A separation logic for refining concurrent objects
Technical appendix

Aaron Turon and Mitchell Wand
July 28, 2010

1 Errata

The definition of fenced projection in the paper should have said:
twuel,po[e]”

where
(0,4) opEIL oplEl
(0,0);(I,p>t) otherwise

I,pD(U,O);t{

2 Preliminaries

Definition 1. The outcome of k, written |x|, is defined by:

o, o o

o]

> 1>

Lemma 1. { is a closure operator: idempotent, increasing, and monotonic.
Proof. Each property shown by straightforward induction on f rules. O
Lemma 2. ([¢]”)" = [¢]”.

Proof. Straightforward induction on ¢, using Lemma 1. O

Trace interleaving set]u

I 1
set|u set|u

seult (o,0)s€ (0,0t |u (o,00ue(00) u (0,4)€(0,4) [u

Trace set interleaving
I 1

T|U = {sct|u:teT,uclU}

Lemma 3. T | U=U | T.
Proof. Immediate. O
Lemma 4. If T is local then 7' is local.

Proof. We prove pointwise: if ¢+ € T'T then each trace required for locality is also
in T, by induction on the derivation of t € T't. O

Lemma 5. If T and U are local then T'; U is local.

Proof. Immediate. O
Lemma 6. If T and U are local then T || U is local.

Proof. Pointwise, by induction on the derivation of interleaving. O
Corollary 1. [¢]” is local.

Proof. Straightforward induction on ¢, using Lemmas 5, 6 and 4. O

3 Adequacy

3.1 Raw semantics

To prove adequacy, we relate unquotiented (“raw”) versions of the operational
and denotational semantics, then relate the quotiented versions. The raw se-
mantics avoid the need for stuttering or mumbling in proving adequacy. The
raw semantics is given in Figure 1.

Lemma 7. R[y] is continuous.

Proof. Straightforward induction on ¢, using that ;, ||, and U preserve continuity.
O

Lemma 8. (4,4) € R[¢]”
Proof. Straightforward induction on . O
Lemma 9 (Substitution). If 1 is closed then R[¢]*® ™% = R]e[v/X]]’
Proof. Straightforward induction on . O
Lemma 10 (Bistrength). We have

1. THUut C(1;0)1

2. TH| U < (7] U)f

3. U(TH) € (UT!

Raw denotational semantics

R[¢]” € TRACE
1

Rle;v]” £ R[e]”; RI¥]”
Rle 1417 = R[] || R[¥]°
Rlp vyl £ Rle]” UR[Y)”
R[3z.0]” 2 U, R[]
R[let f = Finy)” & Ry~ REV]
RIF(e)]” = R[F]” (R[e]”)
RluXo]” & N{T: R[] C T}
RIX])” £ p(X)
RI(VZ = p, ¢)]” = act(p(p), p(q)) U{(4,4)}
RI{p}” £ {(0,0) : o€ R[p*true]’}
U {(0,4) : o ¢ R[pxtrue]’}
Procedures:
RIY 2 o) RPag]” & AR
L]
Raw operational semantics K~ K
90170—”_}90/170—/ 90130—“’_}0'/ Q01,0'Wé
15 02,0 ~ Q1502,0" P1;02,0 ~ 02,0 P1392,0 ~ 4
¥1 ||<)02aO-WK’ <p1,aw<p’1,a’ gplagWO’/ @1,0”""’&
02 || 1,0~ K 01| P20~ <P/1 H 802701 ©1 || p2,0 ~= 80270/ 01 || 2,0 ~ 4

i, 0~ K v € VAL

plv/x],o ~ K

oluX.p/X], 0~ K

©®1 \/QOQ,O' ~ K
o[F/fl,o ~ &

Jx.p,0 ~ K

uX.p, 0~ K

plle] /)0~ &

let f=Fingp,0~ kK

(0,0) € act(p, q)

o & p*true

(Az.p)e,o ~ K

o b~ p*true

(VE:p, q),0~ o0

{p}o~0o

{p},o~ ¢

One-step observed traces
I

P, 0~ 0

t e 01yl
1
p, 0~ ¢ 0’ teO]¢]

(0,0) € O1¢]

(o,0")t € O1]]

Figure 1: Unquotiented semantics

Proof. For (1), we first show that T1; U C (T;U)" and TT;UT C (T;U)' by easy
induction on the derivation ¢t € TT or u € U' respectively. It follows that

ThUt c(Tyuht C ()Y = (T;0)f

where the last step is by Lemma 1.
Parts (2) and (3) work similarly, but because || and U are symmetric we only
need to show e.g. TT || U C (T || U)1. O

Lemma 11. [p]” = (R[¢]”).

