smallest elements. More formally:

Given a sequence X = 〈x1, x2, . . . , xn〉 of n distinct numbers, find indices i and j such
that x i =min X and x j =max X .

How many comparisons do we need to solve this problem? An upper bound of 2n− 3 is easy:
find the minimum in n− 1 comparisons, and then find the maximum of everything else in n− 2
comparisons. Similarly, a lower bound of n− 1 is easy, since any algorithm that finds the min
and the max certainly finds the max.

We can improve both the upper and the lower bound to d3n/2e − 2. The upper bound is
established by the following algorithm. Compare all bn/2c consecutive pairs of elements x2i−1
and x2i , and put the smaller element into a set S and the larger element into a set L. if n is odd,
put xn into both L and S. Then find the smallest element of S and the largest element of L. The
total number of comparisons is at most

jn
2

k
︸︷︷︸

build S and L

+
ln

2

m
− 1

︸ ︷︷ ︸
compute min S

+
ln

2

m
− 1

︸ ︷︷ ︸
compute max L

=
¡

3n
2

¤
− 2.

For the lower bound, we use an adversary argument. The adversary marks each element
+ if it might be the maximum element, and − if it might be the minimum element. Initially,
the adversary puts both marks + and − on every element. If the algorithm compares two
double-marked elements, then the adversary declares one smaller, removes the + mark from the
smaller element, and removes the − mark from the larger one. In every other case, the adversary
can answer so that at most one mark needs to be removed. For example, if the algorithm
compares a double marked element against one labeled −, the adversary says the one labeled − is
smaller and removes the − mark from the other. If the algorithm compares to +’s, the adversary
must unmark one of the two.

Initially, there are 2n marks. At the end, in order to be correct, exactly one item must
be marked + and exactly one other must be marked −, since the adversary can make any
+ the maximum and any − the minimum. Thus, the algorithm must force the adversary to
remove 2n− 2 marks. At most bn/2c comparisons remove two marks; every other comparison
removes at most one mark. Thus, the adversary strategy forces any algorithm to perform at least
2n− 2− bn/2c= d3n/2e − 2 comparisons.

29.8 Finding the Median

Finally, let’s consider the median problem: Given an unsorted array X of n numbers, find its
n/2th largest entry. (I’ll assume that n is even to eliminate pesky floors and ceilings.) More
formally:

Given a sequence 〈x1, x2, . . . , xn〉 of n distinct numbers, find the index m such that
xm is the n/2th largest element in the sequence.
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To prove a lower bound for this problem, we can use a combination of information theory and
two adversary arguments. We use one adversary argument to prove the following simple lemma:

Lemma 1. Any comparison tree that correctly finds the median element also identifies the elements
smaller than the median and larger than the median.

Proof: Suppose we reach a leaf of a decision tree that chooses the median element xm, and
there is still some element x i that isn’t known to be larger or smaller than xm. In other words,
we cannot decide based on the comparisons that we’ve already performed whether x i < xm or
x i > xm. Then in particular no element is known to lie between x i and xm. This means that
there must be an input that is consistent with the comparisons we’ve performed, in which x i and
xm are adjacent in sorted order. But then we can swap x i and xm, without changing the result of
any comparison, and obtain a different consistent input in which x i is the median, not xm. Our
decision tree gives the wrong answer for this ‘swapped’ input. �

This lemma lets us rephrase the median-finding problem yet again.

Given a sequence X = 〈x1, x2, . . . , xn〉 of n distinct numbers, find the indices of its
n/2− 1 largest elements L and its n/2th largest element xm.

Now suppose a ‘little birdie’ tells us the set L of elements larger than the median. This
information fixes the outcomes of certain comparisons—any item in L is bigger than any element
not in L—so we can ‘prune’ those comparisons from the comparison tree. The pruned tree finds
the largest element of X \ L (the median of X ), and thus must have depth at least n/2− 1. In
fact, the adversary argument in the last lecture implies that every leaf in the pruned tree must
have depth at least n/2− 1, so the pruned tree has at least 2n/2−1 leaves.

There are
� n

n/2−1

� ≈ 2n/
p

n/2 possible choices for the set L. Every leaf in the original

comparison tree is also a leaf in exactly one of the
� n

n/2−1

�
pruned trees, so the original

comparison tree must have at least
� n

n/2−1

�
2n/2−1 ≈ 23n/2/

p
n/2 leaves. Thus, any comparison

tree that finds the median must have depth at least
¡

n
2
− 1+ lg

�
n

n/2− 1

�¤
=

3n
2
−O(log n).

A more complicated adversary argument (also involving pruning the comparison tree with little
birdies) improves this lower bound to 2n− o(n).

A similar argument implies that at least n−k+
�
lg
� n

k−1

��
= Ω((n−k)+k log(n/k)) comparisons

are required to find the kth largest element in an n-element set. This bound is tight up to constant
factors for all k ≤ n/2; there is an algorithm that uses at most O(n+ k log(n/k)) comparisons.
Moreover, this lower bound is exactly tight when k = 1 or k = 2. In fact, these are the only values
of k ≤ n/2 for which the exact complexity of the selection problem is known. Even the case k = 3
is still open!

Exercises

1. (a) Let X be a set containing an odd number of n-bit strings. Prove that any algorithm
that decides whether a given n-bit string is an element of X must examine every bit
of the input string in the worst case.

(b) Give a one-line proof that the bit pattern 01 is evasive for all even n.
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(c) Prove that the bit pattern 11 is evasive if and only if n mod 3= 1.
?(d) Prove that the bit pattern 111 is evasive if and only if n mod 4= 0 or 3.

2. Suppose we are given the adjacency matrix of a directed graph G with n vertices. Describe
an algorithm that determines whether G has a sink by probing only O(n) bits in the input
matrix. A sink is a vertex that has an incoming edge from every other vertex, but no
outgoing edges.

?3. A scorpion is an undirected graph with three special vertices: the sting, the tail, and the
body. The sting is connected only to the tail; the tail is connected only to the sting and
the body; and the body is connected to every vertex except the sting. The rest of the
vertices (the head, eyes, legs, antennae, teeth, gills, flippers, wheels, etc.) can be connected
arbitrarily. Describe an algorithm that determines whether a given n-vertex graph is a
scorpion by probing only O(n) entries in the adjacency matrix.

4. Prove using an adversary argument that acyclicity is an evasive graph property. [Hint:
Kruskal.]

5. Prove that finding the second largest element in an n-element array requires exactly
n− 2+ dlg ne comparisons in the worst case. Prove the upper bound by describing and
analyzing an algorithm; prove the lower bound using an adversary argument.

6. Let T be a perfect ternary tree where every leaf has depth `. Suppose each of the 3` leaves
of T is labeled with a bit, either 0 or 1, and each internal node is labeled with a bit that
agrees with the majority of its children.

(a) Prove that any deterministic algorithm that determines the label of the root must
examine all 3` leaf bits in the worst case.

(b) Describe and analyze a randomized algorithm that determines the root label, such
that the expected number of leaves examined is o(3`). (You may want to review the
notes on randomized algorithms.)

?7. UIUC has just finished constructing the new Reingold Building, the tallest dormitory on
campus. In order to determine how much insurance to buy, the university administration
needs to determine the highest safe floor in the building. A floor is consdered safe if
a drunk student an egg can fall from a window on that floor and land without breaking; if
the egg breaks, the floor is considered unsafe. Any floor that is higher than an unsafe floor
is also considered unsafe. The only way to determine whether a floor is safe is to drop an
egg from a window on that floor.

You would like to find the lowest unsafe floor L by performing as few tests as possible;
unfortunately, you have only a very limited supply of eggs.

(a) Prove that if you have only one egg, you can find the lowest unsafe floor with L tests.
[Hint: Yes, this is trivial.]

7
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(b) Prove that if you have only one egg, you must perform at least L tests in the worst
case. In other words, prove that your algorithm from part (a) is optimal. [Hint: Use
an adversary argument.]

(c) Describe an algorithm to find the lowest unsafe floor using two eggs and only O(
p

L)
tests. [Hint: Ideally, each egg should be dropped the same number of times. How many
floors can you test with n drops?]

(d) Prove that if you start with two eggs, you must perform at least Ω(
p

L) tests in the
worst case. In other words, prove that your algorithm from part (c) is optimal.

?(e) Describe an algorithm to find the lowest unsafe floor using k eggs, using as few tests
as possible, and prove your algorithm is optimal for all values of k.
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[I]n his short and broken treatise he provides an eternal example—not of laws, or
even of method, for there is no method except to be very intelligent, but
of intelligence itself swiftly operating the analysis of sensation to the point of
principle and definition.

— T. S. Eliot on Aristotle, “The Perfect Critic”, The Sacred Wood (1921)

The nice thing about standards is that you have so many to choose from;
furthermore, if you do not like any of them, you can just wait for next year’s
model.

— Andrew S. Tannenbaum, Computer Networks (1981)
Also attributed to Grace Murray Hopper and others

If a problem has no solution, it may not be a problem, but a fact —
not to be solved, but to be coped with over time.

— Shimon Peres, as quoted by David Rumsfeld, Rumsfeld’s Rules (2001)

30 NP-Hard Problems

30.1 A Game You Can’t Win

A salesman in a red suit who looks suspiciously like Tom Waits presents you with a black steel
box with n binary switches on the front and a light bulb on the top. The salesman tells you that
the state of the light bulb is controlled by a complex boolean circuit—a collection of And, Or,
and Not gates connected by wires, with one input wire for each switch and a single output wire
for the light bulb. He then asks you the following question: Is there a way to set the switches so
that the light bulb turns on? If you can answer this question correctly, he will give you the box
and a million billion trillion dollars; if you answer incorrectly, or if you die without answering at
all, he will take your soul.

x
y xx

y x∨yx∧y ¬x

An And gate, an Or gate, and a Not gate.

x1

x2

x3

x4

x5

A boolean circuit. inputs enter from the left, and the output leaves to the right.

As far as you can tell, the Adversary hasn’t connected the switches to the light bulb at all, so
no matter how you set the switches, the light bulb will stay off. If you declare that it is possible
to turn on the light, the Adversary will open the box and reveal that there is no circuit at all.
But if you declare that it is not possible to turn on the light, before testing all 2n settings, the

© Copyright 2014 Jeff Erickson.
This work is licensed under a Creative Commons License (http://creativecommons.org/licenses/by-nc-sa/4.0/).
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Adversary will magically create a circuit inside the box that turns on the light if and only if the
switches are in one of the settings you haven’t tested, and then flip the switches to that setting,
turning on the light. (You can’t detect the Adversary’s cheating, because you can’t see inside the
box until the end.) The only way to provably answer the Adversary’s question correctly is to try
all 2n possible settings. You quickly realize that this will take far longer than you expect to live,
so you gracefully decline the Adversary’s offer.

The Adversary smiles and says, “Ah, yes, of course, you have no reason to trust me. But
perhaps I can set your mind at ease.” He hands you a large roll of parchment—which you hope
was made from sheep skin—with a circuit diagram drawn (or perhaps tattooed) on it. “Here are
the complete plans for the circuit inside the box. Feel free to poke around inside the box to make
sure the plans are correct. Or build your own circuit from these plans. Or write a computer
program to simulate the circuit. Whatever you like. If you discover that the plans don’t match
the actual circuit in the box, you win the trillion bucks.” A few spot checks convince you that the
plans have no obvious flaws; subtle cheating appears to be impossible.

But you should still decline the Adversary’s generous offer. The problem that the Adversary is
posing is called circuit satisfiability or CircuitSat: Given a boolean circuit, is there is a set
of inputs that makes the circuit output True, or conversely, whether the circuit always outputs
False. For any particular input setting, we can calculate the output of the circuit in polynomial
(actually, linear) time using depth-first-search. But nobody knows how to solve CircuitSat faster
than just trying all 2n possible inputs to the circuit, but this requires exponential time. On the
other hand, nobody has actually proved that this is the best we can do; maybe there’s a clever
algorithm that just hasn’t been discovered yet!

30.2 P versus NP

A minimal requirement for an algorithm to be considered “efficient” is that its running time is
polynomial: O(nc) for some constant c, where n is the size of the input.¹ Researchers recognized
early on that not all problems can be solved this quickly, but had a hard time figuring out exactly
which ones could and which ones couldn’t. There are several so-called NP-hard problems, which
most people believe cannot be solved in polynomial time, even though nobody can prove a
super-polynomial lower bound.

A decision problem is a problem whose output is a single boolean value: Yes or No. Let me
define three classes of decision problems:

• P is the set of decision problems that can be solved in polynomial time. Intuitively, P is the
set of problems that can be solved quickly.

• NP is the set of decision problems with the following property: If the answer is Yes, then
there is a proof of this fact that can be checked in polynomial time. Intuitively, NP is the
set of decision problems where we can verify a Yes answer quickly if we have the solution
in front of us.

• co-NP is essentially the opposite of NP. If the answer to a problem in co-NP is No, then
there is a proof of this fact that can be checked in polynomial time.

¹This notion of efficiency was independently formalized by Alan Cobham (The intrinsic computational difficulty of
functions. Logic, Methodology, and Philosophy of Science (Proc. Int. Congress), 24–30, 1965), Jack Edmonds (Paths,
trees, and flowers. Canadian Journal of Mathematics 17:449–467, 1965), and Michael Rabin (Mathematical theory of
automata. Proceedings of the 19th ACM Symposium in Applied Mathematics, 153–175, 1966), although similar notions
were considered more than a decade earlier by Kurt Gödel and John von Neumann.
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For example, the circuit satisfiability problem is in NP. If the answer is Yes, then any set
of m input values that produces True output is a proof of this fact; we can check the proof by
evaluating the circuit in polynomial time. It is widely believed that circuit satisfiability is not in P
or in co-NP, but nobody actually knows.

Every decision problem in P is also in NP. If a problem is in P, we can verify Yes answers in
polynomial time recomputing the answer from scratch! Similarly, every problem in P is also in
co-NP.

Perhaps the single most important unanswered question in theoretical computer science—if
not all of computer science—if not all of science—is whether the complexity classes P and NP
are actually different. Intuitively, it seems obvious to most people that P 6= NP; the homeworks
and exams in this class and others have (I hope) convinced you that problems can be incredibly
hard to solve, even when the solutions are obvious in retrospect. It’s completely obvious; of
course solving problems from scratch is harder than just checking that a solution is correct. But
nobody knows how to prove it! The Clay Mathematics Institute lists P versus NP as the first of its
seven Millennium Prize Problems, offering a $1,000,000 reward for its solution. And yes, in fact,
several people have lost their souls attempting to solve this problem.

A more subtle but still open question is whether the complexity classes NP and co-NP are
different. Even if we can verify every Yes answer quickly, there’s no reason to believe we can also
verify No answers quickly. For example, as far as we know, there is no short proof that a boolean
circuit is not satisfiable. It is generally believed that NP 6= co-NP, but nobody knows how to prove
it.

P

NPcoNP

What we think the world looks like.

30.3 NP-hard, NP-easy, and NP-complete

A problem Π is NP-hard if a polynomial-time algorithm for Π would imply a polynomial-time
algorithm for every problem in NP. In other words:

Π is NP-hard ⇐⇒ If Π can be solved in polynomial time, then P=NP

Intuitively, if we could solve one particular NP-hard problem quickly, then we could quickly solve
any problem whose solution is easy to understand, using the solution to that one special problem
as a subroutine. NP-hard problems are at least as hard as any problem in NP.

Calling a problem NP-hard is like saying ‘If I own a dog, then it can speak fluent English.’ You
probably don’t know whether or not I own a dog, but I bet you’repretty sure that I don’t own a
talking dog. Nobody has a mathematical proof that dogs can’t speak English—the fact that no
one has ever heard a dog speak English is evidence, as are the hundreds of examinations of dogs
that lacked the proper mouth shape and brainpower, but mere evidence is not a mathematical
proof. Nevertheless, no sane person would believe me if I said I owned a dog that spoke fluent
English. So the statement ‘If I own a dog, then it can speak fluent English’ has a natural corollary:
No one in their right mind should believe that I own a dog! Likewise, if a problem is NP-hard, no
one in their right mind should believe it can be solved in polynomial time.
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Finally, a problem isNP-complete if it is both NP-hard and an element of NP (or ‘NP-easy’). NP-
complete problems are the hardest problems in NP. If anyone finds a polynomial-time algorithm
for even one NP-complete problem, then that would imply a polynomial-time algorithm for every
NP-complete problem. Literally thousands of problems have been shown to be NP-complete, so a
polynomial-time algorithm for one (and therefore all) of them seems incredibly unlikely.

P

NPcoNP

NP-hard

NP-complete

More of what we think the world looks like.

It is not immediately clear that any decision problems are NP-hard or NP-complete. NP-
hardness is already a lot to demand of a problem; insisting that the problem also have a
nondeterministic polynomial-time algorithm seems almost completely unreasonable. The follow-
ing remarkable theorem was first published by Steve Cook in 1971 and independently by Leonid
Levin in 1973.² I won’t even sketch the proof, since I’ve been (deliberately) vague about the
definitions.

The Cook-Levin Theorem. Circuit satisfiability is NP-complete.

30.4 Formal Definitions (HC SVNT DRACONES)?

Formally, the complexity classes P, NP, and co-NP are defined in terms of languages and Turing
machines. A language is just a set of strings over some finite alphabet Σ; without loss of generality,
we can assume that Σ= {0,1}. P is the set of languages that can be decided in Polynomial time
by a deterministic single-tape Turing machine. Similarly, NP is the set of all languages that can
be decided in polynomial time by a nondeterministic Turing machine; NP is an abbreviation for
Nondeterministic Polynomial-time.

Polynomial time is a sufficient crude requirement that the precise form of Turing machine
(number of heads, number of tracks, and so one) is unimportant. In fact, careful application and
analysis of the techniques described in the Turing machine notes imply that any algorithm that
runs on a random-access machine³ in T (n) time can be simulated by a single-tape, single-track,
single-head Turing machine that runs in O(T (n)3) time. This simulation result allows us to
argue formally about computational complexity in terms of standard high-level programming

²Levin first reported his results at seminars in Moscow in 1971, while still a PhD student. News of Cook’s result
did not reach the Soviet Union until at least 1973, after Levin’s announcement of his results had been published;
in accordance with Stigler’s Law, this result is often called ‘Cook’s Theorem’. Levin was denied his PhD at Moscow
University for political reasons; he emigrated to the US in 1978 and earned a PhD at MIT a year later. Cook was denied
tenure at Berkeley in 1970, just one year before publishing his seminal paper; he (but not Levin) later won the Turing
award for his proof.

³Random-access machines are a model of computation that more faithfully models physical computers. A random-
access machine has unbounded random-access memory, modeled as an array M[0 ..∞] where each address M[i]
holds a single w-bit integer, for some fixed integer w, and can read to or write from any memory addresses in constant
time. RAM algorithms are formally written in assembly-like language, using instructions like ADD i, j , k (meaning
“M[i]← M[ j] +M[k]”), INDIR i, j (meaning “M[i]← M[M[ j]]”), and IFZGOTO i,` (meaning “if M[i] = 0, go to
line `”). In practice, RAM algorithms can be faithfully described using higher-level pseudocode, as long as we’re
careful about arithmetic precision.

4



Algorithms Lecture 30: NP-Hard Problems [Fa’14]

constructs like for-loops and recursion, instead of describing everything directly in terms of
Turing machines.

A problem Π is formally NP-hard if and only if, for every language Π′ ∈ NP, there is a
polynomial-time Turing reduction from Π′ to Π. A Turing reduction just means a reduction
that can be executed on a Turing machine; that is, a Turing machine M that can solve Π′ using
another Turing machine M ′ for Π as a black-box subroutine. Turing reductions are also called
oracle reductions; polynomial-time Turing reductions are also called Cook reductions.

Researchers in complexity theory prefer to define NP-hardness in terms of polynomial-time
many-one reductions, which are also called Karp reductions. A many-one reduction from one
language L′ ⊆ Σ∗ to another language L ⊆ Σ∗ is an function f : Σ∗→ Σ∗ such that x ∈ L′ if and
only if f (x) ∈ L. Then we can define a language L to be NP-hard if and only if, for any language
L′ ∈ NP, there is a many-one reduction from L′ to L that can be computed in polynomial time.

Every Karp reduction “is” a Cook reduction, but not vice versa. Specifically, any Karp reduction
from one decision problem Π to another decision Π′ is equivalent to transforming the input to Π
into the input for Π′, invoking an oracle (that is, a subroutine) for Π′, and then returning the
answer verbatim. However, as far as we know, not every Cook reduction can be simulated by a
Karp reduction.

Complexity theorists prefer Karp reductions primarily because NP is closed under Karp
reductions, but is not closed under Cook reductions (unless NP=co-NP, which is considered
unlikely). There are natural problems that are (1) NP-hard with respect to Cook reductions, but
(2) NP-hard with respect to Karp reductions only if P=NP. One trivial example is of such a problem
is UnSat: Given a boolean formula, is it always false? On the other hand, many-one reductions
apply only to decision problems (or more formally, to languages); formally, no optimization or
construction problem is Karp-NP-hard.

To make things even more confusing, both Cook and Karp originally defined NP-hardness in
terms of logarithmic-space reductions. Every logarithmic-space reduction is a polynomial-time
reduction, but (as far as we know) not vice versa. It is an open question whether relaxing the set
of allowed (Cook or Karp) reductions from logarithmic-space to polynomial-time changes the set
of NP-hard problems.

Fortunately, none of these subtleties raise their ugly heads in practice—in particular, every
algorithmic reduction described in these notes can be formalized as a logarithmic-space many-one
reduction—so you can wake up now.

30.5 Reductions and SAT

To prove that any problem other than Circuit satisfiability is NP-hard, we use a reduction argument.
Reducing problem A to another problem B means describing an algorithm to solve problem A
under the assumption that an algorithm for problem B already exists. You’re already used to
doing reductions, only you probably call it something else, like writing subroutines or utility
functions, or modular programming. To prove something is NP-hard, we describe a similar
transformation between problems, but not in the direction that most people expect.

You should tattoo the following rule of onto the back of your hand, right next to your Mom’s
birthday and the actual rules of Monopoly.⁴

⁴If a player lands on an available property and declines (or is unable) to buy it, that property is immediately
auctioned off to the highest bidder; the player who originally declined the property may bid, and bids may be
arbitrarily higher or lower than the list price. Players in Jail can still buy and sell property, buy and sell houses and
hotels, and collect rent. The game has 32 houses and 12 hotels; once they’re gone, they’re gone. In particular, if all
houses are already on the board, you cannot downgrade a hotel to four houses; you must sell all three hotels in the
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To prove that problem A is NP-hard, reduce a known NP-hard problem to A.

In other words, to prove that your problem is hard, you need to describe an algorithm to
solve a different problem, which you already know is hard, using a mythical algorithm for your
problem as a subroutine. The essential logic is a proof by contradiction. Your reduction shows
implies that if your problem were easy, then the other problem would be easy, too. Equivalently,
since you know the other problem is hard, your problem must also be hard.

For example, consider the formula satisfiability problem, usually just called SAT. The input to
SAT is a boolean formula like

(a ∨ b ∨ c ∨ d̄)⇔ ((b ∧ c̄)∨ (ā⇒ d)∨ (c 6= a ∧ b)),

and the question is whether it is possible to assign boolean values to the variables a, b, c, . . . so
that the formula evaluates to True.

To show that SAT is NP-hard, we need to give a reduction from a known NP-hard problem.
The only problem we know is NP-hard so far is circuit satisfiability, so let’s start there. Given a
boolean circuit, we can transform it into a boolean formula by creating new output variables for
each gate, and then just writing down the list of gates separated by Ands. For example, we can
transform the example circuit into a formula as follows:

x1

x2

x3

x4

x5

y1

y2

y3

y4

y5

y6

z

(y1 = x1 ∧ x4)∧ (y2 = x4)∧ (y3 = x3 ∧ y2)∧ (y4 = y1 ∨ x2)∧
(y5 = x2)∧ (y6 = x5)∧ (y7 = y3 ∨ y5)∧ (z = y4 ∧ y7 ∧ y6)∧ z

A boolean circuit with gate variables added, and an equivalent boolean formula.

Now the original circuit is satisfiable if and only if the resulting formula is satisfiable. Given a
satisfying input to the circuit, we can get a satisfying assignment for the formula by computing
the output of every gate. Given a satisfying assignment for the formula, we can get a satisfying
input the the circuit by just ignoring the internal gate variables yi and the output variable z.

We can transform any boolean circuit into a formula in linear time using depth-first search,
and the size of the resulting formula is only a constant factor larger than the size of the circuit.
Thus, we have a polynomial-time reduction from circuit satisfiability to SAT:

ÆÆÆ Redraw reduction cartoons so that the boxes represent algorithms, not the arrows.

group. Players can sell/exchange undeveloped properties, but not buildings or cash. A player landing on Free Parking
does not win anything. A player landing on Go gets $200, no more. Railroads are not magic transporters. Finally, Jeff
always gets the car.
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boolean circuit
O(n)−−−→ boolean formulaww� SAT

True or False
trivial←−−− True or False

TCSAT(n)≤ O(n) + TSAT(O(n)) =⇒ TSAT(n)≥ TCSAT(Ω(n))−O(n)

The reduction implies that if we had a polynomial-time algorithm for SAT, then we’d have a
polynomial-time algorithm for circuit satisfiability, which would imply that P=NP. So SAT is
NP-hard.

To prove that a boolean formula is satisfiable, we only have to specify an assignment to the
variables that makes the formula True. We can check the proof in linear time just by reading
the formula from left to right, evaluating as we go. So SAT is also in NP, and thus is actually
NP-complete.

30.6 3SAT (from SAT)

A special case of SAT that is particularly useful in proving NP-hardness results is called 3SAT.
A boolean formula is in conjunctive normal form (CNF) if it is a conjunction (and) of several

clauses, each of which is the disjunction (or) of several literals, each of which is either a variable
or its negation. For example:

clause︷ ︸︸ ︷
(a ∨ b ∨ c ∨ d) ∧ (b ∨ c̄ ∨ d̄)∧ (ā ∨ c ∨ d)∧ (a ∨ b̄)

A 3CNF formula is a CNF formula with exactly three literals per clause; the previous example is
not a 3CNF formula, since its first clause has four literals and its last clause has only two. 3SAT
is just SAT restricted to 3CNF formulas: Given a 3CNF formula, is there an assignment to the
variables that makes the formula evaluate to True?

We could prove that 3SAT is NP-hard by a reduction from the more general SAT problem, but
it’s easier just to start over from scratch, with a boolean circuit. We perform the reduction in
several stages.

1. Make sure every and and or gate has only two inputs. If any gate has k > 2 inputs, replace
it with a binary tree of k− 1 two-input gates.

2. Write down the circuit as a formula, with one clause per gate. This is just the previous
reduction.

3. Change every gate clause into a CNF formula. There are only three types of clauses, one for
each type of gate:

a = b ∧ c 7−→ (a ∨ b̄ ∨ c̄)∧ (ā ∨ b)∧ (ā ∨ c)

a = b ∨ c 7−→ (ā ∨ b ∨ c)∧ (a ∨ b̄)∧ (a ∨ c̄)

a = b̄ 7−→ (a ∨ b)∧ (ā ∨ b̄)

4. Make sure every clause has exactly three literals. Introduce new variables into each one- and
two-literal clause, and expand it into two clauses as follows:

a 7−→ (a ∨ x ∨ y)∧ (a ∨ x̄ ∨ y)∧ (a ∨ x ∨ ȳ)∧ (a ∨ x̄ ∨ ȳ)

a ∨ b 7−→ (a ∨ b ∨ x)∧ (a ∨ b ∨ x̄)

7
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For example, if we start with the same example circuit we used earlier, we obtain the following
3CNF formula. Although this may look a lot more ugly and complicated than the original circuit
at first glance, it’s actually only a constant factor larger—every binary gate in the original circuit
has been transformed into at most five clauses. Even if the formula size were a large polynomial
function (like n573) of the circuit size, we would still have a valid reduction.

(y1 ∨ x1 ∨ x4)∧ (y1 ∨ x1 ∨ z1)∧ (y1 ∨ x1 ∨ z1)∧ (y1 ∨ x4 ∨ z2)∧ (y1 ∨ x4 ∨ z2)

∧ (y2 ∨ x4 ∨ z3)∧ (y2 ∨ x4 ∨ z3)∧ (y2 ∨ x4 ∨ z4)∧ (y2 ∨ x4 ∨ z4)

∧ (y3 ∨ x3 ∨ y2)∧ (y3 ∨ x3 ∨ z5)∧ (y3 ∨ x3 ∨ z5)∧ (y3 ∨ y2 ∨ z6)∧ (y3 ∨ y2 ∨ z6)

∧ (y4 ∨ y1 ∨ x2)∧ (y4 ∨ x2 ∨ z7)∧ (y4 ∨ x2 ∨ z7)∧ (y4 ∨ y1 ∨ z8)∧ (y4 ∨ y1 ∨ z8)

∧ (y5 ∨ x2 ∨ z9)∧ (y5 ∨ x2 ∨ z9)∧ (y5 ∨ x2 ∨ z10)∧ (y5 ∨ x2 ∨ z10)

∧ (y6 ∨ x5 ∨ z11)∧ (y6 ∨ x5 ∨ z11)∧ (y6 ∨ x5 ∨ z12)∧ (y6 ∨ x5 ∨ z12)

∧ (y7 ∨ y3 ∨ y5)∧ (y7 ∨ y3 ∨ z13)∧ (y7 ∨ y3 ∨ z13)∧ (y7 ∨ y5 ∨ z14)∧ (y7 ∨ y5 ∨ z14)

∧ (y8 ∨ y4 ∨ y7)∧ (y8 ∨ y4 ∨ z15)∧ (y8 ∨ y4 ∨ z15)∧ (y8 ∨ y7 ∨ z16)∧ (y8 ∨ y7 ∨ z16)

∧ (y9 ∨ y8 ∨ y6)∧ (y9 ∨ y8 ∨ z17)∧ (y9 ∨ y8 ∨ z17)∧ (y9 ∨ y6 ∨ z18)∧ (y9 ∨ y6 ∨ z18)

∧ (y9 ∨ z19 ∨ z20)∧ (y9 ∨ z19 ∨ z20)∧ (y9 ∨ z19 ∨ z20)∧ (y9 ∨ z19 ∨ z20)

This process transforms the circuit into an equivalent 3CNF formula; the output formula is
satisfiable if and only if the input circuit is satisfiable. As with the more general SAT problem, the
formula is only a constant factor larger than any reasonable description of the original circuit,
and the reduction can be carried out in polynomial time. Thus, we have a polynomial-time
reduction from circuit satisfiability to 3SAT:

boolean circuit
O(n)−−−→ 3CNF formulaww� 3SAT

True or False
trivial←−−− True or False

TCSAT(n)≤ O(n) + T3SAT(O(n)) =⇒ T3SAT(n)≥ TCSAT(Ω(n))−O(n)

We conclude 3SAT is NP-hard. And because 3SAT is a special case of SAT, it is also in NP. Therefore,
3SAT is NP-complete.

