From Parametricity to Conservation Laws, via Noether's Theorem

Written by Robert Atkey
bob.atkey@gmail.com

Presented by Ben Carriel & Ben Greenman
2014-04-07
\[TE = mgh + \frac{1}{2}mv^2 \]
\[TE = mgh + \frac{1}{2}mv^2 \]

\[TE = PE + KE \]
distance = $\sqrt{(x_1 - x_2)^2 + (y_1 - y_2)^2}$
distance = $\sqrt{(x_1 - x_2)^2 + (y_1 - y_2)^2}$
Distance is **invariant** under translation and change of coordinate representation.
weights of about 2-3kg

swivel chair

initial angular velocity of about one revolution every couple of seconds

final angular velocity of up to two or three revolutions per second
Noether's Theorem
Noether's Theorem

(1915) "Any differentiable symmetry of the action of a physical system has a corresponding conservation law"
Quick Example
\[L(t, z_1, z_2, \dot{z}_1, \dot{z}_2) = \frac{1}{2} m (\dot{z}_1^2 + \dot{z}_2^2) - \frac{1}{2} k (z_1 - z_2)^2 \]
\[L(t, z_1, z_2, \dot{z}_1, \dot{z}_2) = \frac{1}{2} m (\dot{z}_1^2 + \dot{z}_2^2) - \frac{1}{2} k (z_1 - z_2)^2 \]
\[L(t, z_1, z_2, \dot{z}_1, \dot{z}_2) = \frac{1}{2} m (\dot{z}_1^2 + \dot{z}_2^2) - \frac{1}{2} k (z_1 - z_2)^2 \]
\[L(t, z_1, z_2, \dot{z}_1, \dot{z}_2) = \frac{1}{2} m (\dot{z}_1^2 + \dot{z}_2^2) - \frac{1}{2} k (z_1 - z_2)^2 \]

\[\forall d \in \mathbb{R}^2 \]
\[L(t, z_1, z_2, \dot{z}_1, \dot{z}_2) = \frac{1}{2} m(\dot{z}_1^2 + \dot{z}_2^2) - \frac{1}{2} k(z_1 - z_2)^2 \]

\[\forall d \in \mathbb{R}^2 \quad L(t, z_1, z_2, \dot{z}_1, \dot{z}_2) = L(t, z_1 + d, z_2 + d, \dot{z}_1, \dot{z}_2) \]
\[L(t, z_1, z_2, \dot{z}_1, \dot{z}_2) = \frac{1}{2} m (\dot{z}_1^2 + \dot{z}_2^2) - \frac{1}{2} k (z_1 - z_2)^2 \]

\[\forall d \in \mathbb{R}^2 \quad L(t, z_1, z_2, \dot{z}_1, \dot{z}_2) = L(t, z_1 + d, z_2 + d, \dot{z}_1, \dot{z}_2) \]

(Noether's Theorem)

\[\frac{d}{dt} m (\dot{x}_1 + \dot{x}_2) = 0 \]
Conservation of Momentum

\[L(t, z_1, z_2, \dot{z}_1, \dot{z}_2) = \frac{1}{2} m (\dot{z}_1^2 + \dot{z}_2^2) - \frac{1}{2} k (z_1 - z_2)^2 \]

\[\forall d \in \mathbb{R}^2 \quad L(t, z_1, z_2, \dot{z}_1, \dot{z}_2) = L(t, z_1 + d, z_2 + d, \dot{z}_1, \dot{z}_2) \]