Proof. We prove each direction using a separate, but easy, induction on .

In the left-to-right direction, we appeal to Lemma 10 to push { out to the
top level. For the recursive case, we use Lemma 7 and Kleene’s fixpoint theorem
to turn the definition (by N) into Kleene’s fixpoint, which is given by U, and to
which Lemma 10 applies.

To show the right-to-left direction, we show instead that R[¢]” C [¢]”,
which is a very easy induction using Lemma 1. Again by Lemma 1, it follows
that (R[¢]*)T € ([¢]”)!. Finally, since [¢]” is f-closed (Lemma 2) the desired
result follows by Lemma 1. O

3.2 Operational traces are denotational traces

Lemma 12. We have:
o If o0~ ¢ 0" and t € R[¢'] then (0,0')t € R[¢].
o If p,0 ~ o then (0,0) € R[¢].

Proof. By induction on derivations ¢, 0 ~~ k.

/ /
$1,0 ~ Q1,0

. /. /
P15$2,0 ~ P1;92,0

Case:

Let s € R[¢}; p2]

s=tu, t € R[], u € Rfpz2] defn
(0,0")t € R[w1] induction
(0,0")s = (0,0")tu € R[p1; 2] defn

!
P1,0 ~ T
Case:

. !
P1;$2,0 ~ Q2,0

Let s € R[p2]
(0,0") € Rle1] induction
(0,0")s € R[p1;p2] defn

Case: | L7748
" pripa,0 4
(0,4) € Rlea] induction
(4,4) € Rle2] Lem 8
(0,4)=1(0,4);(4,4) € Rlg1;p2] defn

piligeor

Case:
P2 || $1,0 ~ R

By induction and commutativity of || (Lem 3).

/ /
3017(7'\#> 90170'

Case: ; -
o1 || w2,0 ~ ¢ || w2,0

Let s € R[1; 2]

set|u,teR[pi], ue R[pz] defn
(0,0")t € Rlp1] induction
(0,0")s € (o,0")t || u C Rfp1;p2] defn

01,0 ~ 0o
@1 || 92,0 ~ 2,0’
Let s € R[p2]

(0,0") € R]e1] induction
(0,0")s € Rp1 || w2] defn

Case:

Cuse: | 2L 8
"1 2,0
(0,4) € Rlp1] induction
(4,4) € Rle] Lem 8
(0,4)€ (0, 8) | (4,4) S Rlp1 || 2] defn

Yi, 0~ K
Case:

P1V 2,0k

By induction.

v € VAL olv/x], o~ K
Case:

dx.p,0 ~> K

By induction.

Case. | PLHX-0/X] 0
ase:

uX.p, 0~ K

By induction and the fact that u is denotationally a fixpoint.

elF/fl,o~ &
let f=Finyp,o~k

Case:

By induction and the substitution lemma

plle] /2,0 ~ &

Case:
e (Ax.p)e,o ~ K

By induction and the substitution lemma.

(0,0) € act(p,q)
Case: —
VT :p, q), 0~ 0
Immediate.
o = p*true
Case: | ———
{p},0~0
Immediate.
o[£ p*true
Case: | ————
{p}, 0~ §
Immediate.