30.7 Maximum Independent Set (from 3SAT)

For the next few problems we consider, the input is a simple, unweighted graph, and the problem
asks for the size of the largest or smallest subgraph satisfying some structural property.

Let G be an arbitrary graph. An independent set in G is a subset of the vertices of G with no
edges between them. The maximum independent set problem, or simply MaxIndSet, asks for
the size of the largest independent set in a given graph.

I’ll prove that MaxIndSet is NP-hard (but not NP-complete, since it isn’t a decision problem)
using a reduction from 3SAT. I’ll describe a reduction from a 3CNF formula into a graph that has
an independent set of a certain size if and only if the formula is satisfiable. The graph has one
node for each instance of each literal in the formula. Two nodes are connected by an edge if (1)
they correspond to literals in the same clause, or (2) they correspond to a variable and its inverse.
For example, the formula (a ∨ b ∨ c)∧ (b ∨ c̄ ∨ d̄)∧ (ā ∨ c ∨ d)∧ (a ∨ b̄ ∨ d̄) is transformed into
the following graph.
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‾ ‾

a
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c
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a
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‾b
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a‾

c‾

A graph derived from a 3CNF formula, and an independent set of size 4.
Black edges join literals from the same clause; red (heavier) edges join contradictory literals.

Now suppose the original formula had k clauses. Then I claim that the formula is satisfiable
if and only if the graph has an independent set of size k.

1. independent set =⇒ satisfying assignment: If the graph has an independent set of
k vertices, then each vertex must come from a different clause. To obtain a satisfying
assignment, we assign the value True to each literal in the independent set. Since
contradictory literals are connected by edges, this assignment is consistent. There may be
variables that have no literal in the independent set; we can set these to any value we like.
The resulting assignment satisfies the original 3CNF formula.

2. satisfying assignment =⇒ independent set: If we have a satisfying assignment, then
we can choose one literal in each clause that is True. Those literals form an independent
set in the graph.

Thus, the reduction is correct. Since the reduction from 3CNF formula to graph takes polynomial
time, we conclude that MaxIndSet is NP-hard. Here’s a diagram of the reduction:

3CNF formula with k clauses
O(n)−−−→ graph with 3k nodesww� MaxIndSet

True or False
O(1)←−−− maximum independent set size

T3SAT(n)≤ O(n) + TMaxIndSet(O(n)) =⇒ TMaxIndSet(n)≥ T3SAT(Ω(n))−O(n)

30.8 Clique (from Independent Set)

A clique is another name for a complete graph, that is, a graph where every pair of vertices is
connected by an edge. The maximum clique size problem, or simply MaxClique, is to compute,
given a graph, the number of nodes in its largest complete subgraph.

There is an easy proof that MaxClique is NP-hard, using a reduction from MaxIndSet. Any
graph G has an edge-complement G with the same vertices, but with exactly the opposite set of
edges—(u, v) is an edge in G if and only if it is not an edge in G. A set of vertices is independent
in G if and only if the same vertices define a clique in G. Thus, we can compute the largest
independent in a graph simply by computing the largest clique in the complement of the graph.

9
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A graph with maximum clique size 4.

graph G
O(n)−−−→ complement graph Gww� MaxClique

largest independent set
trivial←−−− largest clique

30.9 Vertex Cover (from Independent Set)

A vertex cover of a graph is a set of vertices that touches every edge in the graph. The
MinVertexCover problem is to find the smallest vertex cover in a given graph.

Again, the proof of NP-hardness is simple, and relies on just one fact: If I is an independent
set in a graph G = (V, E), then V \ I is a vertex cover. Thus, to find the largest independent set,
we just need to find the vertices that aren’t in the smallest vertex cover of the same graph.

graph G = (V, E)
trivial−−−→ graph G = (V, E)ww� MinVertexCover

largest independent set V \ S
O(n)←−−− smallest vertex cover S

30.10 Graph Coloring (from 3SAT)

A k-coloring of a graph is a map C : V → {1, 2, . . . , k} that assigns one of k ‘colors’ to each vertex,
so that every edge has two different colors at its endpoints. The graph coloring problem is to find
the smallest possible number of colors in a legal coloring. To show that this problem is NP-hard,
it’s enough to consider the special case 3Colorable: Given a graph, does it have a 3-coloring?

To prove that 3Colorable is NP-hard, we use a reduction from 3SAT. Given a 3CNF formula
Φ, we produce a graph GΦ as follows. The graph consists of a truth gadget, one variable gadget
for each variable in the formula, and one clause gadget for each clause in the formula.

• The truth gadget is just a triangle with three vertices T , F , and X , which intuitively stand
for True, False, and Other. Since these vertices are all connected, they must have
different colors in any 3-coloring. For the sake of convenience, we will name those colors
True, False, and Other. Thus, when we say that a node is colored True, all we mean is
that it must be colored the same as the node T .

• The variable gadget for a variable a is also a triangle joining two new nodes labeled a and
a to node X in the truth gadget. Node a must be colored either True or False, and so
node a must be colored either False or True, respectively.

• Finally, each clause gadget joins three literal nodes to node T in the truth gadget using five
new unlabeled nodes and ten edges; see the figure below. A straightforward case analysis
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X

T F

X

a a

The truth gadget and a variable gadget for a.

implies that if all three literal nodes in the clause gadget are colored False, then some edge
in the gadget must be monochromatic. Since the variable gadgets force each literal node to
be colored either True or False, in any valid 3-coloring, at least one of the three literal
nodes is colored True. On the other hand, for any coloring of the literal nodes where at
least one literal node is colored True, there is a valid 3-coloring of the clause gadget.

a

b

c

T

A clause gadget for (a ∨ b ∨ c̄).

The final graph GΦ contains exactly one node T , exactly one node F , and exactly two nodes a
and ā for each variable. For example, the formula (a∨ b∨ c)∧ (b∨ c̄∨ d̄)∧ (ā∨ c∨d)∧ (a∨ b̄∨ d̄)
that I used to illustrate the MaxClique reduction would be transformed into the graph shown
on the next page. The 3-coloring is one of several that correspond to the satisfying assignment
a = c = True, b = d = False.

X

T F

a a b b c c d d

A 3-colorable graph derived from the satisfiable 3CNF formula
(a ∨ b ∨ c)∧ (b ∨ c̄ ∨ d̄)∧ (ā ∨ c ∨ d)∧ (a ∨ b̄ ∨ d̄)

Now the proof of correctness is just brute force case analysis. If the graph is 3-colorable, then
we can extract a satisfying assignment from any 3-coloring—at least one of the three literal nodes
in every clause gadget is colored True. Conversely, if the formula is satisfiable, then we can color
the graph according to any satisfying assignment.
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3CNF formula
O(n)−−−→ graphww� 3Colorable

True or False
trivial←−−− True or False

We can easily verify that a graph has been correctly 3-colored in linear time: just compare the
endpoints of every edge. Thus, 3Coloring is in NP, and therefore NP-complete. Moreover, since
3Coloring is a special case of the more general graph coloring problem—What is the minimum
number of colors?—the more problem is also NP-hard, but not NP-complete, because it’s not a
decision problem.

30.11 Hamiltonian Cycle (from Vertex Cover)

A Hamiltonian cycle in a graph is a cycle that visits every vertex exactly once. This is very
different from an Eulerian cycle, which is actually a closed walk that traverses every edge exactly
once. Eulerian cycles are easy to find and construct in linear time using a variant of depth-first
search.

To prove that finding a Hamiltonian cycle in a directed graph is NP-hard, we describe a
reduction from the vertex cover problem. Given an undirected graph G and an integer k, we
need to transform it into another graph H, such that H has a Hamiltonian cycle if and only if G
has a vertex cover of size k. As usual, our transformation uses several gadgets.

• For each undirected edge uv in G, the directed graph H contains an edge gadget consisting
of four vertices (u, v, in), (u, v,out), (v, u, in), (v, u,out) and six directed edges

(u, v, in)�(u, v,out) (u, v, in)�(v, u, in) (v, u, in)�(u, v, in)

(v, u, in)�(v, u,out) (u, v,out)�(v, u,out) (v, u,out)�(u, v,out)

as shown on the next page. Each “in” vertex has an additional incoming edge, and each
“out” vertex has an additional outgoing edge. A Hamiltonian cycle must pass through an
edge gadget in one of three ways—either straight through on both sides, or with a detour
from one side to the other and back. Eventually, these options will correspond to both u
and v, only u, or only v belonging to some vertex cover.

u v
(u,v,in)

(u,v,out)

(v,u,in)

(v,u,out)

An edge gadget for uv and its only possible intersections with a Hamiltonian cycle.

• For each vertex u in G, all the edge gadgets for incident edges uv are connected in H into
a single directed path, which we call a vertex chain. Specifically, suppose vertex u has
d neighbors v1, v2, . . . , vd . Then H has d − 1 additional edges (u, vi ,out)�(u, vi+1, in) for
each i.
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• Finally, H also contains k cover vertices, simply numbered 1 through k. Each cover vertex
has a directed edge to the first vertex in each vertex chain, and a directed edge from the
last vertex in each vertex chain.

An example of our complete transformation is shown below.

u v

w x

u v

w x

The original graph G and the transformed graph H, where k = 2.

Now suppose C = {u1, u2, . . . , uk} is a vertex cover of G. Then H contains a Hamiltonian
cycle, constructed as follows. Start at cover vertex 1, through traverse the vertex chain for vu1,
then visit cover vertex 2, then traverse the vertex chain for vu2, and so forth, eventually returning
to cover vertex 1. As we traverse the vertex chain for any vertex ui , we have a choice for how to
proceed when we reach any node (ui , v, in).

• If v ∈ C , follow the edge (ui , v, in)�(ui , v,out).

• If v 6∈ C , detour through the path (ui , v, in)�(v, ui , in)�(v, ui ,out)�(ui , v,out).

Thus, for each edge uv of G, the Hamiltonian cycle visits (u, v, in) and (u, v,out) as part of u’s
vertex chain if u ∈ C and as part of v’s vertex chain otherwise.

u v

w x

u v

w x

A vertex cover {u, x} in G and the corresponding Hamiltonian cycle in H.
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Now suppose H contains a Hamiltonian cycle C . This cycle must contain an edge from each
cover vertex to the start of some vertex chain. Our case analysis of edge gadgets inductively
implies that after C enters the vertex chain for some vertex u, it must traverse the entire
vertex chain. Specifically, at each vertex (u, v, in), the cycle must contain either the single edge
(u, v, in)�(u, v,out) or the detour path (u, v, in)�(v, u, in)�(v, u,out)�(u, v,out), followed by an
edge to the next edge gadget in u’s vertex chain, or to a cover vertex if this is the last such edge
gadget. In particular, if C contains the detour edge (u, v, in)�(v, u, in), it does not contain edges
between any cover vertex and v’s vertex chain. It follows that C traverses exactly k vertex chains.
Moreover, these vertex chains describe a vertex cover of the original graph G, because C visits
the vertex (u, v, in) for every edge uv in G.

We conclude that G contains a vertex cover of size k if and only if H contains a Hamiltonian
cycle.

The transformation from G to H takes at most O(n2) time; we conclude that the Hamiltonian
cycle problem is NP-hard. Moreover, since we can easily verify a Hamiltonian cycle in linear time,
the Hamiltonian cycle problem is in NP, and therefore is NP-complete.

undirected graph G, integer k
O(n2)−−−→ directed graph Hww� HamCycle

True or False
trivial←−−− True or False

A closely related problem to Hamiltonian cycles is the famous traveling salesman problem—
Given a weighted graph G, find the shortest cycle that visits every vertex. Finding the shortest
cycle is obviously harder than determining if a cycle exists at all, so the traveling salesman
problem is also NP-hard.

Finally, we can prove prove that finding Hamiltonian cycles in undirected graphs is NP-hard
using a simple reduction from the same problem in directed graphs. I’ll leave the details of this
reduction as an entertaining exercise.

30.12 Subset Sum (from Vertex Cover)

The next problem that we prove NP-hard is the SubsetSum problem considered in the very first
lecture on recursion: Given a set X of positive integers and an integer t, determine whether X
has a subset whose elements sum to t.

To prove this problem is NP-hard, we once again reduce from VertexCover. Given a graph
G and an integer k, we compute a set X of integer and an integer t, such that X has a subset
that sums to t if and only if G has an vertex cover of size k. Our transformation uses just two
‘gadgets’, which are integers representing vertices and edges in G.

Number the edges of G arbitrarily from 0 to m−1. Our set X contains the integer bi := 4i for
each edge i, and the integer

av := 4m +
∑

i∈∆(v)
4i

for each vertex v, where ∆(v) is the set of edges that have v has an endpoint. Alternately, we
can think of each integer in X as an (m+ 1)-digit number written in base 4. The mth digit is 1
if the integer represents a vertex, and 0 otherwise; and for each i < m, the ith digit is 1 if the
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integer represents edge i or one of its endpoints, and 0 otherwise. Finally, we set the target sum

t := k · 4m +
m−1∑
i=0

2 · 4i .

Now let’s prove that the reduction is correct. First, suppose there is a vertex cover of size k
in the original graph G. Consider the subset XC ⊆ X that includes av for every vertex v in the
vertex cover, and bi for every edge i that has exactly one vertex in the cover. The sum of these
integers, written in base 4, has a 2 in each of the first m digits; in the most significant digit, we
are summing exactly k 1’s. Thus, the sum of the elements of XC is exactly t.

On the other hand, suppose there is a subset X ′ ⊆ X that sums to t. Specifically, we must
have ∑

v∈V ′
av +

∑
i∈E′

bi = t

for some subsets V ′ ⊆ V and E′ ⊆ E. Again, if we sum these base-4 numbers, there are no carries
in the first m digits, because for each i there are only three numbers in X whose ith digit is 1.
Each edge number bi contributes only one 1 to the ith digit of the sum, but the ith digit of t is 2.
Thus, for each edge in G, at least one of its endpoints must be in V ′. In other words, V is a vertex
cover. On the other hand, only vertex numbers are larger than 4m, and bt/4mc= k, so V ′ has at
most k elements. (In fact, it’s not hard to see that V ′ has exactly k elements.)

For example, given the four-vertex graph used on the previous page to illustrate the reduction
to Hamiltonian cycle, our set X might contain the following base-4 integers:

au := 1110004 = 1344 buv := 0100004 = 256
av := 1101104 = 1300 buw := 0010004 = 64
aw := 1011014 = 1105 bvw := 0001004 = 16
ax := 1000114 = 1029 bvx := 0000104 = 4

bwx := 0000014 = 1

If we are looking for a vertex cover of size 2, our target sum would be t := 2222224 = 2730.
Indeed, the vertex cover {v, w} corresponds to the subset {av , aw, buv , buw, bvx , bwx}, whose sum
is 1300+ 1105+ 256+ 64+ 4+ 1= 2730.

The reduction can clearly be performed in polynomial time. Since VertexCover is NP-hard,
it follows that SubsetSum is NP-hard.

There is one subtle point that needs to be emphasized here. Way back at the beginning of the
semester, we developed a dynamic programming algorithm to solve SubsetSum in time O(nt).
Isn’t this a polynomial-time algorithm? idn’t we just prove that P=NP? Hey, where’s our million
dollars? Alas, life is not so simple. True, the running time is polynomial in n and t, but in order
to qualify as a true polynomial-time algorithm, the running time must be a polynomial function of
the size of the input. The values of the elements of X and the target sum t could be exponentially
larger than the number of input bits. Indeed, the reduction we just described produces a value of
t that is exponentially larger than the size of our original input graph, which would force our
dynamic programming algorithm to run in exponential time.

Algorithms like this are said to run in pseudo-polynomial time, and any NP-hard problem
with such an algorithm is called weakly NP-hard. Equivalently, a weakly NP-hard problem is
one that can be solved in polynomial time when all input numbers are represented in unary (as a
sum of 1s), but becomes NP-hard when all input numbers are represented in binary. If a problem
is NP-hard even when all the input numbers are represented in unary, we say that the problem is
strongly NP-hard.
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30.13 A Frivolous Example

Draughts is a family of board games that have been played for thousands of years. Most
Americans are familiar with the version called checkers or English draughts, but the most common
variant worldwide, known as international draughts or Polish draughts, originated in the
Netherlands in the 16th century. For a complete set of rules, the reader should consult Wikipedia;
here a few important differences from the Anglo-American game:

• Flying kings: As in checkers, a piece that ends a move in the row closest to the opponent
becomes a king and gains the ability to move backward. Unlike in checkers, however, a
king in international draughts can move any distance along a diagonal line in a single
turn, as long as the intermediate squares are empty or contain exactly one opposing piece
(which is captured).

• Forced maximum capture: In each turn, the moving player must capture as many
opposing pieces as possible. This is distinct from the forced-capture rule in checkers, which
requires only that each player must capture if possible, and that a capturing move ends
only when the moving piece cannot capture further. In other words, checkers requires
capturing a maximal set of opposing pieces on each turn; whereas, international draughts
requires a maximum capture.

• Capture subtleties: As in checkers, captured pieces are removed from the board only at
the end of the turn. Any piece can be captured at most once. Thus, when an opposing
piece is jumped, that piece remains on the board but cannot be jumped again until the end
of the turn.

For example, in the first position shown below, each circle represents a piece, and doubled
circles represent kings. Black must make the indicated move, capturing five white pieces, because
it is not possible to capture more than five pieces, and there is no other move that captures five.
Black cannot extend his capture further northeast, because the captured White pieces are still on
the board.

Two forced(!) moves in international draughts.

The actual game, which is played on a 10 × 10 board with 20 pieces of each color, is
computationally trivial; we can precompute the optimal move for both players in every possible
board configuration and hard-code the results into a lookup table of constant size. Sure, it’s a big
constant, but it’s still just a constant!

But consider the natural generalization of international draughts to an n× n board. In this
setting, finding a legal move is actually NP-hard! The following reduction from the Hamiltonian
cycle problem in directed graphs was discovered by Bob Hearn in 2010.⁵ In most two-player

⁵Posted on Theoretical Computer Science Stack Exchange: http://cstheory.stackexchange.com/a/1999/111.
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games, finding the best move is NP-hard (or worse); this is the only example I know of a game
where just following the rules is an intractable problem!

Given a graph G with n vertices, we construct a board configuration for international draughts,
such that White can capture a certain number of black pieces in a single move if and only if G
has a Hamiltonian cycle. We treat G as a directed graph, with two arcs u�v and v�u in place
of each undirected edge uv. Number the vertices arbitrarily from 1 to n. The final draughts
configuration has several gadgets.

• The vertices of G are represented by rabbit-shaped vertex gadgets, which are evenly spaced
along a horizontal line. Each arc i� j is represented by a path of two diagonal line segments
from the “right ear” of vertex gadget i to the “left ear” of vertex gadget j. The path for arc
i� j is located above the vertex gadgets if i < j, and below the vertex gadgets if i > j.

1 2 3 4
42

1

3

A high level view of the reduction from Hamiltonian cycle to international draughts.

• The bulk of each vertex gadget is a diamond-shaped region called a vault. The walls of the
vault are composed of two solid layers of black pieces, which cannot be captured; these
pieces are drawn as gray circles in the figures. There are N capturable black pieces inside
each vault, for some large integer N to be determined later. A white king can enter the
vault through the “right ear”, capture every internal piece, and then exit through the “left
ear”. Both ears are hallways, again with walls two pieces thick, with gaps where the arc
paths end to allow the white king to enter and leave. The lengths of the “ears” can be
adjusted easily to align with the other gadgets.

• For each arc i� j, we have a corner gadget, which allows a white king leaving vertex gadget
i to be redirected to vertex gadget j.

• Finally, wherever two arc paths cross, we have a crossing gadget; these gadgets allow the
white king to traverse either arc path, but forbid switching from one arc path to the other.

A single white king starts at the bottom corner of one of the vaults. In any legal move,
this king must alternate between traversing entire arc paths and clearing vaults. The king can
traverse the various gadgets backward, entering each vault through the exit and vice versa. But
the reversal of a Hamiltonian cycle in G is another Hamiltonian cycle in G, so walking backward
is fine.

If there is a Hamiltonian cycle in G, the white king can capture at least nN black pieces by
visiting each of the other vaults and returning to the starting vault. On the other hand, if there
is no Hamiltonian cycle in G, the white king can can capture at most half of the pieces in the
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Left: A vertex gadget. Right: A white king emptying the vault.
Gray circles are black pieces that cannot be captured.

A corner gadget and a crossing gadget.

starting vault, and thus can capture at most (n− 1/2)N +O(n3) enemy pieces altogether. The
O(n3) term accounts for the corner and crossing gadgets; each edge passes through one corner
gadget and at most n2/2 crossing gadgets.

To complete the reduction, we set N = n4. Summing up, we obtain an O(n5)×O(n5) board
configuration, with O(n5) black pieces and one white king. We can clearly construct this board
configuration in polynomial time. A complete example of the construction appears on the next
page.

It is still open whether the following related question is NP-hard: Given an n × n board
configuration for international draughts, can (and therefore must) White capture all the black
pieces in a single turn?

30.14 Other Useful NP-hard Problems

Literally thousands of different problems have been proved to be NP-hard. I want to close this
note by listing a few NP-hard problems that are useful in deriving reductions. I won’t describe
the NP-hardness proofs for these problems in detail, but you can find most of them in Garey and
Johnson’s classic Scary Black Book of NP-Completeness.⁶

• PlanarCircuitSAT: Given a boolean circuit that can be embedded in the plane so that no
two wires cross, is there an input that makes the circuit output True? This problem can be
proved NP-hard by reduction from the general circuit satisfiability problem, by replacing
each crossing with a small series of gates.

⁶Michael Garey and David Johnson. Computers and Intractability: A Guide to the Theory of NP-Completeness.
W. H. Freeman and Co., 1979.
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1 32 4

The final draughts configuration for the example graph. (The green arrows are not

• NotAllEqual3SAT: Given a 3CNF formula, is there an assignment of values to the variables
so that every clause contains at least one True literal and at least one False literal? This
problem can be proved NP-hard by reduction from the usual 3SAT.

• Planar3SAT: Given a 3CNF boolean formula, consider a bipartite graph whose vertices are
the clauses and variables, where an edge indicates that a variable (or its negation) appears
in a clause. If this graph is planar, the 3CNF formula is also called planar. The Planar3SAT
problem asks, given a planar 3CNF formula, whether it has a satisfying assignment. This
problem can be proved NP-hard by reduction from PlanarCircuitSAT.⁷

• Exact3DimensionalMatching or X3M: Given a set S and a collection of three-element
subsets of S, called triples, is there a sub-collection of disjoint triples that exactly cover S?
This problem can be proved NP-hard by a reduction from 3SAT.

• Partition: Given a set S of n integers, are there subsets A and B such that A∪ B = S,
A∩ B =∅, and ∑

a∈A

a =
∑
b∈B

b?

⁷Surprisingly, PlanarNotAllEqual3SAT is solvable in polynomial time!
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This problem can be proved NP-hard by a simple reduction from SubsetSum. Like
SubsetSum, the Partition problem is only weakly NP-hard.

• 3Partition: Given a set S of 3n integers, can it be partitioned into n disjoint three-element
subsets, such that every subset has exactly the same sum? Despite the similar names, this
problem is very different from Partition; sorry, I didn’t make up the names. This problem
can be proved NP-hard by reduction from X3M. Unlike Partition, the 3Partition problem
is strongly NP-hard, that is, it remains NP-hard even if the input numbers are less than
some polynomial in n.

• SetCover: Given a collection of sets S= {S1, S2, . . . , Sm}, find the smallest sub-collection
of Si ’s that contains all the elements of

⋃
i Si. This problem is a generalization of both

VertexCover and X3M.

• HittingSet: Given a collection of sets S = {S1, S2, . . . , Sm}, find the minimum number
of elements of

⋃
i Si that hit every set in S. This problem is also a generalization of

VertexCover.

• HamiltonianPath: Given an graph G, is there a path in G that visits every vertex exactly
once? This problem can be proved NP-hard either by modifying the reductions from 3Sat
or VertexCover to HamiltonianCycle, or by a direct reduction from HamiltonianCycle.

• LongestPath: Given a non-negatively weighted graph G and two vertices u and v, what is
the longest simple path from u to v in the graph? A path is simple if it visits each vertex at
most once. This problem is a generalization of the HamiltonianPath problem. Of course,
the corresponding shortest path problem is in P.

• SteinerTree: Given a weighted, undirected graph G with some of the vertices marked,
what is the minimum-weight subtree of G that contains every marked vertex? If every
vertex is marked, the minimum Steiner tree is just the minimum spanning tree; if exactly
two vertices are marked, the minimum Steiner tree is just the shortest path between them.
This problem can be proved NP-hard by reduction from VertexCover.

In addition to these dry but useful problems, most interesting puzzles and solitaire games
have been shown to be NP-hard, or to have NP-hard generalizations. (Arguably, if a game or
puzzle isn’t at least NP-hard, it isn’t interesting!) Some familiar examples include:

• Minesweeper (by reduction from CircuitSAT)⁸

• Tetris (by reduction from 3Partition)⁹

• Sudoku (by a complex reduction from 3SAT)¹⁰

• Klondike, aka “Solitaire” (by reduction from 3SAT)¹¹

⁸Richard Kaye. Minesweeper is NP-complete. Mathematical Intelligencer 22(2):9–15, 2000. http://www.mat.bham.
ac.uk/R.W.Kaye/minesw/minesw.pdf

⁹Ron Breukelaar*, Erik D. Demaine, Susan Hohenberger*, Hendrik J. Hoogeboom, Walter A. Kosters, and David
Liben-Nowell*. Tetris is hard, even to approximate. International Journal of Computational Geometry and Applications
14:41–68, 2004.

¹⁰Takayuki Yato and Takahiro Seta. Complexity and completeness of finding another solution and its application to
puzzles. IEICE Transactions on Fundamentals of Electronics, Communications and Computer Sciences E86-A(5):1052–1060,
2003. http://www-imai.is.s.u-tokyo.ac.jp/~yato/data2/MasterThesis.pdf.

¹¹Luc Longpré and Pierre McKenzie. The complexity of Solitaire. Proceedings of the 32nd International Mathematical
Foundations of Computer Science, 182–193, 2007.
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• Flood-It (by reduction from shortest common supersequence)¹²

• Pac-Man (by reduction from HamiltonianCycle)¹³

• Super Mario Brothers (by reduction from 3SAT)¹⁴

• Candy Crush Saga (by reduction from a variant of 3SAT)¹⁵

As of November 2014, nobody has published a proof that a generalization of Threes/2048 or
Cookie Clicker is NP-hard, but I’m sure it’s only a matter of time.¹⁶

30.15 On Beyond Zebra?

P and NP are only the first two steps in an enormous hierarchy of complexity classes. To close
these notes, let me describe a few more classes of interest.

Polynomial Space. PSPACE is the set of decision problems that can be solved using polynomial
space. Every problem in NP (and therefore in P) is also in PSPACE. It is generally believed that
NP 6= PSPACE, but nobody can even prove that P 6= PSPACE. A problem Π is PSPACE-hard if, for
any problem Π′ that can be solved using polynomial space, there is a polynomial-time many-one
reduction from Π′ to Π. A problem is PSPACE-complete if it is both PSPACE-hard and in PSPACE.
If any PSPACE-hard problem is in NP, then PSPACE=NP; similarly, if any PSPACE-hard problem
is in P, then PSPACE=P.

The canonical PSPACE-complete problem is the quantified boolean formula problem, or QBF:
Given a boolean formula Φ that may include any number of universal or existential quantifiers,
but no free variables, is Φ equivalent to True? For example, the following expression is a valid
input to QBF:

∃a : ∀b : ∃c : (∀d : a ∨ b ∨ c ∨ d̄)⇔ ((b ∧ c̄)∨ (∃e : (ā⇒ e)∨ (c 6= a ∧ e))).

SAT is provably equivalent the special case of QBF where the input formula contains only
existential quantifiers. QBF remains PSPACE-hard even when the input formula must have all its
quantifiers at the beginning, the quantifiers strictly alternate between ∃ and ∀, and the quantified
proposition is in conjunctive normal form, with exactly three literals in each clause, for example:

∃a : ∀b : ∃c : ∀d :
�
(a ∨ b ∨ c)∧ (b ∨ c̄ ∨ d̄)∧ (ā ∨ c ∨ d)∧ (a ∨ b̄ ∨ d̄)

�

¹²Raphaël Clifford, Markus Jalsenius, Ashley Montanaro, and Benjamin Sach. The complexity of flood filling
games. Proceedings of the Fifth International Conference on Fun with Algorithms (FUN’10), 307–318, 2010. http:
//arxiv.org/abs/1001.4420.

¹³Giovanni Viglietta. Gaming is a hard job, but someone has to do it! Theory of Computing Systems, 54(4):595–621,
2014. http://giovanniviglietta.com/papers/gaming2.pdf

¹⁴Greg Aloupis, Erik D. Demaine, Alan Guo, and Giovanni Viglietta. Classic Nintendo games Are (computationally)
hard. Proceedings of the Seventh International Conference on Fun with Algorithms (FUN’14), 2014. http://arxiv.org/abs/
1203.1895.

