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Abstract In a world in which our technological infrastructure is increasingly reliant on platforms that are
distributed in nature, there is a substantial need for distributed algorithms and network designs that are able
to perform a wide range of tasks as or more efficiently than their non-distributed counterparts. Furthermore,
these algorithms and networks must be resilient to changes and disruptions in the network. Arguably the
best way to do this is to design algorithms that are decentralized. By exchanging messages and data with
immediate neighbors and running other subprocesses locally (often involving some sort of random choice),
a coordinated solution to problem still emerges from the system.

The work for my doctoral thesis in this proposal document focuses on two aspects of distributed algo-
rithm design. Both involve a fully decentralized system running algorithms or processes locally, with limited
system-wide knowledge. The first research area involves a protocol for information spreading with potential
application to the study of epidemics on networks. We introduce a process which we call coalescing-
branching random walks, that combine aspects of branching systems and coalescing particle systems and
study the process on various types of finite graphs. Specifically, we study the length of time it takes for every
node in a network to be visited by the walk at least once and provide results for various types of graphs,
including expanders, trees, grids, and cliques.

The second branch of work for my thesis involves designing a distributed algorithm which maintains
the expander topology of a network in the presence of a high degree of adversarial deletion and insertion
of nodes. This algorithm makes heavy use of random walks as a source of randomness when choosing
new connections to make between nodes of the network. We show that this algorithm can withstand up
to O(n/polylog(n)) adversarial node deletions/additions per round while maintaining a network that is an
almost-everywhere bounded-degree expander graph in each round. Furthermore, each node need only send
a polylogarithmic (in n) number of bits in each round.
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1 Introduction

In a world in which our technological infrastructure is increasingly reliant on platforms that are distributed
in nature (from the local, e.g. cluster or data center level, to the geographically diffuse, e.g. P2P systems, ad
hoc or mobile networks, the Akamai network), there is substantial need for distributed algorithms and net-
work designs that are able to perform a wide range of tasks as or more efficiently than their non-distributed
counterparts. One of most attractive features of distributed systems is resilience to disruption, whether due
to intentional causes (coordinated attacks or government interference) or other “natural” causes (changes
in internet topology, damage to the physical infrastructure of the internet, congestion, etc.). In addition to
being lightweight and efficient, these systems and the algorithms that run on them need to be able to adapt
to a rapidly changing, possibly adversarial environment. Arguably the best way to do this is to design algo-
rithms that are decentralized (one could also say local). What is meant by “local” is that the algorithm runs
independently on each unit/computer in the system. This copy of the algorithm generally knows very little
about the system as a whole (its topology, which computers hold which information, etc.). By exchanging
messages and data with immediate neighbors and running other subprocesses locally (often involving some
sort of random choice), a coordinated solution to problem still emerges from the system.

The work for my doctoral thesis in this proposal document focuses on two aspects of distributed algo-
rithm design. Both involve a fully decentralized system running algorithms or processes locally, with limited
system-wide knowledge. The first research area involves a protocol for information spreading with potential
application to the study of epidemics on networks, while the second branch of work for my thesis involves
designing a distributed algorithm which maintains the expander topology of a network in the presence of a
high degree of adversarial deletion and insertion of nodes.

1.1 Coalescing-branching random walks: An information spreading protocol

An information spreading process in this context means an algorithm or mechanism that allows a piece of
information, rumor, or infection at one node to be disseminated to all other nodes in the network through
copying and forwarding of the information. There are a number of well-studied information spreading
mechanisms, each with its own advantages and disadvantages. Here we propose a new mechanism based
on a pairing of coalescing and branching processes. In this process. we start with one node holding a
token. This token splits into two tokens (or in general, k tokens) and each token then picks a neighbor
node independently and uniformly at random and moves to that neighbor. If more than one token lands at
the same node, the two coalesce. This process continues for each token in all subsequent steps. Due to
its resemblance to a random walk (and identity with the random walk when k = 1), we call this process a
coalescing-branching random walk, or cobra walk.

The bulk of the work for my thesis explores the properties of cobra walks. In work already completed,
we analyze the cover time of a cobra walk on various graph topologies. Cover times (the time until all nodes
have been visited by the cobra walk at least once) play an important role in the understanding of random
walks on graphs, and we extend this to cobra walks. Most of the remaining work I propose for my thesis
also focuses on cobra walks. The primary goal is to find an upper bound on the cobra walk cover time for
arbitrary graphs (which we conjecture to be O(log n)). I propose several methods of attacking this problem,
the most interesting (and difficult) of which has the potential to serve as a general model for a class of
processes subsuming cobra walks, multiple random walks, or rumor spreading. In addition, I propose to
explore the relationship between cobra walks and SIS epidemic processes further. There is much room in
this area for progress. One major goal is to better understand the relationship between the topology of a
graph and the long term behavior of an epidemic: does it die out quickly or persist for a long time. Finally,
there is also opportunity to perform some simulation-based experiments probing various questions relating
to epidemics through the lens of cobra walks.
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1.2 Maintaining a self-healing expander topology in a highly dynamic network

The second branch of work for my thesis involves designing a distributed algorithm which maintains the
expander topology of a network in the presence of a high degree of adversarial deletion and insertion of
nodes. In this context, expansion refers to the number of edges that leave a subset of nodes of a network:
a network with expander topology is one in which all sets have a content fraction of their edges leaving
the set. In the domain of network construction, a graph with good expansion is considered a proxy for a
well-connected network robust to the deletion of edges.

A common model for a distributed network is one in which nodes (i.e. individual computers) are con-
stantly leaving and new ones are joining. Any system built on such a platform needs to be able to handle this
churn: the underlying network topology must remain stable, essential communication functions must not be
disrupted, data being stored in a distributed fashion on the network must not be deleted, and any computa-
tional tasks must continue to execute correctly. There is a large body of research investing the properties of
dynamic networks (especially w.r.t. critical metrics of the network such as expansion or connectivity), and
considerable work has been done in designing distributed algorithms that will operate in such a dynamic
environment. More limited, but still strong, is the research done on algorithms that build, maintain, or heal
a network being subjected to various kinds of disruption (e.g. adversarial vs. random, node churn vs. edge
changes only, etc.).

In a series of papers [6, 5, 4] over the last several years, several authors and others have developed a
toolkit of algorithms that perform important computational tasks on networks being subjected to a large
churn of nodes, O(n/ logk n) nodes churned in every round, for some constant k. The churn is controlled
by an oblivious adversary, and in some cases the allowance is made for the presence of Byzantine nodes in
the network. An essential primitive of these algorithms is that large numbers of tokens are allowed to take a
random walk through the graph – these tokens serve as a source of randomness for use in the algorithms in
these papers.

However, there is one large missing link. Each of these algorithms assumes that the adversary will
churn a large number of nodes in each round yet still maintain the network with an expander topology.
Naturally, we have no reason to believe that an adversary in the real world would be so generous. What
is needed, then, is an algorithm that runs in the background on the nodes of the network and which will,
in every round, maintain the topology of a large portion of the network (ideally n − o(n) of the nodes) as
a bounded-degree expander sub-graph. We have designed such a distributed protocol for maintaining an
expander topology.

This algorithm is (to date) one of the most promising algorithms for repairing and maintaining a network
with a specified topology, in terms of the number of perturbations that are allowed to occur, the frequency
with which they can occur, and the speed with which the network is repaired. The exciting consequence of
this result is that there are a host of distributed algorithms for various tasks (search and storage, byzantine
agreement, leader election) that operate on a graph with significant adversarial modification in every round.

1.3 Informal Description of a Distributed System

We can informally model a distributed network as follows: we are given a system of computers, V , which
we will refer to interchangeably as nodes or vertices, and a set E of pairwise connections (u, v), where
u, v ∈ V , which we refer to as the edges. Thus we model a system by graph G = (V,E). A network
can represent direct, physical connections (servers in a data center connected via an internal LAN), some
sort of overlay network on top of the Internet, or even a model of some abstract or virtual relationships
between arbitrary objects. Each node v is a separate computing unit, and is allowed some reasonable amount
of memory and computing power, depending on the application. Let us also assume that v has limited
information about the network it belongs to. It knows to which nodes it is directly connected (via an edge),
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and that it knows the size of the network, n (or has a way to make a reasonably accurate guess). Node v
does not know the overall topology of the network, no, in general, what data is stored at other nodes.

1.4 Completed Work

Here I provide a brief summary of the status of the work that has already been done. For cobra walks, we
have already proven upper bounds on the cover time of a cobra walk on various graph topologies: trees,
grids, the complete graph, and grids. Please see ?? for our results on the cover time of cobra walks and the
techniques we developed for the analysis. For the distributed expander maintenance protocol, essentially all
of the work has already been completed. We have devised the algorithm and provided a detailed proof of its
accuracy. For inclusion in my final thesis, I intent to rewrite the paper to improve the narrative and flow of
the analysis.