Corollary 2. If t € O1[¢] then t € R[y].
Proof. Induction on the derivation of t € O1[¢], using the previous lemma. O
Lemma 13. If t € O[] then ¢t € Oy [¢]"

Proof. Induction on the derivation of ¢t € O[], with nested induction on steps
Kk —* K. O

Corollary 3. If t € O[] then t € [¢]

Proof. Applying the previous lemma and Lem 11, we have:

Olel € O1l¢]" S Rl¢]" = [¢]

3.3 Denotational traces are operational traces
Lemma 14. O1]¢]; O1[¥] € O1]p; ¢].

Proof. We prove that if ¢ € O[] and v € O1[¢)] then t;u € O1]p;] by a
straightforward induction on the derivation of ¢ € O;[¢]. 0

Lemma 15. O1[¢] || O1[%] € O1]e || ¥]-

Proof. We prove that if t € O1]p] and u € O4[¢)] and s € t || u then s €
O1[;] by a straightforward induction on the derivation of s € ¢ || w. O

Syntactic environment
I 1

nu=0 | X | nfoF | nreov
n = 0

77,&90 £ ﬁ7X’_>Ol[[Lp]]

nvf'_)F = ﬁafH(UHol[[FU]])

0T = 2 T

Lemma 16. R[¢]” C O1[ny].

Proof. By induction on ¢.

Case:

By induction, Lemma 14.

Case:

By induction, Lemma 15.

Case:

By induction.

Case:

By induction.

Case:

By induction, fixpoint theorem.

Case:

Immediate.

By induction.

Case:

By induction (through procedures).

Case: | (VT : p, q)

Immediate.
Case: |{p}
Immediate.
O
Lemma 17. If t € O;[¢] then t € O]
Proof. Easy induction on the derivation of t € O1[¢]. O

Corollary 4. If ¢ closed then [¢] € Of¢]'.

Proof. Appealing to the previous two lemmas and Lemmas 1 and 11 we have

[l = (RIeD) € Orlel' € O]

3.4 Adequacy theorem

The proof of the adequacy theorem is given in the paper itself. It relies on the
following result, which is a corollary to the work of the previous two subsections.

Corollary 5. If ¢ is closed then [¢] = O[]

4 Laws of refinement

We prove the laws of refinement by proving the corresponding denotational
refinement. Most of the time, we prove the denotational refinement using the
raw semantics. Since T is monotonic, this will imply the refinement in the
quotiented semantics. We also drop p in the proofs involving actions, where it
is not relevant (since it is simply applied as a syntactic substitution).

Lemma 18 (DsTL). (@1 V @2);9 = @130V 230

Proof. Immediate by Lemma 7 (in particular, ; is continuous). O
Lemma 19 (DsTR). ¢;(p1V ¢2) = 501V iz
Proof. Immediate by Lemma 7 (in particular, ; is continuous). O

Lemma 20 (STR;). Jx.¢;v¢ = @; (3x.9)

Proof. Immediate by Lemma 7 (in particular, ; is continuous). O

Lemma 21 (STRz). Jz. (Vg :p, ¢) C (V7 : p, Iz.q)

Proof.
Let (o,0) € act(p[v/z], q[v/x])
(0,0) € act(p, q[v/z]) xép

oc=01W0,, o1,pEDP = o=01Woa, of,pEq[v/z] definition
c=01W0y, o,pEp = 0=0]Woa, of,pkE3Irg
(0,0) € act(p, Ix.q) definition

O

Lemma 22 (FrRM). (VT :p, ¢) C (VT :pxr, g*7)

Proof.
Let (o,0) € act(p, q)
If o, p [~ p* r * true, done f-closure
Otherwise, c = oo W o1 Woa, oo,pEP, onL,pET
0 =0, Woy oy where o)), p = ¢ assumption
oyWo,plEqx*xr O

Lemma 23 (EXT). If p exact then (VT : p, p) = {37.p}

Proof. By faulting closure, and the definition of exact predicates. O

Lemma 24 (IpMy). {p}; {p} = {p}

Proof. Left-to-right: stuttering closure for non-faulting case, immediate for
faulting case. Right-to-left: mumbling closure for non-faulting case, immedi-
ate for faulting case. O

Lemma 25 (IDMs). {IZ.p}; (VT :p, ¢) = (VT :p, q)

Proof. Left-to-right: stuttering closure for non-faulting case, immediate for
faulting case. Right-to-left: mumbling closure for non-faulting case, immedi-
ate for faulting case. O

Lemma 26 (AsM). If r pure then (VZ:p, g Ar) = (VT :p, q);]r]

Proof. From left-to-right: stuttering closure. From right-to-left: mumbling clo-
sure. In either case the extra assumption merely filters traces based on p, which
is invariant. O

Lemma 27 (CsQ). fVZ. p = p' and VZ. ¢’ = qthen (VZ : p/, ¢') C (VT : p, q)