¹⁵Luciano Gualà, Stefano Leucci, Emanuele Natale. Bejeweled, Candy Crush and other match-three games are
(NP-)hard. Preprint, March 2014. http://arxiv.org/abs/1403.5830.

¹⁶Princeton freshman Rahul Mehta actually claimed a proof that a certain generalization of 2048 is PSPACE-hard,
but his proof appears to be flawed. [Rahul Mehta. 2048 is (PSPACE) hard, but sometimes easy. Electronic Colloquium
on Computational Complexity, Report No. 116, 2014. http://eccc.hpi-web.de/report/2014/116/.] On the other hand,
Christopher Chen proved that a different(!) generalization of 2048 is in NP, but left the hardness question open.
[Christopher Chen. 2048 is in NP. Open Endings, March 27, 2014. http://blog.openendings.net/2014/03/2048-is-in-np.
html.]
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This restricted version of QBF can also be phrased as a two-player strategy question. Suppose
two players, Alice and Bob, are given a 3CNF predicate with free variables x1, x2, . . . , xn. The
players alternately assign values to the variables in order by index—Alice assigns a value to x1,
Bob assigns a value to x2, and so on. Alice eventually assigns values to every variable with
an odd index, and Bob eventually assigns values to every variable with an even index. Alice
wants to make the expression True, and Bob wants to make it False. Assuming Alice and Bob
play perfectly, who wins this game? Not surprisingly, most two-player games¹⁷ like tic-tac-toe,
reversi, checkers, go, chess, and mancala—or more accurately, appropriate generalizations of
these constant-size games to arbitrary board sizes—are PSPACE-hard.

Another canonical PSPACE-hard problem is NFA totality: Given a non-deterministic finite-state
automaton M over some alphabet Σ, does M accept every string in Σ∗? The closely related
problems NFA equivalence (Do two given NFAs accept the same language?) and NFA minimization
(Find the smallest NFA that accepts the same language as a given NFA) are also PSPACE-hard, as
are the corresponding questions about regular expressions. (The corresponding questions about
deterministic finite-state automata are all solvable in polynomial time.)

Exponential time. The next significantly larger complexity class, EXP (also called EXPTIME),
is the set of decision problems that can be solved in exponential time, that is, using at most 2nc

steps for some constant c > 0. Every problem in PSPACE (and therefore in NP (and therefore in
P)) is also in EXP. It is generally believed that PSPACE ( EXP, but nobody can even prove that
NP 6= EXP. A problem Π is EXP-hard if, for any problem Π′ that can be solved in exponential time,
there is a polynomial-time many-one reduction from Π′ to Π. A problem is EXP-complete if it is
both EXP-hard and in EXP. If any EXP-hard problem is in PSPACE, then EXP=PSPACE; similarly,
if any EXP-hard probelm is in NP, then EXP=NP. We do know that P 6= EXP; in particular, no
EXP-hard problem is in P.

Natural generalizations of many interesting 2-player games—like checkers, chess, mancala,
and go—are actually EXP-hard. The boundary between PSPACE-complete games and EXP-hard
games is rather subtle. For example, there are three ways to draw in chess (the standard 8× 8
game): stalemate (the player to move is not in check but has no legal moves), repeating the
same board position three times, or moving fifty times without capturing a piece. The n× n
generalization of chess is either in PSPACE or EXP-hard depending on how we generalize these
rules. If we declare a draw after (say) n3 capture-free moves, then every game must end after
a polynomial number of moves, so we can simulate all possible games from any given position
using only polynomial space. On the other hand, if we ignore the capture-free move rule entirely,
the resulting game can last an exponential number of moves, so there no obvious way to detect a
repeating position using only polynomial space; indeed, this version of n× n chess is EXP-hard.

Excelsior! Naturally, even exponential time is not the end of the story. NEXP is the class of
decision problems that can be solve in nondeterministic exponential time; equivalently, a decision
problem is in NEXP if and only if, for every Yes instance, there is a proof of this fact that can be
checked in exponential time. EXPSPACE is the set of decision problems that can be solved using
exponential space. Even these larger complexity classes have hard and complete problems; for
example, if we add the intersection operator ∩ to the syntax of regular expressions, deciding
whether two such expressions describe the same language is EXPSPACE-hard. Beyond EXPSPACE

¹⁷For a good (but now slightly dated) overview of known results on the computational complexity of games and
puzzles, see Erik D. Demaine and Robert Hearn’s survey “Playing Games with Algorithms: Algorithmic Combinatorial
Game Theory” at http://arxiv.org/abs/cs.CC/0106019.
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are complexity classes with doubly-exponential resource bounds (EEXP, NEEXP, and EEXPSPACE),
then triply exponential resource bounds (EEEXP, NEEEXP, and EEEXPSPACE), and so on ad
infinitum.

All these complexity classes can be ordered by inclusion as follows:

P ⊆ NP ⊆ PSPACE ⊆ EXP ⊆ NEXP ⊆ EXPSPACE ⊆ EEXP ⊆ NEEXP ⊆ EEXPSPACE ⊆ EEEXP ⊆ · · · ,
Most complexity theorists strongly believe that every inclusion in this sequence is strict; that
is, no two of these complexity classes are equal. However, the strongest result that has been
proved is that every class in this sequence is strictly contained in the class three steps later in the
sequence. For example, we have proofs that P 6= EXP and PSPACE 6= EXPSPACE, but not whether
P 6= PSPACE or NP 6= EXP.

The limit of this series of increasingly exponential complexity classes is the class ELEMENTARY
of decision problems that can be solved using time or space bounded by a function the form
2 ↑k n for some integer k, where

2 ↑k n :=

¨
n if k = 0,

22↑k−1n otherwise.

For example, 2 ↑1 n= 2n and 2 ↑2 n= 22n
. You might be tempted to conjecture that every natural

decidable problem can be solved in elementary time, but then you would be wrong. Consider the
extended regular expressions defined by recursively combining (possibly empty) strings over
some finite alphabet by concatenation (x y), union (x + y), Kleene closure (x∗), and negation
(x ). For example, the extended regular expression (0+ 1)∗00(0+ 1)∗ represents the set of strings
in {0, 1}∗ that do not contain two 0s in a row. It is possible to determine algorithmically whether
two extended regular expressions describe identical languages, by recursively converting each
expression into an equivalent NFA, converting each NFA into a DFA, and then minimizing the
DFA. Unfortunately, however, this problem cannot be solved in only elementary time, intuitively
because each layer of recursive negation exponentially increases the number of states in the final
DFA.

Exercises

1. (a) Describe and analyze and algorithm to solve Partition in time O(nM), where n is
the size of the input set and M is the sum of the absolute values of its elements.

(b) Why doesn’t this algorithm imply that P=NP?

2. Consider the following problem, called BoxDepth: Given a set of n axis-aligned rectangles
in the plane, how big is the largest subset of these rectangles that contain a common point?

(a) Describe a polynomial-time reduction from BoxDepth to MaxClique.

(b) Describe and analyze a polynomial-time algorithm for BoxDepth. [Hint: O(n3) time
should be easy, but O(n log n) time is possible.]

(c) Why don’t these two results imply that P=NP?

3. A boolean formula is in disjunctive normal form (or DNF) if it consists of a disjunction (Or)
or several terms, each of which is the conjunction (And) of one or more literals. For
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example, the formula
(x ∧ y ∧ z)∨ (y ∧ z)∨ (x ∧ y ∧ z)

is in disjunctive normal form. DNF-SAT asks, given a boolean formula in disjunctive normal
form, whether that formula is satisfiable.

(a) Describe a polynomial-time algorithm to solve DNF-SAT.

(b) What is the error in the following argument that P=NP?

Suppose we are given a boolean formula in conjunctive normal form with at most three
literals per clause, and we want to know if it is satisfiable. We can use the distributive
law to construct an equivalent formula in disjunctive normal form. For example,

(x ∨ y ∨ z)∧ (x ∨ y) ⇐⇒ (x ∧ y)∨ (y ∧ x)∨ (z ∧ x)∨ (z ∧ y)

Now we can use the algorithm from part (a) to determine, in polynomial time, whether
the resulting DNF formula is satisfiable. We have just solved 3SAT in polynomial time.
Since 3SAT is NP-hard, we must conclude that P=NP!

4. (a) Describe a polynomial-time reduction from Partition to SubsetSum.

(b) Describe a polynomial-time reduction from SubsetSum to Partition.

5. (a) Describe a polynomial-time reduction from UndirectedHamiltonianCycle to
DirectedHamiltonianCycle.

(b) Describe a polynomial-time reduction fromDirectedHamiltonianCycle toUndirected-
HamiltonianCycle.

6. (a) Describe a polynomial-time reduction from HamiltonianPath to HamiltonianCycle.

(b) Describe a polynomial-time reduction from HamiltonianCycle to HamiltonianPath.
[Hint: A polynomial-time reduction may call the black-box subroutine more than once.]

7. (a) Prove that PlanarCircuitSat is NP-hard. [Hint: Construct a gadget for crossing
wires.]

(b) Prove that NotAllEqual3SAT is NP-hard.

(c) Prove that the following variant of 3SAT is NP-hard: Given a boolean formula Φ
in conjunctive normal form where each clause contains at most 3 literals and each
variable appears in at most 3 clauses, does Φ have a satisfying assignment?

8. (a) Using the gadget on the right below, prove that deciding whether a given planar
graph is 3-colorable is NP-hard. [Hint: Show that the gadget can be 3-colored, and
then replace any crossings in a planar embedding with the gadget appropriately.]

(b) Using part (a) and the middle gadget below, prove that deciding whether a planar
graph with maximum degree 4 is 3-colorable is NP-hard. [Hint: Replace any vertex
with degree greater than 4 with a collection of gadgets connected so that no degree is
greater than four.]
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(a) Gadget for planar 3-colorability. (b) Gadget for degree-4 planar 3-colorability.

9. Prove that the following problems are NP-hard.

(a) Given two undirected graphs G and H, is G isomorphic to a subgraph of H?

(b) Given an undirected graph G, does G have a spanning tree in which every node has
degree at most 17?

(c) Given an undirected graph G, does G have a spanning tree with at most 42 leaves?

10. There’s something special about the number 3.

(a) Describe and analyze a polynomial-time algorithm for 2Partition. Given a set S of
2n positive integers, your algorithm will determine in polynomial time whether the
elements of S can be split into n disjoint pairs whose sums are all equal.

(b) Describe and analyze a polynomial-time algorithm for 2Color. Given an undirected
graph G, your algorithm will determine in polynomial time whether G has a proper
coloring that uses only two colors.

(c) Describe and analyze a polynomial-time algorithm for 2SAT. Given a boolean formula Φ
in conjunctive normal form, with exactly two literals per clause, your algorithm will
determine in polynomial time whether Φ has a satisfying assignment.

11. There’s nothing special about the number 3.

(a) The problem 12Partition is defined as follows: Given a set S of 12n positive integers,
determine whether the elements of S can be split into n subsets of 12 elements each
whose sums are all equal. Prove that 12Partition is NP-hard. [Hint: Reduce from
3Partition. It may be easier to consider multisets first.]

(b) The problem 12Color is defined as follows: Given an undirected graph G, determine
whether we can color each vertex with one of twelve colors, so that every edge touches
two different colors. Prove that 12Color is NP-hard. [Hint: Reduce from 3Color.]

(c) The problem 12SAT is defined as follows: Given a boolean formula Φ in conjunctive
normal form, with exactly twelve literals per clause, determine whether Φ has a
satisfying assignment. Prove that 12Sat is NP-hard. [Hint: Reduce from 3SAT.]

?12. Describe a direct polynomial-time reduction from 4color to 3color. (This is a lot harder
than the opposite direction.)

13. This exercise asks you to prove that a certain reduction from VertexCover to SteinerTree
is correct. Suppose we want to find the smallest vertex cover in a given undirected graph
G = (V, E). We construct a new graph H = (V ′, E′) as follows:
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• V ′ = V ∪ E ∪ {z}
• E′ = {ve | v ∈ V is an endpoint of e ∈W} ∪ {vz | v ∈ V}.

Equivalently, we construct H by subdividing each edge in G with a new vertex, and then
connecting all the original vertices of G to a new apex vertex z.

Prove that G has a vertex cover of size k if and only if there is a subtree of H with
k+ |E|+ 1 vertices that contains every vertex in E ∪ {z}.

14. Let G = (V, E) be a graph. A dominating set in G is a subset S of the vertices such that
every vertex in G is either in S or adjacent to a vertex in S. The DominatingSet problem
asks, given a graph G and an integer k as input, whether G contains a dominating set of
size k. Prove that this problem is NP-hard.

A dominating set of size 3 in the Peterson graph.

15. A subset S of vertices in an undirected graph G is called triangle-free if, for every triple of
vertices u, v, w ∈ S, at least one of the three edges uv, uw, vw is absent from G. Prove that
finding the size of the largest triangle-free subset of vertices in a given undirected graph is
NP-hard.

A triangle-free subset of 7 vertices.
This is not the largest triangle-free subset in this graph.

16. Pebbling is a solitaire game played on an undirected graph G, where each vertex has zero
or more pebbles. A single pebbling move consists of removing two pebbles from a vertex v
and adding one pebble to an arbitrary neighbor of v. (Obviously, the vertex v must have
at least two pebbles before the move.) The PebbleDestruction problem asks, given a
graph G = (V, E) and a pebble count p(v) for each vertex v, whether is there a sequence
of pebbling moves that removes all but one pebble. Prove that PebbleDestruction is
NP-hard.

17. Recall that a 5-coloring of a graph G is a function that assigns each vertex of G an ‘color’
from the set {0,1, 2,3, 4}, such that for any edge uv, vertices u and v are assigned different
’colors’. A 5-coloring is careful if the colors assigned to adjacent vertices are not only
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A careful 5-coloring.

distinct, but differ by more than 1 (mod 5). Prove that deciding whether a given graph
has a careful 5-coloring is NP-hard. [Hint: Reduce from the standard 5Color problem.]

18. The RectangleTiling problem is defined as follows: Given one large rectangle and several
smaller rectangles, determine whether the smaller rectangles can be placed inside the
large rectangle with no gaps or overlaps. Prove that RectangleTiling is NP-hard.

7

1
53

6
2

4
7

1
53

6
2

4

A positive instance of the RectangleTiling problem.

19. For each problem below, either describe a polynomial-time algorithm or prove that the
problem is NP-hard.

(a) A double-Eulerian circuit in an undirected graph G is a closed walk that traverses every
edge in G exactly twice. Given a graph G, does G have a double-Eulerian circuit?

(b) A double-Hamiltonian circuit in an undirected graph G is a closed walk that visits
every vertex in G exactly twice. Given a graph G, does G have a double-Hamiltonian
circuit?

20. (a) A tonian path in a graph G is a path that goes through at least half of the vertices of
G. Show that determining whether a graph has a tonian path is NP-hard.

(b) A tonian cycle in a graph G is a cycle that goes through at least half of the vertices of
G. Show that determining whether a graph has a tonian cycle is NP-hard. [Hint: Use
part (a).]

21. Let G be an undirected graph with weighted edges. A heavy Hamiltonian cycle is a cycle C
that passes through each vertex of G exactly once, such that the total weight of the edges
in C is at least half of the total weight of all edges in G. Prove that deciding whether a
graph has a heavy Hamiltonian cycle is NP-hard.

22. A boolean formula in exclusive-or conjunctive normal form (XCNF) is a conjunction (And)
of several clauses, each of which is the exclusive-or of several literals; that is, a clause is
true if and only if it contains an odd number of true literals. The XCNF-SAT problem asks
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A heavy Hamiltonian cycle. The cycle has total weight 34; the graph has total weight 67.

whether a given XCNF formula is satisfiable. Either describe a polynomial-time algorithm
for XCNF-SAT or prove that it is NP-hard.

23. Consider the following solitaire game. The puzzle consists of an n×m grid of squares,
where each square may be empty, occupied by a red stone, or occupied by a blue stone.
The goal of the puzzle is to remove some of the given stones so that the remaining stones
satisfy two conditions: (1) every row contains at least one stone, and (2) no column
contains stones of both colors. For some initial configurations of stones, reaching this goal
is impossible.

A solvable puzzle and one of its many solutions. An unsolvable puzzle.

Prove that it is NP-hard to determine, given an initial configuration of red and blue
stones, whether the puzzle can be solved.

24. You’re in charge of choreographing a musical for your local community theater, and it’s
time to figure out the final pose of the big show-stopping number at the end. (“Streetcar!”’)
You’ve decided that each of the n cast members in the show will be positioned in a big
line when the song finishes, all with their arms extended and showing off their best spirit
fingers.

The director has declared that during the final flourish, each cast member must either
point both their arms up or point both their arms down; it’s your job to figure out who
points up and who points down. Moreover, in a fit of unchecked power, the director has
also given you a list of arrangements that will upset his delicate artistic temperament.
Each forbidden arrangement is a subset of the cast members paired with arm positions; for
example: “Marge may not point her arms up while Ned, Apu, and Smithers point their
arms down.”

Prove that finding an acceptable arrangement of arm positions is NP-hard.

25. The next time you are at a party, one of the guests will suggest everyone play a round
of Three-Way Mumbledypeg, a game of skill and dexterity that requires three teams and
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a knife. The official Rules of Three-Way Mumbledypeg (fixed during the Holy Roman
Three-Way Mumbledypeg Council in 1625) require that (1) each team must have at least
one person, (2) any two people on the same team must know each other, and (3) everyone
watching the game must be on one of the three teams. Of course, it will be a really fun
party; nobody will want to leave. There will be several pairs of people at the party who
don’t know each other. The host of the party, having heard thrilling tales of your prowess
in all things algorithmic, will hand you a list of which pairs of party-goers know each other
and ask you to choose the teams, while he sharpens the knife.

Either describe and analyze a polynomial time algorithm to determine whether the
party-goers can be split into three legal Three-Way Mumbledypeg teams, or prove that the
problem is NP-hard.

26. Jeff tries to make his students happy. At the beginning of class, he passes out a questionnaire
that lists a number of possible course policies in areas where he is flexible. Every student
is asked to respond to each possible course policy with one of “strongly favor”, “mostly
neutral”, or “strongly oppose”. Each student may respond with “strongly favor” or “strongly
oppose” to at most five questions. Because Jeff’s students are very understanding, each
student is happy if (but only if) he or she prevails in just one of his or her strong policy
preferences. Either describe a polynomial-time algorithm for setting course policy to
maximize the number of happy students, or show that the problem is NP-hard.

27. The party you are attending is going great, but now it’s time to line up for The Algorithm
March (アルゴリズムこうしん)! This dance was originally developed by the Japanese
comedy duo Itsumo Kokokara (いつもここから) for the children’s television show Pythago-
raSwitch (ピタゴラスイッチ). The Algorithm March is performed by a line of people;
each person in line starts a specific sequence of movements one measure later than the
person directly in front of them. Thus, the march is the dance equivalent of a musical
round or canon, like “Row Row Row Your Boat”.

Proper etiquette dictates that each marcher must know the person directly in front
of them in line, lest a minor mistake during lead to horrible embarrassment between
strangers. Suppose you are given a complete list of which people at your party know each
other. Prove that it is NP-hard to determine the largest number of party-goers that can
participate in the Algorithm March. You may assume without loss of generality that there
are no ninjas at your party.

28. (a) Suppose you are given a magic black box that can determine in polynomial time,
given an arbitrary weighted graph G, the length of the shortest Hamiltonian cycle
in G. Describe and analyze a polynomial-time algorithm that computes, given an
arbitrary weighted graph G, the shortest Hamiltonian cycle in G, using this magic
black box as a subroutine.

(b) Suppose you are given a magic black box that can determine in polynomial time,
given an arbitrary graph G, the number of vertices in the largest complete subgraph
of G. Describe and analyze a polynomial-time algorithm that computes, given an
arbitrary graph G, a complete subgraph of G of maximum size, using this magic black
box as a subroutine.

29



Algorithms Lecture 30: NP-Hard Problems [Fa’14]

(c) Suppose you are given a magic black box that can determine in polynomial time,
given an arbitrary graph G, whether G is 3-colorable. Describe and analyze a
polynomial-time algorithm that either computes a proper 3-coloring of a given graph
or correctly reports that no such coloring exists, using the magic black box as a
subroutine. [Hint: The input to the magic black box is a graph. Just a graph. Vertices
and edges. Nothing else.]

(d) Suppose you are given a magic black box that can determine in polynomial time,
given an arbitrary boolean formula Φ, whether Φ is satisfiable. Describe and analyze a
polynomial-time algorithm that either computes a satisfying assignment for a given
boolean formula or correctly reports that no such assignment exists, using the magic
black box as a subroutine.

(e) Suppose you are given a magic black box that can determine in polynomial time,
given an arbitrary set X of positive integers, whether X can be partitioned into two sets
A and B such that

∑
A=

∑
B. Describe and analyze a polynomial-time algorithm

that either computes an equal partition of a given set of positive integers or correctly
reports that no such partition exists, using the magic black box as a subroutine.

[General solutions give you a 50% tip.]

— Randall Munroe, xkcd (http://xkcd.com/287/)
Reproduced under a Creative Commons Attribution-NonCommercial 2.5 License

© Copyright 2014 Jeff Erickson.
This work is licensed under a Creative Commons License (http://creativecommons.org/licenses/by-nc-sa/4.0/).

Free distribution is strongly encouraged; commercial distribution is expressly forbidden.
See http://www.cs.uiuc.edu/~jeffe/teaching/algorithms/ for the most recent revision.
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Le mieux est l’ennemi du bien. [The best is the enemy of the good.]

— Voltaire, La Bégueule (1772)

Who shall forbid a wise skepticism, seeing that there is no practical question
on which any thing more than an approximate solution can be had?

— Ralph Waldo Emerson, Representative Men (1850)

Now, distrust of corporations threatens our still-tentative economic recovery;
it turns out greed is bad, after all.

— Paul Krugman, “Greed is Bad”, The New York Times, June 4, 2002.

31 Approximation Algorithms?

31.1 Load Balancing

On the future smash hit reality-TV game show Grunt Work, scheduled to air Thursday nights
at 3am (2am Central) on ESPNπ, the contestants are given a series of utterly pointless tasks
to perform. Each task has a predetermined time limit; for example, “Sharpen this pencil for
17 seconds”, or “Pour pig’s blood on your head and sing The Star-Spangled Banner for two
minutes”, or “Listen to this 75-minute algorithms lecture”. The directors of the show want you to
assign each task to one of the contestants, so that the last task is completed as early as possible.
When your predecessor correctly informed the directors that their problem is NP-hard, he was
immediately fired. “Time is money!” they screamed at him. “We don’t need perfection. Wake up,
dude, this is television!”

Less facetiously, suppose we have a set of n jobs, which we want to assign to m machines. We
are given an array T[1 .. n] of non-negative numbers, where T[ j] is the running time of job j.
We can describe an assignment by an array A[1 .. n], where A[ j] = i means that job j is assigned
to machine i. The makespan of an assignment is the maximum time that any machine is busy:

makespan(A) =max
i

∑
A[ j]=i

T[ j]

The load balancing problem is to compute the assignment with the smallest possible makespan.
It’s not hard to prove that the load balancing problem is NP-hard by reduction from Partition:

The array T[1 .. n] can be evenly partitioned if and only if there is an assignment to two machines
with makespan exactly

∑
i T[i]/2. A slightly more complicated reduction from 3Partition

implies that the load balancing problem is strongly NP-hard. If we really need the optimal
solution, there is a dynamic programming algorithm that runs in time O(nM m), where M is the
minimum makespan, but that’s just horrible.

There is a fairly natural and efficient greedy heuristic for load balancing: consider the jobs
one at a time, and assign each job to the machine i with the earliest finishing time Total[i].

GreedyLoadBalance(T[1 .. n], m):
for i← 1 to m

Total[i]← 0

for j← 1 to n
mini← arg mini Total[i]
A[ j]←mini
Total[mini]← Total[mini] + T[ j]

return A[1 .. m]

© Copyright 2014 Jeff Erickson.
This work is licensed under a Creative Commons License (http://creativecommons.org/licenses/by-nc-sa/4.0/).

Free distribution is strongly encouraged; commercial distribution is expressly forbidden.
See http://www.cs.uiuc.edu/~jeffe/teaching/algorithms/ for the most recent revision.
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Theorem 1. The makespan of the assignment computed by GreedyLoadBalance is at most twice the
makespan of the optimal assignment.

Proof: Fix an arbitrary input, and let OPT denote the makespan of its optimal assignment.
The approximation bound follows from two trivial observations. First, the makespan of any
assignment (and therefore of the optimal assignment) is at least the duration of the longest job.
Second, the makespan of any assignment is at least the total duration of all the jobs divided by
the number of machines.

OPT≥max
j

T[ j] and OPT≥ 1
m

n∑
j=1

T[ j]

Now consider the assignment computed by GreedyLoadBalance. Suppose machine i has the
largest total running time, and let j be the last job assigned to machine i. Our first trivial
observation implies that T[ j]≤ OPT. To finish the proof, we must show that Total[i]−T[ j]≤ OPT.
Job j was assigned to machine i because it had the smallest finishing time, so Total[i]− T[ j]≤
Total[k] for all k. (Some values Total[k] may have increased since job j was assigned, but that
only helps us.) In particular, Total[i]− T[ j] is less than or equal to the average finishing time
over all machines. Thus,

Total[i]− T[ j]≤ 1
m

m∑
i=1

Total[i] =
1
m

n∑
j=1

T[ j]≤ OPT

by our second trivial observation. We conclude that the makespan Total[i] is at most 2 ·OPT. �

j ≤ OPT

≤ OPT

i

m
a

ke
sp

a
n

Proof that GreedyLoadBalance is a 2-approximation algorithm

GreedyLoadBalance is an online algorithm: It assigns jobs to machines in the order that
the jobs appear in the input array. Online approximation algorithms are useful in settings where
inputs arrive in a stream of unknown length—for example, real jobs arriving at a real scheduling
algorithm. In this online setting, it may be impossible to compute an optimum solution, even
in cases where the offline problem (where all inputs are known in advance) can be solved in
polynomial time. The study of online algorithms could easily fill an entire one-semester course
(alas, not this one).

In our original offline setting, we can improve the approximation factor by sorting the jobs
before piping them through the greedy algorithm.

SortedGreedyLoadBalance(T[1 .. n], m):
sort T in decreasing order
return GreedyLoadBalance(T, m)

2



Algorithms Lecture thesection: Approximation Algorithms [Fa’13]

Theorem 2. The makespan of the assignment computed by SortedGreedyLoadBalance is at most
3/2 times the makespan of the optimal assignment.

Proof: Let i be the busiest machine in the schedule computed by SortedGreedyLoadBalance.
If only one job is assigned to machine i, then the greedy schedule is actually optimal, and the
theorem is trivially true. Otherwise, let j be the last job assigned to machine i. Since each of the
first m jobs is assigned to a unique machine, we must have j ≥ m+ 1. As in the previous proof,
we know that Total[i]− T[ j]≤ OPT.

In any schedule, at least two of the first m+ 1 jobs, say jobs k and `, must be assigned to the
same machine. Thus, T[k] + T[`]≤ OPT. Since max{k,`} ≤ m+ 1≤ j, and the jobs are sorted
in decreasing order by duration, we have

T[ j]≤ T[m+ 1]≤ T[max{k,`}] =min {T[k], T[`]} ≤ OPT/2.

We conclude that the makespan Total[i] is at most 3 ·OPT/2, as claimed. �

31.2 Generalities

Consider an arbitrary optimization problem. Let OPT(X ) denote the value of the optimal solution
for a given input X , and let A(X ) denote the value of the solution computed by algorithm A given
the same input X . We say that A is an α(n)-approximation algorithm if and only if

OPT(X )
A(X )

≤ α(n) and
A(X )

OPT(X )
≤ α(n)

for all inputs X of size n. The function α(n) is called the approximation factor for algorithm A.
For any given algorithm, only one of these two inequalities will be important. For maximization
problems, where we want to compute a solution whose cost is as small as possible, the first
inequality is trivial. For maximization problems, where we want a solution whose value is as
large as possible, the second inequality is trivial. A 1-approximation algorithm always returns
the exact optimal solution.

Especially for problems where exact optimization is NP-hard, we have little hope of completely
characterizing the optimal solution. The secret to proving that an algorithm satisfies some
approximation ratio is to find a useful function of the input that provides both lower bounds on
the cost of the optimal solution and upper bounds on the cost of the approximate solution. For
example, if OPT(X )≥ f (X )/2 and A(X )≤ 5 f (X ) for any function f , then A is a 10-approximation
algorithm. Finding the right intermediate function can be a delicate balancing act.

31.3 Greedy Vertex Cover

Recall that the vertex color problem asks, given a graph G, for the smallest set of vertices of G
that cover every edge. This is one of the first NP-hard problems introduced in the first week of
class. There is a natural and efficient greedy heuristic¹ for computing a small vertex cover: mark
the vertex with the largest degree, remove all the edges incident to that vertex, and recurse.

¹A heuristic is an algorithm that doesn’t work.
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GreedyVertexCover(G):
C ←∅
while G has at least one edge

v← vertex in G with maximum degree
G← G \ v
C ← C ∪ v

return C

Obviously this algorithm doesn’t compute the optimal vertex cover—that would imply
P=NP!—but it does compute a reasonably close approximation.

Theorem 3. GreedyVertexCover is an O(log n)-approximation algorithm.

Proof: For all i, let Gi denote the graph G after i iterations of the main loop, and let di denote
the maximum degree of any node in Gi−1. We can define these variables more directly by adding
a few extra lines to our algorithm:

GreedyVertexCover(G):
C ←∅
G0← G
i← 0
while Gi has at least one edge

i← i + 1
vi ← vertex in Gi−1 with maximum degree
di ← degGi−1

(vi)
Gi ← Gi−1 \ vi
C ← C ∪ vi

return C

Let |Gi−1| denote the number of edges in the graph Gi−1. Let C∗ denote the optimal vertex
cover of G, which consists of OPT vertices. Since C∗ is also a vertex cover for Gi−1, we have∑

v∈C∗
degGi−1

(v)≥ |Gi−1|.