1.5 Proposed Work

I propose to devote the rest of my thesis work on further study of cobra walks. There are several promising
techniques that may be of use in proving the conjecturedO(log n) cover time of a cobra walk on an arbitrary
graph. Furthermore, one of these techniques may provide a more general framework for studying a family of
processes that include cobra walks and gossip protocols. Finally, on a separate track, I would like to devote
some attention to the epidemiological side of cobra walks and make some contribution to the understanding
the impact of a network’s structure on the spread and duration of an infection.

1.6 Timeline

Finally, I present the following timeline for the completion of the proposed work.

Objective Target Completion Date
Proposal End of February
Research End of June
Writing Mid to End August
Defense September

2 Coalescing-Branching Random Walks on Finite Graphs

In this section I provide a brief review of information spreading in graphs, give a detailed explanation of
the cobra walk protocol, outline some of the potential applications of cobra walks, and describe the work
already completed on cobra walks.

2.1 Background

One of the most important primitives of a distributed system is information dissemination. That is, every
node must have some mechanism to inform other nodes (usually all other nodes) of relevant information
to the application at hand. However, as stated earlier, each node only knows how to directly message its
immediate neighbors, and does not know the addresses of other nodes in the network. There are a number
of different message- passing, information spreading protocols that can be used to do this. The most basic
(found in the LOCAL model communication [49]) involves a node sending the same message to all of its
neighbors. This is known as flooding, and while fast (assuming a stable network), flooding is not an efficient
process because the message complexity (total number of messages sent) can be extremely high. In addition
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to flooding, there are also structured, pre-set broadcast protocols – these, however, have the disadvantage of
requiring a stable network with known topology [32]. Since flooding or predetermined broadcast protocols
violate the spirit of lightweight, robust, decentralized communication protocols, alternatives needed to be
developed.

The most robust of these alternatives, which has received the bulk of the research attention, are what are
known as gossip or rumor-spreading protocols. The essential idea behind gossip is as follows: a node v of
G starts with a rumor or piece of information (which we will sometimes refer to as a pebble or token). The
goal is to distribute this rumor to all other nodes of G (whether they need it or not). There are many variants
of gossip, the most basic of which is PUSH. In the first round, the origin node picks one of its neighbors
and distributes a copy of that rumor to that neighbor. The choice of the neighbor, in the most basic version,
is made uniformly at random from N(v), the set of neighbors of v. In the next and all subsequent steps,
every node that holds a copy of the rumor picks a neighbor u.a.r and distributes a copy of the rumor. Note
that it is possible that this neighbor already has the rumor. Another variant of the gossip protocol is PULL,
which can be viewed as the complement of PUSH. In this version, every node v that does not have a copy
of the rumor randomly selects a neighbor, and if that neighbor has a copy of the rumor, v “pulls” the rumor
from the selected neighbor. Another common variant of gossip which is used for most of the analysis of
rumor-spreading is PUSH-PULL, which is a combination of the two just described. Any node that holds the
rumor operates in PUSH mode, while any node that does not hold the rumor operates in PULL mode.

One of the most important questions studied in gossip problems is the time it takes for every node to
receive a copy of the rumor (also known as becoming informed). Clearly this is an essential property to
know if one wants to use gossip as an effective information spreading communication protocol. A chain of
papers [13, 14] improved the bounds on this process, with [28] providing a tight bound for the time until all
nodes are informed via PUSH-PULL. The bound is O(φ−1 log n) for all graphs, and there exists graphs for
which Ω(φ−1 log n) rounds are required. Here φ is the conductance of the graph, which is defined as:

φ = min
S⊆V (S),vol(S)≤|E|

|cut(S, V \ S)|
vol(S)

(1)

where cut(V, S) is the set of edges crossing the partition (S, V \ S) and vol(S) is the sum of the degrees
of the vertices of S. Non-uniform random gossip protocols have also been considered (non-uniform in the
selection probability of a neighbor of a node performing PUSH or PULL). In graphs where the conductance
φ is low and there exist bottlenecks (for example a barbell graph), [12] provides an O(log3 n) algorithm
for the 1-local broadcast problem. (In the k-local broadcast problem, every v ∈ V wants to exchange
messages with all vertices within distance k. Hence the 1-local broadcast problem operates only on the
immediate neighbors of vertex v.) Repeatedly applying this algorithm allows for global rumor spreading
with no dependence on the conductance of the graph. Moving beyond algorithms that rely on randomness,
[32] provided the first deterministic algorithm for solving the k-local broadcast problem in 2(k + log n)
rounds. Thus for the n-local problem (every node whats to inform all other nodes in G), this provides a
coverage bound for any graph of O(n log n).

With rumor spreading “in the bag” so to speak, the search was on for other lightweight and fast infor-
mation spreading communication protocols. But why would one need an alternative to rumor-spreading?
The first reason involves the number of messages sent. In the case of gossip protocols, particularly PUSH-
PULL, every node is participating in every round, regardless of whether it has no new rumors to share. It
would be nice to have a protocol that does not involve such high overhead. Furthermore, in many real-world
applications, the underlying network topology is dynamic. Such changes may even be under the influence
of an adversary. In fact, [29] showed that even with graphs of regular vertex degree and high vertex expan-
sion, an adaptive adversary can construct a sequence of regular graphs with high vertex expansion such that
PUSH-PULL takes a polynomial (in n) number of rounds. It would be ideal to have a protocol that works
even under adversarial dynamic settings.
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Since many of the protocols we have already discussed involve the use of randomness in the selection
of neighbors to move the rumor to, it makes sense to extend this idea and consider techniques based on
random walks as a potential source of information spreading protocols. Indeed, random walks already have
many applications in distributed computing. A subset of these applications includes search [56, 1, 30],
load balancing [34], small world routing [35], information gathering and propagation [10], distributed
construction of expander networks [37], and many others. The most basic of such possibilities is a simple
random walk. However, a simple random walk has such a high latency for such metrics as cover time
O(n3) in arbitrary graphs [25], a bound which is tight for some graphs, that using a random walk for a fast
communication protocol is infeasible. Therefore, considerable effort has been made to “speed up” random
walks. Alon et al. [2] use multiple, independent random walks to speed up cover time, with results improved
upon in [23]. Modifications to random walks have also been made in which a walk tries to avoid traversing
the same edge [9], a random walk is constructed in a distributed fashion [19], or through neighborhood
exploration [8]

2.2 Coalescing-branching random walks

One natural extension of the random walk is inspired by mathematical models of epidemics on graphs.
In this process, we start with a single token at a single node. In the first step of the process, this token
becomes k copies of itself (i.e. where there was one token, there are now k). Each of these tokens then
independently, uniformly at random chooses a neighbor of v to move to. If more than one token lands at
the same vertex, those tokens coalesce into a single token. This continues independently, with each step
involving a k-branching, single step walk for each newly generated pebble, and a coalescing. We have
named this coalescing-branching, or cobra, walk. Cobra walks bear a resemblance to SIS-type epidemic
models (the SIS stands for susceptible-infected-susceptible), in which an epidemic moves from infected to
susceptible nodes, and the infected nodes recover and become susceptible again. (We will have more to say
about this later). Cobra walks can also be viewed as a generalization of a random walk, where when k = 1
the cobra walk reduces exactly to a simple random walk.

There are several reasons why a cobra-walk may make a good candidate for a distributed information
spreading protocol. Like gossip-based protocols, cobra walks have the property that each node acts inde-
pendently and follows a simple set of instructions that do not rely on knowledge of the rest of the network
(except for the immediate neighborhood). They also share the property that the number of rumor-containing
tokens increases in expectation, often dramatically, thus seeming to provide a speed-up in the amount of time
required to inform all nodes in the network. On the other hand, we can hypothesize that a cobra walk may
be asymptotically more efficient than rumor spreading with respect to the total number of messages sent. A
potential reason for this as follows: in gossip-based mechanisms, even after a node has informed all of its
neighbors, it continues to broadcast the rumor, leading to unnecessary messages sent. With a cobra walk, on
the other hand, when a node is “occupied” by the rumor, it informs somewhere between 1 and k neighbors
and then is gone. If this happens often enough, we essential have the same effect as a gossip protocol (at
least asymptotically in terms of cover time), but end up sending a far smaller number of messages in total.
One can see this on the star graph, in which we have 1 central node connected to n−1 leaf nodes. No matter
what node we start the process from, both the cobra walk and the PUSH process require O(n log n) rounds
to complete (via a coupon-collector process). However, note that in the PUSH version, once a leaf node is
informed, it continues to broadcast Thus the cobra walk will send O(n log n) messages, while PUSH will
send in total O(n2) messages.