Proof.
Let (o,0) € act(p’,q’)
oc=01W0y, o,pEDY = o=0]Wo2, of,pEq¢ definition
oc=01Woy, o1, pEPo=0ciWos, ol,pEq assumption
(0,0) € act(p, q) definition O

Lemma 28 (CsQg). If ¢ = p then {p} C {q}

Proof. By faulting closure. O

5 Laws of fenced refinement

Lemma 29 (Inv). 1,6+ {I} = skip

Proof. Immediate by definition of fenced projection and assertions. O
Lemma 30 (Lift). If ¢ C 4 then I,0F ¢ C 1.

Proof. This law is a statement of the monotonicity of fenced projection, which
holds because fenced projection is defined pointwise. O

Lemma 31 (SeqL). I,0F (VT : p, q); (VT : qxp', r) C{I+xTT.p}; VT :pxp', 1)
Proof. Let
(01,(0,0); (0", 0"),00) € [1,0 = (VT :p, q); (VT : q*p, 7)]”

If 01 Wo,p & I+ 3T.p we are done, by faulting closure. Otherwise, it must be
that o1, p |= true x 3T.p. By the semantics of actions it follows that o = o, and
the rest follows from stuttering closure. O

Lemma 32 (Stab). If 0 C (VT : ¢, ¢) then I, 0 (VT : p, q);{IT.q} C (VT : p, q)

Proof. By definition of fenced projection and rely, easy to see that the assertion
never fails. The rest follows by stuttering closure. O

6 Data,

The soundness of the DATA, rule is proved by introducing a notion of simula-
tion on traces. Simulation is used to generalize fenced refinement to an aribtrary
number of concurrent object instances. To do this, it specifically relies on re-
lating a concrete and abstract trace: the abstract trace provides the necessary
information about which concurrent object instances are allocated at each point.
Simulation is relative to the representation predicate 7, the rely 6, an environ-
ment p, an abstract resource name «, and two subheaps: o., which contains the
concrete object instances, and o, which contains private data allocated within
method bodies. Within the definition of simulation, three additional subheaps
appear: the unlabeled subheap o, which described resources unrelated to the
data abstraction being performed; o, which is the frame of private resources
allocated by other threads; and o,, which contains the abstract resources corre-
sponding to o.. Notice that o, only shows up in the abstract traces, while o,
op and oy show up only in the concrete traces.
The relevant definitions are given in Figure 2.

Lemma 33. We have

7,0, p,a |= act((pr)[€, y], (pr)[€, €] Ap) N [O[A]° < act(£ = y, £ = (pe) A pp)

Lemma 34. If r,0,p,a =T < U then r,0,p,a =TT < UT.

10

Trace simulation

TSEMPTY

raeapaaaamap ':tgu
1

TSWRONG

ocWo, Lo

7",0,,0,6!,0’6,0'1; }: € S €
TSFAuLT

7”’9;/’,04,0&0;; E (0,0);t<u

rp,afEo. < 0g

r,0,p,0,00,0p = (cWo.WopWayp,0);t < (0Way,,)

TSSTEP

r>6>p7a): (UC?UU«) -
Voi,oq.1,0,p,a F (0, 04) =" (

CAYH
1 "

1 /
o.,0,) = r,0,p,a,0/,0,Ft<u

7,0, p,0,00,0p F (0o, Wop,Wop, 0’ Wo,Wa,Wor);t < (0Wo,,0 Woy);u

Heap abstraction

T7p7a':0_c§0_a

1>

rp,afEo. < 0g

{ 0q = [l1 — a(v)] - [ln — a(v,)] and
Oeyp E [, v1] % - x [0, V)

r,0,pa = (9¢,04) = (07, 04)

Rely steps
I

Taaap?a ': (00700r) - (Ué70;1) é

gc=09Wocy 0q=1[l— av)]Wou

o,=o0yWocs o, =[— o) Wo.

oo,p Erllv] TopalEog < oaf
oo, p [7[00 (00, 07) € [0[A]°
TP, ': Oc S Oa,

o.=o0.4Yo,

/
&
o =0aW[l—a(v)],
rp,akEo. <ol

a

Simulation

r0,p,a T <U
1

rO,p,a=T <U 2 VteTNo,.3ucU r0,p,a,0.,0 =t <u

Figure 2: Simulation

11

Lemma 35. If r[{,—],0 E p1 C oo and 7,0,p,a E [p2]” < [p3]” then
r.0,p,a = [p1]” < [¢s]”.

