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1 Introduction

Scheme is a latently typed language [R3RS]. This means that unlike statically typed languages such
as ML or Pascal, types are associated only with run-time values, not with variables. A variable can
potentially be bound to values of any type, and type tests can be performed at run time to determine
the execution path through a program. This gives the programmer an extremely powerful form of
polymorphism without requiring a verbose system of type declarations.

This power and convenience is not without cost, however. Since run-time behavior can determine
which values are bound to a given variable, precisely determining the type of a given reference to a
variable is undecidable at compile time. For example, consider the following fragment of Scheme
code:

(let ((x (if (oracle) 3 'three)))

(f x))

The reference to x in the subexpression (f x) could have any one of the types integer, symbol,
integer+symbol, or bottom, depending on whether the oracle always returns true, always returns
false, sometimes returns both, or never returns at all, respectively. Of course, determining the
oracle’s behavior at compile time is, in general, undecidable.

We can appeal to data-flow analysis techniques to recover a conservative approximation of the
type information implicit in a program’s structure. However, Scheme is a difficult language to
flow analyse: its higher-order procedures and first-class continuations render the construction of a
control-flow graph at compile time very difficult. The problem of conservatively approximating,
at compile time, the types of the values associated with the references to variables in a Scheme
program thus involves data-flow analysis in the presence of higher-order functions.

In this paper, I present an algorithm for flow analysis that can correctly recover a useful amount
of type information from Scheme programs, even in the presence of higher-order functions and
call/cc. This algorithm performs a kind of type inference. Since the term “type inference” is
commonly used to refer to the recovery of static type assignments for variables, I will instead refer
to the type analysis performed by this algorithm as type recovery: the recovery of type information
from the control and environment structure of a program.

1.1 Sources of Type Information

Type information in Scheme programs can be statically recovered from three sources: conditional
branches, applications of primitive operations, and user declarations.

1.1.1 Conditional Branches

Consider a simple version of the Scheme equal? predicate:
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2 Scheme Type Recovery

(define (equal? a b)

(cond ((number? a)

(and (number? b) (= a b)))

((pair? a)

(and (pair? b)

(equal? (car a) (car b))

(equal? (cdr a) (cdr b))))

(else (eq? a b))))

There are three arms in the cond form. References to a down the first arm are guaranteed to
have type number. Furthermore, in the numeric comparison form, (= a b), an assumption can be
made that b is also a number, since the AND guarantees that control reaches the comparison only if
(number? b) is true. Similarly, we can infer that references to a in the second arm of the cond

have the pair type and, less usefully, that references to a in the third arm of the cond do not have
either type pair or number. It is important to realise from this example that Scheme type recovery
assigns types not to variables, but to variable references. The references to a in the different arms
of the cond all have different types.

Type recovery of this sort can be helpful to a Scheme compiler. If the compiler can determine
that the (= a b) form is guaranteed to compare only numbers, it can compile the comparison
without a run-time type check, gaining speed without sacrificing safety. Similarly, determining that
the (car a), (car b), (cdr a), and (cdr b) forms are all guaranteed to operate on pairs allows
the compiler to safely compile the car and cdr applications without run-time type checks.

1.1.2 Primop Application

An obvious source of type information is the application of primitive operations (called “primops”)
such as + and cons. Clearly the result of (cons a b) is a pair. In addition, we can recover
information about the type of subsequent references to primop arguments. For example, after the
primop application (cdr p), references to p along the same control path can be assumed to have
the pair type. fNote Recovering Primopsg

As a simple example, consider the following Scheme expression:

(let* ((a (cdr b))

(q (char->integer (vector-ref a i))))

. . . (car b) . . . (+ q 2))

References to b occurring after the (cdr b) form are guaranteed to have the pair type — otherwise,
the cdr application would have rendered the effect of the computation to be undefined. Hence, the
subsequent (car b) application does not need to do a type check. Similarly, after evaluating the
second clause of the let*, references to a have type vector and references to i and q are small
integers, because vector-ref requires an integer index, and char->integer generates an integer
result. Hence the compiler can omit all type checks in the object code for (+ q 2), and simply
open code the addition.
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1.1.3 User Declarations

Type inference can also pick up information from judiciously placed declarations inserted by the
programmer. There are essentially two types of user declarations, one requesting a run-time type
check to enforce the verity of the declaration, and one simply asserting a type at compile time, in
effect telling the compiler, “Trust me. This quantity will always have this type. Assume it; don’t
check for it.”

The first kind of declaration is just T’s enforce procedure [T], which can be defined as:

(define (enforce pred val) (if (pred val) val (error)))

Enforce simply forces a run-time type check at a point the user believes might be beneficial to the
compile-time analysis, halting the program if the check is violated. For example,

(block (enforce number? x) . . . forms. . . )

allows the compiler to assume that references to x in the forms following the enforce have the
number type. Enforce allows execution to proceed into the body of

(let ((y (enforce integer? (foo 3)))) body)

only if (foo 3) returns an integer. Clearly, enforce-based type recovery is simply conditional-
branch based type recovery.

The “trust me” sort of user declaration is expressed in Scheme via the proclaim procedure,
which asserts that its second argument has the type specified by its first argument. For example,
(proclaim symbol? y) tells the compiler to believe that y has type symbol. Like enforce,
proclaim can also be viewed as a kind of conditional expression:

(define (proclaim pred val) (if (pred val) val ($)))

where ($) denotes a computation with undefined effect. Since an undefined effect means that
“anything goes,” the compiler is permitted to elide the conditional expression altogether and simply
take note of the programmer’s assertion that val has the declared type. Incorrect assertions will still
result in undefined effects.

1.2 Type Recovery from Multiple Sources

All three sources of type information — conditional branches, primop applications, and user dec-
larations — can be used together in recovering type information from programs, thereby enabling
many optimizations. Consider the delq procedure of Figure 1. Because ans is only bound to the
constant '(), itself, and the result of a cons application, it must always be a list. So all references to
ans are completely typeable at compile time. Because of the conditional type test (pair? rest),
car and cdr are guaranteed to be applied to legitimate pair values. Thus compile-time type recovery
can guarantee the full type safety of delq with no extra run-time type checks.

For a numerical example, consider the factorial procedure in Figure 1. Note the use of an
explicit run-time type check, (enforce integer? n), to force the subsequent reference to n to
be of integer type. With the help of this user declaration, the analysis can determine that m is
always bound to an integer, and therefore, that ans must also be bound to an integer. Thus, the
factorial function written with generic arithmetic operators can have guaranteed type safety for the
primop applications and also specialise the generic arithmetic operations to integer operations, at
the expense of a single run-time type check per fact call.
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(define (delq elt lis)

(letrec ((lp (� (ans rest)

(if (pair? rest)

(let ((head (car rest)))

(lp (if (eq? head elt) ans

(cons head ans))

(cdr rest)))

(reverse! ans)))))

(lp '() lis)))

(define (fact n)

(letrec ((lp (� (ans m)

(if (= m 0) ans

(lp (* ans m) (- m 1))))))

(enforce integer? n)

(lp 1 n)))

Figure 1: Scheme delq and factorial

If we eliminate the enforce form, then the type recovery can do less, because fact could
be called on bogus, non-integer values. However, if the equality primop (= m 0) requires its
arguments to have the same type, we can infer that references to m after the equality test must be
integer references, and so the multiplication and subtraction operations are guaranteed to be on
integer values. Hence, even in the naive, declaration-free case, type-recovery analysis is able to
pick up enough information from the code to guarantee the type safety of fact with only a single
type check per iteration, as opposed to the four type checks required in the absence of any analysis.

The implementation of the type recovery algorithm discussed in Section 6 can, in fact, recover
enough information from the delq and fact procedures of figure 1 to completely assign precise
types to all variable references, as discussed above. For these examples, at least, compile-time type
analysis can provide run-time safety with no execution penalty.

1.3 Overview of the Paper

The remainder of this paper will describe some of the details of the type recovery algorithm. Section 2
introduces the notion of quantity-based analysis, which underlies the type recovery algorithm.
Section 3 briefly reviews CPS Scheme, the intermediate representation used by the analysis, and
the non-standard abstract semantic (NSAS) interpretation approach to program analysis that is the
general framework for the type recovery analysis. Section 4 then uses the quantity model and the
NSAS framework to present a “perfect” (and hence uncomputable) type recovery analysis for CPS
Scheme. Section 5 abstracts the perfect analysis to a computable, useful approximate type recovery
analysis. Section 6 describes an implementation of the approximate type recovery algorithm.
Section 7 is a collection of assorted discussions and speculations on Scheme type recovery. Finally,
Section 8 discusses related work.
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2 Quantity-based Analysis

Type recovery is an example of what I call a quantity-based analysis. Consider the Scheme
expression

(if (< j 0) (- j) j)

Whatever number j names, we know that it is negative in the then-arm of the if expression, and
non-negative in the else-arm. In short, we are associating an abstract property of j’s value (its sign)
with control points in the program. It is important to realize that we are tracking information about
quantities (j’s value), not variables (j itself). For example, consider the following expression:

(let ((i j)) (if (< j 0) (foo i)))

Clearly, the test involving j determines information about the value of i since they both name the
same quantity. In a quantity-based analysis, information is tracked for quantities, and quantities can
be named by multiple variables. This information can then be associated with the variable references
appearing in the program. For the purposes of keeping track of this information, we need names for
quantities; variables can then be bound to these quantity names (which are called qnames), which
in turn have associated abstract properties.