Of course what one potentially gains in message complexity one may lose in analytical tractability.
While for gossip protocols the set of actives nodes (those nodes holding a token) is either monotonically
non-decreasing or even increasing, the same is not true for cobra walks. Furthermore, in a gossip process
the set of active nodes and the set of informed nodes is identical, in a cobra walk there is a difference. The
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set of active nodes is not necessarily increasing or even non-decreasing. Despite this, we need to show that
the set of informed nodes is growing (at least for some initial phase) and achieves a fast cover time (which
we will more rigorously define in the next section). This is one of the most interesting facets of cobra walks.
Whereas for gossip-based protocols it seems intuitively true that coverage will be fairly rapid due to the
monotonically non-decreasing active set, it’s not entirely clear that this would also be true for cobra-walks.
Clearly, a cobra walk is no slower than a simple random walk, but it is a bit surprising that it would not lie
somewhere in between gossip and the simple random walk.

The two major analytical challenges of cobra walks both involve keeping track of pebbles. As mentioned
above, cobra walks have multiple active nodes at any given time. For most most graph topologies, it is
difficult to compute and characterize the distribution of the pebbles at any arbitrary time t in the future, based
merely on an initial distribution. That is to say, it differs from the simple random walk (or even multiple
parallel random walks) in that that one can’t use the tools of Markov chains (namely the transition matrix).
While we will show later that a cobra walk is indeed a Markov chain, its state space is so complicated that
it seems virtually impossible to make use of this fact. The second major challenge is that the branching and
coalescing of the pebbles in the walk create a non-trivial level of dependence among the active nodes. Thus
it would be extremely challenging to calculate the probability that a given node is active more than one step
in the future.

2.3 Applications and Extensions of Cobra Walks

Tensor Product Chains
The challenges involved in analyzing cobra walks necessitate the invention of novel techniques that are in-
teresting in their own right. Furthermore, some of the substeps required to proceed with the analysis also
yield general results that may be of independent interest. Even more exciting, however, is the prospect that
analyzing cobra walks will serve as the gateway to two interesting topics. In the proof of the cover time
of cobra walks on expander graphs, we make use of what is known as the tensor product (c.f. [16, 39],
which can roughly described as a graph which represents the process of multiple pebbles moving around
copies of the original graph G. While the tensor product we study is relatively easy to analyze, the method
may serve as a blueprint for creating the representation of a cobra walk on graph G as a Markov chain on
a modification of the tensor product of G. In this Markov Chain, the state space is comprised of all subsets
of vertex set V , where each subset represents a potential active set. Transitions between states (and their
corresponding probabilities) exist if one active set St in the cobra walk at time t can lead to the active set
St+1 at time t + 1. When generalized further, it is possible to view many of the protocols we discussed
earlier as variants of the tensor product Markov chain, with modifications to the state space or the transitions
of the chain. For example, we can represent gossip protocols with the same state space but remove all the
transitions which map back to decreasing the size of the active/informed set. With further study (which I
will outline in the Proposed Work section) it may be possible to develop a “unified theory” of information
spreading processes, of which cobra walks, gossip, and multiple random walks fall out as examples.

Epidemics and the SIS model A perhaps less theoretical use of cobra walks is as a method of modeling
epidemics. While mathematical models of epidemics have been around for well over a century(see descrip-
tion in [3], it is only within the last fifteen to twenty years have researchers begun to study epidemics that
occur on networks [50, 44, 22]. In this approach, which much more closely models how epidemics spread in
situ, individual organisms are modeled as nodes in what is referred to as the contact network. Connections
between individuals are represented by edges, and the existence of an edge depends on the pathogen under
consideration. For example, an edge would imply casual contact for a rhinovirus, close family or caregiver
contact for ebola, sexual contact for HIV (cf. [40, 55, 47, 42]). In a typical model setup, we begin with
an network of individuals connected with some specified topology. We then begin the infection at some
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node or some subset of nodes. Time is usually treated as a continuous variable, and an infection at a node
is governed by two (independent) Poisson processes: the infection rate (per each edge) with parameter β,
and the cure rate (per each node) with parameter δ. Note that here we are discussing what is known as an
SIS model, for “susceptible infected susceptible”, which which a node can either be in the infected or sus-
ceptible but uninfected state, and can transition between the two arbitrarily often. This is in contrast to the
SIR model, for “susceptible, infected, recovered”, in which there are three states. The transitions here are
unidirectional: susceptible to infected, infected to recovered. Once a node becomes recovered, in most cases
it is considered as removed from the graph’s topology for the purposes of the spread of the infection. There
is a substantial body of research on SIR models, and I will merely note here there is a large overlap with
the field of bond percolation – in fact, many useful results for SIR models have been found by analyzing a
SIR model as a percolation process [44]. For SIS models, there are many variations on the process [18]. I
will only provide a few here as examples: the link infection rate may depend on the number of neighbors,
there may be an incubation period, or the curing process for an infected node may have a minimum fixed
duration. Essentially, if there is some real world feature of an epidemic that can be inserted into a model, it
most likely has been.

While the SIS network model is fairly simple to describe and conceptualize, the analysis of it is another
story. Almost all work to date involves some sort of mean-field approximation, whether at the level of the
entire network (i.e. we assume the graph is a clique) all the way to the state transition of a single node
(between infected and susceptible). Perhaps one of the best results thus far comes from [27]. In this work,
the authors study the impact that the network’s topology has on the duration of the epidemic. Note that for
any finite graph, in an SIS model as described above, there is a single absorbing state which corresponds to
the infection going extinct. However, prior to this occurring, the epidemic may stick around for an extremely
long time (exponential in the size of the network). Indeed, in [27], the authors establish two bounds on the
duration of an epidemic. They show that, on one hand, if the spectral radius (i.e. the dominant eigenvalue
of the adjacency matrix A of the graph) is ρ(A) < 1/β, where β is the infection rate parameter, then the
epidemic dies out quickly, in O(log n) time. For a bound on exponentially long persistence, they make use
of a generalized isoperimetric constant:

η(G,m) = inf
S⊂{1,...,n},|S|≤m

E(S, S̄)

|S|
, 0 < m ≤ bn/2c. (2)

and show that if
1

βη(m)
< 1, then the epidemic will last for Ω(en

α
) length of time, in expectation, for

some α > 0. There is quite a late gap between these two bounds, especially coming from the perspective
of percolation, wherein one might expect there is some fairly sharp threshold between the two behaviors.
There are some graphs (such as the hypercube) for which the two conditions are very close, but for arbitrary
graphs there is still a lot of opportunity to narrow the gap.

It should be fairly obvious that cobra walks present a different sort of approximation for an SIS model.
The main differences are that cobra walks operate in discrete time rather than continuous time, the epidemic
can never die out (though it can be reduced to only one pebble), and the infection rate, probability distribu-
tion, and method of selecting neighbors to spread to are slightly different. However, cobra walks provide
the opportunity to model an SIS process explicitly (i.e. tracking the progress of the infection at every node
across all time steps) rather than through some mean-field approximation. As part of my present work, I will
discuss the possibility of modifying the cobra walk to even more closely resemble an SIS epidemic process
and provide some questions that might be answerable through the use of (possibly) modified cobra walks.
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2.4 Preliminaries: Definitions and Assumptions

Before proceeding with this summary, I would first like to define a few of the terms and concepts that we
will use throughout. We have previously described the coalescing-branching process. By active set we
mean the set St of all vertices at time t of graph G that have a pebble. We define N(S) to be the inclusive
neighborhood of a set S: that is, the set of all neighbors of the vertices of S, including members of s itself.
Define Γ(S) to be the non-inclusive neighborhood, consisting of the set of all neighbors of the nodes of S
that are not themselves members of S.

The expected maximum hitting time hmax of a cobra walk onG be defined as maxu,v∈V E[hu,v] where
hu,v is the random variable representing the time it takes for the first pebble in a cobra walk starting at u
to reach v for the first time. Then the quantity τv is the random variable representing the minimum time t
at which every vertex has belonged to the active set at least once. The cover time of a cobra walk on G
is maxv∈V τv. We define the expected cover time to be maxv∈V E[τv]. While in the literature on random
walks the cover time usually refers to the expected cover time, in this work we show high-probability bounds
on the cover time.

In the results dealing with expanders, we need to clarify which definition of expansion we use. While
to a certain extent the various definitions are more-or-less interchangeable, to be precise here we will use a
spectral definition for expanders and use Tanner’s theorem to translate that definition into neighborhood and
cut-based notions of expanders.