Lemma 36. If r,0,p,a = T1 < U; and r,0,p,a = To < Us then r,0,p,a |=
T || T < Uy || Us.

Proof. We prove this result pointwise, by proving the following: given o, oq,
op, and oy, if, for all o/, such that r, 0, p,a = (0¢,04) —* (0., 0,,) we have

o r0,pa,0.,0, Et1 <w
o 1,0,p,a,0.,0p, =t < u
® 0p, #0p,
o tcty |t
then there exists a u € uy || ug such that
7,0,p,0,00,0p Wop, Et<u

We prove by induction on the derivation of ¢ € ¢; || ¢2.

tet Htg

Case:
t €ty H t1

By induction we have the result for u € uy || u1, and so by applying the
same symmetry rule we have it for u € uy || ug.

tety |t
(o,0")t € (0,0")t1 || t2

We proceed by case analysis on the last rule used in the derivation of

Case:

70, p, 0,000, E (0,0t <uy

TSWRONG
o.Wo o
Subcase: c n &
739,070470(;70'1)1 ': (07 0);t1 < uyg
Let u € uy || ug (always nonempty)

Apply TSWRONG with ¢.

TSFAuLT
r.p,a =0, <og o=o09gWo.Wop, Woy

Tvaapvaa007op1 ': (07 0/);t1 S (00 L‘!‘JO’a,é)

Subcase:

Have (0¢g Wog, 4) € up || ug
Apply TSFAULT with ¢.

12

TSSTEP
oc=0pdo.Wo, Woy
o' =oyWo Wo, Yoy
r,0,p,a = (0c,0,) =" (0h,00)
Vol otl 7.0, . 1= (ohhol) " (o o)
= r0,p,a,0,,0, Ft<u

7",9,@0470'&0'1) ': (U’ 0-/);1; S (0-0 L*JO'a,O'é &JO’;),U

Subcase:

If 0, £ o5 apply TSWRONG
Otherwise we can apply induction and TSSTEP

Case: |(o,0")t € (0,0") || t2

Similar to the TSSTEP case above.

Case: |(0,4) € (0,4) || t2

Similar to the TSFAULT case above.
O

Lemma 37. If r,0,p,a =Ty < U; and r,0,p,« |E Ty < Us then r,0,p,a =
T1; T2 < Uy; Us.

Proof. Similar to the proof for parallel composition, but here we proceed by
induction on the simulation judgment for ¢; € T7. O

Lemma 38. If r,0,p,a =T, < U; then r,0,p,a = JT; <JUs;.
Proof. Immediate: simulation is defined pointwise. O
<

Lemma 39. If a does not appear free in p or ¢ then r,0, p, « = act(pp, pq)
act(pp, pq).

Proof. Follows from locality (Lemma 1).

O

Lemma 40. Suppose

e r[¢,—] precise

e p; pure

e r[l,—], VO Fp; CH;

o 0; C(Vy:r[l,y], v[t,ei] Aps)
Then

— B let f(¢) = (emp, r[l,¢€]) in]”
n VO pa = |[let g;(4,x) = p; in 1]]

let £(¢) = {emp, ¢+% e> in

let g;(¢,x) = <Vy:€l£>y, ébiei/\pi> in

13

Proof. By induction on 9, using the preceeding lemmas to handle each case. [
Lemma 41. If 7,0, p,a, 0,0 = ¢ < u then either

ot =sWt,, u=5Wy uy with t.,u, sequential and fst(¢t.) = 0. W o, and
fst(uq) = 0 with 7,0, p,a = 0. < 04 or

o t=(sWt.);t', u=(sWuuu)u with t.,u, sequential and fst(t.) = o Woy,
and fst(ug) = o, with 7,0, p, a |= 0. < 0, and 1st(t.) Z fst(t).
Proof. Induction on the derivation of 7,6, p, a, 0¢,0p =t < w. O
Corollary 6. DATA5 is sound.

Proof. By Lemmas 40 and 41. O

14