In other words, the average degree in Gi of any node in C∗ is at least |Gi−1|/OPT. It follows that
Gi−1 has at least one node with degree at least |Gi−1|/OPT. Since di is the maximum degree of
any node in Gi−1, we have

di ≥
|Gi−1|
OPT

Moreover, for any j ≥ i − 1, the subgraph G j has no more edges than Gi−1, so di ≥ |G j|/OPT.
This observation implies that

OPT∑
i=1

di ≥
OPT∑
i=1

|Gi−1|
OPT

≥
OPT∑
i=1

|GOPT|
OPT

= |GOPT| = |G| −
OPT∑
i=1

di .

In other words, the first OPT iterations of GreedyVertexCover remove at least half the edges
of G. Thus, after at most OPT lg|G| ≤ 2OPT lg n iterations, all the edges of G have been removed,
and the algorithm terminates. We conclude that GreedyVertexCover computes a vertex cover
of size O(OPT log n). �

So far we’ve only proved an upper bound on the approximation factor of GreedyVertexCover;
perhaps a more careful analysis would imply that the approximation factor is only O(log log n),
or even O(1). Alas, no such improvement is possible. For any integer n, a simple recursive
construction gives us an n-vertex graph for which the greedy algorithm returns a vertex cover of
size Ω(OPT · log n). Details are left as an exercise for the reader.
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31.4 Set Cover and Hitting Set

The greedy algorithm for vertex cover can be applied almost immediately to two more general
problems: set cover and hitting set. The input for both of these problems is a set system (X ,F),
where X is a finite ground set, and F is a family of subsets of X .² A set cover of a set system (X ,F)
is a subfamily of sets in F whose union is the entire ground set X . A hitting set for (X ,F) is a
subset of the ground set X that intersects every set in F.

An undirected graph can be cast as a set system in two different ways. In one formulation,
the ground set X contains the vertices, and each edge defines a set of two vertices in F. In this
formulation, a vertex cover is a hitting set. In the other formulation, the edges are the ground set,
the vertices define the family of subsets, and a vertex cover is a set cover.

Here are the natural greedy algorithms for finding a small set cover and finding a small
hitting set. GreedySetCover finds a set cover whose size is at most O(log |F|) times the size of
smallest set cover. GreedyHittingSet finds a hitting set whose size is at most O(log |X |) times
the size of the smallest hitting set.

GreedySetCover(X ,F):
C←∅
while X 6=∅

S← argmax
S∈F

|S ∩ X |
X ← X \ S
C← C∪ {S}

return C

GreedyHittingSet(X ,F):
H ←∅
while F 6=∅

x ← argmax
x∈X

|{S ∈ F | x ∈ S}|
F← F \ {S ∈ F | x ∈ S}
H ← H ∪ {x}

return H

The similarity between these two algorithms is no coincidence. For any set system (X ,F),
there is a dual set system (F, X ∗) defined as follows. For any element x ∈ X in the ground set, let
x∗ denote the subfamily of sets in F that contain x:

x∗ = {S ∈ F | x ∈ S} .
Finally, let X ∗ denote the collection of all subsets of the form x∗:

X ∗ = {x∗ | x ∈ S} .
As an example, suppose X is the set of letters of alphabet and F is the set of last names of student
taking CS 573 this semester. Then X ∗ has 26 elements, each containing the subset of CS 573
students whose last name contains a particular letter of the alphabet. For example, m∗ is the set
of students whose last names contain the letter m.

There is a direct one-to-one correspondence between the ground set X and the dual set
family X ∗. It is a tedious but instructive exercise to prove that the dual of the dual of any set
system is isomorphic to the original set system—(X ∗,F∗) is essentially the same as (X ,F). It is
also easy to prove that a set cover for any set system (X ,F) is also a hitting set for the dual set
system (F, X ∗), and therefore a hitting set for any set system (X ,F) is isomorphic to a set cover
for the dual set system (F, X ∗).

31.5 Vertex Cover, Again

The greedy approach doesn’t always lead to the best approximation algorithms. Consider the
following alternate heuristic for vertex cover:

²A matroid (see the lecture note on greedy algorithms) is a special type of set system.
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DumbVertexCover(G):
C ←∅
while G has at least one edge

(u, v)← any edge in G
G← G \ {u, v}
C ← C ∪ {u, v}

return C

The minimum vertex cover—in fact, every vertex cover—contains at least one of the two
vertices u and v chosen inside the while loop. It follows immediately that DumbVertexCover is
a 2-approximation algorithm!

The same idea can be extended to approximate the minimum hitting set for any set system
(X ,F), where the approximation factor is the size of the largest set in F.

31.6 Traveling Salesman: The Bad News

The traveling salesman problem³ problem asks for the shortest Hamiltonian cycle in a weighted
undirected graph. To keep the problem simple, we can assume without loss of generality that
the underlying graph is always the complete graph Kn for some integer n; thus, the input to the
traveling salesman problem is just a list of the

�n
2

�
edge lengths.

Not surprisingly, given its similarity to the Hamiltonian cycle problem, it’s quite easy to prove
that the traveling salesman problem is NP-hard. Let G be an arbitrary undirected graph with n
vertices. We can construct a length function for Kn as follows:

`(e) =

¨
1 if e is an edge in G,

2 otherwise.

Now it should be obvious that if G has a Hamiltonian cycle, then there is a Hamiltonian cycle in
Kn whose length is exactly n; otherwise every Hamiltonian cycle in Kn has length at least n+ 1.
We can clearly compute the lengths in polynomial time, so we have a polynomial time reduction
from Hamiltonian cycle to traveling salesman. Thus, the traveling salesman problem is NP-hard,
even if all the edge lengths are 1 and 2.

There’s nothing special about the values 1 and 2 in this reduction; we can replace them with
any values we like. By choosing values that are sufficiently far apart, we can show that even
approximating the shortest traveling salesman tour is NP-hard. For example, suppose we set
the length of the ‘absent’ edges to n+ 1 instead of 2. Then the shortest traveling salesman tour
in the resulting weighted graph either has length exactly n (if G has a Hamiltonian cycle) or
has length at least 2n (if G does not have a Hamiltonian cycle). Thus, if we could approximate
the shortest traveling salesman tour within a factor of 2 in polynomial time, we would have a
polynomial-time algorithm for the Hamiltonian cycle problem.

Pushing this idea to its limits us the following negative result.

Theorem 4. For any function f (n) that can be computed in time polynomial in n, there is no
polynomial-time f (n)-approximation algorithm for the traveling salesman problem on general
weighted graphs, unless P=NP.

³This is sometimes bowdlerized into the traveling salesperson problem. That’s just silly. Who ever heard of a
traveling salesperson sleeping with the farmer’s child?
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31.7 Traveling Salesman: The Good News

Even though the general traveling salesman problem can’t be approximated, a common special
case can be approximated fairly easily. The special case requires the edge lengths to satisfy the
so-called triangle inequality:

`(u, w)≤ `(u, v) + `(v, w) for any vertices u, v, w.

This inequality is satisfied for geometric graphs, where the vertices are points in the plane (or
some higher-dimensional space), edges are straight line segments, and lengths are measured
in the usual Euclidean metric. Notice that the length functions we used above to show that the
general TSP is hard to approximate do not (always) satisfy the triangle inequality.

With the triangle inequality in place, we can quickly compute a 2-approximation for the
traveling salesman tour as follows. First, we compute the minimum spanning tree T of the
weighted input graph; this can be done in O(n2 log n) time (where n is the number of vertices of
the graph) using any of several classical algorithms. Second, we perform a depth-first traversal of
T , numbering the vertices in the order that we first encounter them. Because T is a spanning
tree, every vertex is numbered. Finally, we return the cycle obtained by visiting the vertices
according to this numbering.

6

7 5
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A minimum spanning tree T , a depth-first traversal of T , and the resulting approximate traveling salesman tour.

Theorem 5. A depth-first ordering of the minimum spanning tree gives a 2-approximation of the
shortest traveling salesman tour.

Proof: Let OPT denote the cost of the optimal TSP tour, let MST denote the total length of the
minimum spanning tree, and let A be the length of the tour computed by our approximation
algorithm. Consider the ‘tour’ obtained by walking through the minimum spanning tree in
depth-first order. Since this tour traverses every edge in the tree exactly twice, its length is
2 ·MST. The final tour can be obtained from this one by removing duplicate vertices, moving
directly from each node to the next unvisited node.; the triangle inequality implies that taking
these shortcuts cannot make the tour longer. Thus, A≤ 2 ·MST. On the other hand, if we remove
any edge from the optimal tour, we obtain a spanning tree (in fact a spanning path) of the graph;
thus, MST≥ OPT. We conclude that A≤ 2 ·OPT; our algorithm computes a 2-approximation of
the optimal tour. �

We can improve this approximation factor using the following algorithm discovered by Nicos
Christofides in 1976. As in the previous algorithm, we start by constructing the minimum spanning
tree T . Then let O be the set of vertices with odd degree in T ; it is an easy exercise (hint, hint)
to show that the number of vertices in O is even.
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In the next stage of the algorithm, we compute a minimum-cost perfect matching M of these
odd-degree vertices. A prefect matching is a collection of edges, where each edge has both
endpoints in O and each vertex in O is adjacent to exactly one edge; we want the perfect matching
of minimum total length. Later in the semester, we will see an algorithm to compute M in
polynomial time.

Now consider the multigraph T ∪ M ; any edge in both T and M appears twice in this
multigraph. This graph is connected, and every vertex has even degree. Thus, it contains an
Eulerian circuit: a closed walk that uses every edge exactly once. We can compute such a walk in
O(n) time with a simple modification of depth-first search. To obtain the final approximate TSP
tour, we number the vertices in the order they first appear in some Eulerian circuit of T ∪M , and
return the cycle obtained by visiting the vertices according to that numbering.

7
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42
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A minimum spanning tree T , a minimum-cost perfect matching M of the odd vertices in T ,
an Eulerian circuit of T ∪M , and the resulting approximate traveling salesman tour.

Theorem 6. Given a weighted graph that obeys the triangle inequality, the Christofides heuristic
computes a (3/2)-approximation of the shortest traveling salesman tour.

Proof: Let A denote the length of the tour computed by the Christofides heuristic; let OPT denote
the length of the optimal tour; let MST denote the total length of the minimum spanning tree; let
MOM denote the total length of the minimum odd-vertex matching.

The graph T ∪M , and therefore any Euler tour of T ∪M , has total length MST+MOM. By
the triangle inequality, taking a shortcut past a previously visited vertex can only shorten the tour.
Thus, A≤MST+MOM.

By the triangle inequality, the optimal tour of the odd-degree vertices of T cannot be longer
than OPT. Any cycle passing through of the odd vertices can be partitioned into two perfect
matchings, by alternately coloring the edges of the cycle red and green. One of these two
matchings has length at most OPT/2. On the other hand, both matchings have length at least
MOM. Thus, MOM≤ OPT/2.

Finally, recall our earlier observation that MST≤ OPT.
Putting these three inequalities together, we conclude that A≤ 3 ·OPT/2, as claimed. �

31.8 k-center Clustering

The k-center clustering problem is defined as follows. We are given a set P = {p1, p2, . . . , pn} of n
points in the plane⁴ and an integer k. Our goal to find a collection of k circles that collectively
enclose all the input points, such that the radius of the largest circle is as large as possible. More

⁴The k-center problem can be defined over any metric space, and the approximation analysis in this section holds
in any metric space as well. The analysis in the next section, however, does require that the points come from the
Euclidean plane.
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formally, we want to compute a set C = {c1, c2, . . . , ck} of k center points, such that the following
cost function is minimized:

cost(C) :=max
i

min
j
|pi c j|.

Here, |pi c j| denotes the Euclidean distance between input point pi and center point c j . Intuitively,
each input point is assigned to its closest center point; the points assigned to a given center c j
comprise a cluster. The distance from c j to the farthest point in its cluster is the radius of that
cluster; the cluster is contained in a circle of this radius centered at c j . The k-center clustering
cost cost(C) is precisely the maximum cluster radius.

This problem turns out to be NP-hard, even to approximate within a factor of roughly 1.8.
However, there is a natural greedy strategy, first analyzed in 1985 by Teofilo Gonzalez⁵, that is
guaranteed to produce a clustering whose cost is at most twice optimal. Choose the k center
points one at a time, starting with an arbitrary input point as the first center. In each iteration,
choose the input point that is farthest from any earlier center point to be the next center point.

The first five iterations of Gonzalez’s k-center clustering algorithm.

In the pseudocode below, di denotes the current distance from point pi to its nearest center,
and r j denotes the maximum of all di (or in other words, the cluster radius) after the first
j centers have been chosen. The algorithm includes an extra iteration to compute the final
clustering radius rk (and the next center ck+1).

GonzalezKCenter(P, k):
for i← 1 to n

di ←∞
c1← p1

for j← 1 to k
r j ← 0
for i← 1 to n

di ←min{di , |pi c j |}
if r j < di

r j ← di; c j+1← pi

return {c1, c2, . . . , ck}
⁵Teofilo F. Gonzalez. Clustering to minimize the maximum inter-cluster distance. Theoretical Computer Science

38:293-306, 1985.
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GonzalezKCenter clearly runs in O(nk) time. Using more advanced data structures, Tomas
Feder and Daniel Greene⁶ described an algorithm to compute exactly the same clustering in only
O(n log k) time.

Theorem 7. GonzalezKCenter computes a 2-approximation to the optimal k-center clustering.

Proof: Let OPT denote the optimal k-center clustering radius for P. For any index i, let ci and ri
denote the ith center point and ith clustering radius computed by GonzalezKCenter.

By construction, each center point c j has distance at least r j−1 from any center point ci with
i < j. Moreover, for any i < j, we have ri ≥ r j . Thus, |cic j| ≥ rk for all indices i and j.

On the other hand, at least one cluster in the optimal clustering contains at least two of the
points c1, c2, . . . , ck+1. Thus, by the triangle inequality, we must have |cic j| ≤ 2 ·OPT for some
indices i and j. We conclude that rk ≤ 2 ·OPT, as claimed. �

31.9 Approximation Schemes?

With just a little more work, we can compute an arbitrarily close approximation of the optimal
k-clustering, using a so-called approximation scheme. An approximation scheme accepts both an
instance of the problem and a value ε > 0 as input, and it computes a (1+ε)-approximation of the
optimal output for that instance. As I mentioned earlier, computing even a 1.8-approximation is
NP-hard, so we cannot expect our approximation scheme to run in polynomial time; nevertheless,
at least for small values of k, the approximation scheme will be considerably more efficient than
any exact algorithm.

Our approximation scheme works in three phases:

1. Compute a 2-approximate clustering of the input set P using GonzalezKCenter. Let r be
the cost of this clustering.

2. Create a regular grid of squares of width δ = εr/2
p

2. Let Q be a subset of P containing
one point from each non-empty cell of this grid.

3. Compute an optimal set of k centers for Q. Return these k centers as the approximate
k-center clustering for P.

The first phase requires O(nk) time. By our earlier analysis, we have r∗ ≤ r ≤ 2r∗, where r∗

is the optimal k-center clustering cost for P.
The second phase can be implemented in O(n) time using a hash table, or in O(n log n)

time by standard sorting, by associating approximate coordinates (bx/δc, by/δc) to each point
(x , y) ∈ P and removing duplicates. The key observation is that the resulting point set Q is
significantly smaller than P. We know P can be covered by k balls of radius r∗, each of which
touches O(r∗/δ2) = O(1/ε2) grid cells. It follows that |Q|= O(k/ε2).

Let T (n, k) be the running time of an exact k-center clustering algorithm, given n points
as input. If this were a computational geometry class, we might see a “brute force” algorithm
that runs in time T (n, k) = O(nk+2); the fastest algorithm currently known⁷ runs in time
T (n, k) = nO(

p
k). If we use this algorithm, our third phase requires (k/ε2)O(

p
k) time.

⁶Tomas Feder* and Daniel H. Greene. Optimal algorithms for approximate clustering. Proc. 20th STOC, 1988.
Unlike Gonzalez’s algorithm, Feder and Greene’s faster algorithm does not work over arbitrary metric spaces; it
requires that the input points come from some Rd and that distances are measured in some Lp metric. The time
analysis also assumes that the distance between any two points can be computed in O(1) time.

⁷R. Z. Hwang, R. C. T. Lee, and R. C. Chan. The slab dividing approach to solve the Euclidean p-center problem.
Algorithmica 9(1):1–22, 1993.
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It remains to show that the optimal clustering for Q implies a (1+ ε)-approximation of the
optimal clustering for P. Suppose the optimal clustering of Q consists of k balls B1, B2, . . . , Bk,
each of radius r̃. Clearly r̃ ≤ r∗, since any set of k balls that cover P also cover any subset of P.
Each point in P \Q shares a grid cell with some point in Q, and therefore is within distance δ

p
2

of some point in Q. Thus, if we increase the radius of each ball Bi by δ
p

2, the expanded balls
must contain every point in P. We conclude that the optimal centers for Q gives us a k-center
clustering for P of cost at most r∗ +δ

p
2≤ r∗ + εr/2≤ r∗ + εr∗ = (1+ ε)r∗.

The total running time of the approximation scheme is O(nk + (k/ε2)O(
p

k)). This is still
exponential in the input size if k is large (say

p
n or n/100), but if k and ε are fixed constants,

the running time is linear in the number of input points.

31.10 An FPTAS for Subset Sum?

An approximation scheme whose running time, for any fixed ε, is polynomial in n is called a
polynomial-time approximation scheme or PTAS (usually pronounced “pee taz"). If in addition
the running time depends only polynomially on ε, the algorithm is called a fully polynomial-
time approximation scheme or FPTAS (usually pronounced “eff pee taz"). For example, an
approximation scheme with running time O(n2/ε2) is an FPTAS; an approximation scheme with
running time O(n1/ε6

) is a PTAS but not an FPTAS; and our approximation scheme for k-center
clustering is not a PTAS.

The last problem we’ll consider is the SubsetSum problem: Given a set X containing n
positive integers and a target integer t, determine whether X has a subset whose elements sum
to t. The lecture notes on NP-completeness include a proof that SubsetSum is NP-hard. As
stated, this problem doesn’t allow any sort of approximation—the answer is either True or
False.⁸ So we will consider a related optimization problem instead: Given set X and integer t,
find the subset of X whose sum is as large as possible but no larger than t.

We have already seen a dynamic programming algorithm to solve the decision version
SubsetSum in time O(nt); a similar algorithm solves the optimization version in the same time
bound. Here is a different algorithm, whose running time does not depend on t:

SubsetSum(X [1 .. n], t):
S0← {0}
for i← 1 to n

Si ← Si−1 ∪ (Si−1 + X [i])
remove all elements of Si bigger than t

return max Sn

Here Si−1 + X [i] denotes the set {s + X [i] | s ∈ Si−1}. If we store each Si in a sorted array,
the ith iteration of the for-loop requires time O(|Si−1|). Each set Si contains all possible subset
sums for the first i elements of X ; thus, Si has at most 2i elements. On the other hand, since
every element of Si is an integer between 0 and t, we also have |Si| ≤ t + 1. It follows that the
total running time of this algorithm is

∑n
i=1 O(|Si−1|) = O(min{2n, nt}).

Of course, this is only an estimate of worst-case behavior. If several subsets of X have the
same sum, the sets Si will have fewer elements, and the algorithm will be faster. The key idea
for finding an approximate solution quickly is to ‘merge’ nearby elements of Si—if two subset
sums are nearly equal, ignore one of them. On the one hand, merging similar subset sums
will introduce some error into the output, but hopefully not too much. On the other hand, by

⁸Do, or do not. There is no ‘try’. (Are old one thousand when years you, alphabetical also in order talk will you.)
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reducing the size of the set of sums we need to maintain, we will make the algorithm faster,
hopefully significantly so.

Here is our approximation algorithm. We make only two changes to the exact algorithm: an
initial sorting phase and an extra Filtering step inside the main loop.

Filter(Z[1 .. k],δ):
Sort(Z)
j← 1
Y [ j]← Z[i]
for i← 2 to k

if Z[i]> (1+δ) · Y [ j]
j← j + 1
Y [ j]← Z[i]

return Y [1 .. j]

ApproxSubsetSum(X [1 .. n], k,ε):
Sort(X)
R0← {0}
for i← 1 to n

Ri ← Ri−1 ∪ (Ri−1 + X [i])
Ri ← Filter(Ri ,ε/2n)
remove all elements of Ri bigger than t

return max Rn

Theorem 8. ApproxSubsetSum returns a (1+ ε)-approximation of the optimal subset sum, given
any ε such that 0< ε ≤ 1.

Proof: The theorem follows from the following claim, which we prove by induction:

For any element s ∈ Si , there is an element r ∈ Ri such that r ≤ s ≤ r · (1+ εn/2)i .

The claim is trivial for i = 0. Let s be an arbitrary element of Si , for some i > 0. There are two
cases to consider: either x ∈ Si−1, or x ∈ Si−1 + x i .

(1) Suppose s ∈ Si−1. By the inductive hypothesis, there is an element r ′ ∈ Ri−1 such that
r ′ ≤ s ≤ r ′ · (1+ εn/2)i−1. If r ′ ∈ Ri, the claim obviously holds. On the other hand, if
r ′ 6∈ Ri , there must be an element r ∈ Ri such that r < r ′ ≤ r(1+εn/2), which implies that

r < r ′ ≤ s ≤ r ′ · (1+ εn/2)i−1 ≤ r · (1+ εn/2)i ,
so the claim holds.

(2) Suppose s ∈ Si−1 + x i . By the inductive hypothesis, there is an element r ′ ∈ Ri−1 such that
r ′ ≤ s − x i ≤ r ′ · (1+ εn/2)i−1. If r ′ + x i ∈ Ri, the claim obviously holds. On the other
hand, if r ′ + x i 6∈ Ri , there must be an element r ∈ Ri such that r < r ′ + x i ≤ r(1+ εn/2),
which implies that

r < r ′ + x i ≤ s ≤ r ′ · (1+ εn/2)i−1 + x i

≤ (r − x i) · (1+ εn/2)i + x i

≤ r · (1+ εn/2)i − x i · ((1+ εn/2)i − 1)

≤ r · (1+ εn/2)i .
so the claim holds.

Now let s∗ = max Sn and r∗ = max Rn. Clearly r∗ ≤ s∗, since Rn ⊆ Sn. Our claim implies
that there is some r ∈ Rn such that s∗ ≤ r · (1+ ε/2n)n. But r cannot be bigger than r∗, so
s∗ ≤ r∗ · (1+ ε/2n)n. The inequalities ex ≥ 1+ x for all x , and ex ≤ 2x + 1 for all 0 ≤ x ≤ 1,
imply that (1+ ε/2n)n ≤ eε/2 ≤ 1+ ε. �

Theorem 9. ApproxSubsetSum runs in O((n3 log n)/ε) time.
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Proof: Assuming we keep each set Ri in a sorted array, we can merge the two sorted arrays Ri−1
and Ri−1 + x i in O(|Ri−1|) time. Filterin Ri and removing elements larger than t also requires
only O(|Ri−1|) time. Thus, the overall running time of our algorithm is O(

∑
i|Ri|); to express this

in terms of n and ε, we need to prove an upper bound on the size of each set Ri .
Let δ = ε/2n. Because we consider the elements of X in increasing order, every element of

Ri is between 0 and i · x i . In particular, every element of Ri−1 + x i is between x i and i · x i . After
Filtering, at most one element r ∈ Ri lies in the range (1+ δ)k ≤ r < (1+ δ)k+1, for any k.
Thus, at most dlog1+δ ie elements of Ri−1 + x i survive the call to Filter. It follows that

|Ri|= |Ri−1|+
¡

log i
log(1+δ)

¤

≤ |Ri−1|+
¡

log n
log(1+δ)

¤
[i ≤ n]

≤ |Ri−1|+
¡

2 ln n
δ

¤
[ex ≤ 1+ 2x for all 0≤ x ≤ 1]

≤ |Ri−1|+
¡

n ln n
ε

¤
[δ = ε/2n]

Unrolling this recurrence into a summation gives us the upper bound |Ri| ≤ i · d(n ln n)/εe =
O((n2 log n)/ε).

We conclude that the overall running time of ApproxSubsetSum is O((n3 log n)/ε), as
claimed. �

Exercises

1. (a) Prove that for any set of jobs, the makespan of the greedy assignment is at most
(2− 1/m) times the makespan of the optimal assignment, where m is the number of
machines.

(b) Describe a set of jobs such that the makespan of the greedy assignment is exactly
(2− 1/m) times the makespan of the optimal assignment, where m is the number of
machines.

(c) Describe an efficient algorithm to solve the minimum makespan scheduling problem
exactly if every processing time T[i] is a power of two.

2. (a) Find the smallest graph (minimum number of edges) for which GreedyVertexCover
does not return the smallest vertex cover.

(b) For any integer n, describe an n-vertex graph for which GreedyVertexCover returns
a vertex cover of size OPT ·Ω(log n).

3. (a) Find the smallest graph (minimum number of edges) for which DumbVertexCover
does not return the smallest vertex cover.

(b) Describe an infinite family of graphs for which DumbVertexCover returns a vertex
cover of size 2 ·OPT.

4. Consider the following heuristic for constructing a vertex cover of a connected graph G:
return the set of non-leaf nodes in any depth-first spanning tree of G.
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(a) Prove that this heuristic returns a vertex cover of G.

(b) Prove that this heuristic returns a 2-approximation to the minimum vertex cover of G.

(c) Describe an infinite family of graphs for which this heuristic returns a vertex cover of
size 2 ·OPT.

5. Consider the following optimization version of the Partition problem. Given a set X
of positive integers, our task is to partition X into disjoint subsets A and B such that
max{∑A,

∑
B} is as small as possible. This problem is clearly NP-hard. Determine the

approximation ratio of the following polynomial-time approximation algorithm. Prove your
answer is correct.

Partition(X [1 .. n]):
Sort X in increasing order
a← 0; b← 0
for i← 1 to n

if a < b
a← a+ X [i]

else
b← b+ X [i]

return max{a, b}

6. The chromatic number χ(G) of a graph G is the minimum number of colors required to
color the vertices of the graph, so that every edge has endpoints with different colors.
Computing the chromatic number exactly is NP-hard.

Prove that the following problem is also NP-hard: Given an n-vertex graph G, return
any integer between χ(G) and χ(G) + 573. [Note: This does not contradict the possibility
of a constant factor approximation algorithm.]

7. Let G = (V, E) be an undirected graph, each of whose vertices is colored either red, green,
or blue. An edge in G is boring if its endpoints have the same color, and interesting if
its endpoints have different colors. The most interesting 3-coloring is the 3-coloring with
the maximum number of interesting edges, or equivalently, with the fewest boring edges.
Computing the most interesting 3-coloring is NP-hard, because the standard 3-coloring
problem is a special case.

(a) Let zzz(G) denote the number of boring edges in the most interesting 3-coloring of a
graph G. Prove that it is NP-hard to approximate zzz(G) within a factor of 1010100

.

(b) Let wow(G) denote the number of interesting edges in the most interesting 3-coloring
of G. Supposewe assign each vertex in G a random color from the set {red,green,blue}.
Prove that the expected number of interesting edges is at least 2

3wow(G).

8. Consider the following algorithm for coloring a graph G.
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TreeColor(G):
T ← any spanning tree of G
Color the tree T with two colors
c← 2

for each edge (u, v) ∈ G \ T
T ← T ∪ {(u, v)}
if color(u) = color(v) 〈〈Try recoloring u with an existing color〉〉

for i← 1 to c
if no neighbor of u in T has color i

color(u)← i

if color(u) = color(v) 〈〈Try recoloring v with an existing color〉〉
for i← 1 to c

if no neighbor of v in T has color i
color(v)← i

if color(u) = color(v) 〈〈Give up and create a new color〉〉
c← c + 1
color(u)← c

(a) Prove that this algorithm colors any bipartite graph with just two colors.

(b) Let ∆(G) denote the maximum degree of any vertex in G. Prove that this algorithm
colors any graph G with at most ∆(G) colors. This trivially implies that TreeColor
is a ∆(G)-approximation algorithm.

(c) Prove that TreeColor is not a constant-factor approximation algorithm.

9. The Knapsack problem can be defined as follows. We are given a finite set of elements X
where each element x ∈ X has a non-negative size and a non-negative value, along with an
integer capacity c. Our task is to determine the maximum total value among all subsets
of X whose total size is at most c. This problem is NP-hard. Specifically, the optimization
version of SubsetSum is a special case, where each element’s value is equal to its size.

Determine the approximation ratio of the following polynomial-time approximation
algorithm. Prove your answer is correct.

ApproxKnapsack(X , c):
return max{GreedyKnapsack(X , c), PickBestOne(X , c)}

GreedyKnapsack(X , c):
Sort X in decreasing order by the ratio value/size
S← 0; V ← 0
for i← 1 to n

if S + size(x i)> c
return V

S← S + size(x i)
V ← V + value(x i)

return V

PickBestOne(X , c):
Sort X in increasing order by size
V ← 0
for i← 1 to n

if size(x i)> c
return V

if value(x i)> V
V ← value(x i)

return V

10. In the bin packing problem, we are given a set of n items, each with weight between 0 and
1, and we are asked to load the items into as few bins as possible, such that the total weight
in each bin is at most 1. It’s not hard to show that this problem is NP-Hard; this question
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asks you to analyze a few common approximation algorithms. In each case, the input is an
array W [1 .. n] of weights, and the output is the number of bins used.

NextFit(W [1 .. n]):
b← 0
Total[0]←∞
for i← 1 to n

if Total[b] +W [i]> 1
b← b+ 1
Total[b]←W [i]

else
Total[b]← Total[b] +W [i]

return b

FirstFit(W [1 .. n]):
b← 0

for i← 1 to n
j← 1; f ound ← False

while j ≤ b and f ound = False
if Total[ j] +W [i]≤ 1

Total[ j]← Total[ j] +W [i]
f ound ← True

j← j + 1

if f ound = False
b← b+ 1
Total[b] =W [i]

return b

(a) Prove that NextFit uses at most twice the optimal number of bins.