In principle, calls to primops such as + or cons create new qnames since these operations involve
the creation of new computational quantities. On the other hand, lambda binding simply involves
the binding of a variable to an already existing qname. In practice, extra qnames often must be
introduced since it can be difficult to determine at compile-time which qname a variable is bound
to. Consider, for example, the following procedure:

(define (foo x y) (if (integer? x) y 3))

It might be the case that all calls to foo are of the form (foo a a), in which case x and y can refer
to the same qname. But if the analysis cannot determine this fact at compile time, x and y must be
allocated two distinct qnames; hence determining information about x’s value will not shed light on
y’s value.

As another example, consider the vector reference in the expression:

(let ((y (vector-ref vec i))) . . .)

Now, y is certainly bound to an existing quantity, but it is unlikely that a compile-time analysis will
be able to determine which one. So, a new qname must be assigned to y’s binding.

In general, then, a conservative, computable, quantity-based analysis approximates the tracking
of information on run-time values by introducing new qnames whenever it is unable to determine to
which existing qname a variable is bound. These extra qnames limit the precision of the analysis,
but force the analysis to err conservatively.

Section 2: Quantity-based Analysis
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3 CPS and NSAS

3.1 CPS

The intermediate representation used for type recovery is Continuation-Passing Style Scheme, or
CPS Scheme. CPS Scheme is a simple variant of Scheme in which procedures do not return, side-
effects are allowed on data structures but not on variables, and all transfers of control — sequencing,
conditional branching, loops, and subroutine call/return — are represented by procedure calls. This
simple language is a surprisingly useful intermediate representation: variants of CPS Scheme have
been used as the intermediate representation for several Scheme, Common Lisp and ML compilers
[Rabbit] [ORBIT] [MLComp].

CPS Scheme has the following simple syntax:

PR ::= LAM
LAM ::= (� (v1 . . . vn) c) [vi 2 VAR; c 2 CALL]

CALL ::= (f a1 . . . an) [f 2 FUN; ai 2 ARG]
(letrec ((f 1 l1). . .) c) [f i 2 VAR; li 2 LAM; c 2 CALL]

FUN ::= LAM + REF + PRIM
ARG ::= LAM + REF + CONST
REF ::= VAR
VAR ::= fx;z;foo; . . .g

CONST ::= f3;false; . . .g
PRIM ::= f+;if;test-integer; . . .g

A program is a single lambda expression. The letrec form is used to define mutually recursive
functions. Non-conditional primops like + and cdr take an extra continuation argument to call on
their result: (cdr x k) calls procedure k on the cdr of x. Conditional branches are performed
by special conditional primops which take multiple continuations. The if primop takes three
arguments: (if x c a). If the first argument x is a true value, the consequent continuation c is
called; otherwise, the alternate continuation a is called. There is also a class of test primops that
perform conditional type tests. For example, (test-integer x c a) branches to continuation c
if x is an integer, otherwise to continuation a. Side effects on data structures are performed with
appropriate primops, such as set-car!; side effects on variables are not allowed. CPS Scheme
does not have the troublesome call/cc operator. When translating Scheme programs into their
CPS Scheme representations, every occurrence of call/cc can be replaced with its CPS definition:

(� (f k) (f (� (v k0) (k v)) k))

Figure 2 shows a procedure that sums the first n integers in both standard Scheme and its CPS
Scheme representation. It bears repeating that this extremely simple language is a practical and
useful intermediate representation for full Scheme. In fact, the dialect presented here is essentially
identical to the one used by the optimising Scheme compiler ORBIT.

For purposes of program analysis, let us extend this grammar by assuming that all expressions
in a program are tagged with labels, drawn from some suitable set LAB:

`:(� (x) c:(r1:f r2:x k:3 r3:x))

Each lambda, call, constant, and variable reference in this expression is tagged with a unique label.
Expressions in a program that are identical receive distinct labels, so the two references to x have

Section 3: CPS and NSAS
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(� (n) (letrec ((lp (� (i sum) (if (zero? i) sum

(lp (- i 1) (+ i sum))))))

(lp n 0)))

(� (n k)

(letrec ((lp (� (i sum c)

(test-zero i

(� () (c sum))

(� ()

(+ sum i (� (sum1)

(- i 1 (� (i1)

(lp i1 sum1 c))))))))))

(lp n 0 k)))

Figure 2: Standard and CPS Scheme to sum 1 through n

the different labels r2 and r3. Labels allow us to uniquely identify different pieces of a program.
We will suppress them when convenient. A useful syntactic function is the binder function, which
maps a variable to the label of its binding lambda or letrec construct, e.g., binder [[x]] = `.

3.2 NSAS

Casting our problem into CPS gives us a structure to work with; we now need a technique for
analysing that structure. The method of non-standard abstract semantics (NSAS) is an elegant
technique for formally describing program analyses. It forms the tool we’ll need to solve our type
recovery problem as described in the previous section. Section 8 gives several standard references
for NSAS techniques.

Suppose we have a programming language L with a denotational semantics S, and we wish to
determine some property X at compile time. Our first step is to develop an alternate semantics SX

for L that precisely expresses property X. That is, whereas semantics S might say the meaning of a
program is a function “computing” the program’s result value given its inputs, semantics SX would
say the meaning of a program is a function “computing” the property X on its corresponding inputs.

SX is a precise definition of the property we wish to determine, but its precision typically implies
that it cannot be computed at compile time. It might be uncomputable; it might also depend on
the run-time inputs. The second step, then, is to abstract SX to a new semantics, bSX which trades
accuracy for compile-time computability. This sort of approximation is a typical program-analysis
tradeoff — the real answers we seek are uncomputable, so we settle for computable, conservative
approximations to them.

The method of abstract semantic interpretation has several benefits. Since an NSAS-based
analysis is expressed in terms of a formal semantics, it is possible to prove important properties
about it. In particular, we can prove that the non-standard semantics SX correctly expresses properties
of the standard semantics S, and that the abstract semantics bSX is computable, and safe with respect
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to SX. Further, due to its formal nature, and because of its relation to the standard semantics of a
programming language, simply expressing an analysis in terms of abstract semantic interpretations
helps to clarify it.

The reader who is more comfortable with computer languages than denotational semantics
equations should not despair. The equations presented in this paper can quite easily be regarded as
interpreters in a functional disguise. The important point is that these “interpreters” do not compute
a program’s actual value, but some other property of the program — in our case, the types of all the
variable references in the program. We compute this with a non-standard, abstract “interpreter” that
abstractly executes the program, collecting information about references as it goes.

Section 3: CPS and NSAS
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4 Perfect Type Recovery

Following the NSAS approach, the first step towards type recovery is to define a “perfect” analysis
that will capture the notion of type recovery. Our perfect semantics, which we will call PTREC,
does not have to be computable; we will concern ourselves with a computable approximation in
Section 5.

Perfect type recovery gives us a type cache:

A type cache for a CPS Scheme program P is a function � that, for each variable
reference r and each context b over r, returns �hr; bi, a type of all the values to which
r could evaluate in context b.

(For now, we will be intentionally vague about what a “context” is; this will be made precise later.)
Once we’ve computed a type cache, we can easily find the type for any variable reference r:v in our
program:

RefType[[r:v]] =
G

b

�hr; bi

4.1 Notation

D� is used to indicate all vectors of finite length over the set D. Functions are updated with brackets:
e
�

a 7! b; c 7! d
�

is the function mapping a to b, c to d, and everywhere else identical to function
e. Vectors are written ha; p; zi. The ith element of vector v is written v#i. The power set of A is
P(A). Function application is written with juxtaposition: f x . We extend a lattice’s meet and join
operations to functions into the lattice in a pointwise fashion, e.g.: f u g = �x: ( f x ) u ( g x )

4.2 Basic Domains

The PTREC semantics maps a CPS Scheme program to its type cache. Its structure, however, is very
similar to a standard semantics for CPS Scheme. Let us first consider this basic structure without
paying close attention to the parts of the semantics that actually track type information.

There is a basic domain, Bas, which consists of the integers and a special false value. (I will
follow traditional Lisp practice in assuming no special boolean type; anything not false is a true
value.) The domain of CPS Scheme procedures, Proc, has three parts: a primop is represented by its
syntactic identifier (prim 2 PRIM), while a lambda closure is represented by a lambda/environment
pair (h`; �i 2 LAM � BEnv). The special token stop is the top-level continuation: in the standard
semantics, calling stop on a value v halts the program with result v. The value domain D consists of
the basic values and CPS Scheme procedures. The answer set TCache is the set of type caches.fNote
No Bottomg

Bas = Z + ffalseg

Proc = (LAM� BEnv) + PRIM + fstopg

D = Proc + Bas

TCache = (REF� CN)!Type

Section 4: Perfect Type Recovery
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Several items are conspicuously absent from these sets. This “toy” dialect omits i/o and a store,
features that would be found in a full CPS Scheme semantics. It only provides three basic types
of value: integers, false, and procedures. The run-time error checking has been left out of the
semantics. These omissions are made to simplify the presentation. Extending the analysis to a more
complete dialect of CPS Scheme is straightforward once the basic technique is understood. For
example, the implementation described in Section 6 handles all of these missing features.

4.3 Environments and Procedures

The PTREC semantics factors the environment into two parts: the variable environment (ve 2

VEnv), which is a global structure, and the lexical contour environment (� 2 BEnv). A contour
environment � maps syntactic binding constructs — lambda and letrec expressions — to contours
or dynamic frames. Each time a lambda is called, a new contour is allocated for its bound variables.
Contours are taken from the set CN (the integers will suffice). A variable paired with a contour is a
variable binding hv; bi, taken from VB. The variable environment ve, in turn, maps these variable
bindings to actual values. The contour part of the variable binding pair hv; bi is what allows multiple
bindings of the same identifier to coexist peacefully in the single variable environment.

