Advanced Algorithms, Fall 2009 Problem Set 4
Instructor: Emanuele Viola
Assigned: November 10 Due: November 24 before class

Guidelines If you write “I do not know how to solve this problem” then you get 1/4 of
the score for the problem. If you write nonsense then you get 0.

As we are going to learn in this class, time and space are very valuable resources. Strive
to give effective, compact solutions. Your solutions should touch on all the main points, but
long calculations or discussions are not required nor sought.

Do not worry if you sometimes “do not get it.” The problems are meant to stimulate
you, not to overwork you. I need your solutions on paper (not file). To hand them in: give
it to me or slide them under my door West Village H (246).

On this problem set you must work on your own

Problem 1. Eigenvalue bound In class we saw a randomized log-space algorithm for
connectivity on undirected graphs. For the proof that the algorithm runs in polynomial time
we claimed without proof a bound on the second largest eigenvalue of the adjacency matrix
of the graph. In this exercise you will prove this bound (except for a few facts related to the
existence of certain eigenvalues and eigenvectors).

Let G be a connected, undirected graph with degree d < n at every node. Let A be its
normalized adjacency matrix. We allow for G to have self-loops and multiple edges. One
way to visualize this is to note that a;; = B/d for the integer number B of edges between
i and j. Note each row and each column of A sums to 1. (If self-loops or multiple edges
bother you, you can assume that your graph has none, in which case a; ; is either 1/d or 0.)

You can assume that there are n real eigenvalues Ay, ..., \, with associated n real eigen-
vectors vy, ..., v, such that: 1 = A\; > Ay > A3 > A\y... (note the first inequality is strict),
the vectors v; have each length 1 and they are orthogonal (and so pairwise independent),
and Av; = \v;.

(1) Prove that: Ay = max, < Az,z >, where the maximum is taken over vectors x of
length 1 that are orthogonal to the uniform distribution, i.e., . z; = 0.

(2) Prove that:
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where the minimum is again taken over vectors x of length 1 that are orthogonal to the
uniform distribution. Hint: Write 1 =< x, 2 > and use (1).

(3) Assume that G is connected. Prove that Ay < 1 — 1/n¢ for a universal constant c.

For the algorithm seen in class one in fact needs |Ao] < 1 — 1/n° but this stronger
statement than (3) can be obtained by considering A% (you are not required to do this).

Problem 2. CLRS Problem 26-5 Maximum flow by scaling Note: c¢ is integer-
valued.



Problem 3. Equivalent duality Use the duality theorem seen in class to obtain the
following alternative form of duality. If both the following are satisfiable, then their optima
coincide:

Primal: min cz subject to Ax = b,z > 0.

Dual: maxby : ATy <ec.

Problem 4. von Neumann’s minmax theorem Let A be an n x n matrix. Prove:

min max yAr = max min y Az,
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where the maximums and minimums are taken over probability distributions z,y, i.e., x,y €
R" such that z;,y; > 0, for every j, and >_;x; = >, y; = 1). (We can interpret z and y as
probability distributions for two players (i) and (ii) over their set of strategies {1,...,n} —
x,y are called mixed strategies — and A as a payoff matrix. yAx is then the expected payoff
when (i) plays x, and (i) plays y. In this interpretation the theorem asserts that if (i) has
a mixed strategy x that achieves an expected payoff of at most ¢ no matter what (i) plays,
than (i) has a mixed strategy y that achieves payoff at least ¢ no matter what (i) plays.)

Hint: Rewrite the desired equation so that each side of the equation involves only one
min or max (not an alternation as is currently).