Definition 1. A d-regular ε-expander is a d-regular graph whose adjacency matrix A has eigenvalues αi
such that |αi| ≤ εd for i ≥ 2, where ε ∈ (0, 1).

And here is Tanner’s theorem:

Theorem 2. [53] Let G be a d-regular graph ε-expander. For all S ⊆ V with |S| = δn, we have

|N(S)| ≥ |S|
ε2(1− δ) + δ

.

2.5 Results

Here I present a quick overview of the major results that have come out of our study of cobra walks to this
point.

2.5.1 Matthews bound for cobra walks

One of the more famous results describing the cover time of a simple random walk is known as Matthew’s
bound [41] , and it relates the cover time to the maximum expected hitting time over all pairs of vertices in
the graph. It turns out that there is an analogue for Matthew’s bound for cobra walks, which we prove:

Theorem 3. LetG be a connected graph on n vertices. LetW be a cobra walk onG starting at an arbitrary
node v. Then the cover time of W on G, C(G), is bounded from above by O(hmax log n) in expectation and
with high probability.

This version of Matthew’s theorem is the key to the first type of technique we use to prove cover time
bounds on graphs. If we can calculate hmax, we can then bound the cover time. Calculating hmax is slightly
different for cobra walks than it is for simple random walks. In a walk between u and v, we only need to
follow the pebble closest to v at any time step. Pebbles used in consecutive time steps may not even be
directly related. Though this technique is used to different effect in grids and trees, the basic idea is the
same.
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2.5.2 Cover time of trees

We are able to show that any tree of n nodes is covered by a cobra walk starting at any vertex in the tree
in O(n log n) steps. As mentioned above, the proof will follow if we can can establish that a cobra walk
starting at node any node u will reach any node v in a linear number of steps (in expectation).

We first show that for any tree T of size n, a cobra walk starting at (an arbitrarily picked) root r of T
will return to r (meaning a pebble of the cobra walk will reach r) in expectation in 4n/d steps, where d is
the degree of the root. This result is proved by showing that if we follow the pebble closest to r in each step,
we are mimicking a biased random walk (biased towards the root) and can establish a recurrence relation
that yields the linear return time.

Next we show that if we fix a path in the tree, the expected time it takes the cobra walk to take one step
along the path can be calculated:

Lemma 4. Fix a path in a tree T made up of vertices 1, . . . , l, (l+ 1), . . . , t. Then the expected time it takes
for a cobra walk starting at vertex l to get to l + 1 with at least one token can be bounded as:

hl,(l+1) ≤
5

4
+

12

5

2∑
i=l

(
1

5

)l−i
|Ti| (3)

The proof again makes use the fact that closest pebble to vertex l+ 1 is taking a biased random walk. If
we calculate the probabilities associated with moving to l− 1, l+ 1, or the (possibly empty) subtree rooted
at l we can again establish a recurrence relation to achieve the above expression.

We finally prove the O(n) hitting time by showing that h1,l ≤ h1,2 + h2,3 + . . . + ht−1,t ≤ 4n. The
cover time is proven by applying Matthew’s bound.

2.5.3 Cover time of grids

We are able to establish that for a grid G of dimension d on n nodes, a cobra walk covers G in (almost)
root-d of n steps:

Theorem 5. Let G be a finite d-dimensional grid for some constant d, without wrap-around edges. Then
the cover time of a cobra walk on G is Õ(n1/d) w.h.p. for branching factor k = 2.

The proof of this is a variation on a theme of tracing the closest pebble on a cobra walk starting at
s = (0, . . . , 0) and aiming to reach target t = (n1/d, . . . , n1/d). However, we do not track the pebble that is
globally closest to t. Rather, we focus on the progress the cobra walk is making one dimension at a time.
Let’s say we are focusing on coordinate i of a cobra walk’s progress. With respect to this coordinate, we do
keep track of the pebble closest to t’s ith coordinate, and we show that this pebble is making a biased random
walk towards that target. After n1/d steps, the pebble is within n1/2d distance from the target. With respect
to all other dimensions, while we are following dimension i, the pebble is taking an unbiased random walk,
and hence its expected drift is zero. We can therefore state with high probability that it does not move more
than a distance of n1/2d away from its initial position. We cycle through each of the coordinates and make
the same progress. We then repeat this entire process log logn times, continually shrinking the distance by
another square root factor, until we are within constant distance in each coordinate away from t. Then this
final gap will be closed in expectation in a constant number of steps. Thus proving the hitting time, we again
apply Matthew’s bound to get a cover time.

2.5.4 Cover time of the complete graph

A cobra walk covers a complete graph rapidly, in O(log n) rounds. This is perhaps not surprising, but we
include this result because the proof technique is interesting in its own right, and serves as a sort of warm
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up for the proof of the cover time of the expander (as well as a contrast to show where technical challenges
arise in the expander).

The main result stated formally:

Theorem 6. Let G = Kn, the complete graph on n nodes. A cobra walk starting from any node in G will
cover the entire graph w.h.p. in O(log n) time.

The key to understanding the coverage of Kn is to understand what happens at an arbitrary step t, given
that the active set is already of size s = |St|. For simplicity, assume that every node in Kn also has a self
loop. Let us also assume that |St| << n. There are two tokens at each vertex of St, so we have 2|St|
tokens choosing from n vertices independently, uniformly at random. It is easy to show via a combinatorial
argument paired with a concentration bound that |St+1| will be of size (1 + c)|St| for some constant c with
some (overwhelmingly) high probability. Thus, in each step, the active set will grow, meaning after log n
steps we will have δn active nodes for some constant δ. Once we reach this state, simply by δn pebbles
randomly sampling from n vertices, we will hit all of the vertices of Kn w.h.p. in another O(log n) steps.

2.5.5 Cover time of expanders

As hinted at earlier, showing that an expander is covered by a cobra walk in O(log n) as yet has not been
possible. To quote the Bush Administration, I prefer to think of this not as a failure, but as a success that
hasn’t happened yet. However, we have been able to show that coverage occurs w.h.p. in O(log2 n) time.
The analysis is broken up into two phases. In the first phase, we show that the cobra walk’s active set grows
by a multiplicative factor in every round w.h.p. up until the active set reaches a size of δn for some constant
δ. This takes O(log n) time. In the second phase, we need to get a bit more creative. We invent a process
called Walt in which the number of pebbles is frozen (at δn). However, the pebbles move around in such a
way as that their transition probabilities resemble the transitions of a cobra walk. We show that this process
stochastically dominates a cobra walk, and that this process (which we call Walt) covers G in O(log2 n)
time with high probability.

Thus we have the following two results formally stated, which when put together imply that a cobra
walk covers an expander with suitably high expansion (specified in the first lemma below) in O(log2 n):

Theorem 7. LetG be any d-regular ε-expander with ε, δ not depending on n (number of vertices inG), with
δ < 1

2 , and ε, a sufficiently small constant such that

1

ε2(1− δ) + δ
>
d(de−k + (k − 1))− k2

2

d(e−k + (k − 1))− k2

2

, (4)

then in time O(log n), w.h.p. a cobra walk on G with branching factor k, will attain an active set of size δn.

We note that the condition in the above theorem is satisfied if either ε is sufficiently small, or k is
sufficiently large. For instance when k = 2, the above condition holds for strong expanders, such as the
Ramanujan graphs, which have ε ≤ 2

√
d− 1/d, and random d-regular graphs, for d sufficiently large.

Theorem 8. Let G be as above, and let W be a cobra walk on G that at time T has reached an active set of
size δn. Then w.h.p in an additional O(log2 n) steps every vertex of G will have visited by W at least once.

The proof of 7 is technically complicated but not intuitively complicated. We argue directly using
the expansion of G that the active set initially grows by a constant multiplicative factor in each round in,
expectation. Then we use a standard martingale argument to show that for a single step, the growth occurs
with high probability. The only challenging part of the proof is that within a window of O(log n) rounds
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there will be Ω(log n) growth steps. This is done by showing that the growth is stochastically dominated
by a negative binomial random variable representing the size of the active set and applying a concentration
bound.