CN Contours

VB = VAR� CN

BEnv = LAB!CN

VEnv = VB!D

Lexical scoping semantics requires us to close a lambda expression with the contour environment
that is present when the lambda is evaluated. We can see both the closure of lambda expressions
and the lookup of variables in the Av function below. Av is the function that evaluates arguments in
procedure calls, given the lexical contour environment � and the global variable environment ve.

Av : ARG[ FUN!BEnv!VEnv!D

Av [[(� (v1 . . . vn) c)]] � ve = h[[(� (v1 . . . vn) c)]]; �i

Av [[v]] � ve = ve hv; � binder vi

Av [[prim]] � ve = prim

Av [[k]] � ve =
K

k

Av closes lambdas over the contour environment �. Variable references are looked up in a two step
process. First, the contour environment is indexed with the variable’s binding lambda or letrec
expression binder v to find which contour this reference occurs in. The contour and the variable
are then used to index into the variable environment ve, giving the actual value. Since primops are
denoted by their syntactic identifiers,Av maps these to themselves. Constants are handled by some
appropriate meaning function

K

.

New contours are created when procedures are called. Procedure calls are handled by the
C

and
F functions.

C

: CALL!BEnv!VEnv!QEnv!TTab!TCache

Section 4: Perfect Type Recovery
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C

[[(e0:f e1:a1 . . . en:an)]] � ve qe � = � t (F f 0 ) av qv ve qe �

0

where av#i = Av ai � ve
f 0 = Av f � ve

�

0 =

(

� u >

�

Aq f � qe 7! type/proc
�

f 2 REF
� otherwise

� =
�

hei; � binder ei i 7! � (Aq ei � qe )
�

8[[e0:f ]]; [[ei:ai]] 2 REF

qv#i =

(

Aq ai � qe ai 2 REF (quantity)
At ai otherwise (type)

C

takes five arguments: a call expression, the lexical contour environment �, the variable environment
ve, and two others used for type recovery (we will return to these last two arguments in the next
subsection).

C

uses theAv function to determine the values for the procedure being called f 0 and the
arguments being passed to it. The argument values are collected into a single argument vector av.
CPS Scheme procedures are represented by either lambda/environment pairs or by primop identifier
names; the semantic function F converts this denotation of procedure f 0 to a functional value. The
resulting function provides the contribution made to the final type cache by the execution of the
program from the entry to procedure f 0 forward.

The secondary, functional representation of CPS Scheme procedures is produced by the F

function:

F : Proc!D�

!(Quant + Type)�!VEnv!QEnv!TTab!TCache

F h[[`:(� (v1 . . . vn) c)]]; �i =

�av qv ve qe �:

C

c �

0 ve0 qe00 � 0

where b = nb
�

0 = �

�

` 7! b
�

ve0 = ve
�

hvi; bi 7! av#i
�

qe0 = qe
�

hvi; bi 7! qv#i
�

8i 3 qv#i 2 Quant (*)
qe00 = qe0

�

hvi; bi 7! hvi; bi
�

�

0 = �

�

hvi; bi 7! qv#i
�

)

8i 3 qv#i 2 Type (**)

A CPS Scheme lambda procedure is represented by a function that takes five arguments: an argument
vector av, the variable environment ve, and three others concerned with type recovery. Upon entry
to this function, a new binding contour b is allocated for the lambda’s scope. The function nb is
responsible for allocating the new binding contour; it is essentially a gensym, returning a unique
value each time it is called fNote Gensymg. The lexical contour environment � is updated to map
the current procedure’s label ` to this new contour. The mappings

�

hvi; bi 7! av#i
�

are added to the
variable environment, recording the binding of `’s parameters to the arguments passed in av fNote
Run-time Errorsg. We update the type-tracking values qe and � , and call

C

to evaluate the lambda’s
internal call expression c in the new environment.

To fully specify F , we must also give the functional representation for each primop and the
terminal stop continuation. We will return to this after considering the mechanics of type-tracking.
We also need to specify how

C

handles call forms that are letrec expressions instead of simple
procedure calls. This case is simple:

C

just allocates a new contour b for its scope, closes the

Section 4: Perfect Type Recovery



12 Scheme Type Recovery

defined procedures in the new contour environment �0 (thus providing the necessary circularity), and
evaluates the letrec’s interior call form c in the new environment fNote Non-circular letrecg.

C

[[`:(letrec ((f 1 l1). . .) c)]] � ve qe � =
C

c �

0 ve0 qe0 � 0

where b = nb
�

0 = �

�

` 7! b
�

ve0 = ve
�

hf i; bi 7! Av li �0 ve
�

qe0 = qe
�

hf i; bi 7! hf i; bi
�

�

0 = �

�

hf i; bi 7! type/proc
�

4.4 Quantities and Types

The semantics presented so far could easily be for a standard interpretation of CPS Scheme. We can
now turn to the details of tracking type information through the PTREC interpretation. This will
involve the quantity analysis model discussed in Section 2. The general type recovery strategy is
straightforward:

� Whenever a new computational quantity is created, it is given a unique qname. Over the
lifetime of a given quantity, it will be bound to a series of variables as it is passed around the
program. As a quantity (from D) is bound to variables, we also bind its qname (from Quant)
with these variables.

� As execution proceeds through the program, we keep track of all currently known information
about quantities. This takes the form of a type table � that maps qnames to type information.
Program structure that determines type information about a quantity enters the information
into the type table, passing it forward.

� When a variable reference is evaluated, we determine the qname it is bound to, and index into
the type table to discover what is known at that point in the computation about the named
quantity. This tells us what we know about the variable reference in the current context. This
information is entered into the answer type cache.

This amounts to instrumenting our standard semantics to track the knowledge determined by run-
time type tests, recording relevant snapshots of this knowledge in the answer type cache as execution
proceeds through the program.

The first representational decision is how to choose qnames. A simple choice is to name a
quantity by the first variable binding hv; bi to which it is bound. Thus, the qname for the cons cell
created by

(cons 1 2 (� (x) . . . ))

is h[[x]]; bi, where b is the contour created upon entering cons’s continuation. When future variable
bindings are made to this cons cell, the binding will be to the qname h[[x]]; bi. Thus, our qname set
Quant is just the set of variable bindings VB:

Quant = VB

Having chosen our qnames, the rest of the type-tracking machinery falls into place. A quantity
environment (qe 2 QEnv) is a mapping from variable bindings to qnames. The qname analog
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of the variable environment ve, the quantity environment is a global structure that is augmented
monotonically over the course of program execution. A type table (� 2 TTab) is a mapping from
qnames to types. Our types are drawn from some standard type lattice; for this example, we use the
obvious lattice over the three basic types: procedure, false, and integer.

Type = ftype/proc; type/int; type/false;?;>g

QEnv = VB!Quant

TTab = Quant!Type

We may now consider the workings of the type-tracking machinery in the F and
C

functions.
Looking at F , we see that our function linkage requires three additional arguments to be passed
to a procedure: the quantity vector qv, the quantity environment qe, and the current type table � .
The quantity environment and type table are as discussed above. The quantity vector gives quantity
information about the arguments passed to the procedure. Each element of qv is either a qname or
a type. If it is a qname, it names the quantity being passed to the procedure as its corresponding
argument. However, if a computational quantity has been created by the procedure’s caller, then it
has yet to be named — quantities are named by the first variable binding to which they are bound,
so it is the duty of the current procedure to assign a qname to the new quantity as it binds it. In
this case, the corresponding element of the quantity vector gives the initial type information known
about the new quantity. Consider the cons example given above. The cons primop creates a new
quantity — a cons cell — and calls the continuation (� (x) . . . ) on it. Since the cons cell is a
brand new quantity, it has not yet been given a qname; the continuation binding it to x will name
it. So instead of passing the continuation a qname for the cell, the cons primop passes the type
type/pair in qv, giving the quantity’s initial type information.

We can see this information being used in the F equation. The line marked with (*) binds
qnames from the quantity vector to their new bindings hvi; bi. The lines marked with (**) handle
new quantities which do not yet have qnames. A new quantity must be assigned its qname, which
for the ith argument is just its variable binding hvi; bi. We record the initial type information
(qv#i 2 Type) known about the new quantity in the type table �

0. The new quantity environment
qe00 and type table �

0 are passed forward to the
C

function.

C

receives as type arguments the current quantity environment qe, and the current type table � .
Before jumping off to the called procedure,

C

must perform three type-related tasks:

� Record in the final answer cache the type of each variable reference in the call. Each variable
reference ei:ai is evaluated to a qname by the auxiliary function Aq, the qname analog to the
Av function. The qname is used to index into the type table � , giving the type information
currently known about the quantity bound to variable ai. Call this type t. We record in the
type cache that the variable reference ei evaluated to a value of type t in context � binder ei.
This is the contribution � that

C

makes to the final answer for the current call.

� Compute the quantity vector qv to be passed to the called procedure f . If ai is a variable
reference, its corresponding element in qv is the qname it is bound to in the current context;
this is computed by the Aq auxiliary. On the other hand, if the argument ai is a constant or
a lambda, then it is considered a new, as-yet-unnamed quantity. The auxiliary At determines
its type; the called procedure will be responsible for assigning this value a qname.
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� Finally, note that
C

can do a bit of type recovery. If f does not evaluate to a procedure,
the computation becomes undefined at this call. We may thus assume that f ’s quantity is a
procedure in following code. We record this information in the outgoing type table �

0: if f is
a variable reference, we find the qname it is bound to, and intersect type/proc with the type
information recorded for the qname in � . If f is not a variable reference, it isn’t necessary to
do this. (Note that in the letrec case,

C

performs similar type recovery, recording that the
new quantities bound by the letrec all have type type/proc. This is all the type manipulation
C

does for the letrec case.)