(Noether's Theorem)

\[\frac{d}{dt} m (\dot{x}_1 + \dot{x}_2) = 0 \]
If the action

$$S[q; a; b] = \int_a^b L(t, q, \dot{q}) \, dt$$

is invariant under Φ_ϵ and Ψ_ϵ, then

$$\frac{d}{dt} \left(\sum_{i=1}^n \frac{\partial L}{\partial \dot{q}_i} \psi_i + \left(L - \sum_{i=1}^n \dot{q}_i \frac{\partial L}{\partial \dot{q}_i} \right) \phi \right) = 0$$

where $\phi = \frac{\partial \Phi}{\partial \epsilon} \bigg|_{\epsilon=0}$ and $\psi = \frac{\partial \psi}{\partial \epsilon} \bigg|_{\epsilon=0}$
Pretty cool, right?
\(\tau \)

\[(\lambda x : \text{unit} . \ 42 : \text{int})\]

\[
\lambda f : (\text{int} \to \text{int}) \ \text{ref} . \
\lambda n : \text{int} . \\
\ f := (\lambda acc : \text{int} \ \text{ref} . \
\ \lambda m : \text{int} . \\
\ \ \text{case} \ (n = m : \text{bool}) \ \text{of} \\
\ \ \ (\text{acc} := (\text{mul} \ \!\!\!\!\!\!\!\!\!\!\text{acc} \ m); \ \text{acc}) : \text{int} \\
\ \ \ (!f (acc := (\text{mul} \ \!\!\!\!\!\!\!\!\!\!\text{acc} \ m); \ \text{acc}) (m+1)) : \text{int} \\
\ \ \) \ (\text{ref} \ 1) \ 1) \ (\text{ref} \ \lambda x : \text{int} . x)\]
Atkey (2014)
Atkey (2014)

Define a type system for Lagrangian Mechanics.
Atkey (2014)

Define a type system for Lagrangian Mechanics.

Derive conservation laws as "free theorems" by parametricity.
Lagrangian: \[L(t, z_1, z_2, \dot{z}_1, \dot{z}_2) = \frac{1}{2} m (\dot{z}_1^2 + \dot{z}_2^2) - \frac{1}{2} k (z_1 - z_2)^2 \]
Lagrangian: \[L(t, z_1, z_2, \dot{z}_1, \dot{z}_2) = \frac{1}{2} m (\dot{z}_1^2 + \dot{z}_2^2) - \frac{1}{2} k (z_1 - z_2)^2 \]
Lagrangian: \(L(t, z_1, z_2, \dot{z}_1, \dot{z}_2) = \frac{1}{2} m(\dot{z}_1^2 + \dot{z}_2^2) - \frac{1}{2} k(z_1 - z_2)^2 \)

Type:

Reference:
Lagrangian: \(L(t, z_1, z_2, \dot{z}_1, \dot{z}_2) = \frac{1}{2} m (\dot{z}_1^2 + \dot{z}_2^2) - \frac{1}{2} k (z_1 - z_2)^2 \)

Type: \(\forall y : T(1) \).

Reference:
Lagrangian: \[L(t, z_1, z_2, \dot{z}_1, \dot{z}_2) = \frac{1}{2} m(\dot{z}_1^2 + \dot{z}_2^2) - \frac{1}{2} k(z_1 - z_2)^2 \]

Type: \(\forall y : T(1) \).

Reference:

\(\forall y : T(1) \rightarrow \text{for all translations } y \text{ in one-dimensional space} \)
Lagrangian: \(L(t, z_1, z_2, \dot{z}_1, \dot{z}_2) = \frac{1}{2} m(\dot{z}_1^2 + \dot{z}_2^2) - \frac{1}{2} k(z_1 - z_2)^2 \)

Type: \(\forall y : T(1) \).
\(C^\infty(_, _) \)

Reference:
\(\forall y : T(1) \). \(\rightarrow \) for all translations \(y \) in one-dimensional space
Lagrangian: \(L(t, z_1, z_2, \dot{z}_1, \dot{z}_2) = \frac{1}{2} m(\dot{z}_1^2 + \dot{z}_2^2) - \frac{1}{2} k(z_1 - z_2)^2 \)

Type: \(\forall y : T(1). \quad C^\infty(_ , _) \)

Reference:

\(\forall y : T(1). \quad \rightarrow \) for all translations \(y \) in one-dimensional space

\(C^\infty(_ , _) \quad \rightarrow \) type for smooth functions between spaces
Lagrangian: $L(t, z_1, z_2, \dot{z}_1, \dot{z}_2) = \frac{1}{2} m (\dot{z}_1^2 + \dot{z}_2^2) - \frac{1}{2} k (z_1 - z_2)^2$

Type: $\forall y : T(1)$.

