
MASSACHUSETTS INSTITUTE OF TECHNOLOGY

Laboratory for Computer Science

Personal Information Architecture Note 3 4/94

A Scheme Shell
Olin Shivers

shivers@lcs.mit.edu

Although robust enough for general use, adventures
into the esoteric periphery of the C shell may reveal
unexpected quirks.

— SunOS 4.1 csh(1) man page, 10/2/89

Prologue

Shell programming terrifies me. There is something about writing a sim-
ple shell script that is just much, much more unpleasant than writing a
simple C program, or a simple COMMON LISP program, or a simple Mips
assembler program. Is it trying to remember what the rules are for all
the different quotes? Is it having to look up the multi-phased interaction
between filename expansion, shell variables, quotation, backslashes and
alias expansion? Maybe it’s having to subsequently look up which of the
twenty or thirty flags I need for my grep, sed, and awk invocations. Maybe
it just gets on my nerves that I have to run two complete programs simply
to count the number of files in a directory (ls | wc -l), which seems like
several orders of magnitude more cycles than was really needed.

Whatever it is, it’s an object lesson in angst. Furthermore, during late-
night conversations with office mates and graduate students, I have formed
the impression that I am not alone. In late February1, I got embroiled in a
multi-way email flamefest about just exactly what it was about Unix that
drove me nuts. In the midst of the debate, I did a rash thing. I claimed that
it would be easy and so much nicer to do shell programming from Scheme.
Some functions to interface to the OS and a few straightforward macros
would suffice to remove the spectre of #!/bin/csh from my life forever.
The serious Unix-philes in the debate expressed their doubts. So I decided
to go do it.

Probably only take a week or two.
1February 1992, that is.

Keywords: operating systems, programming languages, Scheme, Unix,
shells, functional languages, systems programming.

Contents

1 Introduction 1

2 Unix shells 2

3 Process notation 6
3.1 Extended process forms and i/o redirections 6
3.2 Process forms . 8
3.3 Using extended process forms in Scheme 8
3.4 Procedures and special forms 11
3.5 Interfacing process output to Scheme 12

4 System calls 14

5 The Tao of Scheme and Unix 14

6 I/O 16

7 Lexical issues 18

8 Implementation 19

9 Size 20

10 Systems programming in Scheme 21
10.1 Exceptions and robust error handling 22
10.2 Automatic storage management 22
10.3 Return values and procedural composition 24
10.4 Strings . 25
10.5 Higher-order procedures . 25
10.6 S-expression syntax and backquote 26

11 Other programming languages 27
11.1 Functional languages . 27
11.2 Shells . 28
11.3 New-generation scripting languages 29

12 Future work 29
12.1 Command language features 30
12.2 Little languages . 30

13 Conclusion 31

14 Acknowledgements 31

References 33

Notes 35

1 Introduction

The central artifact of this paper is a new Unix shell called scsh. However,
I have a larger purpose beyond simply giving a description of the new
system. It has become fashionable recently to claim that “language doesn’t
matter.” After twenty years of research, operating systems and systems
applications are still mainly written in C and its complex successor, C++.
Perhaps advanced programming languages offer too little for the price they
demand in efficiency and formal rigor.

I disagree strongly with this position, and I would like to use scsh, in
comparison to other Unix systems programming languages, to make the
point that language does matter. After presenting scsh in the initial sec-
tions of the paper, I will describe its design principles, and make a series of
points concerning the effect language design has upon systems program-
ming. I will use scsh, C, and the traditional shells as linguistic exemplars,
and show how their various notational and semantic tradeoffs affect the
programmer’s task. In particular, I wish to show that a functional language
such as Scheme is an excellent tool for systems programming. Many of the
linguistic points I will make are well-known to the members of the systems
programming community that employ modern programming languages,
such as DEC SRC’s Modula-3 [Nelson]. In this respect, I will merely be
serving to recast these ideas in a different perspective, and perhaps diffuse
them more widely.

The rest of this paper is divided into four parts:

• In part one, I will motivate the design of scsh (section 2), and then
give a brief tutorial on the system (3, 4).

• In part two, I discuss the design issues behind scsh, and cover some
of the relevant implementation details (5–9).

• Part three concerns systems programming with advanced languages.
I will illustrate my points by comparing scsh to other Unix program-
ming systems (10, 11).

• Finally, we conclude, with some indication of future directions and a
few final thoughts.

1

2 Unix shells

Unix shells, such as sh or csh, provide two things at once: an interactive
command language and a programming language. Let us focus on the
latter function: the writing of “shell scripts”—interpreted programs that
perform small tasks or assemble a collection of Unix tools into a single
application.

Unix shells are real programming languages. They have variables,
if/then conditionals, and loops. But they are terrible programming lan-
guages. The data structures typically consist only of integers and vectors
of strings. The facilities for procedural abstraction are non-existent to min-
imal. The lexical and syntactic structures are multi-phased, unprincipled,
and baroque.

If most shell languages are so awful, why does anyone use them? There
are a few important reasons.

• A programming language is a notation for expressing computation.
Shells have a notation that is specifically tuned for running Unix
programs and hooking them together. For example, suppose you
want to run programs foo and bar with foo feeding output into bar.
If you do this in C, you must write: two calls to fork(), two calls to
exec(), one call to pipe(), several calls to close(), two calls to dup(),
and a lot of error checks (fig. 1). This is a lot of picky bookkeeping:
tedious to write, tedious to read, and easy to get wrong on the first
try. In sh, on the other hand, you simply write “foo | bar” which is
much easier to write and much clearer to read. One can look at this
expression and instantly understand it; one can write it and instantly
be sure that it is correct.

• They are interpreted. Debugging is easy and interactive; programs
are small. On my workstation, the “hello, world” program is 16kb as
a compiled C program, and 29 bytes as an interpreted sh script.

In fact, /bin/sh is just about the only language interpreter that a
programmer can absolutely rely upon having available on the system,
so this is just about the only reliable way to get interpreted-code
density and know that one’s program will run on any Unix system.

• Because the shell is the programmer’s command language, the pro-
grammer is usually very familiar with its commonly-used command-
language subset (this familiarity tails off rapidly, however, as the

2

int fork_foobar(void) /* foo | bar in C */

{

int pid1 = fork();

int pid2, fds[2];

if(pid1 == -1) {

perror("foo|bar");

return -1;

}

if(!pid1) {

int status;

if(-1 == waitpid(pid1, &status, 0)) {

perror("foo|bar");

return -1;

}

return status;

}

if(-1 == pipe(fds)) {

perror("foo|bar");

exit(-1);

}

pid2 = fork();

if(pid2 == -1) {

perror("foo|bar");

exit(-1);

}

if(!pid2) {

close(fds[1]);

dup2(fds[0], 1);

execlp("foo", "foo", NULL);

perror("foo|bar");

exit(-1);

}

close(fds[0]);

dup2(fds[1], 0);

execlp("bar", "bar", NULL);

perror("foo|bar");

exit(-1);

}

Figure 1: Why we program with shells.