(b) Prove that FirstFit uses at most twice the optimal number of bins.
?(c) Prove that if the weight array W is initially sorted in decreasing order, then FirstFit

uses at most (4 · OPT+ 1)/3 bins, where OPT is the optimal number of bins. The
following facts may be useful (but you need to prove them if your proof uses them):

• In the packing computed by FirstFit, every item with weight more than 1/3 is
placed in one of the first OPT bins.

• FirstFit places at most OPT− 1 items outside the first OPT bins.

11. Given a graph G with edge weights and an integer k, suppose we wish to partition the the
vertices of G into k subsets S1, S2, . . . , Sk so that the sum of the weights of the edges that
cross the partition (that is, have endpoints in different subsets) is as large as possible.

(a) Describe an efficient (1− 1/k)-approximation algorithm for this problem.

(b) Now suppose we wish to minimize the sum of the weights of edges that do not cross
the partition. What approximation ratio does your algorithm from part (a) achieve
for the new problem? Justify your answer.

12. The lecture notes describe a (3/2)-approximation algorithm for the metric traveling
salesman problem. Here, we consider computing minimum-cost Hamiltonian paths. Our
input consists of a graph G whose edges have weights that satisfy the triangle inequality.
Depending upon the problem, we are also given zero, one, or two endpoints.

(a) If our input includes zero endpoints, describe a (3/2)-approximation to the problem
of computing a minimum cost Hamiltonian path.

(b) If our input includes one endpoint u, describe a (3/2)-approximation to the problem
of computing a minimum cost Hamiltonian path that starts at u.

(c) If our input includes two endpoints u and v, describe a (5/3)-approximation to the
problem of computing a minimum cost Hamiltonian path that starts at u and ends
at v.
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13. Suppose we are given a collection of n jobs to execute on a machine containing a row of m
processors. When the ith job is executed, it occupies a contiguous set of prox[i] processors
for time[i] seconds. A schedule for a set of jobs assigns each job an interval of processors
and a starting time, so that no processor works on more than one job at any time. The
makespan of a schedule is the time from the start to the finish of all jobs. Finally, the parallel
scheduling problem asks us to compute the schedule with the smallest possible makespan.

(a) Prove that the parallel scheduling problem is NP-hard.

(b) Give an algorithm that computes a 3-approximation of the minimum makespan of a
set of jobs in O(m log m) time. That is, if the minimummakespan is M , your algorithm
should compute a schedule with make-span at most 3M . You can assume that n is a
power of 2.

14. Consider the greedy algorithm for metric TSP: start at an arbitrary vertex u, and at each
step, travel to the closest unvisited vertex.

(a) Show that the greedy algorithm for metric TSP is an O(log n)-approximation, where
n is the number of vertices. [Hint: Argue that the kth least expensive edge in the tour
output by the greedy algorithm has weight at most OPT/(n − k + 1); try k = 1 and
k = 2 first.]

?(b) Show that the greedy algorithm for metric TSP is no better than an O(log n)-
approximation. That is, describe an infinite family of weighted graphs such that the
greedy algorithm returns a cycle whose weight is Ω(log n) times the optimal TSP tour.
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Jeder Genießende meint, dem Baume habe es an der Frucht gelegen;
aber ihm lag am Samen.
[Everyone who enjoys thinks that the fundamental thing about trees is the
fruit,
but in fact it is the seed.]

— Friedrich Wilhelm Nietzsche,
Vermischte Meinungen und Sprüche [Mixed Opinions and Maxims] (1879)

In view of all the deadly computer viruses that have been spreading lately,
Weekend Update would like to remind you:
When you link up to another computer,
you’re linking up to every computer that that computer has ever linked up to.

— Dennis Miller, “Saturday Night Live”, (c. 1985)

Anything that, in happening, causes itself to happen again, happens again.

— Douglas Adams (2005)

The Curling Stone slides; and, having slid,
Passes me toward thee on this Icy Grid,
If what’s reached is passed for’ll Crystals amid,
Th’Stone Reaches thee in its Eternal Skid.

— Iraj Kalantari (2007)
writing as “Harak A’Myomy (12th century),
translated by Walt Friz De Gradde (1897)”

Proof by Induction
Induction is a method for proving universally quantified propositions—statements about all
elements of a (usually infinite) set. Induction is also the single most useful tool for reasoning
about, developing, and analyzing algorithms. These notes give several examples of inductive
proofs, along with a standard boilerplate and some motivation to justify (and help you remember)
why induction works.

1 Prime Divisors: Proof by Smallest Counterexample

A divisor of a positive integer n is a positive integer p such that the ratio n/p is an integer. The
integer 1 is a divisor of every positive integer (because n/1= n), and every integer is a divisor of
itself (because n/n= 1). A proper divisor of n is any divisor of n other than n itself. A positive
integer is prime if it has exactly two divisors, which must be 1 and itself; equivalently; a number
is prime if and only if 1 is its only proper divisor. A positive integer is composite if it has more
than two divisors (or equivalently, more than one proper divisor). The integer 1 is neither prime
nor composite, because it has exactly one divisor, namely itself.

Let’s prove our first theorem:

Theorem 1. Every integer greater than 1 has a prime divisor.

The very first thing that you should notice, after reading just one word of the theorem, is that
this theorem is universally quantified—it’s a statement about all the elements of a set, namely,
the set of positive integers larger than 1. If we were forced at gunpoint to write this sentence
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using fancy logic notation, the first character would be the universal quantifier ∀, pronounced
‘for all’. Fortunately, that won’t be necessary.

There are only two ways to prove a universally quantified statement: directly or by contradic-
tion. Let’s say that again, louder: There are only two ways to prove a universally quantified
statement: directly or by contradiction. Here are the standard templates for these twomethods,
applied to Theorem 1:

Direct proof: Let n be an arbitrary integer greater than 1.

. . . blah blah blah . . .
Thus, n has at least one prime divisor. �

Proof by contradiction: For the sake of argument, assume there is an integer
greater than 1 with no prime divisor.
Let n be an arbitrary integer greater than 1 with no prime divisor.

. . . blah blah blah . . .
But that’s just silly. Our assumption must be incorrect. �

The shaded boxes . . . blah blah blah . . . indicate missing proof details (that you will fill in).
Most people usually find proofs by contradiction easier to discover than direct proofs, so let’s

try that first.

Proof by contradiction: For the sake of argument, assume there is an integer
greater than 1 with no prime divisor.

Let n be an arbitrary integer greater than 1 with no prime divisor.
Since n is a divisor of n, and n has no prime divisors, n cannot be prime.
Thus, n must have at least one divisor d such that 1< d < n.

Let d be an arbitrary divisor of n such that 1< d < n.
Since n has no prime divisors, d cannot be prime.
Thus, d has at least one divisor d ′ such that 1< d ′ < d.

Let d ′ be an arbitrary divisor of d such that 1< d ′ < d.
Because d/d ′ is an integer, n/d ′ = (n/d) · (d/d ′) is also an integer.
Thus, d ′ is also a divisor of n.
Since n has no prime divisors, d ′ cannot be prime.
Thus, d ′ has at least one divisor d such that 1< d< d ′.

Let d be an arbitrary divisor of d ′ such that 1< d< d ′.
Because d ′/d is an integer, n/d = (n/d ′) · (d ′/d) is also an integer.
Thus, d is also a divisor of n.
Since n has no prime divisors, d cannot be prime.

. . . blah HELP! blah I’M STUCK IN AN INFINITE LOOP! blah . . .
But that’s just silly. Our assumption must be incorrect. �

We seem to be stuck in an infinite loop, looking at smaller and smaller divisors d > d ′ > d>
· · ·, none of which are prime. But this loop can’t really be infinite. There are only n− 1 positive
integers smaller than n, so the proof must end after at most n− 1 iterations. But how do we turn
this observation into a formal proof? We need a single, self-contained proof for all integers n;
we’re not allowed to write longer proofs for bigger integers. The trick is to jump directly to the
smallest counterexample.
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Proof by smallest counterexample: For the sake of argument, assume that
there is an integer greater than 1 with no prime divisor.

Let n be the smallest integer greater than 1 with no prime divisor.
Since n is a divisor of n, and n has no prime divisors, n cannot be prime.
Thus, n has a divisor d such that 1< d < n.

Let d be a divisor of n such that 1< d < n.
Because n is the smallest counterexample, d has a prime divisor.

Let p be a prime divisor of d.
Because d/p is an integer, n/p = (n/d) · (d/p) is also an integer.
Thus, p is also a divisor of n.
But this contradicts our assumption that n has no prime divisors!

So our assumption must be incorrect. �

Hooray, our first proof! We’re done!
Um. . . well. . . no, we’re definitely not done. That’s a first draft up there, not a final polished

proof. We don’t write proofs just to convince ourselves; proofs are primarily a tool to convince
other people. (In particular, ‘other people’ includes the people grading your homeworks and
exams.) And while proofs by contradiction are usually easier to write, direct proofs are almost
always easier to read. So as a service to our audience (and our grade), let’s transform our
minimal-counterexample proof into a direct proof.

Let’s first rewrite the indirect proof slightly, to make the structure more apparent. First, we
break the assumption that n is the smallest counterexample into three simpler assumptions:
(1) n is an integer greater than 1; (2) n has no prime divisors; and (3) there are no smaller
counterexamples. Second, instead of dismissing the possibility than n is prime out of hand, we
include an explicit case analysis.

Proof by smallest counterexample: Let n be an arbitrary integer greater than 1.
For the sake of argument, suppose n has no prime divisor.
Assume that every integer k such that 1 < k < n has a prime divisor.
There are two cases to consider: Either n is prime, or n is composite.
• Suppose n is prime.

Then n is a prime divisor of n.
• Suppose n is composite.

Then n has a divisor d such that 1< d < n.
Let d be a divisor of n such that 1< d < n.
Because no counterexample is smaller than n, d has a prime divisor.
Let p be a prime divisor of d.
Because d/p is an integer, n/p = (n/d) · (d/p) is also an integer.
Thus, p is a prime divisor of n.

In each case, we conclude that n has a prime divisor.
But this contradicts our assumption that n has no prime divisors!
So our assumption must be incorrect. �

Now let’s look carefully at the structure of this proof. First, we assumed that the statement
we want to prove is false. Second, we proved that the statement we want to prove is true. Finally,
we concluded from the contradiction that our assumption that the statement we want to prove is
false is incorrect, so the statement we want to prove must be true.

But that’s just silly. Why do we need the first and third steps? After all, the second step is
a proof all by itself! Unfortunately, this redundant style of proof by contradiction is extremely
common, even in professional papers. Fortunately, it’s also very easy to avoid; just remove the
first and third steps!
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Proof by induction: Let n be an arbitrary integer greater than 1.
Assume that every integer k such that 1 < k < n has a prime divisor.
There are two cases to consider: Either n is prime or n is composite.
• First, suppose n is prime.

Then n is a prime divisor of n.
• Now suppose n is composite.

Then n has a divisor d such that 1< d < n.
Let d be a divisor of n such that 1< d < n.
Because no counterexample is smaller than n, d has a prime divisor.
Let p be a prime divisor of d.
Because d/p is an integer, n/p = (n/d) · (d/p) is also an integer.
Thus, p is a prime divisor of n.

In both cases, we conclude that n has a prime divisor. �

This style of proof is called induction.¹ The assumption that there are no counterexamples
smaller than n is called the induction hypothesis. The two cases of the proof have different
names. The first case, which we argue directly, is called the base case. The second case, which
actually uses the induction hypothesis, is called the inductive case. You may find it helpful to
actually label the induction hypothesis, the base case(s), and the inductive case(s) in your proof.

The following point cannot be emphasized enough: The only difference between a proof by
induction and a proof by smallest counterexample is the way we write down the argument. The
essential structure of the proofs are exactly the same. The core of our original indirect argument
is a proof of the following implication for all n:

n has no prime divisor =⇒ some number smaller than n has no prime divisor.

The core of our direct proof is the following logically equivalent implication:

every number smaller than n has a prime divisor =⇒ n has a prime divisor

The left side of this implication is just the induction hypothesis.
The proofs we’ve been playing with have been very careful and explicit; until you’re

comfortable writing your own proofs, you should be equally careful. A more mature proof-writer
might express the same proof more succinctly as follows:

Proof by induction: Let n be an arbitrary integer greater than 1. Assume that
every integer k such that 1 < k < n has a prime divisor. If n is prime, then n is a
prime divisor of n. On the other hand, if n is composite, then n has a proper divisor;
call it d. The induction hypothesis implies that d has a prime divisor p. The integer p
is also a divisor of n. �

A proof in this more succinct form is still worth full credit, provided the induction hypothesis is
written explicitly and the case analysis is obviously exhaustive.

A professional mathematician would write the proof even more tersely:

Proof: Induction. �

And you can write that tersely, too, when you’re a professional mathematician.

¹Many authors use the high-falutin’ name the principle of mathematical induction, to distinguish it from inductive
reasoning, the informal process by which we conclude that pigs can’t whistle, horses can’t fly, and NP-hard problems
cannot be solved in polynomial time. We already know that every proof is mathematical (and arguably, all mathematics
is proof), so as a description of a proof technique, the adjective ‘mathematical’ is simply redundant.
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2 The Axiom of Induction

Why does this work? Well, let’s step back to the original proof by smallest counterexample.
How do we know that a smallest counterexample exists? This seems rather obvious, but in fact,
it’s impossible to prove without using the following seemingly trivial observation, called the
Well-Ordering Principle:

Every non-empty set of positive integers has a smallest element.

Every set X of positive integers is the set of counterexamples to some proposition P(n) (specifically,
the proposition n 6∈ X ). Thus, the Well-Ordering Principle can be rewritten as follows:

If the proposition P(n) is false for some positive integer n,
then

the proposition (P(1)∧ P(2)∧ · · · ∧ P(n− 1)∧¬P(n)) is true for some positive integer n.

Equivalently, in English:

If some statement about positive integers has a counterexample,
then

that statement has a smallest counterexample.

We can write this implication in contrapositive form as follows:

If the proposition (P(1)∧ P(2)∧ · · · ∧ P(n− 1)∧¬P(n)) is false for every positive integer n,
then

the proposition P(n) is true for every positive integer n.

or less formally,

If some statement about positive integers has no smallest counterexample,
then

that statement is true for all positive integers.

Finally, let’s rewrite the first half of this statement in a logically equivalent form, by replacing
¬(p ∧¬q) with p→ q.

If the implication (P(1)∧ P(2)∧ · · · ∧ P(n− 1))→ P(n) is true for every positive integer n,
then

the proposition P(n) is true for every positive integer n.

This formulation is usually called the Axiom of Induction. In a proof by induction that P(n)
holds for all n, the conjunction (P(1)∧ P(2)∧ · · · ∧ P(n− 1)) is the inductive hypothesis.

A proof by induction for the proposition “P(n) for every positive integer n” is nothing but a
direct proof of the more complex proposition “(P(1)∧ P(2)∧ · · · ∧ P(n− 1))→ P(n) for every
positive integer n”. Because it’s a direct proof, it must start by considering an arbitrary positive
integer, which we might as well call n. Then, to prove the implication, we explicitly assume the
hypothesis (P(1)∧ P(2)∧ · · · ∧ P(n− 1)) and then prove the conclusion P(n) for that particular
value of n. The proof almost always breaks down into two or more cases, each of which may or
may not actually use the inductive hypothesis.

Here is the boilerplate for every induction proof. Read it. Learn it. Use it.
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Theorem: P(n) for every positive integer n.

Proof by induction: Let n be an arbitrary positive integer.

Assume inductively that P(k) is true for every positive integer k < n.

There are several cases to consider:

• Suppose n is . . . blah blah blah . . .
Then P(n) is true.

• Suppose n is . . . blah blah blah . . .

The inductive hypothesis implies that . . . blah blah blah . . .
Thus, P(n) is true.

In each case, we conclude that P(n) is true. �

Some textbooks distinguish between several different types of induction: ‘regular’ induction
versus ‘strong’ induction versus ‘complete’ induction versus ‘structural’ induction versus ‘transfinite’
induction versus ‘Noetherian’ induction. Distinguishing between these different types of induction
is pointless hairsplitting; I won’t even define them. Every ‘different type’ of induction proof is
provably equivalent to a proof by smallest counterexample. (Later we will consider inductive
proofs of statements about partially ordered sets other than the positive integers, for which
‘smallest’ has a different meaning, but this difference will prove to be inconsequential.)

3 Stamps and Recursion

Let’s move on to a completely different example.

Theorem 2. Given an unlimited supply of 5-cent stamps and 7-cent stamps, we can make any
amount of postage larger than 23 cents.

We could prove this by contradiction, using a smallest-counterexample argument, but let’s
aim for a direct proof by induction this time. We start by writing down the induction boilerplate,
using the standard induction hypothesis: There is no counterexample smaller than n.

Proof by induction: Let n be an arbitrary integer greater than 23.
Assume that for any integer k such that 23 < k < n, we can make k cents in

postage.

. . . blah blah blah . . .
Thus, we can make n cents in postage. �

How do we fill in the details? One approach is to think about what you would actually do if you
really had to make n cents in postage. For example, you might start with a 5-cent stamp, and
then try to make n−5 cents in postage. The inductive hypothesis says you can make any amount
of postage bigger than 23 cents and less than n cents. So if n− 5> 23, then you already know
that you can make n− 5 cents in postage! (You don’t know how to make n− 5 cents in postage,
but so what?)

Let’s write this observation into our proof as two separate cases: either n> 28 (where our
approach works) or n≤ 28 (where we don’t know what to do yet).
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Proof by induction: Let n be an arbitrary integer greater than 23.
Assume that for any integer k such that 23 < k < n, we can make k cents in

postage.
There are two cases to consider: Either n> 28 or n≤ 28.
• Suppose n> 28.

Then 23< n− 5< n.
Thus, the induction hypothesis implies that we can make n− 5 cents in
postage.
Adding one more 5-cent stamp gives us n cents in postage.

• Now suppose n≤ 28.

. . . blah blah blah . . .
In both cases, we can make n cents in postage. �

What do we do in the second case? Fortunately, this case considers only five integers: 24,
25, 26, 27, and 28. There might be a clever way to solve all five cases at once, but why bother?
They’re small enough that we can find a solution by brute force in less than a minute. To make
the proof more readable, I’ll unfold the nested cases and list them in increasing order.

Proof by induction: Let n be an arbitrary integer greater than 23.
Assume that for any integer k such that 23 < k < n, we can make k cents in

postage.
There are six cases to consider: n = 24, n = 25, n = 26, n = 27, n = 28, and

n> 28.
• 24= 7+ 7+ 5+ 5
• 25= 5+ 5+ 5+ 5+ 5
• 26= 7+ 7+ 7+ 5
• 27= 7+ 5+ 5+ 5+ 5
• 28= 7+ 7+ 7+ 7
• Suppose n> 28.

Then 23< n− 5< n.
Thus, the induction hypothesis implies that we can make n− 5 cents in
postage.
Adding one more 5-cent stamp gives us n cents in postage.

In all cases, we can make n cents in postage. �

Voilà! An induction proof! More importantly, we now have a recipe for discovering induction
proofs.

1. Write down the boilerplate. Write down the universal invocation (‘Let n be an arbi-
trary. . . ’), the induction hypothesis, and the conclusion, with enough blank space for the
remaining details. Don’t be clever. Don’t even think. Just write. This is the easy part. To
emphasize the common structure, the boilerplate will be indicated in green for the rest of
this handout.

2. Think big. Don’t think how to solve the problem all the way down to the ground; you’ll
only make yourself dizzy. Don’t think about piddly little numbers like 1 or 5 or 10100.
Instead, think about how to reduce the proof about some absfoluckingutely ginormous value
of n to a proof about some other number(s) smaller than n. This is the hard part.

3. Look for holes. Look for cases where your inductive argument breaks down. Solve those
cases directly. Don’t be clever here; be stupid but thorough.
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4. Rewrite everything. Your first proof is a rough draft. Rewrite the proof so that your
argument is easier for your (unknown?) reader to follow.

The cases in an inductive proof always fall into two categories. Any case that uses the inductive
hypothesis is called an inductive case. Any case that does not use the inductive hypothesis is
called a base case. Typically, but not always, base cases consider a few small values of n, and the
inductive cases consider everything else. Induction proofs are usually clearer if we present the
base cases first, but I find it much easier to discover the inductive cases first. In other words, I
recommend writing induction proofs backwards.

Well-written induction proofs very closely resemble well-written recursive programs. We
computer scientists use induction primarily to reason about recursion, so maintaining this
resemblance is extremely useful—we only have to keep one mental pattern, called ‘induction’
when we’re writing proofs and ‘recursion’ when we’re writing code. Consider the following C
and Scheme programs for making n cents in postage:

void postage(int n)
{

assert(n>23);
switch ($n$)
{

case 24: printf("7+7+5+5"); break;
case 25: printf("5+5+5+5+5"); break;
case 26: printf("7+7+7+5"); break;
case 27: printf("7+5+5+5+5"); break;
case 28: printf("7+7+7+7"); break;
default:

postage(n-5);
printf("+5");

}
}

(define (postage n)
(cond ((= n 24) (5 5 7 7))

((= n 25) (5 5 5 5 5))
((= n 26) (5 7 7 7))
((= n 27) (5 5 5 5 7))
((= n 28) (7 7 7 7))
((> n 28) (cons 5 (postage (- n 5))))))

The C program begins by declaring the input parameter (“Let n be an arbitrary integer. . . ")
and asserting its range (“. . . greater than 23."). (Scheme programs don’t have type declarations.)
In both languages, the code branches into six cases: five that are solved directly, plus one that is
handled by invoking the inductive hypothesis recursively.

4 More on Prime Divisors

Before we move on to different examples, let’s prove another fact about prime numbers:

Theorem 3. Every positive integer is a product of prime numbers.
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First, let’s write down the boilerplate. Hey! I saw that! You were thinking, weren’t you? Stop
that this instant! Don’t make me turn the car around. First we write down the boilerplate.

Proof by induction: Let n be an arbitrary positive integer.

Assume that any positive integer k < n is a product of prime numbers.

There are some cases to consider:

. . . blah blah blah . . .
Thus, n is a product of prime numbers. �

Now let’s think about how you would actually factor a positive integer n into primes. There
are a couple of different options here. One possibility is to find a prime divisor p of n, as
guaranteed by Theorem 1, and recursively factor the integer n/p. This argument works as long
as n≥ 2, but what about n= 1? The answer is simple: 1 is the product of the empty set of primes.
What else could it be?

Proof by induction: Let n be an arbitrary positive integer.

Assume that any positive integer k < n is a product of prime numbers.

There are two cases to consider: either n= 1 or n≥ 2.

• If n= 1, then n is the product of the elements of the empty set, each of which
is prime, green, sparkly, vanilla, and hemophagic.

• Suppose n > 1. Let p be a prime divisor of n, as guaranteed by Theorem 2.
The inductive hypothesis implies that the positive integer n/p is a product of
primes, and clearly n= (n/p) · p.

In both cases, n is a product of prime numbers. �

But an even simpler method is to factor n into any two proper divisors, and recursively
handle them both. This method works as long as n is composite, since otherwise there is no way
to factor n into smaller integers. Thus, we need to consider prime numbers separately, as well as
the special case 1.

Proof by induction: Let n be an arbitrary positive integer.

Assume that any positive integer k < n is a product of prime numbers.

There are three cases to consider: either n= 1, n is prime, or n is composite.

• If n= 1, then n is the product of the elements of the empty set, each of which
is prime, red, broody, chocolate, and lycanthropic.

• If n is prime, then n is the product of one prime number, namely n.

• Suppose n is composite. Let d be any proper divisor of n (guaranteed by the
definition of ‘composite’), and let m= n/d. Since both d and m are positive
integers smaller than n, the inductive hypothesis implies that d and m are
both products of prime numbers. We clearly have n= d ·m.

In both cases, n is a product of prime numbers. �

5 Summations

Here’s an easy one.

Theorem 4.
n∑

i=0

3i =
3n+1 − 1

2
for every non-negative integer n.
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First let’s write down the induction boilerplate, which empty space for the details we’ll fill in
later.

Proof by induction: Let n be an arbitrary non-negative integer.

Assume inductively that

k∑
i=0

3i =
3k+1 − 1

2
for every non-negative integer k < n.

There are some number of cases to consider:

. . . blah blah blah . . .

We conclude that

n∑
i=0

3i =
3n+1 − 1

2
. �

Now imagine you are part of an infinitely long assembly line of mathematical provers, each
assigned to a particular non-negative integer. Your task is to prove this theorem for the integer
8675310. The regulations of the Mathematical Provers Union require you not to think about
any other integer but your own. The assembly line starts with the Senior Master Prover, who
proves the theorem for the case n= 0. Next is the Assistant Senior Master Prover, who proves
the theorem for n = 1. After him is the Assistant Assistant Senior Master Prover, who proves
the theorem for n= 2. Then the Assistant Assistant Assistant Senior Master Prover proves the
theorem for n= 3. As the work proceeds, you start to get more and more bored. You attempt
strike up a conversation with Jenny, the prover to your left, but she ignores you, preferring to
focus on the proof. Eventually, you fall into a deep, dreamless sleep. An undetermined time later,
Jenny wakes you up by shouting, “Hey, doofus! It’s your turn!” As you look around, bleary-eyed,
you realize that Jenny and everyone to your left has finished their proofs, and that everyone is
waiting for you to finish yours. What do you do?

What you do, after wiping the drool off your chin, is stop and think for a moment about what
you’re trying to prove. What does that

∑
notation actually mean? Intuitively, we can expand the

notation as follows:
8675310∑

i=0

3i = 30 + 31 + · · ·+ 38675309 + 38675310.

Notice that this expression also contains the summation that Jenny just finished proving something
about:

8675309∑
i=0

3i = 30 + 31 + · · ·+ 38675308 + 38675309.

Putting these two expressions together gives us the following identity:

8675310∑
i=0

3i =
8675309∑

i=0

3i + 38675310

In fact, this recursive identity is the definition of
∑
. Jenny just proved that the summation on

the right is equal to (38675310 − 1)/2, so we can plug that into the right side of our equation:

8675310∑
i=0

3i =
8675309∑

i=0

3i + 38675310 =
38675310 − 1

2
+ 38675310.

And it’s all downhill from here. After a little bit of algebra, you simplify the right side of
this equation to (38675311 − 1)/2, wake up the prover to your right, and start planning your
well-earned vacation.
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Let’s insert this argument into our boilerplate, only using a generic ‘big’ integer n instead of
the specific integer 8675310:

Proof by induction: Let n be an arbitrary non-negative integer.

Assume inductively that

k∑
i=0

3i =
3k+1 − 1

2
for every non-negative integer k < n.

There are two cases to consider: Either n is big or n is small .

• If n is big , then

n∑
i=0

3i=
n−1∑
i=0

3i + 3n [definition of
∑

]

=
3n − 1

2
+ 3n [induction hypothesis, with k = n− 1]

=
3n+1 − 1

2
[algebra]

• On the other hand, if n is small , then . . . blah blah blah . . .

In both cases, we conclude that

n∑
i=0

3i =
3n+1 − 1

2
. �

Now, how big is ‘big’, and what do we do when n is ‘small’? To answer the first question,
let’s look at where our existing inductive argument breaks down. In order to apply the induction
hypothesis when k = n− 1, the integer n− 1 must be non-negative; equivalently, n must be
positive. But that’s the only assumption we need: The only case we missed is n = 0. Fortunately,
this case is easy to handle directly.

Proof by induction: Let n be an arbitrary non-negative integer.

Assume inductively that

k∑
i=0

3i =
3k+1 − 1

2
for every non-negative integer k < n.

There are two cases to consider: Either n= 0 or n≥ 1.

• If n= 0, then

n∑
i=0

3i = 30 = 1, and
3n+1 − 1

2
=

31 − 1
2
= 1.

• On the other hand, if n≥ 1, then

n∑
i=0

3i=
n−1∑
i=0

3i + 3n [definition of
∑

]

=
3n − 1

2
+ 3n [induction hypothesis, with k = n− 1]

=
3n+1 − 1

2
[algebra]

In both cases, we conclude that

n∑
i=0

3i =
3n+1 − 1

2
. �

Here is the same proof, written more tersely; the non-standard symbol
IH
== indicates the use of

the induction hypothesis.
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Proof by induction: Let n be an arbitrary non-negative integer, and assume

inductively that
∑k

i=0 3i = (3k+1 − 1)/2 for every non-negative integer k < n. The
base case n= 0 is trivial, and for any n≥ 1, we have

n∑
i=0

3i =
n−1∑
i=0

3i + 3n IH
==

3n − 1
2
+ 3n =

3n+1 − 1
2

.

�

This is not the only way to prove this theorem by induction; here is another:

Proof by induction: Let n be an arbitrary non-negative integer, and assume

inductively that
∑k

i=0 3i = (3k+1 − 1)/2 for every non-negative integer k < n. The
base case n= 0 is trivial, and for any n≥ 1, we have

n∑
i=0

3i = 30 +
n∑

i=1

3i = 30 + 3 ·
n−1∑
i=0

3i IH
== 30 + 3 · 3

n − 1
2

=
3n+1 − 1

2
.

�

In the remainder of these notes, I’ll give several more examples of induction proofs. In some
cases, I give multiple proofs for the same theorem. Unlike the earlier examples, I will not describe
the thought process that lead to the proof; in each case, I followed the basic outline on page 7.

6 Tiling with Triominos

The next theorem is about tiling a square checkerboard with triominos. A triomino is a shape
composed of three squares meeting in an L-shape. Our goal is to cover as much of a 2n × 2n grid
with triominos as possible, without any two triominos overlapping, and with all triominos inside
the square. We can’t cover every square in the grid—the number of squares is 4n, which is not a
multiple of 3—but we can cover all but one square. In fact, as the next theorem shows, we can
choose any square to be the one we don’t want to cover.

Almost tiling a 16× 16 checkerboard with triominos.

Theorem 5. For any non-negative integer n, the 2n × 2n checkerboard with any square removed
can be tiled using L-shaped triominos.

Here are two inductive proofs for this theorem, one ‘top down’, the other ‘bottom up’.