The proof of 8 is far more interesting. As mentioned, rather than work with the cobra walk W directly,
we work with a process Walt. In this process, we start with δn arbitrarily distributed pebbles (at most one
per vertex). The pebbles then take walks around G, acting almost like independent random walks except
in the case that three or more pebbles are co-located at the same vertex at the same time. Then, two of the
pebbles choose neighbors to walk to uniformly at random, and the remaining pebbles pick one of these two
destinations with probability 1/2 each. (Do you see the resemblance to the cobra walk?). We show that if we
pick any vertex, this vertex will be covered by at least one pebble inO(log n) time with constant probability.
Unlike as would be the case for independent random walks, we can’t assume that the stationary distribution
of a pebble is 1/n for each vertex, and that the walks mix rapidly. Rather, we need to find a way to calculate
the stationary distribution directly. To do this we need to calculate the stationary distribution of the joint
walk of two pebbles, where we assume one pebble is the “leader” and the other the follower. Thus, we end
up analyzing the (weighted, directed) random walk on a graph that is derived from the tensor product of G
with itself. Using a result from [15], we are able to show that this walk approaches its limiting distribution
rapidly (in logarithmic time), and that this distribution is close to uniform (1/n2). Thus, we can show that
in O(log2 n) time every vertex in G is covered by Walt, which carries through to the cobra walk.

3 Enabling Efficient and Robust Distributed Computation in Highly Dy-
namic Networks

In this section I provide a brief overview of the state of research on algorithms for computing on and
repairing distributed networks. I then describe an algorithm which is able to maintain a bounded degree,
almost-everywhere expander in the face of o(n) adversarial churn, in every round, with high probability. I
then provide a brief sketch of how we prove that this algorithm meets its guarantee.

3.1 Background

In a dynamic network we assume that the structure is capable of changing or being changed in every time
step (using a discrete time interpretation). The changes to the network can either be to the nodes of V ,
the edges E, or to both. There are many different varieties of dynamism. The most basic is to assume
some sort of randomness in the rearrangement of edges or the addition or deletion of nodes. To be truly
robust, however, any distributed algorithm must be be able to withstand network changes introduced by
an adversary. There are two major categories of adversarial dynamic networks: the oblivious adversary, in
which the adversary lays out a sequence of graphs prior to the start of the process, and the adaptive adversary,
in which the adversary can respond and set out a new list of network changes after each round, incorporating
some degree of knowledge of the state of the network and the internal state of each node.

A primary example of a dynamic distributed network is P2P networks, in which every node is an in-
dependent agent, and computation and other tasks (storage, for example) are performed through the coop-
eration and collaboration of the member nodes of the network. A key property of P2P networks is their
high degree of dynamism, especially with respect to node churn (the process by which nodes in the network
leave and are replaced by new nodes freshly joining). It is estimated that almost 50% of nodes churn out of
the network in each hour in many recent real-world P2P networks [24, 31, 52]. Yet despite the churn, P2P
networks need to be able to perform tasks such as persistent storage of data, which at first glance seems to
be incompatible with a high level of churn. Distributed algorithms have been proposed to perform a variety
of tasks, from data storage and retrieval [48, 21] to more diverse tasks such as data mining [20], collabora-
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tive filtering [11], and worm detection [54], and many others. However, it has been difficult designing P2P
systems that are both fully distributed and also provably robust to changes in the network. Many of the most
used P2P applications in the last 15 years (Kazaa, Napster, Gnutella) have had some degree of centraliza-
tion: for example, a central server to manage newly connecting users, or a subset of users known as “super
nodes”. Furthermore, even if a network is fully decentralized, many of the algorithms for the applications
described above do not have provable guarantees of performance or robustness in the presence of a high
degree of adversarial churn of nodes or modification of edges.

Thus, more recent work has focused on developing such algorithms: [26, 33, 43, 51]. Many algorithms
geared towards dynamic networks assume that at some point the network will stop changing and stabilize
or that there will be a rest period between changes to allow the algorithm to repair the network. The authors
of [36] study a network that can change in every round (as long as the network remains connected) in an
arbitrary fashion and provide reasonable upper bounds on the running time of various distributed tasks.
In the last several years, Gopal Pandurangan and a dynamic set of collaborators have developed several
distributed algorithms which provide very useful functionality and are provably robust under a high degree
of adversarial churn. [4] gave an O(log n)-round search algorithm with up to n/ log1+δ n churn per round.
It also provides an efficient storage mechanism while only requiring Θ(log n) copies of each data item to be
stored. The work in [6] provides an algorithm that achieves distributed agreement even with a linear churn
rate in a polylogarithmic number of rounds. Finally, [5] provides a distributed algorithm for Byzantine
agreement in the presence of up to O(

√
n/polylog(n)) Byzantine nodes and O(

√
n/polylog(n)) churn per

round.
The critical assumption in these algorithms is that the adversary can do whatever he likes to change

the graph in each round as long as he makes each graph an expander. This is a fairly strong restriction,
because an expander graph has very nice properties that allow for many of the necessary sub operations. For
example, the three works cited above make heavy use of the ability to randomly sample nodes of the graph.
This sampling is done via many tokens performing independent random walks through the network. Since
the network is an expander, a walk has reached its limiting distribution after only O(log n) steps, even in
a dynamic graph. Clearly, if the graphs the adversary dictates are not expanders, the random walks can no
longer provide an efficient way to sample the nodes of the graph. Therefore, it would be extremely useful
if one could develop a distributed algorithm that runs in the background on the nodes of the network which
is able to rapidly repair the network so that it is an expander graph almost everywhere. Note that almost
everywhere, by which we mean for all but some o(n) nodes, is the best we can hope for when dealing
with churn, since new nodes are connecting into the network in each round and it would be impossible to
incorporate them fully into the expander topology immediately.

To date there have been a number of attempts to design algorithms for which we term “self-healing
expanders”. However, most either impose limitations on the ability of the adversary to change the graph
(such as by limiting the number of nodes that can be deleted or added) or by allowing for generous intervals
where no change are made and the graph has a chance to repair itself. Here I present a brief summary of
the most salient results. In [38], a distributed algorithm is given which constructs and then maintains an
expander graph (w.h.p.) under a limited number of insertions and deletions. [45] provides a self-healing
algorithm that repairs a single node insertion or deletion in O(log n) steps and using O(log n) messages
(assuming no other changes during the healing). In [46], the authors present an algorithm Xheal, which can
repair an expander when an adversary deletes or adds a node in each time step, while preserving expansion
and making only local changes to the network topology. In [17], the authors propose an algorithm that can
maintain a well- connected graph of small diameter in the presence of adversarial modifications to the graph.
However, for more than a small fraction of adversarial churn, the algorithm can only guarantee connectivity
of the graph and not good expansion. However, one notable feature of this algorithm is the use of random
tokens generated by each node bearing that node’s address. These tokens each make independent random
walks around the graph and are used to sample the remaining nodes of the graph to create random edges.
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We will employ a variation of this technique in our self-healing algorithm.

3.2 Healing an expander graph with O(n/ logc n) churn in constant time, in every round,
with polylogarithmic overhead

In this proposal I outline the algorithm that we developed to deal with some of the challenges above. It is
the first algorithm that we know of that has the following properties: It allows for an oblivious adversary to
delete and insert (i.e. churn) up to O(n/polylog(n)) nodes in every round of the algorithm. Furthermore, it
will make its repairs in every round, so that w.h.p. the network will contain a subgraph of size n− o(n) that
forms an expander graph (i.e. its isoperimetric number is bounded below by a constant. Furthermore, this
algorithm requires each node to send and receive up to only a polylogarithic (in n) number of bits in each
round.

The key primitive of this algorithm is the use random walks. Each node, in each round, generates a
polylogarithmic number of tokens bearing its address. These tokens then take random walks around the
(dynamic) network, in the process either being deleted by being at a node that gets churned out or sticking
around long enough in the network to approach a uniform distribution among the nodes. If they survive long
enough, the tokens are used by any node in the network (be it newly joined or an existing node) to request
a new edge to be formed between that node and the node that originated the token. In this fashion, as the
graph it evolves it remains essentially a bounded-degree random regular graph. Naturally, there is quite a
bit under the hood that needs to be shown. For example, it is not at all clear that the random tokens will
indeed mix rapidly, since mixing is a function of the network topology, which is a function of the edges
formed by sampling from mixed tokens. Furthermore, it needs to be shown that in a short number of rounds,
if a disconnected or recently connected node sends a constant number of requests in each round, it will be
(randomly) reconnected back to the network quickly and will not suffer from too many message collisions.
We address all off these challenges and more.

As this work is in many ways the last piece of a puzzle of a body of work already published, I do not
intend to try to develop more content for my thesis work. However, when going back over the paper to
summarize it for this section, I decided that the current layout and flow of both the algorithm and analysis
sections of the papers is somewhat confusing and deserves a major reorganization. I will include this in my
thesis.