$C^\infty(\mathbb{R}^1(1, 0) \times \mathbb{R}^1(1, y) \times \mathbb{R}^1(1, y) \times \mathbb{R}^1(1, 0) \times \mathbb{R}^1(1, 0), __)$

Reference:

$\forall y : T(1) \rightarrow$ for all translations y in one-dimensional space

$C^\infty(_, __) \rightarrow$ type for smooth functions between spaces
Lagrangian: \[L(t, z_1, z_2, \dot{z}_1, \dot{z}_2) = \frac{1}{2} m (\dot{z}_1^2 + \dot{z}_2^2) - \frac{1}{2} k (z_1 - z_2)^2 \]

Type: \(\forall y : T(1) \).

\[C^\infty(\mathbb{R}^1 \langle 1, 0 \rangle \times \mathbb{R}^1 \langle 1, y \rangle \times \mathbb{R}^1 \langle 1, y \rangle \times \mathbb{R}^1 \langle 1, 0 \rangle \times \mathbb{R}^1 \langle 1, 0 \rangle, _ \) \]

Reference:

\(\forall y : T(1) \) \(\rightarrow \) for all translations \(y \) in one-dimensional space

\(C^\infty(_, _) \) \(\rightarrow \) type for smooth functions between spaces

\(\mathbb{R}^1 \langle g, f \rangle \) \(\rightarrow \) real numbers that vary with linear transformation \(g \) and translation \(f \).
Lagrangian: \[L(t, z_1, z_2, \dot{z}_1, \dot{z}_2) = \frac{1}{2} m(\dot{z}_1^2 + \dot{z}_2^2) - \frac{1}{2} k(z_1 - z_2)^2 \]

Type: \(\forall y : T(1) \).

\[C^\infty(\mathbb{R}^1 1, 0 \times \mathbb{R}^1 1, y \times \mathbb{R}^1 1, y \times \mathbb{R}^1 1, 0 \times \mathbb{R}^1 1, 0, _ \) \]

Reference:

\(\forall y : T(1) \) \(\rightarrow \) for all translations \(y \) in one-dimensional space

\(C^\infty(_, _) \) \(\rightarrow \) type for smooth functions between spaces

\(\mathbb{R}^1 \langle g, f \rangle \) \(\rightarrow \) real numbers that vary with linear transformation \(g \) and translation \(f \).
Lagrangian: \[L(t, z_1, z_2, \dot{z}_1, \dot{z}_2) = \frac{1}{2} m (\dot{z}_1^2 + \dot{z}_2^2) - \frac{1}{2} k (z_1 - z_2)^2 \]

Type: \(\forall y : T(1) \).

\[C^\infty(\mathbb{R}^1 \langle 1, 0 \rangle \times \mathbb{R}^1 \langle 1, y \rangle \times \mathbb{R}^1 \langle 1, y \rangle \times \mathbb{R}^1 \langle 1, 0 \rangle \times \mathbb{R}^1 \langle 1, 0 \rangle, _ \) \]

Reference:

\(\forall y : T(1) \). \(\rightarrow \) for all translations \(y \) in one-dimensional space

\(C^\infty(_ , _ \) \(\rightarrow \) type for smooth functions between spaces

\(\mathbb{R}^1 \langle g, f \rangle \) \(\rightarrow \) real numbers that vary with linear transformation \(g \) and translation \(f \).
Lagrangian: \(L(t, z_1, z_2, \dot{z}_1, \dot{z}_2) = \frac{1}{2} m(\dot{z}_1^2 + \dot{z}_2^2) - \frac{1}{2} k(z_1 - z_2)^2 \)