3

demands of shell programming move the programmer out into the
dustier recesses of the language’s definition.)

There is a tension between the shell’s dual role as interactive command
language and shell-script programming language. A command language
should be terse and convenient to type. It doesn’t have to be compre-
hensible. Users don’t have to maintain or understand a command they
typed into a shell a month ago. A command language can be “write-only,”
because commands are thrown away after they are used. However, it is
important that most commands fit on one line, because most interaction
is through tty drivers that don’t let the user back up and edit a line after
its terminating newline has been entered. This seems like a trivial point,
but imagine how irritating it would be if typical shell commands required
several lines of input. Terse notation is important for interactive tasks.

Shell syntax is also carefully designed to allow it to be parsed on-line—
that is, to allow parsing and interpretation to be interleaved. This usu-
ally penalizes the syntax in other ways (for example, consider rc’s clumsy
if/then/else syntax [rc]).

Programming languages, on the other hand, can be a little more verbose,
in return for generality and readability. The programmer enters programs
into a text editor, so the language can spread out a little more.

The constraints of the shell’s role as command language are one of the
things that make it unpleasant as a programming language.

The really compelling advantage of shell languages over other program-
ming languages is the first one mentioned above. Shells provide a powerful
notation for connecting processes and files together. In this respect, shell
languages are extremely well-adapted to the general paradigm of the Unix
operating system. In Unix, the fundamental computational agents are pro-
grams, running as processes in individual address spaces. These agents
cooperate and communicate among themselves to solve a problem by com-
municating over directed byte streams called pipes. Viewed at this level,
Unix is a data-flow architecture. From this perspective, the shell serves a
critical role as the language designed to assemble the individual computa-
tional agents to solve a particular task.

As a programming language, this interprocess “glue” aspect of the shell
is its key desireable feature. This leads us to a fairly obvious idea: instead
of adding weak programming features to a Unix process-control language,
why not add process invocation features to a strong programming lan-
guage?

4

What programming language would make a good base? We would
want a language that was powerful and high-level. It should allow for im-
plementations based on interactive interpreters, for ease of debugging and
to keep programs small. Since we want to add new notation to the language,
it would help if the language was syntactically extensible. High-level fea-
tures such as automatic storage allocation would help keep programs small
and simple. Scheme is an obvious choice. It has all of the desired features,
and its weak points, such as it lack of a module system or its poor perfor-
mance relative to compiled C on certain classes of program, do not apply
to the writing of shell scripts.

I have designed and implemented a Unix shell called scsh that is em-
bedded inside Scheme. I had the following design goals and non-goals:

• The general systems architecture of Unix is cooperating computa-
tional agents that are realised as processes running in separate, pro-
tected address spaces, communicating via byte streams. The point of
a shell language is to act as the glue to connect up these computational
agents. That is the goal of scsh. I resisted the temptation to delve
into other programming models. Perhaps cooperating lightweight
threads communicating through shared memory is a better way to
live, but it is not Unix. The goal here was not to come up with a bet-
ter systems architecture, but simply to provide a better way to drive
Unix. {Note Agenda}

• I wanted a programming language, not a command language, and
I was unwilling to compromise the quality of the programming lan-
guage to make it a better command language. I was not trying to
replace use of the shell as an interactive command language. I was
trying to provide a better alternative for writing shell scripts. So
I did not focus on issues that might be important for a command
language, such as job control, command history, or command-line
editing. There are no write-only notational conveniences. I made
no effort to hide the base Scheme syntax, even though an interactive
user might find all the necessary parentheses irritating. (However,
see section 12.)

• I wanted the result to fit naturally within Scheme. For example,
this ruled out complex non-standard control-flow paradigms, such as
awk’s or sed’s.

5

The result design, scsh, has two dependent components, embedded
within a very portable Scheme system:

• A high-level process-control notation.

• A complete library of Unix system calls.

The process-control notation allows the user to control Unix programs
with a compact notation. The syscall library gives the programmer full
low-level access to the kernel for tasks that cannot be handled by the high-
level notation. In this way, scsh’s functionality spans a spectrum of detail
that is not available to either C or sh.

3 Process notation

Scsh has a notation for controlling Unix processes that takes the form of s-
expressions; this notation can then be embedded inside of standard Scheme
code. The basic elements of this notation are process forms, extended process
forms, and redirections.

3.1 Extended process forms and i/o redirections

An extended process form is a specification of a Unix process to run, in a
particular I/O environment:

epf ::= (pf redir1 . . . redirn)

where pf is a process form and the redir i are redirection specs. A redirection
spec is one of:

(< [fdes] file-name) ; Open file for read.

(> [fdes] file-name) ; Open file create/truncate.

(<< [fdes] object) ; Use object’s printed rep.

(>> [fdes] file-name) ; Open file for append.

(= fdes fdes/port) ; Dup2

(- fdes/port) ; Close fdes/port.
stdports ; 0,1,2 dup’d from standard ports.

The fdes file descriptors have these defaults:

< << > >>

0 0 1 1

6

The subforms of a redirection are implicitly backquoted, and symbols
stand for their print-names. So (> ,x) means “output to the file named
by Scheme variable x,” and (< /usr/shivers/.login) means “read from
/usr/shivers/.login.” This implicit backquoting is an important feature
of the process notation, as we’ll see later (sections 5 and 10.6).

Here are two more examples of i/o redirection:
(< ,(vector-ref fv i))

(>> 2 /tmp/buf)

These two redirections cause the file fv[i] to be opened on stdin, and
/tmp/buf to be opened for append writes on stderr.

The redirection (<< object) causes input to come from the printed rep-
resentation of object. For example,

(<< "The quick brown fox jumped over the lazy dog.")

causes reads from stdin to produce the characters of the above string.
The object is converted to its printed representation using the display

procedure, so

(<< (A five element list))

is the same as

(<< "(A five element list)")

is the same as

(<< ,(reverse ’(list element five A))).

(Here we use the implicit backquoting feature to compute the list to be
printed.)

The redirection (= fdes fdes/port) causes fdes/port to be dup’d into file
descriptor fdes. For example, the redirection

(= 2 1)

causes stderr to be the same as stdout. fdes/port can also be a port, for
example:

(= 2 ,(current-output-port))

causes stderr to be dup’d from the current output port. In this case, it is an
error if the port is not a file port (e.g., a string port). {Note No port sync}

More complex redirections can be accomplished using the beginprocess
form, discussed below, which gives the programmer full control of i/o
redirection from Scheme.