3.2.1 Main result and technical contribution

The major result of this work is an efficient randomized distributed protocol that guarantees the mainte-
nance of a sparse (bounded degree) topology with high expansion despite the presence of a large adversarial
churn. We assume that the number of nodes in the graph is stable. We assume that the churn is limited to
O(n/polylog(n)) nodes per round and is controlled by an oblivious adversary, which has complete knowl-
edge of what nodes join and leave at what time, but is unaware of any random choices made by nodes of the
graph (including a decision to create or delete an edge between nodes). The adversary can remove any set
of nodes up to the churn limit in every round. It also adds (an equal amount) of nodes to the network. Each
new node added must be connected to at least one existing node (i.e. a node that was not just churned out),
and the number of new nodes connected to an existing node may not exceed some fixed constant.

Our protocol requires only polylogarithmic in n bits to be processed and sent by each node in each round;
each node’s computation cost per round is small (also polylogarithmic in n). Our protocol guarantees that in
each round, even in the presence of adversarial churn that obeys the O(n/polylog(n)) churn limit, there is a
subgraph of size n−o(n) with expansion lower bounded by some fixed constant. Furthermore, the degree of
each node is at all times upper bounded by a fixed constant. The one significant requirement of our protocol
is that a “bootstrap” phase ofO(log n) rounds is required at the beginning of the process – during this phase,
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the graph is connected as an expander graph and there is no churn. This phase is necessary to ensure that the
process by which edges can be sampled is initially random. We show that any strategy that relies on random
walks will also require this bootstrap phase.

This algorithm is lightweight, distributed, and local (no global topological knowledge is required). It also
should be easy to implement. The algorithm serves as a building block of enabling distributed algorithms
for non-trivial distributed competing problems such as agreement, search and storage, and leader election in
dynamic P2P networks.

The main technical challenge to overcome in designing such a protocol is maintaining good topological
properties in highly dynamic networks where both edges and nodes can change by a large amount on an
ongoing basis. In this work, this challenge is overcome by using random walks to maintain an expander-
like topology. In this random-walk based procedure, each node, in every round, generates some number of
tokens (containing the generating node’s ID and a counter) and sends them on a random walk around the
network. After a logarithmic number of rounds, the random walks ”mix” – are roughly uniformly distributed
around the network – and can then be used to form random edges between nodes. Thus the backbone of the
network (and of the algorithm) is a random, bounded degree graph, which is known to have good expansion
properties.

Naturally, it needs to be shown that this process (mixing of random walks and sampling from mixed
tokens) still works even when the network is being modified by the adversary and by the algorithm itself,
which one would imagine can create rather complicated complexities. Many of the tokens taking the random
walks can be deleted (since they are nodes that are churned out), and thus a bias may arise in the distribution
of the remaining tokens. Since these tokens are then used to create edges to maintain the graph, and these
edges might now be drawn from a biased distribution, the random walks may then even be further biased by
modifications made by the algorithm itself. Thus we must ensure that the random walks remain mixed and
asymptotically close to a uniform distribution over the nodes of the graph despite the changes occurring.
We overcome this challenge by implementing at each node a “local” criterion for deciding if tokens being
received are sufficiently random – if an insufficient number of tokens, mixed or otherwise, are received, the
node knows it is not well connected to the network and “refreshes” its edges, thus ensuring that, in aggregate,
almost all edges are indeed random.

The two other main challenges are one, that nodes can become isolated from the rest of the graph and
used as a beachhead by the adversary to add newly churned in nodes and disconnect the graph, and two, that
nodes can only send a constant number of messages (and hence a constant number of requests to connect)
in each round. This could mean that a node fails to connect sufficiently well before it becomes isolated from
the graph. We present mechanisms to overcome both of these challenges.

3.2.2 Preliminaries

The Adversarial Network Model. We consider a synchronous dynamic network controlled by an oblivious
adversary. The adversary fixes a sequence of graphs H = (H1, H2, . . . ,Hi, . . .) with each Hi is defined on
a vertex set Vi. The size of the vertex set is assumed to be stable, i.e., |Vi| = n for all i, and |Vi \ Vi+1| =
|Vi+1 \ Vi| ∈ O(n/ logk n), where k is a constant that will be fixed in the analysis1. The vertex set Vi refers
to the set of nodes present in the network in round i. Each node has a unique ID chosen from an ID space
of size polynomial in n. The edges must be viewed as a rudimentary set of connections provided by the
adversary. The degree of each graph Hi is bounded by a constant denoted by deg(H).

For the first Θ(log n) rounds, called the bootstrap phase, the Hi’s are constant degree expanders with
expansion at least α > 0, a fixed constant. This means that, for any set S of ≤ n/2 nodes, the number of
edges across the cut given by S and the remaining nodes, is at least α|S|.

1For the sake of clarity, we do not seek to optimize constants and logn factors. Our analysis shows that k need not be > 3.
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Moreover, there is no churn during the bootstrap phase, so the vertex sets are identical. We can think of
the bootstrap phase as a period of stability provided for the protocol to get started.

After the bootstrap phase, the requirements on the adversary are significantly reduced. It is only required
to ensure that any new node u that enters at, say, round i, must be connected in Hi to at least one other pre-
existing node v, i.e., if u ∈ Vi \ Vi−1, then, u must be connected to some v ∈ Vi−1 ∩ Vi in round i.
The adversary must also ensure that the degree bound stipulated for the His is not violated. The following
subtleties are noteworthy. Firstly, we only require that a new node is connected to a pre-existing node in
its very first round upon entering the network. Secondly, after the bootstrap phase we don’t even require
each Hi to be connected — in fact, the only required edges in Hi are the edges connecting new nodes to
pre-existing nodes.
Requirements. Our goal is to design a distributed protocol to maintain a graph process G = (G1, G2,
. . . , Gi, . . .) over time such that each Gi constructed at the end of round i has good expansion while main-
taining a constant degree bound ∆. The protocol must achieve this goal by dynamically adding/deleting
edges over time. Each Gi = (Vi, Ei) has the same vertex set as that of Hi. In each round i, the protocol
can add a set E↓i of new edges. Also, a set E↑i of edges that were added by the protocol in some previous
round is lost — some explicitly removed by the protocol and others removed implicitly because vertices to
which they were incident were churned out. Thus, each Ei = (Ei−1 \ E↑i ) ∪ E↓i . Our goal, more formally,
is to show that for some constant α > 0, if Gi−1 has maximum degree ∆ and expansion at least α, then, the
graph Gi = (Vi, Ei) thus formed must, with high probability2, also have expansion ≥ α and a maximum
degree of ≤ ∆. We emphasize that the graph Hi is only presented at round i and the protocol is unaware of
future graphs.
Communication Model. Communication is via message passing. If a node u knows the ID of another node
v either directly because u and v are neighbors in the current graph in G, or because they are neighbors in
Hi (assuming we are in round i), or indirectly through received messages, then u can communicate with
v3. Each node can send and receive messages of size polylogarithmic (in n) bits. Furthermore, each node
is restricted to some constant M = ∆ + deg(H) in the number of messages (and therefore, the number of
nodes to which) it can send and receive in a single round.

Notice that a sender u can ensure that it sends out at mostM messages intended for at mostM recipients.
Let v be one of the nodes to which u has sent a message. Notice that u has no information about how many
other nodes are also trying to send messages to v. If more than M nodes send messages intended for v, it
can only receive M messages, while others must be dropped. We assume the following priority by which
messages are either accepted or dropped.

1. All messages (say, of cardinality j ≤M ) sent along edges inH and G are sent successfully, and
2. Among the remaining messages intended for v, only an arbitrarily chosen subset of M − j messages

reach v; the rest are all dropped.
Sequence of Events in a Round. We now describe the precise sequence of events that comprise a single
round i in our model:

1. The adversary presents the new graph Hi in which some of the old nodes have been churned out and
some new nodes have been churned in (assuming round i occurs after the bootstrap phase). The graph
Gi−1 loses all edges that were incident to nodes that were churned out.

2. Each node is then allowed to perform some local computation including private coin flips and send
messages of size polylogarithmic in n to up to C other nodes. This communication step, among other
purposes, is particularly useful for nodes to send requests for adding edges.

3. Nodes can again perform some more local computation, and again send messages of size polyloga-
2We say that an event occurs with high probability (whp) if its probability is at least 1− n−c for a sufficiently large constant c.
3This is a typical assumption in the context of P2P and overlay networks, where a node can establish communication with

another node if it knows the other node’s IP address.
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rithmic in n to up to C other nodes. The messages sent in this step are typically responses to messages
sent out in the previous step. For instance, a node v that had received a request from a node u to form
an edge could either send an accept message or ignore it (implicitly rejecting the request).

4. Once v accepts node u’s edge request, edge (u, v) is added to the communication graph. The com-
munication graph now includes all the newly added edges, and is designated Gi.