Type: \(\forall y : T(1). \)

\[C^\infty(\mathbb{R}^1(1,0) \times \mathbb{R}^1(1,y) \times \mathbb{R}^1(1,y) \times \mathbb{R}^1(1,0) \times \mathbb{R}^1(1,0), _\) \]

Reference:

\(\forall y : T(1). \quad \rightarrow \) for all translations \(y \) in one-dimensional space

\(C^\infty(_, _) \quad \rightarrow \) type for smooth functions between spaces

\(\mathbb{R}^1\langle g, f \rangle \quad \rightarrow \) real numbers that vary with linear transformation \(g \) and translation \(f \).
Lagrangian: \[L(t, z_1, z_2, \dot{z}_1, \dot{z}_2) = \frac{1}{2} m(\dot{z}_1^2 + \dot{z}_2^2) - \frac{1}{2} k(z_1 - z_2)^2 \]

Type: \(\forall y : T(1) \).

\[C^\infty(\mathbb{R}^1 \langle 1, 0 \rangle \times \mathbb{R}^1 \langle 1, y \rangle \times \mathbb{R}^1 \langle 1, y \rangle \times \mathbb{R}^1 \langle 1, 0 \rangle \times \mathbb{R}^1 \langle 1, 0 \rangle, \mathbb{R}^1 \langle 1, 0 \rangle) \]

Reference:

\(\forall y : T(1) \). \(\rightarrow \) for all translations \(y \) in one-dimensional space

\(C^\infty(_ , _) \). \(\rightarrow \) type for smooth functions between spaces

\(\mathbb{R}^1 \langle g, f \rangle \). \(\rightarrow \) real numbers that vary with linear transformation \(g \) and translation \(f \).
\[L(t, z_1, z_2, \dot{z}_1, \dot{z}_2) = \frac{1}{2} m (\dot{z}_1^2 + \dot{z}_2^2) - \frac{1}{2} k (z_1 - z_2)^2 \]
\[L(t, z_1, z_2, \dot{z}_1, \dot{z}_2) = \frac{1}{2} m(\dot{z}_1^2 + \dot{z}_2^2) - \frac{1}{2} k(z_1 - z_2)^2 \]
\((z_1 - z_2)^2\)
What's the type for (-)?

\[(z_1 - z_2)^2\]
What's the type for (-)?

$(z_1 - z_2)^2$

Type:

Reference:
What's the type for (-)?

\[(z_1 - z_2)^2\]

Type: \(\forall g : \text{GL}(n)\)

Reference:
What's the type for (-)?

\[(z_1 - z_2)^2\]

Type: \(\forall g : \text{GL}(n)\)

Reference:

\[\text{GL}(n) \rightarrow \text{group of invertible real } n\times n \text{ matrices}\]
What's the type for (-)?

\[(z_1 - z_2)^2\]

Type: \(\forall g : \text{GL}(n)\)

Reference:

\(\text{GL}(n) \rightarrow \text{group of invertible real } n \times n \text{ matrices}
\) (symmetries in \(\mathbb{R}^n\))
What's the type for (-)?

\[(z_1 - z_2)^2\]

Type: \(\forall g : \text{GL}(n), \ t_1, t_2 : T(n)\).

Reference:

\[\text{GL}(n) \rightarrow \text{group of invertible real } n \times n \text{ matrices} \]

(symmetries in \(\mathbb{R}^n\))
What's the type for \((-\)\)?

\[(z_1 - z_2)^2\]

Type: \(\forall g : \text{GL}(n), \ t_1, t_2 : \text{T}(n)\).