Aq [[v]] � qe = qe hv; � binder v i

At [[(� (v1 . . . vn) c)]] = type/proc

At [[n]] = type/int (numeral n)

At [[false]] = type/false

Most of the type information is recovered by the semantic functions for primops, retrieved by
F . As representative examples, I will show the definitions of + and test-integer.

F [[+]] = �ha; b; ci hqa; qb; qci ve qe �: (F c) ha + bi htsi ve qe �

00

where ta = QT qa �

tb = QT qb �

ts = infer+hta; tbi
�

0 = Tu qa (ta u type/int) �
�

00 = Tu qb (tb u type/int) � 0

The + primop takes three arguments: two values to be added, a and b, and a continuation c.
Hence the argument vector and quantity vector have three components each. The primop assigns ta
and tb to be the types that execution has constrained a and b to have. These types are computed by
the auxiliary function QT:(Quant + Type)!(Quant!Type)!Type.

QT q � = � q QT t � = t

QT maps an element from a quantity vector to type information. If the element is a qname q, then
QT looks up its associated type information in the type table � . If the element is a type t (because
the corresponding quantity is a new, unnamed one), then t is the initial type information for the
quantity, and so QT simply returns t. Having retrieved the type information for its arguments a and
b, + can then compute the type ts of its result sum. This is handled by the auxiliary function infer+,
whose details are not presented. Infer+ is a straightforward type computation: if both arguments are
known to be integers, then the result is known to be an integer. If our language includes other types
of numbers, infer+ can do the related inferences. For example, it might infer that the result of adding
a floating point number to another number is a floating point number. However infer+ computes its
answer, ts must be a subtype of the number type, since if control proceeds past the addition, + is
guaranteed to produce a number. Further, + can make inferences about subsequent references to its
arguments: they must be numbers (else the computation becomes undefined at the addition). The
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auxiliary function Tu updates the incoming type table with this inference; the result type table �

00 is
passed forwards to the continuation.

Tu q t � =

(

� q 2 Type
�

�

q! t
�

q 2 Quant

Tu takes three arguments: an element q from a quantity vector (i.e., a qname or type), a type t, and
a type table � . If q is a qname, the type table is updated to map q 7! t. Otherwise, the type table is
returned unchanged (the corresponding quantity is ephemeral, being unnamed by a qname; there is
no utility in recording type information about it, as no further code can reference it). With the aid
of Tu, + constrains its arguments a and b to have the number type by intersecting the incoming type
information ta and tb with type/number and updating the outgoing type table �

00 to reflect thisfNote
Recovering Continuationsg. The sum a + b, its initial type information ts, and the new type table �

00

are passed forward to the continuation, thus continuing the computation. As mentioned earlier, we
omit the case of halting the computation if there is an error in the argument values, e.g., a or b are
not numbers fNote Run-time Errorsg.

F [[test-integer]] = �hx; c; ai hqx; qc; qai ve qe �:

(

(F c) hi hi ve qe �t x 2 Z

(F a) hi hi ve qe �f otherwise
where tx = QT qx �

�f = Tu qx (tx� type/int) �
�t = Tu qx (tx u type/int) �

The primop test-integer performs a conditional branch based on a type test. It takes as arguments
some value x, and two continuations c and a. If x is an integer, control is passed to c, otherwise
control is passed to a. Test-integer uses QT to look up tx, the type information recorded in the
current type table � for x’s qname qx. There are two outgoing type tables computed, one which
assumes the test succeeds (�t), and one which assumes the test fails (�f ). If the test succeeds, then
qx’s type table entry is updated by Tu to constrain it to have the integer type. Similarly, if the test
fails, qx has the integer type subtracted from its known type. The appropriate type table is passed
forwards to the continuation selected by test-integer, producing the answer type cache.

Finally, we come to the definition of the terminal stop continuation, retrieved by F . Calling the
stop continuation halts the program; no more variables are referenced. So the semantic function for
stop just returns the bottom type cache ?:

F [[stop]] = � hvi qv ve qe �: ?

The bottom type cache is the one that returns the bottom type for any reference: ?TCache = �x: ?Type.
Note that in most cases, the bottom type cache returned by calling stop is not the final type cache
for the entire program execution. Each call executed in the course of the program execution will
add its contribution to the final type cache. This contribution is the expression � in the

C

equation
for simple call expressions on page 11.

Having defined all the PTREC type tracking machinery, we can invoke it to compute the type
cache � for a program by simply closing the top-level lambda ` in the empty environment, and
passing it the terminal stop continuation as its single argument:

� = (F h`; ?i) hstopi htype/proci ? ? ?
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5 Approximate Type Recovery

5.1 Initial Approximations

Having defined our perfect type recovery semantics, we can consider the problem of abstracting it
to a computable approximation, while preserving some notion of correctness and as much precision
as possible.

Conditionalbranches cannot, in general, be determined at compile time. So our abstract semantics
must compute the type caches for both continuations of a conditional and union the results together.
Note that this frees the semantics up from any dependence on the basic values Bas, since they are
not actually tested by the semantics. Hence they can be dropped in the approximate semantics.

In addition, the infinite number of contours that a lambda can be closed over must be folded
down to a finite set. The standard abstractions discussed in [CFASem] can be employed here: we
can replace our variable environment with one that maps variable bindings to sets of procedures;
and replace the contour allocation function nb with a function on lexical features of the program —
e.g., the contour allocated on entry to lambda [[`:(� (v1 . . . vn) c)]] can be the label ` of the lambda
(what I call the “0th-order procedural approximation”). This allows multiple bindings of the same
variable to be mapped together, allowing for a finite environment structure, which in turn gives a
computable approximate semantics.

See [CFASem] for a detailed treatment of these abstractions. Both [CFASem] and [CFlow]
discuss more precise alternatives to 0th-order approximation.

5.2 Problems with the Abstraction

It turns out that this standard set of approximations breaks the correctness of our semantics. The
reason is that by folding together multiple bindings of the same variable, information can leak across
quantity boundaries. For example, consider the following puzzle:

(let ((f (� (g x) (if (integer? x) (g)

(� () x)))))

(f (f nil 3.7) 2))

Suppose that the procedural abstraction used by our analysis identifies together the contours created
by the two calls to f. Consider the second execution of the f procedure: the variable x is tested
to see if its value (2) is an integer. It is, so we jump to the value of g, which is simply (� () x).
Now, we have established that x is bound to an integer, so we can record that this reference to x is
an integer reference — which is an error, since g = (� () x) is closed over a different contour,
binding x to a non-integer, 3.7. We tested one binding of x and referred to a different binding of
x. Our analysis got confused because we had identified these two bindings together, so that the
information gathered at the test was erroneously applied at the reference.

This is a deep problem of the approximation. Quantity-based analyses depend upon keeping
separate the information associated with different quantities; computable procedural approximations
depend upon folding multiple environments together, confounding the separation required by a
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quantity-based analysis. I refer to this problem as the “environment problem” because it arises from
our inability to precisely track environment information.

Only certain data-flow analyses are affected by the environment problem. The key property
determining this is the direction in which the iterative analysis moves through the approximation
lattice. In control-flow analysis, or useless-variable elimination [CFlow], the analysis starts with an
overly-precise value and incrementally weakens it until it converges; all motion in the approximate
lattice is in the direction of more approximate values. So, identifying two contours together simply
causes further approximation, which is safe.

In the case of type recovery, however, our analysis moves in both directions along the type lattice
as the analysis proceeds, and this is the source of the environment problem. When two different
calls to a procedure, each passing arguments of different types, bind a variable in the same abstract
contour, the types are joined together — moving through the type lattice in the direction of increasing
approximation. However, passing through a conditional test or a primop application causes type
information to be narrowed down – moving in the direction of increasing precision. Unfortunately,
while it is legitimate to narrow down a variable’s type in a single perfect contour, it is not legitimate
to narrow down its type in the corresponding abstract contour — other bindings that are identified
together in the same abstract contour are not constrained by the type test or primop application. This
is the heart of the problem with the above puzzle.

In general, then, the simple abstraction techniques of [CFASem] yield correct, conservative, safe
analyses only when the analysis moves through its answer lattice only in the direction of increasing
approximation.

5.3 Control Flow Analysis

Before proceeding to a solution for the environment problem, we must define a necessary analysis
tool, the call context cache provided by control flow analysis:

A call context cache (cc cache) for a CPS Scheme program P is a function 
 that, for
every call site c in P and every environment � over c gives 
 hc; �i , a conservative
superset of the procedures called from c in environment � during the execution of P.

This is a straightforward computation using the non-standard abstract semantic interpretation ap-
proach discussed above. Note that a cc cache is essentially a trace of program execution to some
level of approximation — later we will exploit this property to “restart execution” at some arbitrary
point in the computation. The cc cache is an approximation in two ways. First, the set it returns for
a given call context is not required to be tight — it is only guaranteed to be a superset. Second, the
environment structure � that is the second component of a call context hc; �i and a closure hl; �i is
a finite abstraction of the fully detailed environment structure.