7

3.2 Process forms

A process form specifies a computation to perform as an independent Unix
process. It can be one of the following:

(begin . scheme-code)
(| pf1 . . . pfn)
(|+ connect-list pf1 . . . pfn)
(epf . epf)
(prog arg1 . . . argn)

; Run scheme-code in a fork.

; Simple pipeline

; Complex pipeline

; An extended process form.

; Default: exec the program.

The default case (prog arg1 . . . argn) is also implicitly backquoted. That
is, it is equivalent to:

(begin (apply exec-path ‘(prog arg1 . . . argn)))

Exec-path is the version of the exec() system call that uses scsh’s path list
to search for an executable. The program and the arguments must be either
strings, symbols, or integers. Symbols and integers are coerced to strings.
A symbol’s print-name is used. Integers are converted to strings in base
10. Using symbols instead of strings is convenient, since it suppresses the
clutter of the surrounding ". . . " quotation marks. To aid this purpose, scsh
reads symbols in a case-sensitive manner, so that you can say

(more Readme)

and get the right file. (See section 7 for further details on lexical issues.)
A connect-list is a specification of how two processes are to be wired

together by pipes. It has the form ((from1 from2 . . . to) . . .) and is im-
plicitly backquoted. For example,

(|+ ((1 2 0) (3 3)) pf1 pf2)

runs pf1 and pf2. The first clause (1 2 0) causes pf1’s stdout (1) and stderr
(2) to be connected via pipe to pf2’s stdin (0). The second clause (3 3)

causes pf1’s file descriptor 3 to be connected to pf2’s file descriptor 3.

3.3 Using extended process forms in Scheme

Process forms and extended process forms are not Scheme. They are a
different notation for expressing computation that, like Scheme, is based
upon s-expressions. Extended process forms are used in Scheme programs
by embedding them inside special Scheme forms. There are three basic

8

Scheme forms that use extended process forms: exec-epf, &, and run:

(exec-epf . epf)
(& . epf)
(run . epf)

; Nuke the current process.

; Run epf in background; return pid.

; Run epf; wait for termination.

; Returns exit status.

These special forms are macros that expand into the equivalent series of
system calls. The definition of the exec-epf macro is non-trivial, as it
produces the code to handle i/o redirections and set up pipelines. However,
the definitions of the & and run macros are very simple:

(& . epf) ⇒ (fork (λ () (exec-epf . epf)))
(run . epf) ⇒ (wait (& . epf))

Figures 2 and 3 show a series of examples employing a mix of the
process notation and the syscall library. Note that regular Scheme is used
to provide the control structure, variables, and other linguistic machinery
needed by the script fragments.

;; If the resource file exists, load it into X.

(if (file-exists? f))

(run (xrdb -merge ,f)))

;; Decrypt my mailbox; key is "xyzzy".

(run (crypt xyzzy) (< mbox.crypt) (> mbox))

;; Dump the output from ls, fortune, and from into log.txt.

(run (begin (run (ls))

(run (fortune))

(run (from)))

(> log.txt))

;; Compile FILE with FLAGS.

(run (cc ,file ,@flags))

;; Delete every file in DIR containing the string "/bin/perl":

(with-cwd dir

(for-each (λ (file)

(if (zero? (run (grep -s /bin/perl ,file)))

(delete-file file)))

(directory-files)))

Figure 2: Example shell script fragments (a)

9

;; M4 preprocess each file in the current directory, then pipe

;; the input into cc. Errlog is foo.err, binary is foo.exe.

;; Run compiles in parallel.

(for-each (λ (file)

(let ((outfile (replace-extension file ".exe"))

(errfile (replace-extension file ".err")))

(& (| (m4) (cc -o ,outfile))

(< ,file)

(> 2 ,errfile))))

(directory-files))

;; Same as above, but parallelise even the computation

;; of the filenames.

(for-each (λ (file)

(& (begin (let ((outfile (replace-extension file ".exe"))

(errfile (replace-extension file ".err")))

(exec-epf (| (m4) (cc -o ,outfile))

(< ,file)

(> 2 ,errfile))))))

(directory-files))

;; DES encrypt string PLAINTEXT with password KEY. My DES program

;; reads the input from fdes 0, and the key from fdes 3. We want to

;; collect the ciphertext into a string and return that, with error

;; messages going to our stderr. Notice we are redirecting Scheme data

;; structures (the strings PLAINTEXT and KEY) from our program into

;; the DES process, instead of redirecting from files. RUN/STRING is

;; like the RUN form, but it collects the output into a string and

;; returns it (see following section).

(run/string (/usr/shivers/bin/des -e -3)

(<< ,plaintext) (<< 3 ,key))

;; Delete the files matching regular expression PAT.

;; Note we aren’t actually using any of the process machinery here --

;; just pure Scheme.

(define (dsw pat)

(for-each (λ (file)

(if (y-or-n? (string-append "Delete " file))

(delete-file file)))

(file-match #f pat)))

Figure 3: Example shell script fragments (b)

10

3.4 Procedures and special forms

It is a general design principle in scsh that all functionality made available
through special syntax is also available in a straightforward procedural
form. So there are procedural equivalents for all of the process notation. In
this way, the programmer is not restricted by the particular details of the
syntax. Here are some of the syntax/procedure equivalents:

Notation Procedure
| fork/pipe

|+ fork/pipe+

exec-epf exec-path

redirection open, dup
& fork

run wait+ fork

Having a solid procedural foundation also allows for general notational
experimentation using Scheme’s macros. For example, the programmer
can build his own pipeline notation on top of the fork and fork/pipe

procedures.

(fork [thunk]) procedure
Fork spawns a Unix subprocess. Its exact behavior depends on
whether it is called with the optional thunk argument.

With the thunk argument, fork spawns off a subprocess that calls
thunk, exiting when thunk returns. Fork returns the subprocess’ pid
to the parent process.

Without the thunk argument, fork behaves like the C fork() routine.
It returns in both the parent and child process. In the parent, fork
returns the child’s pid; in the child, fork returns #f.

(fork/pipe [thunk]) procedure
Like fork, but the parent and child communicate via a pipe connect-
ing the parent’s stdin to the child’s stdout. This function side-effects
the parent by changing his stdin.

In effect, fork/pipe splices a process into the data stream immedi-
ately upstream of the current process. This is the basic function for
creating pipelines. Long pipelines are built by performing a sequence
of fork/pipe calls. For example, to create a background two-process

11

pipe a | b, we write:
(fork (λ () (fork/pipe a) (b)))

which returns the pid of b’s process.

To create a background three-process pipe a | b | c, we write:

(fork (λ () (fork/pipe a)

(fork/pipe b)

(c)))

which returns the pid of c’s process.