Reference:

\[
\text{GL}(n) \rightarrow \text{group of invertible real } n \times n \text{ matrices (symmetries in } \mathbb{R}^n) \\
\text{T}(n) \rightarrow \text{translations in } n\text{-dimensional space}
\]
What's the type for \((-\))?

\[(z_1 - z_2)^2\]

Type: \(\forall g : \text{GL}(n), \ t_1, t_2 : \text{T}(n).\)

\[C^\infty(_, _\)\]

Reference:

\(\text{GL}(n) \rightarrow \) group of invertible real \(n\times n\) matrices

(symmetries in \(\mathbb{R}^n\))

\(\text{T}(n) \rightarrow \) translations in \(n\)-dimensional space
What's the type for (-)?

\[(z_1 - z_2)^2\]

Type: \(\forall g : \text{GL}(n), t_1, t_2 : T(n).\)

\[C^\infty(\mathbb{R}^n \langle g, t_1 \rangle \times \mathbb{R}^n \langle g, t_2 \rangle, \mathbb{R}^n \langle g, t_1 - t_2 \rangle)\]

Reference:

\[\text{GL}(n) \rightarrow \text{group of invertible real } n \times n \text{ matrices} \]

(symmetries in } \mathbb{R}^n \rangle\)

\[T(n) \rightarrow \text{translations in } n\text{-dimensional space}\]
What's the type for (-)?

\[(z_1 - z_2)^2 \]

Type: \(\forall g : \text{GL}(n), t_1, t_2 : \text{T}(n). \)

\[C^\infty(\mathbb{R}^n \langle g, t_1 \rangle \times \mathbb{R}^n \langle g, t_2 \rangle, \mathbb{R}^n \langle g, t_1 - t_2 \rangle) \]

Reference:

\(\text{GL}(n) \rightarrow \) group of invertible real \(n \times n \) matrices

(symmetries in \(\mathbb{R}^n \))

\(\text{T}(n) \rightarrow \) translations in \(n \)-dimensional space

\(\mathbb{R}^n \langle g, f \rangle \rightarrow \) \(n \)-dimensional vectors of real numbers that vary with linear transformation \(g \) and translation \(f \).
Why $GL(n)$?
Why $\text{GL}(n)$?
Why $GL(n)$?

Theorem (Noether). Let $L(x, u, D^1_u, \ldots, D^n_u)$, be a Lagrangian for $A \subseteq \mathbb{R}^n$, let $\varphi \in Aut(A)$ be a symmetry of A such that

$$\varphi(L) + LD^i(\xi) = D^i(B^i) \quad B^i \in A$$

Then the Euler-Lagrange equations admit a conservation law $\forall i. D^i(C^i) = 0$.
Why $GL(n)$?

Theorem (Noether). Let $L(x, u, D_{u}^{1}, \ldots, D_{u}^{n})$, be a Lagrangian for $A \subseteq \mathbb{R}^{n}$, let $\varphi \in \text{Aut}(A)$ be a symmetry of A such that

$$\varphi(L) + LD_{i}(\xi) = D_{i}(B^{i}) \quad B^{i} \in A$$

Then the Euler-Lagrange equations admit a conservation law $\forall i. D_{i}(C^{i}) = 0$.

"Give me a Lagrangian and a group action satisfying these constraints, I'll give you a conservation law."
Why $\text{GL}(n)$?

Theorem (Noether). Let $L(x, u, D_u^1, \ldots, D_u^n)$, be a Lagrangian for $A \subseteq \mathbb{R}^n$, let $\varphi \in \text{Aut}(A)$ be a symmetry of A such that

$$\varphi(L) + LD^i(\xi) = D^i(B^i) \quad B^i \in A$$

Then the Euler-Lagrange equations admit a conservation law $\forall i. D^i(C^i) = 0$.

"Give me a Lagrangian and a group action satisfying these constraints, I'll give you a conservation law."