The reader wishing a detailed account of control flow analysis should refer to [CFASem].
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5.4 Perfect Contours

Our central problem is that we are identifying together different contours over the same variable.
We are forced to this measure by our desire to reduce an infinite number of contours down to a
finite, computable set. The central trick to solving this problem is to reduce the infinite set of
contours down to a finite set, one of which corresponds to a single contour in the perfect semantics.
Flow analysis then tracks this perfect contour, whose bindings will never be identified with any
other contours over the same variable scope. Information associated with quantities bound in this
perfect contour cannot be confounded. The other approximate contours are used only to provide the
approximate control flow information for tracing through the program’s execution. We still have
only a finite number of contours — the finite number of approximate contours plus the one perfect
contour — so our analysis is still computable.

For example, suppose we know that procedure p = h[[`:(� (x y) . . . )]]; �i is called from call
context h[[c:(f 3 false)]]; �0i. We can do a partial type recovery for references to x and y. We
perform a function call to p, creating a new perfect contour b. The variables we are tracking are
bound in this contour, with variable bindings h[[x]]; bi and h[[y]]; bi. We create new qnames for
the arguments passed on this call to p, which are just the new perfect variable bindings h[[x]]; bi
and h[[y]]; bi. Our initial type table � =

�

h[[x]]; bi 7! type/int; h[[y]]; bi 7! type/false
�

is constructed
from what is known about the types of the arguments in c (this may be trivially known, if the
arguments are constants, or taken from a previous iteration of this algorithm, if the arguments are
variables).

We may now run our interpretation forwards, tracking the quantities bound in the perfect closure.
Whenever we encounter a variable reference to x or y, if the reference occurs in the perfect contour b,
then we can with certainty consult the current type table � to obtain the type of the reference. Other
contours over x and y won’t confuse the analysis. Note that we are only tracking type information
associated with the variables x and y, for a single call to `. In order to completely type analyse the
program, we must repeat our analysis for each lambda for each call to the lambda. This brings us to
the Reflow semantics.

5.5 The Reflow Semantics

The abstract domains and functionalities of the Reflow semantics are given in Figure 3. The
abstract domains are very similar to the perfect domains of the PTREC semantics, and show the
approximations discussed in Subsection 5.1: basic values have been dropped, the contour set dCN is
finite, and elements of bD are sets of abstract procedures, not single values.

The idea of the Reflow semantics is to track only one closure’s variables at a time. This is done
by the Reflow function:

Reflow : dCC! dVEnv!Type�! dTCache

For example, Reflowh[[(f a b)]]; �ivehtype/int; type/proci restarts the program at the call (f a b),
in the context given by the (approximate) contour environment � and variable environment ve,
assuming a has type type/int and b has type type/proc. Reflow runs the program forward, tracking
only the variables bound by the initial call to f, returning a type cache giving information about
references to these variables. This is done by allocating a single, perfect contour for the initial
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dProc = (LAM�

dBEnv) + PRIM + fstopg
bD = P(dProc)

dTCache = (REF�dCN)!Type
dCC = CALL � dBEnv
dCN = LAB[ fhperfect; li j l 2 LABg
dVB = VAR�

dCN
dBEnv = LAB!dCN
dVEnv = dVB! bD

dQuant = dVB
dTTab = dQuant! Type

b

C

: CALL! dBEnv! dVEnv! dTTab! dTCache
b

F : dProc! bD
�

!( dQuant
?

)�! dVEnv! dTTab! dTCache
c

Fp : dProc! bD
�

!Type�! dVEnv! dTCache

Figure 3: Abstract Domains and Functionalities

procedure called from (f a b), and tracking the variables bound in this contour through an abstract
execution of the program.

The initial type vector given to Reflow comes from an auxiliary function, TVInit:

TVInit :dCC! dTCache!Type�

TVInit h[[(f a1 . . . an)]]; �i � = ht1 . . . tni

where ti =

(

� hai; � binder aii ai 2 REF
At ai ai 62 REF

TVInit takes a call context and a type cache, and returns the types of all the arguments in the call.
If the argument is a variable reference, the type cache is consulted; if the argument is a constant,
lambda, or primop, the auxiliary function At gives the appropriate type.

If we wish to restart our program at an arbitrary call context hc; �i with Reflow, we require the
variable environment ve that pertained at this point of call. This is easy to handle: we always use the
final variable environment that was present at the end of the control-flow analysis of Subsection 5.3.
Since the variable environment is only augmented monotonically during the course of executing a
program, the terminal environment is a superset of all intermediate variable environments. So, our
initial control-flow analysis computes two items critical for the Reflow analysis: the call cache 


and terminal variable environment vefinal.

Given TVInit and Reflow, we can construct a series of approximate type caches, converging to
a fixed point. The initial type cache �0 is the most precise; at each iteration, we redo the reflow
analysis assuming type cache �i, computing a weaker type cache �i+1. The limit � is the final result.
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c

Av [[`:(� (v1 . . . vn) c)]] � ve = fh`; �ig c

Av [[prim]] � ve = fprimg
c

Av [[v]] � ve = ve hv; � binder vi c

Av [[k]] � ve = ;

c

Aq [[v]] � =

(

hv; bi perfect? b
? otherwise

(b = � binder v)

ptoa hperfect; bi = b

perfect? hperfect; bi = true perfect? b = false

Figure 4: Abstract Auxiliary Functions

The recomputation of each successive type cache is straightforward: for every call context hc; �i
in the domain of call cache 
 (that is, every call context recorded by the control-flow analysis of
Subsection 5.3), we use the old type cache to compute the types of the arguments in the call, then
reflow from the call, tracking the variables bound by the call’s procedure, assuming the new type
information. The returned type caches are joined together, yielding the new type cache. So the new
type cache is the one we get by assuming the type assignments of the old type cache. A fixed point
is a legitimate type assignment. Since all of our abstract domains are of finite size, and our type
lattice has finite height, the least fixed point is computable.

�0 = � hr; bi : ?

�i+1 = �i t

G

hc; �i2 Dom 


Reflow hc; �i vefinal ( TVInit hc; �i �i )

� =
G

i

�i

Before we get to the machinery of the Reflow function itself, let us define a few useful auxiliary
functions and concepts (Figure 4). Because the Reflow semantics has a single perfect contour
coexisting with the approximate contours, we need a few utility functions for manipulating the
two different kinds of contour. The approximate contours are simply the labels of all the syntactic
binding constructs (lambdas and letrec’s): in the 0th-order approximation, the contour allocated
when entering lambda [[`:(� (v1 . . . vn) c)]] is just `, so all contours over a single lambda are
identified together. For every approximate contour l, we want to have a corresponding perfect
contour hperfect; li. These perfect contours are pairs marked with the token perfect. The predicate
perfect? distinguishes perfect contours from approximate ones. The function ptoa strips off the
perfect token, mapping a perfect contour to its approximate counterpart. The cAv function evaluates
call arguments, and is the straightforward abstraction of its counterpart in the PTREC semantics.
The cAq function is a little more subtle. Since we only track variables bound in perfect contours
in the Reflow semantics, cAq only returns quantities for these bindings; approximate bindings are
mapped to an undefined value, represented with ?.
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Now we are in a position to examine the machinery that triggers off a single wave of perfect
contour type tracking: the Reflow function, and its auxiliary cFp function.

Reflow h[[c:(f a1 . . . an)]]; �i ve tv =
G

f 0

2F

(cFpf 0) av tv ve

where F = c

Av f � ve
av#i = c

Av ai � ve

Reflow simply reruns the interpretation from each possible procedure that could be called from call
context hc; �i. Each procedure is functionalised with the “perfect” functionaliser cFp, who arranges
for the call to the procedure to be a perfect one. The type caches resulting from each call are joined
together into the result cache.

c

Fp h[[`:(� (v1 . . . vn) c)]]; �i = �av tv ve: b
C

c �

0 ve0 �
where b = hperfect; `i

� =
�

hvi; bi 7! tv#i
�

�

0 = �

�

` 7! b
�

ve0 = ve t
�

hvi; bi 7! av#i
�

The perfect functionalisation of a procedure produced by cFp is called only once, at the beginning
of the reflow. A new contour is allocated, whose value is marked with the special perfect token
to designate it the one and only perfect contour in a given execution thread. The incoming values
are bound in the outgoing variable environment ve0 under the perfect contour. The incoming type
information is used to create the initial type table � passed forwards to track the values bound under
the perfect contour. The rest of the computation is handed off to the b

C

procedure. b
C

is similar to
C

with the exception that it only records the type information of references that are bound in the
perfect contour.

c

Fp must also be defined over primops. Primops do not have variables to be type-recovered,
so instead primops pass the buck to their continuations. The + primop uses its initial-type vector
hta; tb; tci to compute the initial-type vector htsi for its continuation. The + primop then employs cFp

to perform type recovery on the variable bound by its continuation. The test-integer primop is
even simpler. Since its continuations do not bind variables, there is nothing to track, so the function
just immediately returns the bottom type cache.

c

Fp [[+]] = � ha; b; ci hta; tb; tci ve:
G

c0

2c

(cFpc0) h;i htsi ve

where ts = infer+ hta; tbi

c

Fp [[test-integer]] = � hx; c; ai htx; tc; tai ve: ?