(fork/pipe+ conns [thunk]) procedure
Like fork/pipe, but the pipe connections between the child and par-
ent are specified by the connection list conns. See the

(|+ conns pf1 . . . pfn)

process form for a description of connection lists.

3.5 Interfacing process output to Scheme

There is a family of procedures and special forms that can be used to cap-
ture the output of processes as Scheme data. Here are the special forms for
the simple variants:

(run/port . epf) ; Return port open on process’s stdout.

(run/file . epf) ; Process > temp file; return file name.

(run/string . epf) ; Collect stdout into a string and return.

(run/strings . epf) ; Stdout->list of newline-delimited strings.

(run/sexp . epf) ; Read one sexp from stdout with READ.

(run/sexps . epf) ; Read list of sexps from stdout with READ.

Run/port returns immediately after forking off the process; other forms
wait for either the process to die (run/file), or eof on the communicat-
ing pipe (run/string, run/strings, run/sexps). These special forms just
expand into calls to the following analogous procedures:

(run/port* thunk) procedure
(run/file* thunk) procedure
(run/string* thunk) procedure
(run/strings* thunk) procedure
(run/sexp* thunk) procedure
(run/sexps* thunk) procedure

12

For example, (run/port . epf) expands into

(run/port* (λ () (exec-epf . epf))).

These procedures can be used to manipulate the output of Unix pro-
grams with Scheme code. For example, the output of the xhost(1)program
can be manipulated with the following code:

;;; Before asking host REMOTE to do X stuff,

;;; make sure it has permission.

(while (not (member remote (run/strings (xhost))))

(display "Pausing for xhost...")

(read-char))

The following procedures are also of utility for generally parsing input
streams in scsh:

(port->string port) procedure
(port->sexp-list port) procedure
(port->string-list port) procedure
(port->list reader port) procedure

Port->string reads the port until eof, then returns the accumulated string.
Port->sexp-list repeatedly reads data from the port until eof, then re-
turns the accumulated list of items. Port->string-list repeatedly reads
newline-terminated strings from the port until eof, then returns the accu-
mulated list of strings. The delimiting newlines are not part of the returned
strings. Port->list generalises these two procedures. It uses reader to
repeatedly read objects from a port. It accumulates these objects into a list,
which is returned upon eof. Theport->string-list andport->sexp-list

procedures are trivial to define, being merely port->list curried with the
appropriate parsers:

(port->string-list port) ≡ (port->list read-line port)
(port->sexp-list port) ≡ (port->list read port)

The following compositions also hold:

run/string* ≡ port->string ◦ run/port*

run/strings* ≡ port->string-list ◦ run/port*

run/sexp* ≡ read ◦ run/port*

run/sexps* ≡ port->sexp-list ◦ run/port*

13

4 System calls

We’ve just seen scsh’s high-level process-form notation, for running pro-
grams, creating pipelines, and performing I/O redirection. This notation
is at roughly the same level as traditional Unix shells. The process-form
notation is convenient, but does not provide detailed, low-level access to
the operating system. This is provided by the second component of scsh:
its system-call library.

Scsh’s system-call library is a nearly-complete set of POSIX bindings,
with some extras, such as symbolic links. As of this writing, network and
terminal i/o controls have still not yet been implemented; work on them
is underway. Scsh also provides a convenient set of systems program-
ming utility procedures, such as routines to perform pattern matching on
file-names and general strings, manipulate Unix environment variables,
and parse file pathnames. Although some of the procedures have been
described in passing, a detailed description of the system-call library is
beyond the scope of this note. The reference manual [refman] contains the
full details.

5 The Tao of Scheme and Unix

Most attempts at embedding shells in functional programming languages
[fsh, Ellis] try to hide the difference between running a program and calling
a procedure. That is, if the user tries

(lpr "notes.txt")

the shell will first treat lpr as a procedure to be called. If lpr isn’t found
in the variable environment, the shell will then do a path search of the
file system for a program. This sort of transparency is in analogy to the
function-binding mechanisms of traditional shells, such as ksh.

This is a fundamental error that has hindered these previous designs.
Scsh, in contrast, is explicit about the distinction between procedures and
programs. In scsh, the programmer must know which are which—the
mechanisms for invocation are different for the two cases (procedure call
versus the (run . epf) special form), and the namespaces are different (the
program’s lexical environment versus $PATH search in the file system).

Linguistically separating these two mechanisms was an important de-
sign decision in the language. It was done because the two computational

14

Unix: Computational agents are processes,
communicate via byte streams.

Scheme: Computational agents are procedures,
communicate via procedure call/return.

Figure 4: The Tao of Scheme and Unix

models are fundamentally different; any attempt to gloss over the distinc-
tions would have made the semantics ugly and inconsistent.

There are two computational worlds here (figure 4), where the basic
computational agents are procedures or processes. These agents are com-
posed differently. In the world of applicative-order procedures, agents
execute serially, and are composed with function composition: (g (f x)).
In the world of processes, agents execute concurrently and are composed
with pipes, in a data-flow network: f | g. A language with both of these
computational structures, such as scsh, must provide a way to interface
them. {Note Normal order} In scsh, we have “adapters” for crossing be-
tween these paradigms:

Scheme Unix

Scheme (g (f x)) (<< ,x)

Unix run/string,. . . f | g

The run/string form and its cousins (section 3.5) map process output to
procedure input; the << i/o redirection maps procedure output to process
input. For example:

(run/string (nroff -ms)

(<< ,(texinfo->nroff doc-string)))

By separating the two worlds, and then providing ways for them to cross-
connect, scsh can cleanly accommodate the two paradigms within one
notational framework.

15

6 I/O

Perhaps the most difficult part of the design of scsh was the integration of
Scheme ports and Unix file descriptors. Dealing with Unix file descriptors
in a Scheme environment is difficult. In Unix, open files are part of the
process state, and are referenced by small integers called file descriptors.
Open file descriptors are the fundamental way i/o redirections are passed
to subprocesses, since file descriptors are preserved across fork() and
exec() calls.

Scheme, on the other hand, uses ports for specifying i/o sources. Ports
are anonymous, garbage-collected Scheme objects, not integers. When a
port is collected, it is also closed. Because file descriptors are just integers,
it’s impossible to garbage collect them—in order to close file descriptor 3,
you must prove that the process will never again pass a 3 as a file descriptor
to a system call doing I/O, and that it will never exec() a program that
will refer to file descriptor 3.

This is difficult at best.
If a Scheme program only used Scheme ports, and never directly used

file descriptors, this would not be a problem. But Scheme code must
descend to the file-descriptor level in at least two circumstances:

• when interfacing to foreign code;

• when interfacing to a subprocess.

This causes problems. Suppose we have a Scheme port constructed on top
of file descriptor 2. We intend to fork off a C program that will inherit this
file descriptor. If we drop references to the port, the garbage collector may
prematurely close file 2 before we exec the C program.

