Advanced Algorithms, Fall 2009 Problem Set 1
Assigned: September 22 Due: October 6 before class

Guidelines If you write “I do not know how to solve this problem” then you get 1/4 of
the score for the problem. If you write nonsense then you get 0.

As we are going to learn in this class, time and space are very valuable resources. Strive
to give effective, compact solutions. Your solutions should touch on all the main points, but
long calculations or discussions are not required nor sought.

Do not worry if you sometimes “do not get it.” The problems are meant to stimulate
you, not to overwork you. Unless specified otherwise, you can collaborate, but you must
acknowledge all your collaborators in your solutions. I need your solutions on paper (not
file). To hand them in: give it to me or slide them under my door West Village H (246).

Problem 1. CLRS 8.2-2 4+ 8.3-3 4+ 9.3-3. More on sorting;:

(1)Give a deterministic algorithm to find the pivot in the quicksort algorithm so that the
resulting sorting algorithm is a deterministic algorithm performing O(n -logn) comparisons
in the worst case.

Consider sorting n elements with respect to their keys stored in array A[l..n]. Recall a
sorting algorithm is stable if for any two elements with the same key, their relative order in
the sorted output sequence B is the same as their relative order in the input sequence.

Now recall Counting Sort to sort keys that are at most k:

for i := 1 to k do

cl[i] := 0
for j := 1 to n do

clA[j]] := c[A[j1] + 1
//cli] now contains the number of elements equal to i
for i := 2 to k do

cl[i] := cl[i] + c[i-1]
// cli] now contains the number of elements <= i
for j := n downto 1 do

B[c[A[j1]1] := A[j]

c[A[j1] := c[A[1] -1

(2) Prove that counting sort is stable.

(3) Now consider using Counting Sort inside Radix Sort to sort n elements between 0
and n? — 1. Prove that Radix Sort works.

Problem 2. Bit-complexity of iterated operations In this problem we are going
to count the bit-complexity of operations. You can assume throughout that performing
arithmetic on ¢-bit integers requires time ¢ - poly logt (i.e., if a,b are two integers such that
MAX(|al,|b]) <t then a+b,a-t,...can be computed in time ¢ - poly log ¢.

1

(1) You are given as input a sequence of n numbers ay, as, . .. , a, where |a;| < ¢ for every
i, where ¢ is an absolute constant (e.g. ¢ = 17). Show how to compute the product of the
numbers in time n - poly logn.

(2) Now instead of integers you are given as input n ¢ X ¢ matrices Ay, A, ..., A, whose
entries are again bounded in absolute value by the absolute constant c¢. (Note the input
length has again bit-length that is O(n).) Show how to compute the product of the matrices
in time n - poly logn.

(3) (Challenge!) Now you are given as input n 2 x 2 matrices A;,..., A, as well as n
vectors Vi, Vs, ..., V, of 2 coordinates, where all coordinates (both in the matrices and in
the vectors) have absolute value at most ¢ again. You are interested in computing x,, where
7o := (1,1) € R? and z; := A;x;_1 + V;. Show how to compute z,, in time n - poly logn.

Problem 3. CLRS Problem 15-2. Consider the problem of neatly printing a paragraph
on a printer. The input text is a sequence of n words of lengths [y,ls,...,[,, measured
in characters. We want to print this paragraph neatly on a number of lines that hold a
maximum of M characters each. Our criterion of “neatness” is as follows. If a given line
contains words ¢ through j, where ¢+ < j, and we leave exactly one space between words, the
number of extra space characters at the end of the line is

J
M—j+i=> I,
k=1

which must be nonnegative so that the words fit on the line. We wish to minimize the sum,
over all lines except the last, of the cubes of the numbers of extra space characters at the
ends of the lines. Give a dynamic-programming algorithm to print a paragraph of n words
neatly on a printer. Analyze the running time of your algorithm.

Problem 4. CLRS Problem 16-1.b. Consider the problem of making change for n cents
using the fewest number of coins. We have seen in class a dynamic programming solution to
this problem.

Prove that the greedy algorithm (which you should define) works correctly when you
have (an infinite supply of) k types of coins with values %, ¢!, ..., c* respectively, where c, k
are integers bigger than 1.