Once the initial call to cFp has triggered a wave of type recovery for a particular lambda’s variables,
the actual tracking of type information through the rest of the program execution is handled by the
b

F and b
C

functions. Most of the action happens in the b
C

function.
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b

C

[[(e0:f e1:a1 . . . en:an)]]�ve� = � t

0

@

G

f 0

2F

( bF f 0) av qv ve �

0

1

A

where F = c

Av f � ve
bi = � binder ai (8ai 2 REF)
b0 = � binder f (if f 2 REF)
av#i = c

Av ai � ve
qv#i = c

Aq ai �

� =
�

hei; ptoa bi i 7! � hai; bii
�

(8bi 3 perfect? bi )

�

0 =

(

� u

�

hf ; b0i 7! type/proc
�

perfect? b0

� otherwise

As b
C

evaluates its arguments, it checks to see if any are variables whose types are being tracked. A
variable ai is being tracked if it is closed in a perfect contour, that is, if perfect? bi is true, where
bi = � binder ai. If an argument is being tracked, we look up its current type � hai; bii, and record
this in b

C

’s contribution � to the type cache (recording the reference under the perfect contour bi’s
abstraction ptoa bi ). The rest of b

C

’s stucture is similar to the perfect variant of Section 4. An
outgoing type table �

0 is constructed, reflecting that f must be of type type/proc (Again, note that
this fact is only recorded in �

0 if f is a variable currently being tracked).

Note also that since multiple contours are identified together in the abstract semantics, values
in the approximate domain are sets of abstract procedures. Because of this, the call must branch
to each of the possible procedures f 0 the function expression f could evaluate to. The result type
caches are then all joined together.

The function returned by b

F constructs approximate contours when called. Because multiple
environments are identified together by b

F’s functionalised value, it cannot track type information
for the variables bound by its procedure. Hence b

F has a fairly simple definition when applied to a
closure, just augmenting the environment structure and passing the closure’s body c off to b

C

. Note
that the environment is updated by unioning a parameter’s value set av#i to the set already bound
under the abstract contour.

b

F h[[`:(� (v1 . . . vn) c)]]; �i = �av qv ve �:

b

C

c �

0 ve0 �
where b = l (0th order proc. approx.)

�

0 = �

�

` 7! b
�

ve0 = ve t
�

hvi; bi 7! av#i
�

b

F’s definition for the terminal stop continuation is, again, trivial, ignoring its argument v and
returning the bottom type cache:

b

F [[stop]] = � hvi qv ve �: ?

b

F’s behavior on primops is more interesting. If the argument x being passed to test-integer

is being tracked (i.e., qx is a quantity, not bottom), then we intersect type/int with qx’s incoming
type, passing the result type table �t to the true continuation, and we subtract type/int from qx’s
type in �f the table passed to the false continuation. In other words, we do the type recovery of the
PTREC semantics, but only for the values being tracked.
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b

F[[test-integer]] = � hx; c; ai hqx; qc; qai ve �:

0

@

G

c0

2c

( bFc0) hi hi ve �t

1

A

t

0

@

G

a0

2a

( bFa0) hi hi ve �f

1

A

where �f =

(

�

�

qx 7! (� qx� type/int)
�

qx 6= ?

� otherwise

�t =

(

�

�

qx 7! (� qx u type/int)
�

qx 6= ?
� otherwise

The + primop is similar. If the arguments a and b are being tracked, then we update the type
table passed forwards, otherwise we simply pass along the incoming type table � unchanged. Since
the continuations c0 are functionalised with the approximate functionaliser, bF , the quantity vector is
h?i — we will not be tracking the variables bound by the call to c0.

b

F [[+]] = � ha; b; ci hqa; qb; qci ve �:

G

c0

2c

( bFc0) h;i h?i ve �

00

where �

0 =

(

�

�

qa 7! (type/numberu � qa)
�

qa 6= ?
� otherwise

�

00 =

(

�

0

�

qb 7! (type/numberu �

0 qb)
�

qb 6= ?
�

0 otherwise

To finish off the Reflow semantics, we must take care of letrec. Abstracting
C

’s definition
for letrec is simple. Evaluating the letrec’s bound expressions only involves closing lambdas,
not referencing variables. So the letrec will not “touch” any of the variables we are currently
tracking. Hence the letrec does not make any local contribution to the answer type cache, but
simply augments the variable environment ve with the procedure bindings and recursively evaluates
the inner call c.

b

C

[[`:(letrec ((f 1 l1). . .) c)]] � ve � = b

C

c �

0 ve0 �
where b = `

�

0 = �

�

` 7! b
�

ve0 = ve t
h

hf i; bi 7! c

Av li �0 ve
i

One detail of letrec that we have neglected is tracking the types of the variables bound by
letrec. There are several ways to handle this. We could add a case to the Reflow function to
handle reflowing from letrec expressions, creating a perfect contour for the letrec’s binding.
This is a fairly complex and expensive way to handle a simple case. Because letrec is syntactically
restricted to binding only lambda procedures to its variables, we can statically analyse this case, and
simply assign in advance the procedure type to all references to all letrec variables. The simplest
place to insert this static assignment is in the initial type cache �0 used in the Reflow iteration:

�0 = � h[[r:v]]; bi :

(

type/proc binder v 2 CALL (letrec)
? binder v 2 LAM (lambda)

This performs the type analysis of the letrec variables in one step, leaving the rest of the Reflow
semantics free to concentrate on the variables bound by lambdas.
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6 Implementation

I have a prototype implementation of the type recovery algorithm written in Scheme. It analyzes
Scheme programs that have been converted into CPS Scheme by the front end of the ORBIT

compiler [ORBIT]. The type-recovery code is about 900 lines of heavily commented Scheme; the
control-flow analysis code is about 450 lines.

The implemented semantics features a store (allowing side-effects) and a type lattice that includes
the symbol, pair, false, procedure, fixnum, bignum, flonum, vector, list, integer, and number types.
Procedures are approximated using the first-order procedural abstraction (1CFA) of [CFASem]. In
addition, CPS-level continuations are syntactically marked by the front-end CPS converter; this
information is used to partition the procedure domain. This partition appears to greatly reduce the
size of the sets propagated through the analysis, improving both the speed and precision of the
analysis.

The implementation is for the most part a straightforward transcription of the approximate type
recovery semantics. The variable environment, store, quantity environment, and result type cache
are all kept as global data structures that are monotonically augmented as the analysis progresses.

The recursive semantic equations are realised as a terminating Scheme program by memoising the
recursive b

C

applications; when the Scheme b
C

procedure is applied to a memoised set of arguments,
it returns without making further contributions to the answer type cache. This is the “memoised
pending analysis” technique discussed in [Fixpoints].

Little effort has been made overall to optimize the implementation. Still, the current analyzer
runs acceptably well for small test cases; response time has been sufficiently quick in the T interpreter
that I have not felt the need to compile it. At this point in my experimentation, there is no reason to
believe that efficiency of the analysis will be an overriding issue in practical application of the type
recovery algorithm.

The allure of type recovery, of course, is type-safe Scheme implementations with little run-time
overhead. It remains to be seen whether there is enough recoverable type information in typical
code to allow extensive optimisation. The algorithm has not been tested extensively on a large body
of real code. However, early results are encouraging. As an example of the algorithm’s power, it
is able to completely recover the types of all variable references in the delq and fact procedures
given in Section 1.
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7 Discussion and Speculation

This section is a collection of small discussions and speculations on various aspects of Scheme type
recovery.

7.1 Side Effects and External Procedures

The PTREC and Reflow semantics in this paper are toy semantics in that side-effects and external
procedures have been explicitly left out to simplify the already excessively unwieldy equations.
Restoring them is not difficult. We can adopt a simple model of side-effects where all procedural
values placed into the store can be retrieved by any operator that accesses the store. These procedures
are called “escaped procedures.” We can also introduce the idea of unknown external procedures
by introducing a special “external procedure” and a special “external call.” Any value passed to the
external procedure escapes; all escaped procedures can be called from the external call.

This model of side-effects and external procedures is discussed in detail in [CFlow]. More
precise models, of course, are possible [RefCount].

The implementation discussed in Section 6 uses this simple model of side-effects and external
procedures. The store is represented as a single set of escaped procedures. Because the store is only
monotonically augmented during the course of the analysis, it is represented as a global variable
that is an implicit argument to the b

C

function. Because of the monotonic property of the store,
the memoised pending analysis actually memoises a last-modified timestamp for the store, which
greatly increases the efficiency of the memoising. This trick is also used for the global variable
environment ve.

7.2 Safe and Unsafe Primops

A given implementation of Scheme chooses whether to provide “safe” primops, which are defined
to cause a graceful error halt when applied to illegal values, or “dangerous” primops, which simply
cause undefined effects when applied to illegal values. For example, most Scheme compilers
efficiently open-code car as a single machine operation. Without compile-time type recovery to
guarantee the type of the argument to a car application, this fast implementation is dangerous.

Type recovery can accept either safe or dangerous primops, or a combination of bothfNote
Recovering Primopsg. In both cases, the primop semantics allows flow-analysisbased type-recovery.
However, while it is possible to recover types given dangerous primops, the analysis is of limited
value. The information provided by type recovery has two basic uses:

� Eliminating run-time error checks from safe primop applications.

� Specialising generic primops based on their argument types (e.g., converting a generic arith-
metic operation to an integer operation).

In a dangerous implementation, the first of these uses does not apply. As we shall see below,
specialising generic arithmetic is of limited utility as well.
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7.3 Limits of the Type System

From the optimising compiler’s point of view, the biggest piece of bad news in the Scheme type
system is the presence of arbitrary-precision integers, or “bignums.” Scheme’s bignums, an elegant
convenience from the programmer’s perspective, radically interfere with the ability of type recovery
to assign small integer “fixnum” types to variable references. The unfortunate fact is that two’s
complement fixnums are not closed under any of the common arithmetic operations. Clearly adding,
subtracting, and multiplying two fixnums can overflow into a bignum. Less obvious is that simple
negation can overflow: the most negative fixnum overflows when negated. Because of this, not
even fixnum division is safe: dividing the most negative fixnum by �1 negates it, causing overflow
into bignums. Thus, the basic fixnum arithmetic operations cannot be safely implemented with
their corresponding simple machine operations. This means that most integer quantities cannot be
inferred to be fixnums. So, even though type recovery can guarantee that all the generic arithmetic
operations in Figure 1’s factorial function are integer operations, this does not buy us a great deal.