We note that a round is comprised of a two-step protocol to add an edge: the requesting node sends a message
to the other node, which takes one more step to accept/reject. The above assumption is slightly different from
the classic notion of a round, where messages are sent only one way per round (hence implementing these
two steps will actually take two rounds.) This assumption is not just a mere technicality; on the other hand
it is needed. We prove an impossibility result that that shows there is no protocol in the classic synchronous
round model (cf. [49]) that can maintain connectivity (let alone expansion) for a large majority of the nodes,
even if the churn is limited to only Θ(

√
n/polylog(n)) nodes per round.

Adding/Deleting Edges in G. We assume the existence of a simple two-step “handshake” protocol (de-
scribed in the next paragraph) that allows any node u to propose an edge between itself and another node
v (provided u knows v’s id); the node v, in turn, can either explicitly accept or ignore (thereby implicitly
rejecting) the proposal. Furthermore, a node u can drop any edge (u, v) incident to it without consulting v;
we assume that v will be immediately notified that (u, v) has been dropped.

3.2.3 Description of the Protocol

Our protocol works by ensuring two interdependent invariants (whp). The first invariant is that the nodes
can sample from the set of IDs in the network almost uniformly at random. We implement this sampling
via random walks. For the sampling technique to work efficiently, we need our second invariant, namely,
that the network maintains good expansion, and for this, we employ a technique of connecting each node to
a constant number of other nodes chosen (almost) uniformly at random, thus bringing us back to our first
invariant. With the two invariants being so intimately dependent on each other, the bootstrap phase in which
expansion is guaranteed is crucial in helping the protocol to get started. During this phase, the random
walks based sampling procedure gets started, which, in turn, allows the network to continue maintaining
good expansion beyond the bootstrap phase. While this high level idea is quite straightforward, there are
some significant challenges to be overcome in order to get the protocol to work.

Here we give an high-level overview of the main ideas.

Degree Bound : Red and Blue Edges Every node v in the network has upper bound ∆ on its degree. We
can thus say it has ∆ ports. It marks δ < ∆/6 of those ports as blue ports. These will be used to form blue
edges (from v’s perspective), which are edges formed at v’s request. The remainder of the ports are marked
as red ports, which will be used to form edges between v and nodes which request the edge to be formed.
A blue port without an incident edge is called a dangling port, while each red port without an incident edge
forms a self-loop with itself.

Random Walks Based Sampling In each round (including the bootstrap phase), each node v generates
z ∈ Θ(polylog(n)) tokens. Each token has the originating node’s address and a counter (set to 0 initially).
Each time the token moves to a new node, its counter is incremented by 1.

Each token then takes a random walk for up to τ = Θ(log n) rounds. If it survives long enough to have
its counter equal to τ , it is deemed a mature token.

If a node v at any point receives fewer than z/2 mature tokens (each taking an independent random
walk) in a round, the mature tokens are discarded. This is because the mature tokens are used to sample
from the vertex set when forming an edge, and receiving fewer than z/2 mature tokens indicates that the
node is in a poorly connected portion of the network and would do best to just start over forming edges. If
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u receives more than z/2 tokens, it places them in what we call a prioritized token buffer.

Prioritized Token Buffer Each node v has a prioritized token buffer which holds up to C ∈ O(polylog(n))
mature tokens. These tokens are assigned a priority based on their age (younger means higher priority and
whether or not they have been copied (see below). A node will reserve the top c ∈ Θ(polylogn) tokens for
its own use. Node v can be contacted by another node requesting fresh (not copied) tokens. If there are at
least C/2 tokens in the buffer, c tokens are given to the requesting node. If the number of fresh tokens in
the buffer falls below C/2, then the tokens are marked stale and are copied. These copied tokens (with the
stale marking) are given to the requested node.

Distributed Expander Maintenance Protocol The protocol runs on all nodes in the network, and is initi-
ated as soon as the node joins the network. The random walk token sampling processes runs in the back-
ground at all times (implemented at the node level but operating as a global property). Once the bootstrap
phase is over, the adversary is allowed to make changes to the network.

Each node can be in one of two states: normal mode or reconnect mode. We describe what is
happening from the perspective of a single node v.

The Normal mode If v is in Normal mode, it checks to see how many tokens it has received. If it has
received below z/2 mature tokens, it deletes all of its existing blue edges and switches into reconnect
mode.

If it has received a sufficient number of mature tokens, with probability 1/polylog(n), v drops all of its
blue edges and switches to reconnect mode.

The Reconnect mode Node v will be in this mode if it has either just joined the network, or if some or
all of its blue edges have been dropped.

If v is new to the graph, the adversary must connect it with some existing node w. Then v will receive
c ∈ Θ(polylog(n)) tokens from w. These tokens can be either fresh or stale (copied). If they are fresh
tokens, v makes edge requests until it has formed δ blue edges. If v has received copied tokens, then v uses
these tokens to send requests for fresh tokens. Once it receives them, it begins making connection requests
to form δ blue nodes. We prove that this two-step reconnection process ensures that no component of the
network becomes disconnected from the network as a whole.

If v already has c fresh tokens in its priority token buffer, it immediately begins using these tokens to
replenish its δ blue edges.

3.3 Proof of Correctness

Here I will provide a brief overview of how we prove that our algorithm operates as intended, as well as a
brief summary of results. The main result is:

Theorem 9. In each round, the expander maintenance protocol maintains the network communication graph
as a graph that contains a large n−o(n)-size expander graph with expansion at least α ∈ Θ(1) for a number
of rounds that is at least a polynomial in n with high probability.

3.3.1 Using the random walk tokens to form edges produces a graph with high expansion

Here we describe Lemma 10, one of the main lemmas used in the analysis of the protocol. The gist of the
lemma is that if we can show that, when a blue edge is formed by a node, the endpoint of the new blue edge
is drawn almost uniformly at random from a set of nodes representing a large constant fraction of the nodes
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of the network, then a network formed from such an edge set selection process is an expander with high
probability.

Lemma 10. Let G = (V,E) be a random graph on n vertices formed by the following random process.
For each v ∈ V , we create δ incident blue edges such that the red end of each such edge e is chosen from a
probability distribution D over V defined in the following manner. For every v ∈ V,D(v) ≤ 1/n + 1/nc

for a suitably large constant c. Furthermore, for an arbitrarily chosen subset Se ⊆ V of cardinality at
least 0.8|V |, D(v) is guaranteed to be in Ω(1/n) for every v ∈ Se. Then, with high probability, G has an
expansion of at least α′ for some suitable constant α′ > 0.

3.3.2 Proving that the tokens are taking rapidly-mixing random walks

Most of the rest of the work in the analysis involves showing that the random walk token technique of the
maintenance protocol will in fact successfully mix enough of the tokens to guarantee that there are enough
of them to perform the random sampling needed to create the blue edges, despite the changes going on in
the network.

In the paper, the proof is handled somewhat indirectly. Instead of working directly with the network
generated by the algorithm (and adversary), we describe a family of processes which we refer to as Υ
processes. An Υ process is a process on a sequence of graphs that includes adversarial change, the generation
of random edges, and the performance of many random walks. We prove that every Υ process has the desired
properties, and then prove that our expander maintenance protocol is in fact an Υ process.

Without getting into the technical details, I briefly describe how we show that every node will receive a
sufficient number of mature (i.e. mixed) random tokens. The first step is to note that random walks will mix
rapidly in a graph that is dynamic in edges but not nodes if the graph is an expander in each round. Then,
we imagine a version of our process in which when a new node is churned in, it is assigned the edges that
belonged to a node that had just been churned out. These edges that are reassigned are called ghost edges.
The tokens continue their random walks around the network, and if they at any point cross a ghost edge,
they are labeled ghost tokens. Tokens that do not cross a ghost edge are called real tokens.

We then prove that:
1. If a node receives a sufficient number of real tokens, then with high probability each real token’s origin

can be drawn from an almost uniform distribution over a large set of nodes of the network (1 − ε)n,
for some constant ε < 1/2.

2. The number of nodes that receive this sufficient number of tokens is of cardinality n− o(n).
Thus, at each step, an n − o(n) size fraction of the (real) graph, in which ghost edges are deleted, gets

mature tokens, and these tokens are well-mixed. We can then apply ?? to show that each graph (including its
ghost edges) is an expander. Thus, a subset of the graph, by citing a result in [7], forms an induced subgraph
that also has constant (though slightly lower) expansion.

