CS G713: Advanced Algorithms Problem Set 0

Assigned: September 12, 2008 Due: September 16, 2008 before class

This problem set is optional, but you are encouraged to solve it.

Guidelines. If you write “I do not know how to solve this problem” then you get 1/4 of
the score for the problem. If you write nonsense then you get 0.

As we are going to learn in this class, time and space are very valuable resources. Strive
to give effective, compact solutions. Your solutions should touch on all the main points, but
long calculations or discussions are not required nor sought.

Do not worry if you sometimes “do not get it.” The problems are meant to stimulate
you, not to overwork you. (Also keep in mind that there is always a non-zero chance that I
mess up something in a problem ;-) You do not have to solve all the problems to get an ‘A’
in this class. As a rule of thumb, skipping a problem per problem set is enough to an ‘A’ in
this class.

In general you can collaborate, but you must acknowledge all your collaborators in your
solutions. On selected problem sets (e.g. the final) you cannot collaborate and you should
think about the problems yourselves.

To hand in your solutions: Give it to me, slide it under my door West Village H (246),
or email it to csg713-instructor@ccs.neu.edu.

Problem 1. Probability recap. (1) Prove the Cauchy-Schwarz inequality: For every
random variable X,
E[X?* > E[X])*

(2) Conclude that for any vector v = (vy,...,v,) € R" we have
Susvi S

(3) The statistical distance between two distributions X, Y is the maximum over all events
T, of |Pr[X € T| — Pr[Y € T]|. Prove this equals 5 - > |Pr[X = a] — Pr[Y = d]|.

Problem 2. Algorithm recap (1) Let A be a randomized algorithm for a Boolean prob-
lem. Suppose that on YES instances the algorithm is always correct, but on NO instances
the algorithm errs with probability at most 1/2. Derive a new algorithm A’ that is always
correct on YES instances, and on NO instances errs with probability at most 1/21°°. How
slower is the new algorithm?

(2) Let A be a deterministic algorithm that runs in space (or memory) ¢ > logn. Argue
that the algorithm runs in time 2°®.