Another difficulty arising between the anonymity of ports and the ex-
plicit naming of file descriptors arises when the user explicitly manipulates
file descriptors, as is required by Unix. For example, when a file port is
opened in Scheme, the underlying run-time Scheme kernel must open a
file and allocate an integer file descriptor. When the user subsequently ex-
plicitly manipulates particular file descriptors, perhaps preparatory to ex-
ecuting some Unix subprocess, the port’s underlying file descriptor could
be silently redirected to some new file.

Scsh’s Unix i/o interface is intended to fix this and other problems aris-
ing from the mismatch between ports and file descriptors. The fundamental
principle is that in scsh, most ports are attached to files, not to particular

16

file descriptors. When the user does an i/o redirection (e.g., with dup2())
that must allocate a particular file descriptor fd, there is a chance that fd
has already been inadvertently allocated to a port by a prior operation (e.g.,
an open-input-file call). If so, fd’s original port will be shifted to some
new file descriptor with a dup(fd) operation, freeing up fd for use. The
port machinery is allowed to do this as it does not in general reveal which
file descriptors are allocated to particular Scheme ports. Not revealing the
particular file descriptors allocated to Scheme ports allows the system two
important freedoms:

• When the user explicitly allocates a particular file descriptor, the run-
time system is free to shuffle around the port/file-descriptor associa-
tions as required to free up that descriptor.

• When all pointers to an unrevealed file port have been dropped, the
run-time system is free to close the underlying file descriptor. If the
user doesn’t know which file descriptor was associated with the port,
then there is no way he could refer to that i/o channel by its file-
descriptor name. This allows scsh to close file descriptors during gc
or when performing an exec().

Users can explicitly manipulate file descriptors, if so desired. In this case,
the associated ports are marked by the run time as “revealed,” and are no
longer subject to automatic collection. The machinery for handling this is
carefully marked in the documentation, and with some simple invariants
in mind, follow the user’s intuitions. This facility preserves the transpar-
ent close-on-collect property for file ports that are used in straightforward
ways, yet allows access to the underlying Unix substrate without interfer-
ence from the garbage collector. This is critical, since shell programming
absolutely requires access to the Unix file descriptors, as their numerical
values are a critical part of the process interface.

Under normal circumstances, all this machinery just works behind the
scenes to keep things straightened out. The only time the user has to think
about it is when he starts accessing file descriptors from ports, which he
should almost never have to do. If a user starts asking what file descrip-
tors have been allocated to what ports, he has to take responsibility for
managing this information.

Further details on the port mechanisms in scsh are beyond the scope of
this note; for more information, see the reference manual [refman].

17

7 Lexical issues

Scsh’s lexical syntax is not fully R4RS-compliant in two ways:

• In scsh, symbol case is preserved by read and is significant on symbol
comparison. This means

(run (less Readme))

displays the right file.

• “-” and “+” are allowed to begin symbols. So the following are
legitimate symbols:

-O2 -geometry +Wn

Scsh also extends R4RS lexical syntax in the following ways:

• “|” and “.” are symbol constituents. This allows | for the pipe
symbol, and .. for the parent-directory symbol. (Of course, “.”
alone is not a symbol, but a dotted-pair marker.)

• A symbol may begin with a digit. So the following are legitimate
symbols:

9x15 80x36-3+440

• Strings are allowed to contain the ANSI C escape sequences such as
\n and \161.

• #! is a comment read-macro similar to ;. This is important for writing
shell scripts.

The lexical details of scsh are perhaps a bit contentious. Extending the
symbol syntax remains backwards compatible with existing correct R4RS
code. Since flags to Unix programs always begin with a dash, not extending
the syntax would have required the user to explicitly quote every flag to a
program, as in

(run (cc "-O" "-o" "-c" main.c)).

This is unacceptably obfuscatory, so the change was made to cover these
sorts of common Unix flags.

More serious was the decision to make symbols read case-sensitively,
which introduces a true backwards incompatibility with R4RS Scheme.

18

This was a true case of clashing world-views: Unix’s tokens are case-
sensitive; Scheme’s, are not.

It is also unfortunate that the single-dot token, “.”, is both a funda-
mental Unix file name and a deep, primitive syntactic token in Scheme—it
means the following will not parse correctly in scsh:

(run/strings (find . -name *.c -print))

You must instead quote the dot:

(run/strings (find "." -name *.c -print))

8 Implementation

Scsh is currently implemented on top of Scheme 48, a freely-available
Scheme implementation written by Kelsey and Rees [S48]. Scheme 48 uses
a byte-code interpreter for portability, good code density, and medium ef-
ficiency. It is R4RS-compliant, and includes a module system designed by
Rees.

The scsh design is not Scheme 48-specific, although the current imple-
mentation is necessarily so. Scsh is intended to be implementable in other
Scheme implementations—although such a port may require some work. (I
would be very interested to see scsh ported to some of the Scheme systems
designed to serve as embedded command languages—e.g., elk, esh, or any
of the other C-friendly interpreters.)

Scsh scripts currently have a few problems owing to the current Scheme
48 implementation technology.

• Before running even the smallest shell script, the Scheme 48 vm must
first load in a 1.4Mb heap image. This i/o load adds a few seconds to
the startup time of even trivial shell scripts.

• Since the entire Scheme 48 and scsh runtime is in the form of byte-
code data in the Scheme heap, the heap is fairly large. As the Scheme
48 vm uses a non-generational gc, all of this essentially permanent
data gets copied back and forth by the collector.

• The large heap size is compounded by Unix forking. If you run a
four-stage pipeline, e.g.,

19

(run (| (zcat paper.tex.Z)

(detex)

(spell)

(enscript -2r)))

then, for a brief instant, you could have up to five copies of scsh forked
into existence. This would briefly quintuple the virtual memory
demand placed by a single scsh heap, which is fairly large to begin
with. Since all the code is actually in the data pages of the process,
the OS can’t trivially share pages between the processes. Even if the
OS is clever enough to do copy-on-write page sharing, it may insist
on reserving enough backing store on disk for worst-case swapping
requirements. If disk space is limited, this may overflow the paging
area, causing the fork() operations to fail.

Byte-coded virtual machines are intended to be a technology that pro-
vides memory savings through improved code density. It is ironic that the
straightforward implementation of such a byte-code interpreter actually
has high memory cost through bad interactions with Unix fork() and the
virtual memory system.

The situation is not irretrievable, however. A recent release of Scheme
48 allows the pure portion of a heap image to be statically linked with the
text pages of the vm binary. Putting static data—such as all the code for
the runtime—into the text pages should drastically shorten start-up time,
move a large amount of data out of the heap, improve paging, and greatly
shrink the dynamic size. This should all lessen the impact of fork() on the
virtual memory system.