12



Algorithms Appendix I: Proof by Induction [Fa’13]

Proof by top-down induction: Let n be an arbitrary non-negative integer. As-
sume that for any non-negative integer k < n, the 2k × 2k grid with any square
removed can be tiled using triominos. There are two cases to consider: Either n= 0
or n≥ 1.

• The 20 × 20 grid has a single square, so removing one square leaves nothing,
which we can tile with zero triominos.

• Suppose n≥ 1. In this case, the 2n × 2n grid can be divided into four smaller
2n−1×2n−1 grids. Without loss of generality, suppose the deleted square is in
the upper right quarter. With a single L-shaped triomino at the center of the
board, we can cover one square in each of the other three quadrants. The
induction hypothesis implies that we can tile each of the quadrants, minus
one square.

In both cases, we conclude that the 2n × 2n grid with any square removed can be
tiled with triominos. �

Top-down inductive proof of Theorem 4.

Proof by bottom-up induction: Let n be an arbitrary non-negative integer. As-
sume that for any non-negative integer k < n, the 2k × 2k grid with any square
removed can be tiled using triominos. There are two cases to consider: Either n= 0
or n≥ 1.

• The 20 × 20 grid has a single square, so removing one square leaves nothing,
which we can tile with zero triominos.

• Suppose n ≥ 1. Then by clustering the squares into 2 × 2 blocks, we can
transform any 2n × 2n grid into a 2n−1 × 2n−1 grid. Suppose square (i, j) has
been removed from the 2n×2n grid. The induction hypothesis implies that the
2n−1×2n−1 grid with block (bi/2c, b j/2c) removed can be tiled with double-size
triominos. Each double-size triomono can be tiled with four smaller triominos,
and block (bi/2c, b j/2c) with square (i, j) removed is another triomino.

In both cases, we conclude that the 2n × 2n grid with any square removed can be
tiled with triominos. �

Second proof of Theorem 4.

7 Binary Numbers Exist

Theorem 6. Every non-negative integer can be written as the sum of distinct powers of 2.

13



Algorithms Appendix I: Proof by Induction [Fa’13]

Intuitively, this theorem states that every number can be represented in binary. (That’s not
a proof, by the way; it’s just a restatement of the theorem.) I’ll present four distinct inductive
proofs for this theorem. The first two are standard, by-the-book induction proofs.

Proof by top-down induction: Let n be an arbitrary non-negative integer. As-
sume that any non-negative integer less than n can be written as the sum of distinct
powers of 2. There are two cases to consider: Either n= 0 or n≥ 1.

• The base case n= 0 is trivial—the elements of the empty set are distinct and
sum to zero.

• Suppose n ≥ 1. Let k be the largest integer such that 2k ≤ n, and let
m = n − 2k. Observe that m < 2k+1 − 2k = 2k. Because 0 ≤ m < n, the
inductive hypothesis implies that m can be written as the sum of distinct
powers of 2. Moreover, in the summation for m, each power of 2 is at most m,
and therefore less than 2k. Thus, m+ 2k is the sum of distinct powers of 2.

In either case, we conclude that n can be written as the sum of distinct powers
of 2. �

Proof by bottom-up induction: Let n be an arbitrary non-negative integer. As-
sume that any non-negative integer less than n can be written as the sum of distinct
powers of 2. There are two cases to consider: Either n= 0 or n≥ 1.

• The base case n= 0 is trivial—the elements of the empty set are distinct and
sum to zero.

• Suppose n ≥ 1, and let m = bn/2c. Because 0 ≤ m < n, the inductive
hypothesis implies that m can be written as the sum of distinct powers of 2.
Thus, 2m can also be written as the sum of distinct powers of 2, each of which
is greater than 20. If n is even, then n = 2m and we are done; otherwise,
n= 2m+ 20 is the the sum of distinct powers of 2.

In either case, we conclude that n can be written as the sum of distinct powers
of 2. �

The third proof deviates slightly from the induction boilerplate. At the top level, this proof
doesn’t actually use induction at all! However, a key step requires its own (straightforward)
inductive proof.

14



Algorithms Appendix I: Proof by Induction [Fa’13]

Proof by algorithm: Let n be an arbitrary non-negative integer. Let S be a multiset
containing n copies of 20. Modify S by running the following algorithm:

while S has more than one copy of any element 2i

Remove two copies of 2i from S
Insert one copy of 2i+1 into S

Each iteration of this algorithm reduces the cardinality of S by 1, so the algorithm
must eventually halt. When the algorithm halts, the elements of S are distinct. We
claim that just after each iteration of the while loop, the elements of S sum to n.

Proof by induction: Consider an arbitrary iteration of the loop. Assume
inductively that just after each previous iteration, the elements of S sum
to n. Before any iterations of the loop, the elements of S sum to n by
definition. The induction hypothesis implies that just before the current
iteration begins, the elements of S sum to n. The loop replaces two
copies of some number 2i with their sum 2i+1, leaving the total sum of S
unchanged. Thus, when the iteration ends, the elements of S sum to n. �

Thus, when the algorithm halts, the elements of S are distinct powers of 2 that sum
to n. We conclude that n can be written as the sum of distinct powers of 2. �

The fourth proof uses so-called ‘weak’ induction, where the inductive hypothesis can only be
applied at n− 1. Not surprisingly, tying all but one hand behind our backs makes the resulting
proof longer, more complicated, and harder to read. It doesn’t help that the algorithm used in
the proof is overly specific. Nevertheless, this is the first approach that occurs to most students
who have not truly accepted the Recursion Fairy into their hearts.

15
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Proof by baby-step induction: Let n be an arbitrary non-negative integer. As-
sume that any non-negative integer less than n can be written as the sum of distinct
powers of 2. There are two cases to consider: Either n= 0 or n≥ 1.

• The base case n= 0 is trivial—the elements of the empty set are distinct and
sum to zero.

• Suppose n≥ 1. The inductive hypothesis implies that n− 1 can be written as
the sum of distinct powers of 2. Thus, n can be written as the sum of powers
of 2, which are distinct except possibly for two copies of 20. Let S be this
multiset of powers of 2.

Now consider the following algorithm:

i← 0
while S has more than one copy of 2i

Remove two copies of 2i from S
Insert one copy of 2i+1 into S
i← i + 1

Each iteration of this algorithm reduces the cardinality of S by 1, so the
algorithm must eventually halt. We claim that for every non-negative integer
i, the following invariants are satisfied after the ith iteration of the while loop
(or before the algorithm starts if i = 0):

– The elements of S sum to n.

Proof by induction: Let i be an arbitrary non-negative integer. Assume
that for any non-negative integer j ≤ i, after the jth iteration of the while
loop, the elements of S sum to n. If i = 0, the elements of S sum to n by
definition of S. Otherwise, the induction hypothesis implies that just before
the ith iteration, the elements of S sum to n; the ith iteration replaces two
copies of 2i with 2i+1, leaving the sum unchanged. �

– The elements in S are distinct, except possibly for two copies of 2i .

Proof by induction: Let i be an arbitrary non-negative integer. Assume
that for any non-negative integer j ≤ i, after the jth iteration of the
while loop, the elements of S are distinct except possibly for two copies
of 2 j . If i = 0, the invariant holds by definition of S. So suppose i > 0.
The induction hypothesis implies that just before the ith iteration, the
elements of S are distinct except possibly for two copies of 2i . If there
are two copies of 2i , the algorithm replaces them both with 2i+1, and the
invariant is established; otherwise, the algorithm halts, and the invariant
is again established. �

The second invariant implies that when the algorithm halts, the elements of
S are distinct.

In either case, we conclude that n can be written as the sum of distinct powers of
2. �

Repeat after me: “Doctor! Doctor! It hurts when I do this!”

8 Irrational Numbers Exist

Theorem 7.
p

2 is irrational.
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Proof: I will prove that p2 6= 2q2 (and thus p/q 6= p2) for all positive integers p
and q.

Let p and q be arbitrary positive integers. Assume that for any positive integers
i < p and j < q, we have i2 6= 2 j2. Let i = bp/2c and j = bq/2c. There are three
cases to consider:

• Suppose p is odd. Then p2 = (2i + 1)2 = 4i2 + 4i + 1 is odd, but 2q2 is even.

• Suppose p is even and q is odd. Then p2 = 4i2 is divisible by 4, but 2q2 =
2(2 j + 1)2 = 4(2 j2 + 2 j) + 2 is not divisible by 4.

• Finally, suppose p and q are both even. The induction hypothesis implies that
i2 6= 2 j2. Thus, p2 = 4i2 6= 8 j2 = 2q2.

In every case, we conclude that p2 6= 2q2. �

This proof is usually presented as a proof by infinite descent, which is just another form of
proof by smallest counterexample. Notice that the induction hypothesis assumed that both p and
q were as small as possible. Notice also that the ‘base cases’ included every pair of integers p and
q where at least one of the integers is odd.

9 Fibonacci Parity

The Fibonacci numbers 0, 1,1, 2,3, 5, 8, 13, 21,34, 55, 89, 144, . . . are recursively defined as
follows:

Fn =





0 if n= 0

1 if n= 1

Fn−1 + Fn−2 if n≥ 2

Theorem 8. For all non-negative integers n, Fn is even if and only if n is divisible by 3.

Proof: Let n be an arbitrary non-negative integer. Assume that for all non-negative
integers k < n, Fk is even if and only if n is divisible by 3. There are three cases to
consider: n= 0, n= 1, and n≥ 2.

• If n= 0, then n is divisible by 3, and Fn = 0 is even.

• If n= 1, then n is not divisible by 3, and Fn = 1 is odd.

• If n ≥ 2, there are two subcases to consider: Either n is divisible by 3, or it
isn’t.

– Suppose n is divisible by 3. Then neither n− 1 nor n− 2 is divisible by
3. Thus, the inductive hypothesis implies that both Fn−1 and Fn−2 are
odd. So Fn is the sum of two odd numbers, and is therefore even.

– Suppose n is not divisible by 3. Then exactly one of the numbers n− 1
and n− 2 is divisible by 3. Thus, the inductive hypothesis implies that
exactly one of the numbers Fn−1 and Fn−2 is even, and the other is
odd. So Fn is the sum of an even number and an odd number, and is
therefore odd.

In all cases, Fn is even if and only if n is divisible by 3. �
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10 Recursive Functions

Theorem 9. Suppose the function F : N → N is defined recursively by setting F(0) = 0 and
F(n) = 1 + F(bn/2c) for every positive integer n. Then for every positive integer n, we have
F(n) = 1+ blog2 nc.

Proof: Let n be an arbitrary positive integer. Assume that F(k) = 1+ blog2 kc for
every positive integer k < n. There are two cases to consider: Either n= 1 or n≥ 2.

• Suppose n = 1. Then F(n) = F(1) = 1 + F(b1/2c) = 1 + F(0) = 1 and
1+ blog2 nc= 1+ blog2 1c= 1+ b0c= 1.

• Suppose n ≥ 2. Because 1 ≤ bn/2c < n, the induction hypothesis implies
that F(bn/2c) = 1 + blog2bn/2cc. The definition of F(n) now implies that
F(n) = 1+ F(bn/2c) = 2+ blog2bn/2cc.
Now there are two subcases to consider: n is either even or odd.

– If n is even, then bn/2c= n/2, which implies

F(n) = 2+ blog2bn/2cc
= 2+ blog2(n/2)c
= 2+ b(log2 n)− 1c
= 2+ blog2 nc − 1

= 1+ blog2 nc.

– If n is odd, then bn/2c= (n− 1)/2, which implies

F(n) = 2+ blog2bn/2cc
= 2+ blog2((n− 1)/2)c
= 1+ blog2(n− 1)c
= 1+ blog2 nc

by the algebra in the even case. Because n> 1 and n is odd, n cannot
be a power of 2; thus, blog2 nc= blog2(n− 1)c.

In all cases, we conclude that F(n) = 1+ blog2 nc. �

11 Trees

Recall that a tree is a connected undirected graph with no cycles. A subtree of a tree T is a
connected subgraph of T ; a proper subtree is any tree except T itself.

Theorem 10. In every tree, the number of vertices is one more than the number of edges.

This one is actually pretty easy to prove directly from the definition of ‘tree’: a connected acyclic
graph.

Proof: Let T be an arbitrary tree. Choose an arbitrary vertex v of T to be the root,
and direct every edge of T outward from v. Because T is connected, every node
except v has at least one edge directed into it. Because T is acyclic, every node has
at most one edge directed into it, and no edge is directed into v. Thus, for every
node x 6= v, there is exactly one edge directed into x . We conclude that the number
of edges is one less than the number of nodes. �
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But we can prove this theorem by induction as well, in several different ways. Each inductive
proof is structured around a different recursive definition of ‘tree’. First, a tree is either a single
node, or two trees joined by an edge.

Proof: Let T be an arbitrary tree. Assume that in any proper subtree of T , the
number of vertices is one more than the number of edges. There are two cases to
consider: Either T has one vertex, or T has more than one vertex.

• If T has one vertex, then it has no edges.

• Suppose T has more than one vertex. Because T is connected, every pair of
vertices is joined by a path. Thus, T must contain at least one edge. Let e be
an arbitrary edge of T , and consider the graph T \ e obtained by deleting e
from T .

Because T is acyclic, there is no path in T \ e between the endpoints of e.
Thus, T has at least two connected components. On the other hand, because
T is connected, T \ e has at most two connected components. Thus, T \ e
has exactly two connected components; call them A and B.

Because T is acyclic, subgraphs A and B are also acyclic. Thus, A and
B are subtrees of T , and therefore the induction hypothesis implies that
|E(A)|= |V (A)| − 1 and |E(B)|= |V (B)| − 1.

Because A and B do not share any vertices or edges, we have |V (T )| =
|V (A)|+ |V (B)| and |E(T )|= |E(A)|+ |E(B)|+ 1.

Simple algebra now implies that |E(T )|= |V (T )| − 1.

In both cases, we conclude that the number of vertices in T is one more than the
number of edges in T . �

Second, a tree is a single node connected by edges to a finite set of trees.

Proof: Let T be an arbitrary tree. Assume that in any proper subtree of T , the
number of vertices is one more than the number of edges. There are two cases to
consider: Either T has one vertex, or T has more than one vertex.

• If T has one vertex, then it has no edges.

• Suppose T has more than one vertex. Let v be an arbitrary vertex of T , and
let d be the degree of v. Delete v and all its incident edges from T to obtain
a new graph G. This graph has exactly d connected components; call them
G1, G2, . . . , Gd . Because T is acyclic, every subgraph of T is acyclic. Thus,
every subgraph Gi is a proper subtree of G. So the induction hypothesis
implies that |E(Gi)|= |V (Gi)| − 1 for each i. We conclude that

|E(T )| = d+
d∑

i=1

|E(Gi)| = d+
d∑

i=1

(|V (Gi)|−1) =
d∑

i=1

|V (Gi)| = |V (T )|−1.

In both cases, we conclude that the number of vertices in T is one more than the
number of edges in T . �

But you should never attempt to argue like this:

Not a Proof: The theorem is clearly true for the 1-node tree. So let T be an
arbitrary tree with at least two nodes. Assume inductively that the number of
vertices in T is one more than the number of edges in T . Suppose we add one more
leaf to T to get a new tree T ′. This new tree has one more vertex than T and one
more edge than T . Thus, the number of vertices in T ′ is one more than the number
of edges in T ′. �
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This is not a proof. Every sentence is true, and the connecting logic is correct, but it does not
imply the theorem, because it doesn’t explicitly consider all possible trees. Why should the reader
believe that their favorite tree can be recursively constructed by adding leaves to a 1-node tree?
It’s true, of course, but that argument doesn’t prove it. Remember: There are only two ways to
prove any universally quantified statement: Directly (“Let T be an arbitrary tree. . . ") or by
contradiction (“Suppose some tree T doesn’t. . . ").

Here is a correct inductive proof using the same underlying idea. In this proof, I don’t have to
prove that the proof considers arbitrary trees; it says so right there on the first line! As usual, the
proof very strongly resembles a recursive algorithm, including a subroutine to find a leaf.

Proof: Let T be an arbitrary tree. Assume that in any proper subtree of T , the
number of vertices is one more than the number of edges. There are two cases to
consider: Either T has one vertex, or T has more than one vertex.

• If T has one vertex, then it has no edges.

• Otherwise, T must have at least one vertex of degree 1, otherwise known as
a leaf.

Proof: Consider a walk through the graph T that starts at an arbi-
trary vertex and continues as long as possible without repeating
any edge. The walk can never visit the same vertex more than
once, because T is acyclic. Whenever the walk visits a vertex of
degree at least 2, it can continue further, because that vertex has
at least one unvisited edge. But the walk must eventually end,
because T is finite. Thus, the walk must eventually reach a vertex
of degree 1. �

Let ` be an arbitrary leaf of T , and let T ′ be the tree obtained by deleting `
from T . Then we have the identity

|E(T )| = |E(T ′)|+ 1 = |V (T ′)| = |V (T )| − 1,

where the first and third equalities follow from the definition of T ′, and the
second equality follows from the inductive hypothesis.

In both cases, we conclude that the number of vertices in T is one more than the
number of edges in T . �

Exercises

1. Prove that given an unlimited supply of 6-cent coins, 10-cent coins, and 15-cent coins, one
can make any amount of change larger than 29 cents.

2. Prove that
n∑

i=0

r i =
1− rn+1

1− r
for every non-negative integer n and every real number r 6= 1.

3. Prove that

� n∑
i=0

i

�2

=
n∑

i=0

i3 for every non-negative integer n.

4. Recall the standard recursive definition of the Fibonacci numbers: F0 = 0, F1 = 1, and
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Fn = Fn−1 + Fn−2 for all n≥ 2. Prove the following identities for all non-negative integers
n and m.

(a)
n∑

i=0
Fi = Fn+2 − 1

(b) F2
n − Fn+1Fn−1 = (−1)n+1

?(c) If n is an integer multiple of m, then Fn is an integer multiple of Fm.

5. Prove that every integer (positive, negative, or zero) can be written in the form
∑

i ±3i,
where the exponents i are distinct non-negative integers. For example:

42= 34 − 33 − 32 − 31

25= 33 − 31 + 30

17= 33 − 32 − 30

6. Prove that every integer (positive, negative, or zero) can be written in the form
∑

i(−2)i ,
where the exponents i are distinct non-negative integers. For example:

42= (−2)6 + (−2)5 + (−2)4 + (−2)0

25= (−2)6 + (−2)5 + (−2)3 + (−2)0

17= (−2)4 + (−2)0

7. (a) Prove that every non-negative integer can be written as the sum of distinct, non-
consecutive Fibonacci numbers. That is, if the Fibonacci number Fi appears in the
sum, it appears exactly once, and its neighbors Fi−1 and Fi+1 do not appear at all. For
example:

17= F7 + F4 + F2

42= F9 + F6

54= F9 + F7 + F5 + F3

(b) Prove that every positive integer can be written as the sum of distinct Fibonacci
numbers with no consecutive gaps. That is, for any index i ≥ 1, if the consecutive
Fibonacci numbers Fi or Fi+1 do not appear in the sum, then no larger Fibonacci
number F j with j > i appears in the sum. In particular, the sum must include either
F1 or F2. For example:

16= F6 + F5 + F3 + F2

42= F8 + F7 + F5 + F3 + F1

54= F8 + F7 + F6 + F5 + F4 + F3 + F2 + F1

(c) The Fibonacci sequence can be extended backward to negative indices by rearranging
the defining recurrence: Fn = Fn+2 − Fn+1. Here are the first several negative-index
Fibonacci numbers:

n −10 −9 −8 −7 −6 −5 −4 −3 −2 −1
Fn −55 34 −21 13 −8 5 −3 2 −1 1

Prove that F−n = (−1)n+1Fn.
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?(d) Prove that every integer—positive, negative, or zero—can be written as the sum of
distinct, non-consecutive Fibonacci numbers with negative indices. For example:

17= F−7 + F−5 + F−2

−42= F−10 + F−7

54= F−9 + F−7 + F−5 + F−3 + F−1.

8. Consider the following game played with a finite number of a identical coins, which are
arranged into stacks. Each coin belongs to exactly one stack. Let ni denote the number of
coins in stack i. In each turn, you must make one of the following moves:

• For some i and j such that n j ≤ ni − 2, move one coin from stack i to stack j.

• Move one coin from any stack into a new stack.

• Find a stack containing only one coin, and remove that coin from the game.

The game ends when all coins are gone. For example, the following sequence of turns
describes a complete game; each vector lists the number of coins in each non-empty stack:

〈4, 2,1〉 =⇒ 〈4, 1,1, 1〉 =⇒ 〈3, 2,1, 1〉 =⇒ 〈2, 2, 2, 1〉 =⇒ 〈2, 2, 1, 1, 1〉
=⇒ 〈2, 1,1,1, 1,1〉 =⇒ 〈2,1, 1,1, 1〉 =⇒ 〈2, 1, 1, 1〉 =⇒ 〈2, 1, 1〉
=⇒ 〈2, 1〉 =⇒ 〈2〉 =⇒ 〈1, 1〉 =⇒ 〈1〉 =⇒ 〈〉

(a) Prove that this game ends after a finite number of turns.

(b) What are the minimum and maximum number of turns in a game, if we start with a
single stack of n coins? Prove your answers are correct.

(c) Now suppose each time you remove a coin from a stack, you must place two coins
onto smaller stacks. In each turn, you must make one of the following moves:

• For some indices i, j, and k such that n j ≤ ni − 2 and nk ≤ ni − 2 and j 6= k,
remove a coin from stack i, add a coin to stack j, and add a coin to stack k.

• For some i and j such that n j ≤ ni − 2, remove a coin from stack i, add a coin to
stack j, and create a new stack with one coin.

• Remove one coin from any stack and create two new stacks, each with one coin.
• Find a stack containing only one coin, and remove that coin from the game.

For example, the following sequence of turns describes a complete game:

〈4,2, 1〉 =⇒ 〈3,3, 2〉 =⇒ 〈3, 2, 2, 1, 1〉 =⇒ 〈3,2, 2,1〉 =⇒ 〈3, 2,2〉 =⇒ 〈3, 2, 1, 1,1〉
=⇒ 〈2,2, 2,2, 1〉 =⇒ 〈2, 2, 2, 2〉 =⇒ 〈2, 2,2, 1,1, 1〉 =⇒ 〈2,2, 2,1, 1〉
=⇒ 〈2,2, 2,1〉 =⇒ 〈2, 2, 2〉 =⇒ 〈2,2, 1,1, 1〉 =⇒ 〈2, 2,1, 1〉 =⇒ 〈2, 2,1〉
=⇒ 〈2,2〉 =⇒ 〈2, 1, 1, 1〉 =⇒ 〈1,1, 1,1, 1,1〉 =⇒ 〈1, 1,1, 1,1〉 =⇒ 〈1,1, 1,1〉
=⇒ 〈1,1, 1〉 =⇒ 〈1, 1〉 =⇒ 〈1〉 =⇒ 〈〉.

Prove that this modified game still ends after a finite number of turns.

(d) What are the minimum and maximum number of turns in this modified game, starting
with a single stack of n coins? Prove your answers are correct.
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9. (a) Prove that |A× B|= |A| × |B| for all finite sets A and B.

(b) Prove that for all non-empty finite sets A and B, there are exactly |B||A| functions from
A to B.

10. Recall that a binary tree is full if every node has either two children (an internal node)
or no children (a leaf). Give at least four different proofs of the following fact: In any full
binary tree, the number of leaves is exactly one more than the number of internal nodes.

11. The nth Fibonacci binary tree Fn is defined recursively as follows:

• F1 is a single root node with no children.

• For all n ≥ 2, Fn is obtained from Fn−1 by adding a right child to every leaf and
adding a left child to every node that has only one child.

(a) Prove that the number of leaves in Fn is precisely the nth Fibonacci number: F0 = 0,
F1 = 1, and Fn = Fn−1 + Fn−2 for all n≥ 2.

(b) How many nodes does Fn have? Give an exact, closed-form answer in terms of
Fibonacci numbers, and prove your answer is correct.

(c) Prove that for all n≥ 2, the right subtree of Fn is a copy of Fn−1.

(d) Prove that for all n≥ 3, the left subtree of Fn is a copy of Fn−2.

The first six Fibonacci binary trees. In each tree Fn, the subtree of gray nodes is Fn−1.

12. The d-dimensional hypercube is the graph defined as follows. There are 2d vertices, each
labeled with a different string of d bits. Two vertices are joined by an edge if and only if
their labels differ in exactly one bit.

00 10

11

0

1 01

000

100

010

110

001

101

011

111

The 1-dimensional, 2-dimensional, and 3-dimensional hypercubes.

Recall that a Hamiltonian cycle is a closed walk that visits each vertex in a graph exactly
once. Prove that for every integer d ≥ 2, the d-dimensional hypercube has a Hamiltonian
cycle.
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13. A tournament is a directed graph with exactly one directed edge between each pair of
vertices. That is, for any vertices v and w, a tournament contains either an edge v�w or
an edge w�v, but not both. A Hamiltonian path in a directed graph G is a directed path
that visits every vertex of G exactly once.

(a) Prove that every tournament contains a Hamiltonian path.

(b) Prove that every tournament contains either exactly oneHamiltonian path or a directed
cycle of length three.
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A tournament with two Hamiltonian paths u�v�w�x�z�y and y�u�v�x�z�w
and a directed triangle w�x�z�w.

14. Scientists recently discovered a planet, tentatively named “Ygdrasil”, that is inhabited by a
bizarre species called “nertices” (singular “nertex”). All nertices trace their ancestry back
to a particular nertex named Rudy. Rudy is still quite alive, as is every one of his many
descendants. Nertices reproduce asexually; every nertex has exactly one parent (except
Rudy, who sprang forth fully formed from the planet’s core). There are three types of
nertices—red, green, and blue. The color of each nertex is correlated exactly with the
number and color of its children, as follows:

• Each red nertex has two children, exactly one of which is green.

• Each green nertex has exactly one child, which is not green.

• Blue nertices have no children.

In each of the following problems, let R, G, and B respectively denote the number of red,
green, and blue nertices on Ygdrasil.

(a) Prove that B = R+ 1.

(b) Prove that either G = R or G = B.

(c) Prove that G = B if and only if Rudy is green.

15. Well-formed formulas (wffs) are defined recursively as follows:

• T is a wff.

• F is a wff.

• Any proposition variable is a wff.

• If X is a wff, then (¬X ) is also a wff.

• If X and Y are wffs, then (X ∧ Y ) is also a wff.
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• If X and Y are wffs, then (X ∨ Y ) is also a wff.

We say that a formula is in De Morgan normal form if it satisfies the following conditions.
(“De Morgan normal form” is not standard terminology; I just made it up.)

• Every negation in the formula is applied to a variable, not to a more complicated
subformula.

• Either the entire formula is T , or the formula does not contain T .

• Either the entire formula is F , or the formula does not contain F .

Prove that for every wff, there is a logically equivalent wff in De Morgan normal form. For
example, the well-formed formula

(¬((p ∧ q)∨¬r))∧ (¬(p ∨¬r)∧ q)

is logically equivalent to the following wff in De Morgan normal form:

(((¬p ∨¬q)∧ r))∧ ((¬p ∧ r)∧ q)

16. A polynomial is a function f : R→ R of the form f (x) =
∑d

i=0 ai x
i for some non-negative

integer d (called the degree) and some real numbers a0, a1, . . . , ad (called the coefficients).

(a) Prove that the sum of two polynomials is a polynomial.

(b) Prove that the product of two polynomials is a polynomial.

(c) Prove that the composition f (g(x)) of two polynomials f (x) and g(x) is a polynomial.

(d) Prove that the derivative f ′ of a polynomial f is a polynomial, using only the following
facts:

• Constant rule: If f is constant, then f ′ is identically zero.
• Sum rule: ( f + g)′ = f ′ + g ′.
• Product rule: ( f · g)′ = f ′ · g + f · g ′.

?17. An arithmetic expression tree is a binary tree where every leaf is labeled with a variable,
every internal node is labeled with an arithmetic operation, and every internal node has
exactly two children. For this problem, assume that the only allowed operations are +
and ×. Different leaves may or may not represent different variables.

Every arithmetic expression tree represents a function, transforming input values for
the leaf variables into an output value for the root, by following two simple rules: (1) The
value of any +-node is the sum of the values of its children. (2) The value of any ×-node is
the product of the values of its children.

Two arithmetic expression trees are equivalent if they represent the same function;
that is, the same input values for the leaf variables always leads to the same output value at
both roots. An arithmetic expression tree is in normal form if the parent of every +-node
(if any) is another +-node.

Prove that for any arithmetic expression tree, there is an equivalent arithmetic expression
tree in normal form. [Hint: This is harder than it looks.]

25



Algorithms Appendix I: Proof by Induction [Fa’13]

×
x +

y z

+

×
x z

×
y x

×
x+

yz

Three equivalent expression trees. Only the third is in normal form.

?18. A Gaussian integer is a complex number of the form x + yi, where x and y are integers.
Prove that any Gaussian integer can be expressed as the sum of distinct powers of the
complex number α= −1+ i. For example:

4 = 16+ (−8− 8i) + 8i + (−4) = α8 +α7 +α6 +α4

−8 = (−8− 8i) + 8i = α7 +α6

15i = (−16+ 16i) + 16+ (−2i) + (−1+ i) + 1 = α9 +α8 +α2 +α1 +α0

1+ 6i = (8i) + (−2i) + 1 = α6 +α2 +α0

2− 3i = (4− 4i) + (−4) + (2+ 2i) + (−2i) + (−1+ i) + 1 = α5 +α4 +α3 +α2 +α1 +α0

−4+ 2i = (−16+ 16i) + 16+ (−8− 8i) + (4− 4i) + (−2i) = α9 +α8 +α7 +α5 +α2

The following list of values may be helpful:

α0 = 1 α4 = −4 α8 = 16 α12 = −64

α1 = −1+ i α5 = 4− 4i α9 = −16+ 16i α13 = 64− 64i

α2 = −2i α6 = 8i α10 = −32i α14 = 128i

α3 = 2+ 2i α7 = −8− 8i α11 = 32+ 32i α15 = −128− 128i

[Hint: How do you write −2− i?]