Not being able to efficiently implement safe arithmetic operations on fixnums is terrible news
for loops, because many loops iterate over integers, particularly array-processing loops. Taking five
instructions just to increment a loop counter can drastically affect the execution time of a tight inner
loop.

There are a few approaches to this problem:

� Range analysis
Range analysis is a data-flow analysis technique that bounds the values of numeric variables
[Range]. For example, range analysis can tell us that in the body of the following C loop, the
value of i must always lie in the range [0; 10):

for(i=9; i>=0; i--) printf("%d ", a[i]);

Range analysis can probably be applied to most integer loop counters. Consider the strindex
procedure below:

(define (strindex c str)

(let ((len (string-length str)))

(letrec ((lp (lambda (i)

(cond ((>= i len) -1) ; lose

((char= c (string-ref str i)) i) ; win

(else (loop (+ i 1))))))) ; loop

(lp 0))))

Type recovery can guarantee that len, being the result of the string-length primop, is
a fixnum. Range analysis can show that i is bounded by 0 and a fixnum; this is enough
information to guarantee that i is a fixnum. Range analysis is useful in its own right as well
— in this example, it allows us to safely open code the character access (string-ref str i)

with no bounds check.

� Abstract Safe Useage Patterns
The poor man’s alternative to range analysis is to take the useage patterns that are guaranteed
to be fixnum specific, and package them up for the user as syntactic or procedural abstractions.
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These abstractions can be carefully decorated with proclaim declarations to force fixnum
arithmetic. For example, a loop macro which has a (for c in-string str) clause can
safely declare the string’s index variable as a fixnum. This approach can certainly pick up
string and array index variables.

� Disable Bignums
Another cheap alternative to range analysis is to live dangerously and provide a compiler
switch or declaration which allows the compiler to forget about bignums and assume all
integers are fixnums. Throwing out bignums allows simple type recovery to proceed famously,
and programs can be successfully optimised (successfully, that is, until some hapless user’s
program overflows a fixnum...).

� Hardware support
Special tag-checking hardware, such as is provided on the SPARC, Spur and Lisp Machine
architectures [SPARC][Spur][LispM], or fine-grained parallelism, such as is provided by
VLIW architectures [Bulldog] [Fisher], allow fixnum arithmetic to be performed in parallel
with the bignum/fixnum tag checking. In this case, the limitations of simple type recovery are
ameliorated by hardware assistance. fNote VLIWg

7.4 Declarations

The dangerous proclaim declaration is problematic. A purist who wants to provide a guaranteed
safe Scheme implementation might wish to ban proclaim on the grounds that it allows the user
to write dangerous code. A multithreaded, single address-space PC implementation of Scheme,
for example, might rely on run-time safety to prevent threads from damaging each other’s data.
Including proclaim would allow the compilation of code that could silently trash the system, or
access and modify another thread’s data.

On the other hand, safe declarations like enforce have limits. Some useful datatypes cannot be
checked at run time. For example, while it is possible to test at run time if a datum is a procedure,
it is not possible, in general, to test at run time if a datum is a procedure that maps floating-point
numbers to floating-point numbers. Allowing the user to make such a declaration can speed up some
critical inner loops. Consider the floating-point numeric integrator below:

(define (integ f x0 x1 n)

(enforce fixnum? n) (enforce procedure? f)

(enforce flonum? x0) (enforce flonum? x1)

(let ((delta (/ (- x1 x0) n)))

(do ((i n (- i 1))

(x x0 (+ x delta))

(sum 0.0 (+ sum (f x))))

((= i 0) (* sum delta)))))

In some cases, analysis might be able to find all applications of the integrator, and thus discover that
f is always bound to a floating-point function. However, if the integrator is a top level procedure in
an open system, we can’t guarantee at compile time that f is a floating-point function, and we can’t
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enforce it at run time. This means that the sum operation must check the return value of f each time
through the loop to ensure it is a legitimate floating-point value.

While the proclaim declaration does allow the user to write dangerous code, it is at least
a reasonably principled loophole. Proclaim red-flags dangerous assumptions. If the user can
be guaranteed that only code marked with proclaim declarations can behave in undefined ways,
debugging broken programs becomes much easier.

Finally, it might be worth considering a third declaration, probably. (probably flonum? x)

is a hint to the compiler that x is most likely a floating-point value, but could in fact be any
type. Having a probably declaration can allow trace-scheduling compilers to pick good traces or
optimistically open-code common cases.

7.5 Test Hoisting

Having one branch of a conditional test be the undefined effect $ or error primop opens up
interesting code motion possibilities. Let us call tests with an (error) arm “error tests,” and tests
with a ($) arm “$-tests.” These tests can be hoisted to earlier points in the code that are guaranteed
to lead to the test. For example,

(block (print (+ x 3))

(if (fixnum? x) (g x) ($)))

is semantically identical to

(if (fixnum? x) (block (print (+ x 3)) (g x))

($))

because the undefined effect operator can be defined to have any effect at all, including the effect
of (print (+ x 3)). This can be useful, because hoisting type tests increases their coverage. In
the example above, hoisting the fixnum? test allows the compiler to assume that x is a fixnum in
the (+ x 3) code. Further, error and $-tests can be hoisted above code splits if the test is applied
in both arms. For example, the type tests in

(if (> x 0)

(if (pair? y) (bar) ($))

(if (pair? y) (baz) ($)))

can be hoisted to a single type test:

(if (pair? y)

(if (> x 0) (bar) (baz))

($))

Real savings accrue if loop invariant type tests get hoisted out of loops. For example, in a naive,
declaration-free dot-product subroutine,
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(define (dot-prod v w len)

(do ((i (- len 1) (- i 1))

(sum 0.0 (+ sum (* (vector-ref v i) (vector-ref w i)))))

((< i 0) sum)))

each time through the inner loop we must check that v and w have type vector. Since v and w are
loop invariants, we could hoist the run-time type checks out of the loop, which would speed it up
considerably. (In this particular example, we would have to duplicate the termination test (< i 0),
so that loop invariant code pulled out of the loop would only execute if the loop was guaranteed at
least one iteration. This is a standard optimising compiler technique.)

Hoisting error tests requires us to broaden our semantics to allow for early detection of run-time
errors. If execution from a particular control point is guaranteed to lead to a subsequent error test,
it must be allowed to perform the error test at the control point instead.

In the general case, error and $-test hoisting is a variant of very-busy expression analysis
[Dragon]. Note that hoisting $-tests gives a similar effect to the backwards type inferencing of
[Kaplan]. Finding algorithms to perform this hoisting is an open research problem.

7.6 Other Applications

The general Reflow approach to solving quantity-based analyses presented in this paper can be
applied to other data-flow problems in higher-order languages. The range analysis discussed in
subsection 7.3 is a possible candidate for this type of analysis. Copy propagation in Scheme is also
amenable to a Reflow-based solution.

A final example very similar to type recovery is future analysis. Some parallel dialects of Scheme
[Mul-T] provide futures, a mechanism for introducing parallelism into a program. When the form
(future <exp>) is evaluated, a task is spawned to evaluate the expression <exp>. The future

form itself immediately returns a special value, called a future. This future can be passed around the
program, and stored into and retrieved from data structures until its actual value is finally required
by a “strict” operator such as + or car. If the future’s task has completed before the value is needed,
the strict operation proceeds without delay; if not, the strict operator must wait for the future’s task
to run to completion and return a value.

Futures have a heavy implementation expense on stock hardware, because all strict operators
must check their operands. Future checking can add a 100% overhead to the serial run time of an
algorithm on stock hardware.

“Future analysis” is simply realising that references to a variable that happen after the variable
is used as an argument to a strict operator can assume the value is a non-future, because the strict
operator has forced the value to resolve itself. Thus, in the lambda

(� (x) (print (car x)) ... (f (cdr x)) ...)

the (cdr x) operation can be compiled without future checking. Clearly, this is identical to the
type-recovery analysis presented in this paper, and the same techniques apply.
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8 Related Work

The method of non-standardabstract semantic interpretationshas been applied to a variety of program
analyses [Cousot] [Pleban] [RefCount] [Harrison] [CFASem]. A useful collection is [Abramsky].
The semantic basis for Scheme control-flow analysis, first discussed in [CFASem] and then in [Diss],
also forms the basis for the type recovery semantics described here.

Steenkiste’s dissertation [Steenkiste] gives some idea of the potential gains type recovery can
provide. For his thesis, Steenkiste ported the PSL Lisp compiler to the Stanford MIPS-X processor.
He implemented two backends for the compiler. The “careful” backend did full run-time type
checking on all primitive operations, including car’s, cdr’s, vector references, and arithmetic
operations. The “reckless” backend did no run-time type checking at all. Steenkiste compiled
about 11,500 lines of Lisp code with the two backends, and compared the run times of the resulting
executables. Full type checking added about 25% to the execution time of the program.