Arranging for the garbage collector to communicate with the virtual
memory system with the near-standard madvise() system call would fur-
ther improve the system. Also, breaking the system run-time into separate
modules (e.g., bignums, list operations, i/o, string operations, scsh opera-
tions, compiler, etc.), each of which can be demand-loaded shared-text by
the Scheme 48 vm (using mmap()), will allow for a full-featured system with
a surprisingly small memory footprint.

9 Size

Scsh can justifiably be criticised for being a florid design. There are a lot of
features—perhaps too many. The optional arguments to many procedures,

20

the implicit backquoting, and the syntax/procedure equivalents are all eas-
ily synthesized by the user. For example, port->strings, run/strings*,
run/sexp*, and run/sexps* are all trivial compositions and curries of other
base procedures. The run/strings and run/sexps forms are easily writ-
ten as macros, or simply written out by hand. Not only does scsh pro-
vide the basic file-attributes procedure (i.e., the stat() system call),
it also provides a host of derived procedures: file-owner, file-mode,
file-directory?, and so forth. Still, my feeling is that it is easier and
clearer to read

(filter file-directory? (directory-files))

than

(filter (λ (fname)

(eq? ’directory

(fileinfo:type (file-attributes fname))))

(directory-files))

A full library can make for clearer user code.
One measure of scsh’s design is that the source code consists of a large

number of small procedures: the source code for scsh has 448 top-level
definitions; the definitions have an average length of 5 lines of code. That
is, scsh is constructed by connecting together a lot of small, composable
parts, instead of designing one inflexible monolithic structure. These small
parts can also be composed and abstracted by the programmer into his own
computational structures. Thus the total functionality of scsh is greater than
more traditional large systems.

10 Systems programming in Scheme

Unix systems programming in Scheme is a much more pleasant experience
than Unix systems programming in C. Several features of the language
remove a lot of the painful or error-prone problems C systems programmers
are accustomed to suffering. The most important of these features are:

• exceptions

• automatic storage management

• real strings

21

• higher-order procedures

• S-expression syntax and backquote

Many of these features are available in other advanced programming lan-
guages, such as Modula-3 or ML. None are available in C.

10.1 Exceptions and robust error handling

In scsh, system calls never return the error codes that make careful systems
programming in C so difficult. Errors are signaled by raising exceptions.
Exceptions are usually handled by default handlers that either abort the
program or invoke a run-time debugger; the programmer can override
these when desired by using exception-handler expressions. Not having
to return error codes frees up procedures to return useful values, which
encourages procedural composition. It also keeps the programmer from
cluttering up his code with (or, as is all too often the case, just forgetting
to include) error checks for every system call. In scsh, the programmer
can assume that if a system call returns at all, it returns successfully. This
greatly simplifies the flow of the code from the programmer’s point of view,
as well as greatly increasing the robustness of the program.

10.2 Automatic storage management

Further, Scheme’s automatic storage allocation removes the “result” param-
eters from the procedure argument lists. When composite data is returned,
it is simply returned in a freshly-allocated data structure. Again, this helps
make it possible for procedures to return useful values.

For example, the C system call readlink() dereferences a symbolic
link in the file system. A working definition for the system call is given
in figure 5b. It is complicated by many small bookkeeping details, made
necessary by C’s weak linguistic facilities.

In contrast, scsh’s equivalent procedure, read-symlink, has a much
simpler definition (fig. 5a). With the scsh version, there is no possibility
that the result buffer will be too small. There is no possibility that the
programmer will misrepresent the size of the result buffer with an incorrect
bufsiz argument. These sorts of issues are completely eliminated by the
Scheme programming model. Instead of having to worry about seven or
eight trivial but potentially fatal issues, and write the necessary 10 or 15

22

(read-symlink fname)

read-symlink returns the filename referenced by symbolic link
fname. An exception is raised if there is an error.

(a) Scheme definition of readlink

readlink(char *path, char *buf, int bufsiz)

readlink dereferences the symbolic link path. If the referenced
filename is less than or equal to bufsiz characters in length, it is
written into the buf array, which we fondly hope the programmer
has arranged to be at least of size bufsiz characters. If the referenced
filename is longer than bufsiz characters, the system call returns an
error code; presumably the programmer should then reallocate a
larger buffer and try again. If the system call succeeds, it returns
the length of the result filename. When the referenced filename is
written into buf, it is not nul-terminated; it is the programmer’s
responsibility to leave space in the buffer for the terminating nul
(remembering to subtract one from the actual buffer length when
passing it to the system call), and deposit the terminal nul after the
system call returns.
If there is a real error, the procedure will, in most cases, return an
error code. (We will gloss over the error-code mechanism for the
sake of brevity.) However, if the length of buf does not actually
match the argument bufsiz, the system call may either

• succeed anyway,

• dump core,

• overwrite other storage and silently proceed,

• report an error,

• or perform some fifth action.

It all depends.
(b) C definition of readlink

Figure 5: Two definitions of readlink

23

lines of code to correctly handle the operation, the programmer can write
a single function call and get on with his task.

10.3 Return values and procedural composition

Exceptions and automatic storage allocation make it easier for procedures
to return useful values. This increases the odds that the programmer can
use the compact notation of function composition—f(g(x))—to connect
producers and consumers of data, which is surprisingly difficult in C.

In C, if we wish to compose two procedure calls, we frequently must
write:

/* C style: */

g(x,&y);

. . . f(y). . .

Procedures that compute composite data structures for a result commonly
return them by storing them into a data structure passed by-reference as a
parameter. If g does this, we cannot nest calls, but must write the code as
shown.

In fact, the above code is not quite what we want; we forgot to check g

for an error return. What we really wanted was:

/* Worse/better: */

err=g(x,&y);

if(err) {
<handle error on g call>
}

. . . f(y). . .

The person who writes this code has to remember to check for the error;
the person who reads it has to visually link up the data flow by connecting
y’s def and use points. This is the data-flow equivalent of goto’s, with
equivalent effects on program clarity.

In Scheme, none of this is necessary. We simply write

(f (g x)) ; Scheme

Easy to write; easy to read and understand. Figure 6 shows an example of
this problem, where the task is determining if a given file is owned by root.

24

(if (zero? (fileinfo:owner (file-attributes fname)))

. . .)

Scheme

if(stat(fname,&statbuf)) {

perror(progname);

exit(-1);

}

if(statbuf.st_uid == 0) ...

C

Figure 6: Why we program with Scheme.

10.4 Strings

Having a true string datatype turns out to be surprisingly valuable in
making systems programs simpler and more robust. The programmer
never has to expend effort to make sure that a string length kept in a
variable matches the actual length of the string; never has to expend effort
wondering how it will affect his program if a nul byte gets stored into his
string. This is a minor feature, but like garbage collection, it eliminates a
whole class of common C programming bugs.