?19. Lazy binary is a variant of standard binary notation for representing natural numbers
where we allow each “bit" to take on one of three values: 0, 1, or 2. Lazy binary notation
is defined inductively as follows.

• The lazy binary representation of zero is 0.

• Given the lazy binary representation of any non-negative integer n, we can construct
the lazy binary representation of n+ 1 as follows:

(a) increment the rightmost digit;
(b) if any digit is equal to 2, replace the rightmost 2 with 0 and increment the digit

immediately to its left.

Here are the first several natural numbers in lazy binary notation:

0, 1, 10, 11, 20, 101, 110, 111, 120, 201, 210, 1011, 1020, 1101, 1110, 1111, 1120, 1201, 1210,
2011, 2020, 2101, 2110, 10111, 10120, 10201, 10210, 11011, 11020, 11101, 11110, 11111, 11120,
11201, 11210, 12011, 12020, 12101, 12110, 20111, 20120, 20201, 20210, 21011, 21020, 21101,
21110, 101111, 101120, 101201, 101210, 102011, 102020, . . .

(a) Prove that in any lazy binary number, between any two 2s there is at least one 0, and
between two 0s there is at least one 2.

(b) Prove that for any natural number N , the sum of the digits of the lazy binary
representation of N is exactly blg(N + 1)c.
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Æ20. Consider the following recursively defined sequence of rational numbers:

R0 = 0

Rn =
1

2bRn−1c − Rn−1 + 1
for all n≥ 1

The first several elements of this sequence are

0,1,
1
2

, 2,
1
3

,
3
2

,
2
3

, 3,
1
4

,
4
3

,
3
5

,
5
2

,
2
5

,
5
3

,
3
4

,4,
1
5

, . . .

Prove that every non-negative rational number appears in this sequence exactly once.

21. Let f : R+→ R+ be an arbitrary (not necessarily continuous) function such that

• f (x)> 0 for all x > 0, and

• f (x) = π f (x/
p

2) for all x > 1.

Prove by induction that f (x) = Θ(x) (as x →∞). Yes, this is induction over the real
numbers.

?22. There is a natural generalization of induction to the real numbers that is familiar to analysts
but relatively unknown in computer science. The precise formulation given below is was
proposed independently by Hathaway² and Clark³ fairly recently, but the idea dates back
to at least to the 1920s. Recall that there are four types of intervals for any real numbers a
and z:

• The open interval (a, z) := {t ∈ R | a ≤ t < z},
• The half-open intervals [a, z) := {t ∈ R | a ≤ t < z} and (a, z] := {t ∈ R | a < t ≤ z}
• The closed interval [a, z] := {t ∈ R | a ≤ t ≤ z}.

Theorem 11 (Continuous Induction). Fix a closed interval [a, z] ⊂ R. Suppose some subset
S ⊆ [a, z] has following properties:

(a) a ∈ S.

(b) If a ≤ s < z and s ∈ S, then [s, u] ⊆ S for some u> s.

(c) If a ≤ s ≤ z and [a, s) ⊆ S, then s ∈ S.

Then S = [a, z].

²Dan Hathaway. Using continuity induction. College Math. J. 42:229–231, 2011.
³Pete L. Clark. The instructor’s guide to real induction. arXiv:1208.0973.
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Proof: For the sake of argument, let S be a proper subset of [a, b]. Let T = [a, z]\S.
Because S̄ is bounded but non-empty, it has a greatest lower bound ` ∈ [a, z]. More
explicitly, ` be the largest real number such that `≤ t for all t ∈ T . There are three
cases to consider:

• Suppose ` = a. Condition (a) and (b) imply that [a, u] ∈ S for some u > a.
But then we have `= a < u≤ t for all t ∈ T , contradicting the fact that ` is
the greatest lower bound of T .

• Suppose ` > a and ` ∈ S. If ` = z, then S = [a, z], contradicting our initial
assumption. Otherwise, by condition (b), we have [`, u] ⊆ S for some u> `,
again contradicting the fact that ` is the greatest lower bound of T .

• Finally, suppose ` > a and ` ∈ S. Because no element of T is smaller than `,
we have [a,`) ⊆ S. But then condition (c) implies that ` ∈ S, and we have a
contradiction.

In all cases, we have a contradiction. �

Continuous induction hinges on the axiom of completeness—every non-empty set of
positive real numbers has a greatest lower bound—just as standard induction requires the
well-ordering principle—every non-empty set of positive integers has a smallest element.
Thus, continuous induction cannot be used to prove properties of rational numbers, because
the greatest lower bound of a set of rational numbers need not be rational.

Fix real numbers a ≤ z. Recall that a function f : [a, z]→ R is continuous if it satisfies
the following condition: for any t ∈ [a, z] and any ε > 0, there is some δ > 0 such that
for all u ∈ [a, z] with |t − u| ≤ δ, we have | f (t)− f (u)| ≤ ε. Prove the following theorems
using continuous induction.

(a) Connectedness: There is no continuous function from [a, z] to the set {0, 1}.
(b) Intermediate Value Theorem: For any continuous function f : [a, z] → R \ {0}, if

f (a)> 0, then f (t)> 0 for all a ≤ t ≤ z.

(c) Extreme Value Theorem: Any continuous function f : [a, z]→ R attains its maximum
value; that is, there is some t ∈ [a, z] such that f (t)≥ f (u) for all u ∈ [a, z].

Æ(d) The Heine-Borel Theorem: The interval [a, z] is compact.
This one requires some expansion.

• A set X ⊆ R is open if every point in X lies inside an open interval contained
in X .

• An open cover of [a, z] is a (possibly uncountably infinite) familyU = {Ui | i ∈ I}
of open sets Ui such that [a, z] ⊆⋃i∈I Ui .

• A subcover of U is a subset V ⊆U that is also a cover of [a, z].
• A cover U is finite if it contains a finite number of open sets.
• Finally, a set X ⊆ R is compact if every open cover of X has a finite subcover.

The Heine-Borel theorem is one of the most fundamental results in real analysis, and
the proof usually requires several pages. But the continuous-induction proof is shorter
than the list of definitions!
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Change is certain. Peace is followed by disturbances; departure of evil men by their return.
Such recurrences should not constitute occasions for sadness but realities for awareness, so
that one may be happy in the interim.

— I Ching [The Book of Changes] (c. 1100 BC)

To endure the idea of the recurrence one needs: freedom from morality; new means against
the fact of pain (pain conceived as a tool, as the father of pleasure; there is no cumulative
consciousness of displeasure); the enjoyment of all kinds of uncertainty, experimentalism, as
a counterweight to this extreme fatalism; abolition of the concept of necessity; abolition of
the “will”; abolition of “knowledge-in-itself.”

— Friedrich Nietzsche The Will to Power (1884)
[translated by Walter Kaufmann]

Wil Wheaton: Embrace the dark side!
Sheldon: That’s not even from your franchise!

— “The Wheaton Recurrence”, Bing Bang Theory, April 12, 2010

Solving Recurrences

1 Introduction

A recurrence is a recursive description of a function, or in other words, a description of a function
in terms of itself. Like all recursive structures, a recurrence consists of one or more base cases and
one or more recursive cases. Each of these cases is an equation or inequality, with some function
value f (n) on the left side. The base cases give explicit values for a (typically finite, typically
small) subset of the possible values of n. The recursive cases relate the function value f (n) to
function value f (k) for one or more integers k < n; typically, each recursive case applies to an
infinite number of possible values of n.

For example, the following recurrence (written in two different but standard ways) describes
the identity function f (n) = n:

f (n) =

¨
0 if n= 0

f (n− 1) + 1 otherwise

f (0) = 0

f (n) = f (n− 1) + 1 for all n> 0

In both presentations, the first line is the only base case, and the second line is the only recursive
case. The same function can satisfymany different recurrences; for example, both of the following
recurrences also describe the identity function:

f (n) =





0 if n= 0

1 if n= 1

f (bn/2c) + f (dn/2e) otherwise

f (n) =





0 if n= 0

2 · f (n/2) if n is even and n> 0

f (n− 1) + 1 if n is odd

We say that a particular function satisfies a recurrence, or is the solution to a recurrence,
if each of the statements in the recurrence is true. Most recurrences—at least, those that we
will encounter in this class—have a solution; moreover, if every case of the recurrence is an
equation, that solution is unique. Specifically, if we transform the recursive formula into a
recursive algorithm, the solution to the recurrence is the function computed by that algorithm!

© Copyright 2014 Jeff Erickson.
This work is licensed under a Creative Commons License (http://creativecommons.org/licenses/by-nc-sa/4.0/).
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Recurrences arise naturally in the analysis of algorithms, especially recursive algorithms. In
many cases, we can express the running time of an algorithm as a recurrence, where the recursive
cases of the recurrence correspond exactly to the recursive cases of the algorithm. Recurrences
are also useful tools for solving counting problems—How many objects of a particular kind exist?

By itself, a recurrence is not a satisfying description of the running time of an algorithm or a
bound on the number of widgets. Instead, we need a closed-form solution to the recurrence; this
is a non-recursive description of a function that satisfies the recurrence. For recurrence equations,
we sometimes prefer an exact closed-form solution, but such a solution may not exist, or may
be too complex to be useful. Thus, for most recurrences, especially those arising in algorithm
analysis, we are satisfied with an asymptotic solution of the form Θ(g(n)), for some explicit
(non-recursive) function g(n).

For recursive inequalities, we prefer a tight solution; this is a function that would still satisfy
the recurrence if all the inequalities were replaced with the corresponding equations. Again,
exactly tight solutions may not exist, or may be too complex to be useful, in which case we seek
either a looser bound or an asymptotic solution of the form O(g(n)) or Ω(g(n)).

2 The Ultimate Method: Guess and Confirm

Ultimately, there is only one fail-safe method to solve any recurrence:

Guess the answer, and then prove it correct by induction.

Later sections of these notes describe techniques to generate guesses that are guaranteed to be
correct, provided you use them correctly. But if you’re faced with a recurrence that doesn’t seem
to fit any of these methods, or if you’ve forgotten how those techniques work, don’t despair! If
you guess a closed-form solution and then try to verify your guess inductively, usually either the
proof will succeed, in which case you’re done, or the proof will fail, in which case your failure
will help you refine your guess. Where you get your initial guess is utterly irrelevant¹—from a
classmate, from a textbook, on the web, from the answer to a different problem, scrawled on a
bathroom wall in Siebel, included in a care package from your mom, dictated by the machine
elves, whatever. If you can prove that the answer is correct, then it’s correct!

2.1 Tower of Hanoi

The classical Tower of Hanoi problem gives us the recurrence T(n) = 2T(n − 1) + 1 with base
case T(0) = 0. Just looking at the recurrence we can guess that T (n) is something like 2n. If we
write out the first few values of T (n), we discover that they are each one less than a power of two.

T (0) = 0, T (1) = 1, T (2) = 3, T (3) = 7, T (4) = 15, T (5) = 31, T (6) = 63, . . . ,

It looks like T(n) = 2n − 1 might be the right answer. Let’s check.

T (0) = 0= 20 − 1 Ø

T (n) = 2T (n− 1) + 1

= 2(2n−1 − 1) + 1 [induction hypothesis]

= 2n − 1 Ø [algebra]

¹. . . except of course during exams, where you aren’t supposed to use any outside sources
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We were right! Hooray, we’re done!
Another way we can guess the solution is by unrolling the recurrence, by substituting it into

itself:

T (n) = 2T (n− 1) + 1

= 2 (2T (n− 2) + 1) + 1

= 4T (n− 2) + 3

= 4 (2T (n− 3) + 1) + 3

= 8T (n− 3) + 7

= · · ·
It looks like unrolling the initial Hanoi recurrence k times, for any non-negative integer k, will
give us the new recurrence T (n) = 2kT (n− k) + (2k − 1). Let’s prove this by induction:

T (n) = 2T (n− 1) + 1 Ø [k = 0, by definition]

T (n) = 2k−1T (n− (k− 1)) + (2k−1 − 1) [inductive hypothesis]

= 2k−1
�
2T (n− k) + 1

�
+ (2k−1 − 1) [initial recurrence for T (n− (k− 1))]

= 2kT (n− k) + (2k − 1) Ø [algebra]

Our guess was correct! In particular, unrolling the recurrence n times give us the recurrence
T (n) = 2nT (0) + (2n − 1). Plugging in the base case T (0) = 0 give us the closed-form solution
T (n) = 2n − 1.

2.2 Fibonacci numbers

Let’s try a less trivial example: the Fibonacci numbers Fn = Fn−1 + Fn−2 with base cases F0 = 0
and F1 = 1. There is no obvious pattern in the first several values (aside from the recurrence
itself), but we can reasonably guess that Fn is exponential in n. Let’s try to prove inductively that
Fn ≤ α · cn for some constants a > 0 and c > 1 and see how far we get.

Fn = Fn−1 + Fn−2

≤ α · cn−1 +α · cn−2 [“induction hypothesis”]

≤ α · cn ???

The last inequality is satisfied if cn ≥ cn−1 + cn−2, or more simply, if c2 − c − 1≥ 0. The smallest
value of c that works is φ = (1+

p
5)/2 ≈ 1.618034; the other root of the quadratic equation

has smaller absolute value, so we can ignore it.
So we have most of an inductive proof that Fn ≤ α ·φn for some constant α. All that we’re

missing are the base cases, which (we can easily guess) must determine the value of the coefficient
a. We quickly compute

F0

φ0
=

0
1
= 0 and

F1

φ1
=

1
φ
≈ 0.618034> 0,

so the base cases of our induction proof are correct as long as α≥ 1/φ. It follows that Fn ≤ φn−1

for all n≥ 0.
What about a matching lower bound? Essentially the same inductive proof implies that

Fn ≥ β ·φn for some constant β , but the only value of β that works for all n is the trivial β = 0!
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We could try to find some lower-order term that makes the base case non-trivial, but an easier
approach is to recall that asymptotic Ω( ) bounds only have to work for sufficiently large n. So
let’s ignore the trivial base case F0 = 0 and assume that F2 = 1 is a base case instead. Some more
easy calculation gives us

F2

φ2
=

1
φ2
≈ 0.381966<

1
φ

.

Thus, the new base cases of our induction proof are correct as long as β ≤ 1/φ2, which implies
that Fn ≥ φn−2 for all n≥ 1.

Putting the upper and lower bounds together, we obtain the tight asymptotic bound Fn =
Θ(φn). It is possible to get a more exact solution by speculatively refining and conforming our
current bounds, but it’s not easy. Fortunately, if we really need it, we can get an exact solution
using the annihilator method, which we’ll see later in these notes.

2.3 Mergesort

Mergesort is a classical recursive divide-and-conquer algorithm for sorting an array. The algorithm
splits the array in half, recursively sorts the two halves, and then merges the two sorted subarrays
into the final sorted array.

MergeSort(A[1 .. n]):
if (n> 1)

m← bn/2c
MergeSort(A[1 .. m])
MergeSort(A[m+ 1 .. n])
Merge(A[1 .. n], m)

Merge(A[1 .. n], m):
i← 1; j← m+ 1
for k← 1 to n

if j > n
B[k]← A[i]; i← i + 1

else if i > m
B[k]← A[ j]; j← j + 1

else if A[i]< A[ j]
B[k]← A[i]; i← i + 1

else
B[k]← A[ j]; j← j + 1

for k← 1 to n
A[k]← B[k]

Let T (n) denote the worst-case running time of MergeSort when the input array has size n.
The Merge subroutine clearly runs in Θ(n) time, so the function T (n) satisfies the following
recurrence:

T (n) =

(
Θ(1) if n= 1,

T
�dn/2e�+ T

�bn/2c�+Θ(n) otherwise.

For now, let’s consider the special case where n is a power of 2; this assumption allows us to take
the floors and ceilings out of the recurrence. (We’ll see how to deal with the floors and ceilings
later; the short version is that they don’t matter.)

Because the recurrence itself is given only asymptotically—in terms of Θ( ) expressions—we
can’t hope for anything but an asymptotic solution. So we can safely simplify the recurrence
further by removing the Θ’s; any asymptotic solution to the simplified recurrence will also satisfy
the original recurrence. (This simplification is actually important for another reason; if we kept
the asymptotic expressions, we might be tempted to simplify them inappropriately.)

Our simplified recurrence now looks like this:

T (n) =

(
1 if n= 1,

2T (n/2) + n otherwise.
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To guess at a solution, let’s try unrolling the recurrence.

T (n) = 2T (n/2) + n

= 2
�
2T (n/4) + n/2

�
+ n

= 4T (n/4) + 2n

= 8T (n/8) + 3n= · · ·
It looks like T (n) satisfies the recurrence T (n) = 2kT (n/2k)+ kn for any positive integer k. Let’s
verify this by induction.

T (n) = 2T (n/2) + n= 21T (n/21) + 1 · n Ø [k = 1, given recurrence]

T (n) = 2k−1T (n/2k−1) + (k− 1)n [inductive hypothesis]

= 2k−1
�
2T (n/2k) + n/2k−1

�
+ (k− 1)n [substitution]

= 2kT (n/2k) + kn Ø [algebra]

Our guess was right! The recurrence becomes trivial when n/2k = 1, or equivalently, when
k = log2 n:

T (n) = nT (1) + n log2 n= n log2 n+ n.

Finally, we have to put back the Θ’s we stripped off; our final closed-form solution is T(n) =
Θ(n logn).

2.4 An uglier divide-and-conquer example

Consider the divide-and-conquer recurrence T(n) =
p

n · T(pn) + n. This doesn’t fit into the
form required by the Master Theorem (which we’ll see below), but it still sort of resembles the
Mergesort recurrence—the total size of the subproblems at the first level of recursion is n—so
let’s guess that T (n) = O(n log n), and then try to prove that our guess is correct. (We could also
attack this recurrence by unrolling, but let’s see how far just guessing will take us.)

Let’s start by trying to prove an upper bound T (n)≤ a n lg n for all sufficiently large n and
some constant a to be determined later:

T (n) =
p

n · T (pn) + n

≤pn · apn lg
p

n+ n [induction hypothesis]

= (a/2)n lg n+ n [algebra]

≤ an lg n Ø [algebra]

The last inequality assumes only that 1 ≤ (a/2) log n,or equivalently, that n ≥ 22/a. In other
words, the induction proof is correct if n is sufficiently large. So we were right!

But before you break out the champagne, what about the multiplicative constant a? The proof
worked for any constant a, no matter how small. This strongly suggests that our upper bound
T (n) = O(n log n) is not tight. Indeed, if we try to prove a matching lower bound T (n)≥ b n log n
for sufficiently large n, we run into trouble.

T (n) =
p

n · T (pn) + n

≥pn · bpn log
p

n+ n [induction hypothesis]

= (b/2)n log n+ n

6≥ bn log n
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The last inequality would be correct only if 1> (b/2) log n, but that inequality is false for large
values of n, no matter which constant b we choose.

Okay, so Θ(n log n) is too big. How about Θ(n)? The lower bound is easy to prove directly:

T (n) =
p

n · T (pn) + n≥ n Ø

But an inductive proof of the upper bound fails.

T (n) =
p

n · T (pn) + n

≤pn · apn+ n [induction hypothesis]

= (a+ 1)n [algebra]

6≤ an

Hmmm. So what’s bigger than n and smaller than n lg n? How about n
p

lg n?

T (n) =
p

n · T (pn) + n≤pn · apn
q

lg
p

n+ n [induction hypothesis]

= (a/
p

2)n
Æ

lg n+ n [algebra]

≤ a n
Æ

lg n for large enough n Ø

Okay, the upper bound checks out; how about the lower bound?

T (n) =
p

n · T (pn) + n≥pn · bpn
q

lg
p

n+ n [induction hypothesis]

= (b/
p

2)n
Æ

lg n+ n [algebra]

6≥ b n
Æ

lg n

No, the last step doesn’t work. So Θ(n
p

lg n) doesn’t work.
Okay. . . what else is between n and n lg n? How about n lg lg n?

T (n) =
p

n · T (pn) + n≤pn · apn lg lg
p

n+ n [induction hypothesis]

= a n lg lg n− a n+ n [algebra]

≤ a n lg lg n if a ≥ 1 Ø

Hey look at that! For once, our upper bound proof requires a constraint on the hidden constant
a. This is an good indication that we’ve found the right answer. Let’s try the lower bound:

T (n) =
p

n · T (pn) + n≥pn · bpn lg lg
p

n+ n [induction hypothesis]

= b n lg lg n− b n+ n [algebra]

≥ b n lg lg n if b ≤ 1 Ø

Hey, it worked! We have most of an inductive proof that T (n)≤ an lg lg n for any a ≥ 1 and most
of an inductive proof that T (n)≥ bn lg lg n for any b ≤ 1. Technically, we’re still missing the base
cases in both proofs, but we can be fairly confident at this point that T(n) = Θ(n log logn).

3 Divide and Conquer Recurrences (Recursion Trees)

Many divide and conquer algorithms give us running-time recurrences of the form

T (n) = a T (n/b) + f (n) (1)
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where a and b are constants and f (n) is some other function. There is a simple and general
technique for solving many recurrences in this and similar forms, using a recursion tree. The
root of the recursion tree is a box containing the value f (n); the root has a children, each of
which is the root of a (recursively defined) recursion tree for the function T (n/b).

Equivalently, a recursion tree is a complete a-ary tree where each node at depth i contains
the value f (n/bi). The recursion stops when we get to the base case(s) of the recurrence.
Because we’re only looking for asymptotic bounds, the exact base case doesn’t matter; we can
safely assume that T (1) = Θ(1), or even that T (n) = Θ(1) for all n≤ 10100. I’ll also assume for
simplicity that n is an integral power of b; we’ll see how to avoid this assumption later (but to
summarize: it doesn’t matter).

Now T (n) is just the sum of all values stored in the recursion tree. For each i, the ith level of
the tree contains ai nodes, each with value f (n/bi). Thus,

T (n) =
L∑

i=0

ai f (n/bi) (Σ)

where L is the depth of the recursion tree. We easily see that L = logb n, because n/bL = 1.
The base case f (1) = Θ(1) implies that the last non-zero term in the summation is Θ(aL) =
Θ(alogb n) = Θ(nlogb a).

For most divide-and-conquer recurrences, the level-by-level sum (Σ) is a geometric series—
each term is a constant factor larger or smaller than the previous term. In this case, only the
largest term in the geometric series matters; all of the other terms are swallowed up by the Θ(·)
notation.

f(n/b)

f(n)

a

a

f(n/bL)

f(n/b²)f(n/b²)f(n/b²)f(n/b²)

f(n/b)

a

f(n/b²)f(n/b²)f(n/b²)f(n/b²)

f(n/b)

a

f(n/b²)f(n/b²)f(n/b²)f(n/b²)

f(n/b)

a

f(n/b²)f(n/b²)f(n/b²)f(n/b²)

f(n)

a⋅f(n/b)

a²⋅f(n/b²)

aL⋅f(n/bL)

+

+

+

+

f(n/bL) f(n/bL) f(n/bL) f(n/bL) f(n/bL) f(n/bL) f(n/bL)f(n/bL) f(n/bL) f(n/bL) f(n/bL) f(n/bL) f(n/bL) f(n/bL) f(n/bL)f(n/bL) f(n/bL) f(n/bL) f(n/bL) f(n/bL) f(n/bL) f(n/bL) f(n/bL)f(n/bL) f(n/bL) f(n/bL) f(n/bL) f(n/bL) f(n/bL) f(n/bL) f(n/bL)f(n/bL) f(n/bL) f(n/bL) f(n/bL) f(n/bL) f(n/bL) f(n/bL) f(n/bL)f(n/bL) f(n/bL) f(n/bL) f(n/bL) f(n/bL) f(n/bL) f(n/bL) f(n/bL)f(n/bL) f(n/bL) f(n/bL) f(n/bL) f(n/bL) f(n/bL) f(n/bL) f(n/bL)

A recursion tree for the recurrence T (n) = a T (n/b) + f (n)

Here are several examples of the recursion-tree technique in action:

• Mergesort (simplified): T(n) = 2T(n/2) + n

There are 2i nodes at level i, each with value n/2i , so every term in the level-by-level
sum (Σ) is the same:

T (n) =
L∑

i=0

n.

The recursion tree has L = log2 n levels, so T(n) = Θ(n logn).

7
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• Randomized selection: T(n) = T(3n/4) + n

The recursion tree is a single path. The node at depth i has value (3/4)in, so the
level-by-level sum (Σ) is a decreasing geometric series:

T (n) =
L∑

i=0

(3/4)in.

This geometric series is dominated by its initial term n, so T(n) = Θ(n). The recursion
tree has L = log4/3 n levels, but so what?

• Karatsuba’s multiplication algorithm: T(n) = 3T(n/2) + n

There are 3i nodes at depth i, each with value n/2i , so the level-by-level sum (Σ) is an
increasing geometric series:

T (n) =
L∑

i=0

(3/2)in.

This geometric series is dominated by its final term (3/2)Ln. Each leaf contributes 1 to
this term; thus, the final term is equal to the number of leaves in the tree! The recursion
tree has L = log2 n levels, and therefore 3log2 n = nlog2 3 leaves, so T(n) = Θ(nlog2 3).

• T(n) = 2T(n/2) + n/ lgn

The sum of all the nodes in the ith level is n/(lg n− i). This implies that the depth of
the tree is at most lg n− 1. The level sums are neither constant nor a geometric series, so
we just have to evaluate the overall sum directly.

Recall (or if you’re seeing this for the first time: Behold!) that the nth harmonic number
Hn is the sum of the reciprocals of the first n positive integers:

Hn :=
n∑

i=1

1
i

It’s not hard to show that Hn = Θ(log n); in fact, we have the stronger inequalities
ln(n+ 1)≤ Hn ≤ ln n+ 1.

T (n) =
lg n−1∑

i=0

n
lg n− i

=
lg n∑
j=1

n
j
= nHlg n = Θ(n lg lg n)

• T(n) = 4T(n/2) + n lgn

There are 4i nodes at each level i, each with value (n/2i) lg(n/2i) = (n/2i)(lg n− i);
again, the depth of the tree is at most lg n− 1. We have the following summation:

T (n) =
lg n−1∑

i=0

n2i(lg n− i)

We can simplify this sum by substituting j = lg n− i:

T (n) =
lg n∑
j=i

n2lg n− j j =
lg n∑
j=i

n2 j
2 j
= n2

lg n∑
j=i

j
2 j
= Θ(n2)

8
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The last step uses the fact that
∑∞

i=1 j/2 j = 2. Although this is not quite a geometric series,
it is still dominated by its largest term.

• Ugly divide and conquer: T(n) =
p

n · T(pn) + n

We solved this recurrence earlier by guessing the right answer and verifying, but we
can use recursion trees to get the correct answer directly. The degree of the nodes in the
recursion tree is no longer constant, so we have to be a bit more careful, but the same
basic technique still applies. It’s not hard to see that the nodes in any level sum to n. The

depth L satisfies the identity n2−L
= 2 (we can’t get all the way down to 1 by taking square

roots), so L = lg lg n and T(n) = Θ(n lg lgn).

• Randomized quicksort: T(n) = T(3n/4) + T(n/4) + n

This recurrence isn’t in the standard form described earlier, but we can still solve it
using recursion trees. Now modes in the same level of the recursion tree have different
values, and different leaves are at different levels. However, the nodes in any complete level
(that is, above any of the leaves) sum to n. Moreover, every leaf in the recursion tree has
depth between log4 n and log4/3 n. To derive an upper bound, we overestimate T (n) by
ignoring the base cases and extending the tree downward to the level of the deepest leaf.
Similarly, to derive a lower bound, we overestimate T (n) by counting only nodes in the
tree up to the level of the shallowest leaf. These observations give us the upper and lower
bounds n log4 n ≤ T (n) ≤ n log4/3 n. Since these bounds differ by only a constant factor,
we have T(n) = Θ(n logn).

• Deterministic selection: T(n) = T(n/5) + T(7n/10) + n

Again, we have a lopsided recursion tree. If we look only at complete levels of the tree, we
find that the level sums form a descending geometric series T (n) = n+9n/10+81n/100+· · ·.
We can get an upper bound by ignoring the base cases entirely and growing the tree out to
infinity, and we can get a lower bound by only counting nodes in complete levels. Either
way, the geometric series is dominated by its largest term, so T(n) = Θ(n).

• Randomized search trees: T(n) =
1
4 T(n/4) +

3
4 T(3n/4) + 1

This looks like a divide-and-conquer recurrence, but what does it mean to have a
quarter of a child? The right approach is to imagine that each node in the recursion tree
has a weight in addition to its value. Alternately, we get a standard recursion tree again if
we add a second real parameter to the recurrence, defining T (n) = T (n, 1), where

T (n,α) = T (n/4,α/4) + T (3n/4,3α/4) +α.

In each complete level of the tree, the (weighted) node values sum to exactly 1. The leaves
of the recursion tree are at different levels, but all between log4 n and log4/3 n. So we have
upper and lower bounds log4 n≤ T (n)≤ log4/3 n, which differ by only a constant factor,
so T(n) = Θ(logn).

• Ham-sandwich trees: T(n) = T(n/2) + T(n/4) + 1

Again, we have a lopsided recursion tree. If we only look at complete levels, we find
that the level sums form an ascending geometric series T (n) = 1+2+4+ · · ·, so the solution

9
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is dominated by the number of leaves. The recursion tree has log4 n complete levels, so
there are more than 2log4 n = nlog4 2 =

p
n; on the other hand, every leaf has depth at most

log2 n, so the total number of leaves is at most 2log2 n = n. Unfortunately, the crude boundsp
n� T(n)� n are the best we can derive using the techniques we know so far!

The following theorem completely describes the solution for any divide-and-conquer recur-
rence in the ‘standard form’ T (n) = aT (n/b) + f (n), where a and b are constants and f (n) is a
polynomial. This theorem allows us to bypass recursion trees for “standard” divide-and-conquer
recurrences, but many people (including Jeff) find it harder to even remember the statement of
the theorem than to use the more powerful and general recursion-tree technique. Your mileage
may vary.