Clearly, the code produced by a careful backend optimised with type-recovery analysis will
run somewhere between the two extremes measured by Steenkiste. This indicates that the payoff
of compile-time optimisation is bounded by the 25% that Steenkiste measured. Steenkiste’s data,
however, must be taken only as a rough indicator. In Lisp systems, the tiny details of processor
architecture, compiler technology, data representations and program application all interact in strong
ways to affect final measurements. Some examples of the particulars affecting his measurements are:
his Lisp system used high bits for type tags; the MIPS-X did not allow car and cdr operations to use
aligned-address exceptions to detect type errors; his 25% measurement did not include time spent
in the type dispatch of generic arithmetic operations; his generic arithmetic was tuned for the small
integer case; none of his benchmarks were floating-point intensive applications; his measurements
assumed interprocedural register allocation, a powerful compiler technology still not yet in common
practice in Lisp and Scheme implementations; and Lisp requires procedural data to be called with
the funcall primop, so simple calls can be checked at link time to ensure they are to legitimate
procedures.

These particulars of language, hardware, implementation, and program can bias Steenkiste’s
25% in both directions (Steenkiste is careful to discuss most of these issues himself). However,
even taken as a rough measurement, Steenkiste’s data do indicate that unoptimised type-checking
is a significant component of program execution time, and that there is room for compile-time
optimisation to provide real speed-up.

The idea of type recovery for Scheme is not new. Vegdahl and Pleban [Screme] discuss the
possibility of “tracking” types through conditionals, although this was never pursued. The ORBIT

compiler [ORBIT] is able to track the information determined by conditional branches, thus elimi-
nating redundant tests. ORBIT, however, can only recover this information over trees of conditional
tests; more complex control and environment structures, such as loops, recursions, and joins block
the analysis.

Curtis discusses a framework for performing static type inference in a Scheme variant [Curtis],
along the lines of that done for statically typed polymorphic languages such as ML [ML] or
LEAP [Leap]. However, his work assumes that most “reasonable” Scheme programs use variables
in a way that is consistentwith a static typingdiscipline. In essence, Curtis’ technique types variables,
whereas the type recovery presented in this paper types variable references, an important distinction
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for Scheme. Note that without introducing type-conditional primitives that bind variables, and
(perhaps automatically) rewriting Scheme code to employ these primitives, this approach cannot
recover the information determined by conditional branches on type tests, an important source of
type information.

[Tenenbaum] and [Kaplan] are typical examples of applying data-flow analysis to recover type
information from latently-typed languages. The technique is also covered in chapter 10 of [Dragon].
These approaches, based on classical data-flow analysis techniques, differ from the technique in this
paper in several ways:

� First, they focus on side-effects as the principle way values are associated with variables. In
Scheme, variable binding is the predominant mechanism for associating values with variables,
so the Scheme type recovery analysis must focus on variable binding.

� Second, they assume a fixed control-flow graph. Because of Scheme’s first-class procedures,
control-flow structure is not lexically apparent at compile time. The use of a CPS-based
internal representation only makes this problem worse, since all transfers of control, including
sequencing, branching, and loops are represented with procedure calls. The analysis in this
paper handles procedure calls correctly.

� Third, they assume a single, flat environment. Scheme forces one to consider multiple bindings
of the same variable. The reflow semantics of Section 5 correctly handles this complexity.

� Finally, they are not semantically based. The type recovery analysis in this paper is based
on the method of non-standard abstract semantic interpretations. This establishes a formal
connection between the analysis and the base language semantics. Grounding the analysis
in denotational semantics allows the possibility of proving various useful properties of the
analysis, although such proofs are beyond the scope of this paper.

These differences are all connected by the centrality of lambda in Scheme. The prevalence of lambda
is what causes the high frequency of variable binding. Lambda allows the construction of procedural
data, which in turn prevent the straightforward construction of a compile-time control-flow graph.
Lambda allows closures to be constructed, which in turn provide for multiple extant bindings of the
same variable. And, of course, the mathematical simplicity and power of lambda makes it much
easier to construct semantically-based program analyses.

In the lambda operator, all three fundamental program structures — data, control, and environ-
ment — meet and intertwine. Thus, any analysis technique for Scheme must be prepared to face the
three facets of lambda. In essence, the analysis in this paper is the application of classical data-flow
type-recovery analysis in the presence of lambda.
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Notes

fNote Gensymg
The semantic function nb is, as presented, not a properly defined function, since it has hidden internal
state. This is simple to remedy by providing an extra argument to all the main semantic functions
that contains the entire set of contours currently allocated. This argument can be presented to nb,
allowing it to choose some unused contour b not in this set. The new contour b is added to this set
of allocated contours, which can then be passed forwards along the computational path to prevent b
from ever being reallocated.

This addition to the semantics is trivial, and is omitted to simplify the presentation. In the
intuitive model of a semantics as a functional interpreter in disguise, just think of nb as the Lisp
gensym procedure, guaranteed to return a new value each time you call it.

fNote No Bottomg
One of the pleasant features of CPS Scheme is the scarcity of bottom values. Most of the semantic
structures are unordered sets instead of CPOs. For example, the set D does not require a bottom value
because all the expressions that can appear in a procedure call — constants, variable references,
primops, and lambdas — are guaranteed to terminate when evaluated. In other words, the Av

function of subsection 4.3 never produces a bottom value. In the standard semantics, bottom can
only show up as the final value for the entire program, never at an intermediate computation. For
this reason, the disjoint union constructor + is taken to be a set constructor, not a domain constructor
— it does not introduce a new bottom value. A careful treatment of the semantics of CPS Scheme
at this level is beyond the scope of this paper; for further details, see [CFASem] or [Diss].

fNote Non-circular letrecg
It is an interesting curiosity that the definition of letrec presented here does not involve a recursive
construction. Lambdas are closed over contour environments but not the variable environment,
which is a global structure. So the actual evaluation of the letrec’s lambdas, Av li �0 ve = hli; �0i,
is completely independent of the ve argument. The variable environment is not used because no
variables are looked up in the evaluation of a lambda. We can close the lambdas over the new
contour environment �0 without actually having the new contour’s values in hand. This artifact of
the factored semantics is considered in more detail in [CFASem].

fNote Recovering Continuationsg
The reader may have noticed that the + primop is missing an opportunity to recover some available
type information: it is not recovering type information about its continuation. For example, in
code executed after the call to +’s continuation, we could assume that the quantity called has type
type/proc. This information is not recovered because it isn’t necessary. Since CPS Scheme is an
intermediate representation for full Scheme, the user cannot write CPS-level continuations. All the
continuations, variables bound to continuations, and calls to continuations found in the CPS Scheme
program are introduced by the CPS converter. It is easy for the converter to mark these forms as
it introduces them. So the types of continuation variables can be inferred statically, and there’s no
point in tracking them in our type recovery semantics.
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fNote Recovering Primopsg
In recovering information about the arguments to primops, we are essentially using information
from “hidden conditional tests” inside the primop. The semantics of a (dangerous) CPS car primop
is:

(define (car p cont)

(if (pair? p) (cont (%car p))

($)))

where the subprimitive operation %car is only defined over cons cells, and ($) is the “undefined
effect” primop. Computation proceeds through the continuationcont only in the then arm of the type
test, so we may assume that p’s value is a cons cell while executing the continuation. Recovering the
type information implied by car reduces to recovering type information from conditional branches.

Of course, the compiler does not need to emit code for a conditional test if one arm is ($). It
can simply take the undefined effect to be whatever happens when the code compiled for the other
arm is executed. This reduces the entire car application to the machine operation %car.

A safe implementation of Scheme is one that guarantees to halt the computation as soon as a
type constraint is violated. This means, for example, replacing the ($) form in the else arm of the
car definition with a call to the run-time error handler:

(define (car p cont)

(if (pair? p) (cont (%car p))

(error)))

Of course, type information recovered about the arguments to a particular application of car may
allow the conditional test to be determined at compile time, again allowing the compiler to fold out
the conditional test and error call, still preserving type-safety without the run-time overhead of the
type check.

fNote Run-time Errorsg
One detail glossed over in the functional definition of closures and other parts of the PTREC
semantics is the handling of run-time errors, e.g., applying a two-argument procedure to three
values, dividing by zero, or applying + to a non-number. This is simple to remedy: run-time errors
are defined to terminate the program immediately and return the current type cache. The extra
machinery to handle these error cases has been left out of this paper to simplify the presentation;
restoring it is a straightforward task.

fNote VLIWg

VLIW’s could be ideal target machines for languages that require run-time typechecking. For
example, when compiling the code for a safe car application, the compiler can pick the trace
through the type test that assumes the car’s argument is a legitimate pair. This will almost always
be correct, the sort of frequency skew that allows trace scheduling to pay off in VLIW’s. The actual
type check operation can percolate down in the main trace to a convenient point where ALU and
branch resources are available; the error handling code is off the main trace.
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Common cases for generic arithmetic operations are similarly amenable to trace picking. The
compiler can compile a main fixnum trace (or flonum trace, as the common case may be), handling
less frequent cases off-trace. The overhead for bignum, rational, and complex arithmetic ops will
dominate the off-trace time in any event, whereas the lightweight fixnum or flonum case will be
inlined.

The VLIW trace-scheduling approach to run-time type safety has an interesting comparison
to the automatic tag checking performed by Lisp Machines. Essentially, we have taken the tag-
checking ALU and branch/trap logic, promoted it to general-purpose status, and exposed it to the
compiler. These hardware resources can now be used for non-typechecking purposes when they
would otherwise lay idle, providing opportunities for increased fine-grained parallelism.

The Lisp Machine approach is the smart hardware/fast compiler approach; the VLIW approach
is the other way ’round.

Notes