4 Proposed Additional Work

As noted earlier, there are a number of open problems for cobra walks: the most immediate being tightening
up the cover time of expanders to O(log n) and proving a general cover time bound for arbitrary graphs.
Beyond cover time, I believe that there are a number of other interesting questions. At the top of that list
would be a study of the long term dynamics of cobra walks. Of interest to me would be whether the number
of active/infected nodes remains fairly stable or is subject to wide fluctuations, and whether the conductance
of the underlying graph has any impact on this. For example, one might expect a cobra walk on a tree to
perhaps travel in “waves” over the graph, while any graph that had a subgraph of high conductance might
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have a more stable pattern of infection. These questions are broadly applicable to the study of cobra walks
as an SIS epidemic model for a disease endemic to a population.

Before describing my proposed work in more detail, I would like to spend a few minutes justifying
going down this road on a practical level. Given the original paper’s good reviews and appearance at SPAA
in 2013, the invitation to submit it to a special edition journal (TOPC), and the interest the topic generated in
discussions at ICERM’s Networks semester in Spring of 2014, I think there is sufficient interest in general
to devote more time to this study. Further, as I will outline below, there is a chance that a new approach to
studying cobra walks will provide an even more general framework to view other similar processes (gossip
protocols, multiple random walks, and voter models).

The cobra walk was originally envisioned as a generalization of a random walk. However, despite he
observation that setting the branching factor k = 1 produces a simple random walk, the complexity of
analyzing a cobra walk (specifically, keeping track of the many interactions and dependencies among the
pebbles), obscures this original view. The view of cobra walks we have thus far is as a large (possibly Ω(n))
number of pebbles at each time step making independent, single-step, random walks. bookended by the
branching and coalescing steps. The “states” of this system, if they could be interpreted as such, are the
active sets. That is, St is the set of vertices that have a pebble at time t. Though complicated, if we know the
topology ofG and the membership of St, for any set S ⊆ V , we can compute Pr [St+1 = S|St]. Informally,
this means that the cobra walk, which seems superficially far more complicated than a simple random walk,
is in fact itself a Markov Chain.

Of course, there are a few substantial differences: for example, the state space of the chain is 2|V | − 1,
so it is exponentially sized (in n). Furthermore, while irreducible, it is not reversible. For example, take the
situation in which, for some node v, all of the neighbors of v (and only the neighbors of v) have a pebble.
There is a non-zero (and indeed in a bounded-degree graph a constant) probability that all of the pebbles in
the next step will move v. Viewing this as a walk on the markov chain, we can denote this probability pi,j ,
where this is the probability of transition from state i to state j, defined appropriately. Since the chain is
irreducible, the stationary distribution πi for vertex i is non-zero. However, the reverse probability pj,i is 0,
and hence the definition of reversibility of the chain, pi,jπi = pj,iπj is violated, since the term on the right
of the equality is 0. Thus, what we have described here is essentially a random walk on a directed graph
whose vertices consist of all of the subsets of V (except for the empty set) and whose edges are defined by
probabilities of a cobra walk with active set S having an active set T in the next step. For simplicity, from
here on out I will refer to this directed random walk as an Cobra Markov Chain (CMC).

There are a number of potentially fertile questions regarding CMC that I propose to work on:

1. Formalization and Basic Properties of CMC
Up until this point, I have been necessarily somewhat vague or imprecise about how I describe CMCs. The
first step in this work will be coming up with a formal description and terminology for CMCs. I will also
prove some basic properties that are intuitive but still need to be demonstrated: That the chain is irreducible,
that a stationary distribution exists, and that it is (in general) irreversible. This step will be quick and will
set up a good infrastructure for the rest of my work.

2. Application to Phase 2 for the Cover Time of Expanders
Recall that in our original work on cobra walks, we were only able to show the full coverage of a d-

regular ε-expander in O(log2 n) time. This was done by showing an O(log2 n) bound on the cover time of
a process Walt, a modified version of a cobra walk that stochastically dominated it. In turn, the analysis of
Walt hinged on calculating the mixing time of the walk of 2 non-independent pebbles viewed as the walk of
a pebble on a directed graphed formed from the 2-way tensor product of G.

This analysis leads to the natural question: what if we increase the number of pebbles taking a ”joint
walk” from 2 to δn. This would then be a walk on a directed graph formed from the δn-way tensor product
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of G. We would be interested in calculating the mixing time of such a walk. To have coverage of Walt

in O(log n) steps, we would need to show that the walk on the tensor product mixes rapidly, and that the
probability of the walk being at any state that mapped back to at least one pebble being at arbitrary vertex v
in Walt was sufficiently high (and this would be true independently for each vertex).

While the array of tools and results for random walks on directed graphs is not as large or as pleasant
as that for undirected random walks, there is still a considerable amount of work. [TODO: insert references
here]. Potentially the most useful of these papers is [15], in which the authors develop a Cheeger bound for
non-reversible (i.e. directed) Markov chains and are able to show convergence to stationarity as a function
of the Cheeger number (so, for example, when the Cheeger number is constant, the chain converges rapidly).

3. Calculating Bounds Directly on the CMC of a well-structured graph
Before tackling the general case (i.e. analyzing a CMC on a tensorized arbitrary graph), it would be use-

ful to analyze the process on a simpler graph either with a very regular structure (e.g. lattice, hypercube), or
on a graph for which we already have a decent bound (e.g. tree, lattice). In this case, the best candidate may
be a lower-dimensional lattice (most likely 2). If a tight correspondence between a CMC and a cobra walk
can be established (i.e. some form of isomorphic relationship), then we can actually prove results about the
CMC and its underlying tensor product graph from known results and proceed from there.

4. Bounds on General Graphs The main goal in studying the cover time of the cobra walk is to find an
upper bound on the cover time of an arbitrary graph. We have long conjectured (and experimental results
support) that the cover time for any graph is in O(n log n), making it more-or-less equivalent to the rumor
spreading process. This is perhaps the most ambitious result to strive for as well. If the cover time was
indeed O(n log n), this would imply that the corresponding CMC graph will under all circumstances have
high conductance and small diameter. Ultimately, a general result about cover time of cobra walks would
nicely round out our initial work on the process, mirroring results that have been shown for other processes,
from random walks to gossip-type processes.

On the other hand, due to the enormous state space and difficult nature of calculating transition proba-
bilities for CMCs, there is a reasonable chance it will be difficult to make progress in this area. Therefore,
I need to consider other options towards proving general bounds on the cover time of cobra walks on graphs:

5. Alternatives to CMC. There is likely an alternative avenue to proving at least the general bound for the
cover time of a cobra walk. In [12], the authors present an algorithm for clustering any graph into subsets
with lower-bounded (and relatively high) conductance:

Corollary 11. Every unweighted graph on m edges has a clustering that cuts at most m/2 edges and each
cluster has conductance at least 1

3 log3/4 2m
.

Separate experimental results that I have conducted have shown that a cobra walk will cover a subgraph
with high conductance in log n time, even if every node has a fraction of its edges leaving the subgraph.
In addition, the subgraph will quickly to go to some equilibrium state in which a constant fraction of its
vertices have a pebble at each time step. If we can make this a provably true result, we then may be able to
provide a cover time bound for the cobra walk on the entire graph as follows: Once a subgraph receives at
least one pebble from the cobra walk, that subgraph is rapidly covered. Furthermore, the subgraph remains
infected and for every time step thereafter “seeds” subgraphs it is adjacent to. This actually resembles a
gossip protocol, and we may then be able to use the large body of gossip-centered results to establish the
bound on cover time.
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As a departure from the above questions that deal directly with cobra walks, I am also interested in the
epidemiological applications of cobra walks. Furthermore, work in the SIS epidemic space opens the door
for some of my work to take the form of simulation experiments, as a form of hedge against not being able
to make progress in theoretical results:

6. Applications of cobra walks to SIS-type epidemics While this last proposed work area is broader than
those above, it also presents an opportunity to include simulation-based experiments as part of my research.
There are a number of directions to go in here, but I will outline two here: In [27] the authors present
an upper bound involving the spectral radius of a graph, below which an epidemic will go extinct rapidly,
as well as a lower bound on the isoperimetric number of the graph (thus involving the second eigenvalue)
above which the epidemic will persist an exponentially long time. For general graphs there is a wide gap
between these two conditions. I would like to devote some time and thought into searching for a “threshold”
condition that marks the bifurcation in behavior between dying out and long-term persistence. I am also
interested in the effect of a graph’s topology (mostly its spectral properties) on the long-term dynamics of an
epidemic. One can ask questions such as: Does the epidemic persist in a large fraction of the nodes? Does
it cycle? Is there a stable state?

The current best idea for approaching the epidemic topic is to make minor modifications to the cobra
walk process so that it even more closely resembles an SIS epidemic, and then proceed by both direct
analysis of the modified cobra walk and also through simulation studies.
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