The Master Theorem. The recurrence T (n) = aT (n/b) + f (n) can be solved as follows.

• If a f (n/b) = κ f (n) for some constant κ < 1, then T (n) = Θ( f (n)).

• If a f (n/b) = K f (n) for some constant K > 1, then T (n) = Θ(nlogb a).

• If a f (n/b) = f (n), then T (n) = Θ( f (n) logb n).

• If none of these three cases apply, you’re on your own.

Proof: If f (n) is a constant factor larger than a f (b/n), then by induction, the level sums define
a descending geometric series. The sum of any geometric series is a constant times its largest
term. In this case, the largest term is the first term f (n).

If f (n) is a constant factor smaller than a f (b/n), then by induction, the level sums define an
ascending geometric series. The sum of any geometric series is a constant times its largest term.
In this case, this is the last term, which by our earlier argument is Θ(nlogb a).

Finally, if a f (b/n) = f (n), then by induction, each of the L + 1 terms in the sum is equal to
f (n), and the recursion tree has depth L = Θ(logb n). �

4 The Nuclear Bomb?

Finally, let me describe without proof a powerful generalization of the recursion tree method,
first published by Lebanese researchers Mohamad Akra and Louay Bazzi in 1998. Consider a
general divide-and-conquer recurrence of the form

T (n) =
k∑

i=1

ai T (n/bi) + f (n),

where k is a constant, ai > 0 and bi > 1 are constants for all i, and f (n) = Ω(nc) and
f (n) = O(nd) for some constants 0 < c ≤ d. (As usual, we assume the standard base case
T (Θ(1)) = Θ(1)).) Akra and Bazzi prove that this recurrence has the closed-form asymptotic
solution

T (n) = Θ

�
nρ
�

1+

∫ n

1

f (u)
uρ+1

du

��
,

where ρ is the unique real solution to the equation

k∑
i=1

ai/bρi = 1.

10
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In particular, the Akra-Bazzi theorem immediately implies the following form of the Master
Theorem:

T (n) = aT (n/b) + nc =⇒ T (n) =





Θ(nlogb a) if c < logb a− ε
Θ(nc log n) if c = logb a

Θ(nc) if c > logb a+ ε

The Akra-Bazzi theorem does not require that the parameters ai and bi are integers, or even
rationals; on the other hand, even when all parameters are integers, the characteristic equation∑

i ai/bρi = 1 may have no analytical solution.
Here are a few examples of recurrences that are difficult (or impossible) for recursion trees,

but have easy solutions using the Akra-Bazzi theorem.

• Randomized quicksort: T(n) = T(3n/4) + T(n/4) + n

The equation (3/4)ρ + (1/4)ρ = 1 has the unique solution ρ = 1, and therefore

T (n) = Θ

�
n

�
1+

∫ n

1

1
u

du

��
= O(n log n).

• Deterministic selection: T(n) = T(n/5) + T(7n/10) + n

The equation (1/5)ρ + (7/10)ρ = 1 has no analytical solution. However, we easily observe
that (1/5)x + (7/10)x is a decreasing function of x , and therefore 0 < ρ < 1. Thus, we
have ∫ n

1

f (u)
uρ+1

du=

∫ n

1

u−ρ du=
u1−ρ

1−ρ

����
n

u=1
=

n1−ρ − 1
1−ρ = Θ(n1−ρ),

and therefore
T (n) = Θ(nρ · (1+Θ(n1−ρ)) = Θ(n).

(A bit of numerical computation gives the approximate value ρ ≈ 0.83978, but why
bother?)

• Randomized search trees: T(n) =
1
4 T(n/4) +

3
4 T(3n/4) + 1

The equation 1
4(

1
4)
ρ + 3

4(
3
4)
ρ = 1 has the unique solution ρ = 0, and therefore

T (n) = Θ

�
1+

∫ n

1

1
u

du

�
= Θ(log n).

• Ham-sandwich trees: T(n) = T(n/2) + T(n/4) +1. Recall that we could only prove the
very weak bounds

p
n� T (n)� n using recursion trees. The equation (1/2)ρ+(1/4)ρ = 1

has the unique solution ρ = log2((1+
p

5)/2)≈ 0.69424, which can be obtained by setting
x = 2ρ and solving for x . Thus, we have

∫ n

1

1
uρ+1

du=
u−ρ

−ρ

����
n

u=1
=

1− n−ρ

ρ
= Θ(1)

and therefore
T (n) = Θ (nρ(1+Θ(1))) = Θ(nlgφ).

11
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The Akra-Bazzi method is that it can solve almost any divide-and-conquer recurrence with
just a few lines of calculation. (There are a few nasty exceptions like T (n) =

p
n T (
p

n) + n
where we have to fall back on recursion trees.) On the other hand, the steps appear to be magic,
which makes the method hard to remember, and for most divide-and-conquer recurrences that
arise in practice, there are much simpler solution techniques.

5 Linear Recurrences (Annihilators)?

Another common class of recurrences, called linear recurrences, arises in the context of recursive
backtracking algorithms and counting problems. These recurrences express each function value
f (n) as a linear combination of a small number of nearby values f (n− 1), f (n− 2), f (n− 3), . . ..
The Fibonacci recurrence is a typical example:

F(n) =





0 if n= 0

1 if n= 1

F(n− 1) + F(n− 2) otherwise

It turns out that the solution to any linear recurrence is a simple combination of polynomial
and exponential functions in n. For example, we can verify by induction that the linear recurrence

T (n) =





1 if n= 0

0 if n= 1 or n= 2

3T (n− 1)− 8T (n− 2) + 4T (n− 3) otherwise

has the closed-form solution T(n) = (n − 3)2n + 4. First we check the base cases:

T (0) = (0− 3)20 + 4= 1 Ø
T (1) = (1− 3)21 + 4= 0 Ø
T (2) = (2− 3)22 + 4= 0 Ø

And now the recursive case:

T (n) = 3T (n− 1)− 8T (n− 2) + 4T (n− 3)

= 3((n− 4)2n−1 + 4)− 8((n− 5)2n−2 + 4) + 4((n− 6)2n−3 + 4)

=
�

3
2
− 8

4
+

4
8

�
n · 2n −

�
12
2
− 40

4
+

24
8

�
2n + (2− 8+ 4) · 4

= (n− 3) · 2n + 4 Ø

But how could we have possibly come up with that solution? In this section, I’ll describe a general
method for solving linear recurrences that’s arguably easier than the induction proof!

5.1 Operators

Our technique for solving linear recurrences relies on the theory of operators. Operators are
higher-order functions, which take one or more functions as input and produce different functions
as output. For example, your first two semesters of calculus focus almost exclusively on the
differential and integral operators d

d x and
∫

d x . All the operators we will need are combinations
of three elementary building blocks:

12
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• Sum: ( f + g)(n) := f (n) + g(n)

• Scale: (α · f )(n) := α · ( f (n))
• Shift: (E f )(n) := f (n+ 1)

The shift and scale operators are linear, which means they can be distributed over sums; for
example, for any functions f , g, and h, we have E( f − 3(g − h)) = E f + (−3)E g + 3Eh.

We can combine these building blocks to obtain more complex compound operators. For
example, the compound operator E − 2 is defined by setting (E − 2) f := E f + (−2) f for any
function f . We can also apply the shift operator twice: (E(E f ))(n) = f (n+ 2); we write usually
E2 f as a synonym for E(E f ). More generally, for any positive integer k, the operator Ek shifts
its argument k times: Ek f (n) = f (n + k). Similarly, (E − 2)2 is shorthand for the operator
(E − 2)(E − 2), which applies (E − 2) twice.

For example, here are the results of applying different operators to the exponential function
f (n) = 2n:

2 f (n) = 2 · 2n = 2n+1

3 f (n) = 3 · 2n

E f (n) = 2n+1

E2 f (n) = 2n+2

(E − 2) f (n) = E f (n)− 2 f (n) = 2n+1 − 2n+1 = 0

(E2 − 1) f (n) = E2 f (n)− f (n) = 2n+2 − 2n = 3 · 2n

These compound operators can be manipulated exactly as though they were polynomials
over the “variable” E. In particular, we can factor compound operators into “products” of simpler
operators, which can be applied in any order. For example, the compound operators E2 − 3E + 2
and (E − 1)(E − 2) are equivalent:

Let g(n) := (E − 2) f (n) = f (n+ 1)− 2 f (n).

Then (E − 1)(E − 2) f (n) = (E − 1)g(n)

= g(n+ 1)− g(n)

= ( f (n+ 2)− 2 f (n− 1))− ( f (n+ 1)− 2 f (n))

= f (n+ 2)− 3 f (n+ 1) + 2 f (n)

= (E2 − 3E + 2) f (n). Ø

It is an easy exercise to confirm that E2−3E +2 is also equivalent to the operator (E −2)(E −1).
The following table summarizes everything we need to remember about operators.

Operator Definition

addition ( f + g)(n) := f (n) + g(n)
subtraction ( f − g)(n) := f (n)− g(n)

multiplication (α · f )(n) := α · ( f (n))
shift E f (n) := f (n+ 1)

k-fold shift Ek f (n) := f (n+ k)
composition (X + Y ) f := X f + Y f

(X − Y ) f := X f − Y f
XY f := X(Y f ) = Y (X f )

distribution X( f + g) = X f + X g

13
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5.2 Annihilators

An annihilator of a function f is any nontrivial operator that transforms f into the zero function.
(We can trivially annihilate any function by multiplying it by zero, so as a technical matter, we
do not consider the zero operator to be an annihilator.) Every compound operator we consider
annihilates a specific class of functions; conversely, every function composed of polynomial and
exponential functions has a unique (minimal) annihilator.

We have already seen that the operator (E − 2) annihilates the function 2n. It’s not hard to
see that the operator (E − c) annihilates the function α · cn, for any constants c and α. More
generally, the operator (E − c) annihilates the function an if and only if c = a:

(E − c)an = Ean − c · an = an+1 − c · an = (a− c)an.

Thus, (E − 2) is essentially the only annihilator of the function 2n.
What about the function 2n+3n? The operator (E−2) annihilates the function 2n, but leaves

the function 3n unchanged. Similarly, (E − 3) annihilates 3n while negating the function 2n. But
if we apply both operators, we annihilate both terms:

(E − 2)(2n + 3n) = E(2n + 3n)− 2(2n + 3n)

= (2n+1 + 3n+1)− (2n+1 + 2 · 3n) = 3n

=⇒ (E − 3)(E − 2)(2n + 3n) = (E − 3)3n = 0

In general, for any integers a 6= b, the operator (E−a)(E−b) = (E−b)(E−a) = (E2−(a+b)E+ab)
annihilates any function of the form αan + β bn, but nothing else.

What about the operator (E−a)(E−a) = (E−a)2? It turns out that this operator annihilates
all functions of the form (αn+ β)an:

(E − a)((αn+ β)an) = (α(n+ 1) + β)an+1 − a(αn+ β)an

= αan+1

=⇒ (E − a)2((αn+ β)an) = (E − a)(αan+1) = 0

More generally, the operator (E − a)d annihilates all functions of the form p(n) · an, where p(n)
is a polynomial of degree at most d − 1. For example, (E − 1)3 annihilates any polynomial of
degree at most 2.

The following table summarizes everything we need to remember about annihilators.

Operator Functions annihilated

E − 1 α

E − a αan

(E − a)(E − b) αan + β bn [if a 6= b]
(E − a0)(E − a1) · · · (E − ak)

∑k
i=0αia

n
i [if ai distinct]

(E − 1)2 αn+ β
(E − a)2 (αn+ β)an

(E − a)2(E − b) (αn+ β)ab + γbn [if a 6= b]
(E − a)d

�∑d−1
i=0 αin

i
�
an

If X annihilates f , then X also annihilates E f .
If X annihilates both f and g, then X also annihilates f ± g.

If X annihilates f , then X also annihilates α f , for any constant α.

If X annihilates f and Y annihilates g, then XY annihilates f ± g.
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5.3 Annihilating Recurrences

Given a linear recurrence for a function, it’s easy to extract an annihilator for that function. For
many recurrences, we only need to rewrite the recurrence in operator notation. Once we have
an annihilator, we can factor it into operators of the form (E − c); the table on the previous page
then gives us a generic solution with some unknown coefficients. If we are given explicit base
cases, we can determine the coefficients by examining a few small cases; in general, this involves
solving a small system of linear equations. If the base cases are not specified, the generic solution
almost always gives us an asymptotic solution. Here is the technique step by step:

1. Write the recurrence in operator form
2. Extract an annihilator for the recurrence
3. Factor the annihilator (if necessary)
4. Extract the generic solution from the annihilator
5. Solve for coefficients using base cases (if known)

Here are several examples of the technique in action:

• r (n) = 5r (n − 1), where r (0) = 3.

1. We can write the recurrence in operator form as follows:

r(n) = 5r(n− 1) =⇒ r(n+ 1)− 5r(n) = 0 =⇒ (E − 5)r(n) = 0.

2. We immediately see that (E − 5) annihilates the function r(n).

3. The annihilator (E − 5) is already factored.

4. Consulting the annihilator table on the previous page, we find the generic solution
r(n) = α5n for some constant α.

5. The base case r(0) = 3 implies that α= 3.

We conclude that r (n) = 3 ·5n . We can easily verify this closed-form solution by induction:

r(0) = 3 · 50 = 3 Ø [definition]

r(n) = 5r(n− 1) [definition]

= 5 · (3 · 5n−1) [induction hypothesis]

= 5n · 3 Ø [algebra]

• Fibonacci numbers: F(n) = F(n − 1) + F(n − 2), where F(0) = 0 and F(1) = 1.

1. We can rewrite the recurrence as (E2 − E − 1)F(n) = 0.

2. The operator E2 − E − 1 clearly annihilates F(n).

3. The quadratic formula implies that the annihilator E2−E−1 factors into (E−φ)(E−φ̂),
where φ = (1+

p
5)/2≈ 1.618034 is the golden ratio and φ̂ = (1−p5)/2= 1−φ =

−1/φ ≈ −0.618034.

4. The annihilator implies that F(n) = αφn + α̂φ̂n for some unknown constants α and
α̂.
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5. The base cases give us two equations in two unknowns:

F(0) = 0= α+ α̂

F(1) = 1= αφ + α̂φ̂

Solving this system of equations gives us α= 1/(2φ − 1) = 1/
p

5 and α̂= −1/
p

5.

We conclude with the following exact closed form for the nth Fibonacci number:

F(n) =
φn − φ̂n

p
5

=
1p
5

�
1+
p

5

2

�n

− 1p
5

�
1−p5

2

�n

With all the square roots in this formula, it’s quite amazing that Fibonacci numbers are
integers. However, if we do all the math correctly, all the square roots cancel out when i is
an integer. (In fact, this is pretty easy to prove using the binomial theorem.)

• Towers of Hanoi: T(n) = 2T(n − 1) + 1, where T(0) = 0. This is our first example of a
non-homogeneous recurrence, which means the recurrence has one or more non-recursive
terms.

1. We can rewrite the recurrence as (E − 2)T (n) = 1.

2. The operator (E−2) doesn’t quite annihilate the function; it leaves a residue of 1. But
we can annihilate the residue by applying the operator (E − 1). Thus, the compound
operator (E − 1)(E − 2) annihilates the function.

3. The annihilator is already factored.

4. The annihilator table gives us the generic solution T (n) = α2n+β for some unknown
constants α and β .

5. The base cases give us T (0) = 0 = α20 + β and T (1) = 1 = α21 + β . Solving this
system of equations, we find that α= 1 and β = −1.

We conclude that T(n) = 2n − 1.

For the remaining examples, I won’t explicitly enumerate the steps in the solution.

• Height-balanced trees: H(n) = H(n − 1) + H(n − 2) + 1, where H(−1) = 0 and
H(0) = 1. (Yes, we’re starting at −1 instead of 0. So what?)

We can rewrite the recurrence as (E2 − E − 1)H = 1. The residue 1 is annihilated by
(E − 1), so the compound operator (E − 1)(E2 − E − 1) annihilates the recurrence. This
operator factors into (E − 1)(E −φ)(E − φ̂), where φ = (1+

p
5)/2 and φ̂ = (1−p5)/2.

Thus, we get the generic solution H(n) = α ·φn + β + γ · φ̂n, for some unknown constants
α, β , γ that satisfy the following system of equations:

H(−1) = 0= αφ−1 + β + γφ̂−1 = α/φ + β − γ/φ̂
H(0) = 1= αφ0 + β + γφ̂0 = α+ β + γ

H(1) = 2= αφ1 + β + γφ̂1 = αφ + β + γφ̂

Solving this system (using Cramer’s rule or Gaussian elimination), we find that α =
(
p

5+ 2)/
p

5, β = −1, and γ= (
p

5− 2)/
p

5. We conclude that

H(n) =
p

5+ 2p
5

�
1+
p

5

2

�n

− 1+
p

5− 2p
5

�
1−p5

2

�n

.
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• T(n) = 3T(n − 1)− 8T(n − 2) + 4T(n − 3), where T(0) = 1, T(1) = 0, and T(2) = 0.
This was our original example of a linear recurrence.

We can rewrite the recurrence as (E3−3E2+8E−4)T = 0, so we immediately have an
annihilator E3−3E2+8E−4. Using high-school algebra, we can factor the annihilator into
(E − 2)2(E − 1), which implies the generic solution T (n) = αn2n +β2n + γ. The constants
α, β , and γ are determined by the base cases:

T (0) = 1 = α · 0 · 20 + β20 + γ = β + γ

T (1) = 0 = α · 1 · 21 + β21 + γ = 2α+ 2β + γ

T (2) = 0 = α · 2 · 22 + β22 + γ = 8α+ 4β + γ

Solving this system of equations, we find that α = 1, β = −3, and γ = 4, so T(n) =
(n − 3)2n + 4.

• T(n) = T(n − 1) + 2T(n − 2) + 2n − n2

We can rewrite the recurrence as (E2 − E − 2)T (n) = E2(2n − n2). Notice that we
had to shift up the non-recursive parts of the recurrence when we expressed it in this
form. The operator (E − 2)(E − 1)3 annihilates the residue 2n − n2, and therefore also
annihilates the shifted residue E2(2n+ n2). Thus, the operator (E −2)(E −1)3(E2− E −2)
annihilates the entire recurrence. We can factor the quadratic factor into (E − 2)(E + 1),
so the annihilator factors into (E − 2)2(E − 1)3(E + 1). So the generic solution is T(n) =
αn2n +β2n +γn2+δn+ ε+η(−1)n . The coefficients α, β , γ, δ, ε, η satisfy a system of
six equations determined by the first six function values T (0) through T (5). For almost²
every set of base cases, we have α 6= 0, which implies that T(n) = Θ(n2n).

For a more detailed explanation of the annihilator method, see George Lueker, Some
techniques for solving recurrences, ACM Computing Surveys 12(4):419-436, 1980.

6 Transformations

Sometimes we encounter recurrences that don’t fit the structures required for recursion trees or
annihilators. In many of those cases, we can transform the recurrence into a more familiar form,
by defining a new function in terms of the one we want to solve. There are many different kinds
of transformations, but these three are probably the most useful:

• Domain transformation: Define a new function S(n) = T ( f (n))with a simpler recurrence,
for some simple function f .

• Range transformation: Define a new function S(n) = f (T (n)) with a simpler recurrence,
for some simple function f .

• Difference transformation: Simplify the recurrence for T (n) by considering the difference
function ∆T (n) = T (n)− T (n− 1).

Here are some examples of these transformations in action.

²In fact, the only possible solutions with α= 0 have the form −2n−1 − n2/2− 5n/2+η(−1)n for some constant η.
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• Unsimplified Mergesort: T(n) = T(dn/2e) + T(bn/2c) +Θ(n)
When n is a power of 2, we can simplify the mergesort recurrence to T (n) = 2T (n/2)+

Θ(n), which has the solution T (n) = Θ(n log n). Unfortunately, for other values values of
n, this simplified recurrence is incorrect. When n is odd, then the recurrence calls for us
to sort a fractional number of elements! Worse yet, if n is not a power of 2, we will never
reach the base case T (1) = 1.

So we really need to solve the original recurrence. We have no hope of getting an exact
solution, even if we ignore the Θ( ) in the recurrence; the floors and ceilings will eventually
kill us. But we can derive a tight asymptotic solution using a domain transformation—we
can rewrite the function T (n) as a nested function S( f (n)), where f (n) is a simple function
and the function S( ) has an simpler recurrence.

First let’s overestimate the time bound, once by pretending that the two subproblem
sizes are equal, and again to eliminate the ceiling:

T (n)≤ 2T
�dn/2e�+ n≤ 2T (n/2+ 1) + n.

Now we define a new function S(n) = T (n+α), where α is a unknown constant, chosen so
that S(n) satisfies the Master-Theorem-ready recurrence S(n)≤ 2S(n/2) +O(n). To figure
out the correct value of α, we compare two versions of the recurrence for the function
T (n+α):

S(n)≤ 2S(n/2) +O(n) =⇒ T (n+α)≤ 2T (n/2+α) +O(n)

T (n)≤ 2T (n/2+ 1) + n =⇒ T (n+α)≤ 2T ((n+α)/2+ 1) + n+α

For these two recurrences to be equal, we need n/2+α = (n+α)/2+ 1, which implies
that α= 2. The Master Theorem now tells us that S(n) = O(n log n), so

T (n) = S(n− 2) = O((n− 2) log(n− 2)) = O(n log n).

A similar argument implies the matching lower bound T (n) = Ω(n log n). So T(n) =
Θ(n logn) after all, just as though we had ignored the floors and ceilings from the
beginning!

Domain transformations are useful for removing floors, ceilings, and lower order terms
from the arguments of any recurrence that otherwise looks like it ought to fit either the
Master Theorem or the recursion tree method. But now that we know this, we don’t need
to bother grinding through the actual gory details!

• Ham-Sandwich Trees: T(n) = T(n/2) + T(n/4) + 1

As we saw earlier, the recursion tree method only gives us the uselessly loose boundsp
n� T (n)� n for this recurrence, and the recurrence is in the wrong form for annihilators.

The authors who discovered ham-sandwich trees (Yes, this is a real data structure!) solved
this recurrence by guessing the solution and giving a complicated induction proof. We got
a tight solution using the Akra-Bazzi method, but who can remember that?

In fact, a simple domain transformation allows us to solve the recurrence in just a few
lines. We define a new function t(k) = T (2k), which satisfies the simpler linear recurrence
t(k) = t(k−1)+ t(k− 2)+1. This recurrence should immediately remind you of Fibonacci
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numbers. Sure enough, the annihilator method implies the solution t(k) = Θ(φk), where
φ = (1+

p
5)/2 is the golden ratio. We conclude that

T (n) = t(lg n) = Θ(φlg n) = Θ(nlgφ)≈ Θ(n0.69424).

This is the same solution we obtained earlier using the Akra-Bazzi theorem.

Many other divide-and-conquer recurrences can be similarly transformed into linear
recurrences and then solved with annihilators. Consider once more the simplified mergesort
recurrence T (n) = 2T (n/2) + n. The function t(k) = T (2k) satisfies the recurrence
t(k) = 2t(k−1)+2k. The annihilator method gives us the generic solution t(k) = Θ(k ·2k),
which implies that T (n) = t(lg n) = Θ(n log n), just as we expected.

On the other hand, for some recurrences like T (n) = T (n/3)+T (2n/3)+n, the recursion
tree method gives an easy solution, but there’s no way to transform the recurrence into a
form where we can apply the annihilator method directly.³

• Random Binary Search Trees: T(n) =
1
4 T(n/4) +

3
4 T(3n/4) + 1

This looks like a divide-and-conquer recurrence, so we might be tempted to apply
recursion trees, but what does it mean to have a quarter of a child? If we’re not comfortable
with weighted recursion trees (or the Akra-Bazzi theorem), we can instead apply the
following range transformation. The function U(n) = n · T (n) satisfies the more palatable
recurrence U(n) = U(n/4) + U(3n/4) + n. As we’ve already seen, recursion trees imply
that U(n) = Θ(n log n), which immediately implies that T(n) = Θ(logn).

• Randomized Quicksort: T(n) =
2

n

n−1∑
k=0

T(k) + n

This is our first example of a full history recurrence; each function value T (n) is defined
in terms of all previous function values T (k) with k < n. Before we can apply any of our
existing techniques, we need to convert this recurrence into an equivalent limited history
form by shifting and subtracting away common terms. To make this step slightly easier, we
first multiply both sides of the recurrence by n to get rid of the fractions.

n · T (n) = 2
n−1∑
k=0

T ( j) + n2 [multiply both sides by n]

(n− 1) · T (n− 1) = 2
n−2∑
k=0

T ( j) + (n− 1)2 [shift]

nT (n)− (n− 1)T (n− 1) = 2T (n− 1) + 2n− 1 [subtract]

T (n) =
n+ 1

n
T (n− 1) + 2− 1

n
[simplify]

³However, we can still get a solution via functional transformations as follows. The function t(k) = T ((3/2)k)
satisfies the recurrence t(n) = t(n− 1) + t(n− λ) + (3/2)k, where λ = log3/2 3 = 2.709511 . . .. The characteristic
function for this recurrence is (rλ − rλ−1 − 1)(r − 3/2), which has a double root at r = 3/2 and nowhere else. Thus,
t(k) = Θ(k(3/2)k), which implies that T (n) = t(log3/2 n) = Θ(n log n). This line of reasoning is the core of the
Akra-Bazzi method.
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We can solve this limited-history recurrence using another functional transformation.
We define a new function t(n) = T (n)/(n+ 1), which satisfies the simpler recurrence

t(n) = t(n− 1) +
2

n+ 1
− 1

n(n+ 1)
,

which we can easily unroll into a summation. If we only want an asymptotic solution, we
can simplify the final recurrence to t(n) = t(n− 1) +Θ(1/n), which unrolls into a very
familiar summation:

t(n) =
n∑

i=1

Θ(1/i) = Θ(Hn) = Θ(log n).

Finally, substituting T (n) = (n + 1)t(n) gives us a solution to the original recurrence:
T(n) = Θ(n logn).

Exercises

1. For each of the following recurrences, first guess an exact closed-form solution, and then
prove your guess is correct. You are free to use any method you want to make your guess—
unrolling the recurrence, writing out the first several values, induction proof template,
recursion trees, annihilators, transformations, ‘It looks like that other one’, whatever—but
please describe your method. All functions are from the non-negative integers to the reals.
If it simplifies your solutions, express them in terms of Fibonacci numbers Fn, harmonic
numbers Hn, binomial coefficients

�n
k

�
, factorials n!, and/or the floor and ceiling functions

bxc and dxe.
(a) A(n) = A(n− 1) + 1, where A(0) = 0.

(b) B(n) =

¨
0 if n< 5

B(n− 5) + 2 otherwise

(c) C(n) = C(n− 1) + 2n− 1, where C(0) = 0.

(d) D(n) = D(n− 1) +
�n

2

�
, where D(0) = 0.

(e) E(n) = E(n− 1) + 2n, where E(0) = 0.

(f) F(n) = 3 · F(n− 1), where F(0) = 1.

(g) G(n) = G(n−1)
G(n−2) , where G(0) = 1 and G(1) = 2. [Hint: This is easier than it looks.]

(h) H(n) = H(n− 1) + 1/n, where H(0) = 0.

(i) I(n) = I(n − 2) + 3/n, where I(0) = I(1) = 0. [Hint: Consider even and odd n
separately.]

(j) J(n) = J(n− 1)2, where J(0) = 2.

(k) K(n) = K(bn/2c) + 1, where K(0) = 0.

(l) L(n) = L(n− 1) + L(n− 2), where L(0) = 2 and L(1) = 1.
[Hint: Write the solution in terms of Fibonacci numbers.]

(m) M(n) = M(n− 1) ·M(n− 2), where M(0) = 2 and M(1) = 1.
[Hint: Write the solution in terms of Fibonacci numbers.]
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(n) N(n) = 1+
n∑

k=1
(N(k− 1) + N(n− k)), where N(0) = 1.

(p) P(n) =
n−1∑
k=0
(k · P(k− 1)), where P(0) = 1.

(q) Q(n) = 1
2−Q(n−1) , where Q(0) = 0.

(r) R(n) = max
1≤k≤n

{R(k− 1) + R(n− k) + n}

(s) S(n) = max
1≤k≤n

{S(k− 1) + S(n− k) + 1}

(t) T (n) = min
1≤k≤n

{T (k− 1) + T (n− k) + n}

(u) U(n) = min
1≤k≤n

{U(k− 1) + U(n− k) + 1}

(v) V (n) = max
n/3≤k≤2n/3

{V (k− 1) + V (n− k) + n}

2. Use recursion trees or the Akra-Bazzi theorem to solve each of the following recurrences.

(a) A(n) = 2A(n/4) +
p

n

(b) B(n) = 2B(n/4) + n

(c) C(n) = 2C(n/4) + n2

(d) D(n) = 3D(n/3) +
p

n

(e) E(n) = 3E(n/3) + n

(f) F(n) = 3F(n/3) + n2

(g) G(n) = 4G(n/2) +
p

n

(h) H(n) = 4H(n/2) + n

(i) I(n) = 4I(n/2) + n2

(j) J(n) = J(n/2) + J(n/3) + J(n/6) + n

(k) K(n) = K(n/2) + K(n/3) + K(n/6) + n2

(l) L(n) = L(n/15) + L(n/10) + 2L(n/6) +
p

n

?(m) M(n) = 2M(n/3) + 2M(2n/3) + n

(n) N(n) =
p

2n N(
p

2n) +
p

n

(p) P(n) =
p

2n P(
p

2n) + n

(q) Q(n) =
p

2nQ(
p

2n) + n2

(r) R(n) = R(n− 3) + 8n — Don’t use annihilators!

(s) S(n) = 2S(n− 2) + 4n — Don’t use annihilators!

(t) T (n) = 4T (n− 1) + 2n — Don’t use annihilators!
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3. Make up a bunch of linear recurrences and then solve them using annihilators.

4. Solve the following recurrences, using any tricks at your disposal.

(a) T (n) =
lg n∑
i=1

T (n/2i) + n [Hint: Assume n is a power of 2.]

(b) More to come. . .
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