10.5 Higher-order procedures

Scheme’s first-class procedures are very convenient for systems program-
ming. Scsh uses them to parameterise the action of procedures that create
Unix processes. The ability to package up an arbitrary computation as a
thunk turns out to be as useful in the domain of Unix processes as it is in the
domain of Scheme computation. Being able to pass computations in this
way to the procedures that create Unix processes, such as fork, fork/pipe
and run/port* is a powerful programming technique.

First-class procedures allow us to parameterise port readers over differ-
ent parsers, with the

(port->list parser port)

25

procedure. This is the essential Scheme ability to capture abstraction in
a procedure definition. If the user wants to read a list of objects written
in some syntax from an i/o source, he need only write a parser capable
of parsing a single object. The port->list procedure can work with the
user’s parser as easily as it works with read or read-line. {Note On-line
streams}

First-class procedures also allow iterators such as for-each and filter

to loop over lists of data. For example, to build the list of all my files in
/usr/tmp, I write:

(filter (λ (f) (= (file-owner f) (user-uid)))

(glob "/usr/tmp/*"))

To delete every C file in my directory, I write:

(for-each delete-file (glob "*.c"))

10.6 S-expression syntax and backquote

In general, Scheme’s s-expression syntax is much, much simpler to under-
stand and use than most shells’ complex syntax, with their embedded pat-
tern matching, variable expansion, alias substitution, and multiple rounds
of parsing. This costs scsh’s notation some compactness, at the gain of
comprehensibility.

Recursive embeddings and balls of mud

Scsh’s ability to cover a high-level/low-level spectrum of expressiveness is
a function of its uniform s-expression notational framework. Since scsh’s
process notation is embedded within Scheme, and Scheme escapes are
embedded within the process notation, the programmer can easily switch
back and forth as needed, using the simple notation where possible, and
escaping to system calls and general Scheme where necessary. This recur-
sive embedding is what gives scsh its broad-spectrum coverage of systems
functionality not available to either shells or traditional systems program-
ming languages; it is essentially related to the “ball of mud” extensibility
of the Lisp and Scheme family of languages.

26

Backquote and reliable argument lists

Scsh’s use of implicit backquoting in the process notation is a particularly
nice feature of the s-expression syntax. Most Unix shells provide the user
with a way to take a computed string, split it into pieces, and pass them
as arguments to a program. This usually requires the introduction of some
sort of $IFS separator variable to control how the string is parsed into
separate arguments. This makes things error prone in the cases where a
single argument might contain a space or other parser delimiter. Worse
than error prone, $IFS rescanning is in fact the source of a famous security
hole in Unix [Reeds].

In scsh, data are used to construct argument lists using the implicit
backquote feature of process forms, e.g.:

(run (cc ,file -o ,binary ,@flags)).

Backquote completely avoids the parsing issue because it deals with pre-
parsed data: it constructs expressions from lists, not character strings.
When the programmer computes a list of arguments, he has complete
confidence that they will be passed to the program exactly as is, without
running the risk of being re-parsed by the shell.

11 Other programming languages

Having seen the design of scsh, we can now compare it to other approaches
in some detail.

11.1 Functional languages

The design of scsh could be ported without much difficulty to any language
that provides first-class procedures, GC, and exceptions, such as COMMON

LISP or ML. However, Scheme’s syntactic extensibility (macros) plays an
important role in making the shell features convenient to use. In this
respect, Scheme and COMMON LISP are better choices than ML. Using the
fork/pipe procedure with a series of closures involves more low-level
detail than using scsh’s (| pf1 . . . pfn) process form with the closures
implied. Good notations suppress unnecessary detail.

The payoff for using a language such as ML would come not with small
shell scripts, but with larger programs, where the power provided by the
module system and the static type checking would come into play.

27

11.2 Shells

Traditional Unix shells, such as sh, have no advantage at all as scripting
languages.

Escaping the least common denominator trap

One of the attractions of scsh is that it is a Unix shell that isn’t constrained by
the limits of Unix’s uniform “least common denominator” representation
of data as a text string. Since the standard medium of interchange at the
shell level is ASCII byte strings, shell programmers are forced to parse and
reparse data, often with tools of limited power. For example, to determine
the number of files in a directory, a shell programmer typically uses an
expression of the form ls | wc -l. This traditional idiom is in fact buggy:
Unix files are allowed to contain newlines in their names, which would
defeat the simple wc parser. Scsh, on the other hand, gives the programmer
direct access to the system calls, and employs a much richer set of data
structures. Scsh’s directory-files procedure returns a list of strings,
directly taken from the system call. There is no possibility of a parsing
error.

As another example, consider the problem of determining if a file has
its setuid bit set. The shell programmer must grep the text-string output of
ls -l for the “s” character in the right position. Scsh gives the programmer
direct access to the stat() system call, so that the question can be directly
answered.

Computation granularity and impedance matching

Sh and csh provide minimal computation facilities on the assumption that
all real computation will happen in C programs invoked from the shell. This
is a granularity assumption. As long as the individual units of computation
are large, then the cost of starting up a separate program is amortised over
the actual computation. However, when the user wants to do something
simple—e.g., split an X $DISPLAY string at the colon, count the number of
files in a directory, or lowercase a string—then the overhead of program in-
vocation swamps the trivial computation being performed. One advantage
of using a real programming language for the shell language is that we can
get a wider-range “impedance match” of computation to process overhead.
Simple computations can be done in the shell; large grain computations can

28

still be spawned off to other programs if necessary.

11.3 New-generation scripting languages

A newer generation of scripting languages has been supplanting sh in Unix.
Systems such as perl and tcl provide many of the advantages of scsh for
programming shell scripts [perl, tcl]. However, they are still limited by
weak linguistic features. Perl and tcl still deal with the world primarily in
terms of strings, which is both inefficient and expressively limiting. Scsh
makes the full range of Scheme data types available to the programmer:
lists, records, floating point numbers, procedures, and so forth. Further,
the abstraction mechanisms in perl and tcl are also much more limited than
Scheme’s lexically scoped, first-class procedures and lambda expressions.
As convenient as tcl and perl are, they are in no sense full-fledged general
systems-programming languages: you would not, for example, want to
write an optimizing compiler in tcl. Scsh is Scheme, hence a powerful,
full-featured general programming tool.

