CS G713: Advanced Algorithms Problem Set 3

Assigned: October 24, 2008 Due: November 7, 2008 before class

Guidelines If you write “I do not know how to solve this problem” then you get 1/4 of
the score for the problem. If you write nonsense then you get 0.

As we are going to learn in this class, time and space are very valuable resources. Strive
to give effective, compact solutions. Your solutions should touch on all the main points, but
long calculations or discussions are not required nor sought.

Do not worry if you sometimes “do not get it.” The problems are meant to stimulate
you, not to overwork you. Unless specified otherwise, you can collaborate, but you must
acknowledge all your collaborators in your solutions. To hand in your solutions: Give it to
me, slide it under my door West Village H (246), or email it to csg713-instructor@ccs.neu.edu.

Problem 1. Puzzle: Loop detecting An array A[l], A[2], A[3],... defines a directed
graph with outdegree at most 1: Node i points to Node A[i], and it points to nothing (i.e. it
is a sink) if A[i] = 0. Each entry in the array is at most N in magnitude.

Consider a walk that starts at Node 1. Such walk will either terminate in a sink or loop
forever. Derive a O(log N)-space algorithm that distinguishes between these two cases and
that runs in time linear in the size of the connected component which includes Node 1. (Note
that, because of this latter requirement, a bound of N on the running time is not sufficient
for this problem; in particular, you do not have the time to scan the entire array.)

Problem 2. Log-space randomized algorithm with zero error for connectivity
You are given a randomized algorithm A that, given an unweighted graph GG on n nodes and
two nodes s, t, satisfies the following:

(1) It uses space O(logn),

(2) if s,t are not connected, it always says “NOT CONNECTED,” while

(3) if s,t are connected, it says “CONNECTED” with probability at least 1/2.

Use A to construct another randomized algorithm B for connectivity with the following
properties:

(1) It uses space O(logn),

(2) on every input, B outputs “DON'T KNOW” with probability at most 1/2, but

(3) whenever B does not say “DON’'T KNOW,” it always correctly computes whether
s,t are connected or not.

Hint: First solve the problem assuming that the algorithm is given the total number P,
of pairs (u,v) in the graph that are connected. Then show how to compute P, using an
inductive approach similar to the one in the Floyd-Warshall algorithm seen in class.

You may find it helpful to use the fact that if the edge relation of another graph G’ is
computable from G in deterministic space O(logn), then one can simulate A(G’) with only
a negligible overhead in space and time.



Problem 3. CLRS Exercise 26.3-4 Prove Hall’s Theorem. Hint: Use the max-flow
min-cut theorem.

Problem 4. CLRS Problem 26-5 Maximum flow by scaling Note: c is integer-
valued.