Key point: we need an automorphism (i.e. symmetry) to start with
What does this mean?
Reynolds:
types are
relations
Reynolds:
types are relations

Wadler:
relations are free theorems
Reynolds: types are relations

Wadler: relations are free theorems
Reynolds: types are relations

Wadler: relations are free theorems

Atkey: free theorems are symmetries
Atkey gives us a geometric interpretation of types
Atkey gives us a geometric interpretation of types

We'll argue: Atkey subsumes Reynolds + Wadler
Kinds are reflexive graphs
Kinds are reflexive graphs
Kinds are reflexive graphs

Reynolds: types are sets, parametricity comes from the relations between them.
Kinds are reflexive graphs

Reynolds: types are sets, parametricity comes from the relations between them.

Basic relation between Reynolds' types is the subset relation (⊆).
Kinds are reflexive graphs

- Reynolds: types are sets, parametricity comes from the relations between them.

- Basic relation between Reynolds' types is the subset relation (\subseteq).

- Form a graph where the objects are types and the edges order types by \subseteq.
Example: bool
Example: bool
Example: `bool`

- True
- False
Example: nat
Example: nat

0
Example: nat

0 1 2 3
Example: cartesian space \((\mathbb{R}^1 \ldots \mathbb{R}^n)\)

Each arrow represents a family of diffeomorphisms
Example: cartesian space

\mathbb{R}^2
Example: cartesian space
Example: cartesian space

\[\text{id} \]

\[\mathbb{R}^2 \]

\[g_1 \]
Example: cartesian space
Example: cartesian space
Example: cartesian space

\[g_i \in Aut(\mathbb{R}^2) \]
Free Theorems
Free Theorems

Give me a function
Free Theorems

Give me a function

\[g : \forall X. X \text{ list} \rightarrow X \text{ list} \]
Free Theorems

Give me a function

\[g : \forall X. X \text{ list} \to X \text{ list} \]

Then for every function
Free Theorems

Give me a function

\[g : \forall X.X \text{ list} \rightarrow X \text{ list} \]

Then for every function

\[f : X \rightarrow X' \]
Free Theorems

Give me a function

\[g : \forall X. X \text{ list } \rightarrow X \text{ list} \]

Then for every function

\[f : X \rightarrow X' \]

We have the free theorem
Free Theorems

Give me a function

\[g : \forall X. X \text{ list} \rightarrow X \text{ list} \]

Then for every function

\[f : X \rightarrow X' \]

We have the free theorem

\[(\text{map } f) \circ g_X = g_X \circ (\text{map } f) \]
Free Theorems

\[(\text{map } f) \circ g_x = g_x \circ (\text{map } f)\]
Free Theorems

\[(\text{map } f) \circ g_X = g_X \circ (\text{map } f)\]

\(X \text{ list}\)
Free Theorems

\[(\text{map } f) \circ g_x = g_x \circ (\text{map } f)\]
Free Theorems

\[(\text{map } f) \circ g_x = g_x \circ (\text{map } f)\]

\[X \text{ list} \]

\[\downarrow \quad g_x \]

\[X \text{ list} \quad \text{map } f \quad X' \text{ list} \]
Free Theorems

\[(map \ f) \circ g_x = g_x \circ (map \ f)\]
Free Theorems

\[(\text{map } f) \circ g_x = g_x \circ (\text{map } f)\]

\[
\begin{array}{ccc}
X \text{ list} & \xrightarrow{\text{map } f} & X' \text{ list} \\
\downarrow g_x & & \downarrow g_{x'} \\
X \text{ list} & \xrightarrow{\text{map } f} & X' \text{ list}
\end{array}
\]
Atkey: Main Points

- Extend System Fω with type system encoding geometric invariances.
- Interpret kinds as reflexive graphs, types as reflexive graph morphisms.
- Connect free theorems of Wadler/Reynolds with Noether's theorem via symmetries of these reflexive graphs.
Atkey: Takeaways

- Types as geometries is a powerful new way of manipulating our "syntactic discipline".
- Visual intuition, connections to group theory.
- Physics is only one potential application!
The End