It is, however, instructive to consider the reasons for the popular success
of tcl and perl. I would argue that good design is necessary but insufficient
for a successful tool. Tcl and perl are successful because they are more
than just competently designed; critically, they are also available on the
Net in turn-key forms, with solid documentation. A potential user can
just down-load and compile them. Scheme, on the other hand, has existed
in multiple mutually-incompatible implementations that are not widely
portable, do not portably address systems issues, and are frequently poorly
documented. A contentious and standards-cautious Scheme community
has not standardised on a record datatype or exception facility for the
language, features critical for systems programming. Scheme solves the
hard problems, but punts the necessary, simpler ones. This has made
Scheme an impractical systems tool, banishing it to the realm of pedagogical
programming languages. Scsh, together with Scheme 48, fills in these
lacunae. Its facilities may not be the ultimate solutions, but they are useable
technology: clean, consistent, portable and documented.

12 Future work

Several extensions to scsh are being considered or implemented.

29

12.1 Command language features

The primary design effort of scsh was for programming. We are now
designing and implementing features to make scsh a better interactive
command language, such as job control. A top-level parser for an sh-like
notation has been designed; the parser will allow the user to switch back
to Scheme notation when desired.

We are also considering a display-oriented interactive shell, to be cre-
ated by merging the edwin screen editor and scsh. The user will inter-
act with the operating system using single-keystroke commands, defining
these commands using scsh, and reverting to Scheme when necessary for
complex tasks. Given a reasonable set of GUI widgets, the same trick could
be played directly in X.

12.2 Little languages

Many Unix tools are built around the idea of “little languages,” that is,
custom, limited-purpose languages that are designed to fit the area of ap-
plication. The problem with the little-languages approach is that these
languages are usually ugly, idiosyncratic, and limited in expressiveness.
The syntactic quirks of these little languages are notorious. The well-
known problem with make’s syntax distinguishing tab and space has been
tripping up programmers for years. Because each little language is differ-
ent from the next, the user is required to master a handful of languages,
unnecessarily increasing the cognitive burden to use these tools.

An alternate approach is to embed the tool’s primitive operations inside
Scheme, and use the rest of Scheme as the procedural glue to connect the
primitives into complex systems. This sort of approach doesn’t require the
re-invention of all the basic functionality needed by a language—Scheme
provides variables, procedures, conditionals, data structures, and so forth.
This means there is a greater chance of the designer “getting it right” since
he is really leveraging off of the enormous design effort that was put into
designing the Scheme language. It also means the user doesn’t have to
learn five or six different little languages—just Scheme plus the set of base
primitives for each application. Finally, it means the base language is not
limited because the designer didn’t have the time or resources to implement
all the features of a real programming language.

With the scsh Unix library, these “little language” Unix tools could easily
be redesigned from a Scheme perspective and have their interface and

30

functionality significantly improved. Some examples under consideration
are:

• The awk pattern-matching language can be implemented in scsh by
adding a single record-input procedure to the existing code.

• Expect is a scripting language used for automating the use of inter-
active programs, such as ftp. With the exception of the tty control
syscalls currently under construction, all the pieces needed to design
an alternate scsh-based Unix scripting tool already exist in scsh.

• A dependency-directed system for controlling recompilation such as
make could easily be implemented on top of scsh. Here, instead of
embedding the system inside of Scheme, we embed Scheme inside of
the system. The dependency language would use s-expression no-
tation, and the embedded compilation actions would be specified as
Scheme expressions, including scsh notation for running Unix pro-
grams.

13 Conclusion

Scsh is a system with several faces. From one perspective, it is not much
more than a system-call library and a few macros. Yet, there is power in this
minimalist description—it points up the utility of embedding systems in
languages such as Scheme. Scheme is at core what makes scsh a successful
design. Which leads us to three final thoughts on the subject of scsh and
systems programming in Unix:

• A Scheme shell wins because it is broad-spectrum.

• A functional language is an excellent tool for systems programming.

• Hacking Unix isn’t so bad, actually, if you don’t have to use C.

14 Acknowledgements

John Ellis’ 1980 SIGPLAN Notices paper [Ellis] got me thinking about this en-
tire area. Some of the design for the system calls was modeled after Richard
Stallman’s emacs [emacs], Project MAC’s MIT Scheme [MIT Scheme], and
COMMON LISP [CLtL2]. Tom Duff’s Unix shell, rc, was also inspirational;

31

his is the only elegant Unix shell I’ve seen [rc]. Flames with Bennet Yee and
Scott Draves drove me to design scsh in the first place; polite discussions
with John Ellis and Scott Nettles subsequently improved it. Douglas Orr
was my private Unix kernel consultant. Richard Kelsey and Jonathan Rees
provided me with twenty-four hour turnaround time on requested modifi-
cations to Scheme 48, and spent a great deal of time explaining the internals
of the implementation to me. Their elegant Scheme implementation was a
superb platform for development. The design and the major portion of the
implementation of scsh were completed while I was visiting on the faculty
of the University of Hong Kong in 1992. It was very pleasant to work in
such a congenial atmosphere. Doug Kwan was a cooperative sounding-
board during the design phase. Hsu Suchu has patiently waited quite a
while for this document to be finished. Members of the MIT LCS and AI
Lab community encouraged me to polish the research prototype version
of the shell into something releasable to the net. Henry Minsky and Ian
Horswill did a lot of the encouraging; my students Dave Albertz and Brian
Carlstrom did a lot of the polishing.

Finally, the unix-haters list helped a great deal to maintain my perspec-
tive.

32

References

[CLtL2] Guy L. Steele Jr.
Common Lisp: The Language.
Digital Press, Maynard, Mass., second edition 1990.

[Ellis] John R. Ellis.
A LISP shell.
SIGPLAN Notices, 15(5):24–34, May 1980.

[emacs] Bil Lewis, Dan LaLiberte, Richard M. Stallman, et al.
The GNU Emacs Lisp Reference Manual, vol. 2.
Free Software Foundation, Cambridge, Mass., edition 2.1

September 1993. (Also available from many ftp sites.)

[fsh] Chris S. McDonald.
fsh—A functional Unix command interpreter.
Software—Practice and Experience, 17(10):685–700, October

1987.

[MIT Scheme] Chris Hanson.
MIT Scheme Reference Manual.
MIT Artificial Intelligence Laboratory Technical Report

1281, January 1991. (Also URL http://martigny.ai.

mit.edu/emacs-html.local/scheme toc.html)

[Nelson] Greg Nelson, ed.
Systems Programming with Modula-3.
Prentice Hall, Englewood Cliffs, New Jersey, 1991.

[perl] Larry Wall and Randal Schwartz.
Programming Perl.
O’Reilly & Associates.

33

[rc] Tom Duff.
Rc—A shell for Plan 9 and Unix systems.
In Proceedings of the Summer 1990 UKUUG Conference,

pages 21–33, July 1990, London. (A revised version
is reprinted in “Plan 9: The early papers,” Com-
puting Science Technical Report 158, AT&T Bell Lab-
oratories. Also available in Postscript form as URL
ftp://research.att.com/dist/plan9doc/7.)

[Reeds] J. Reeds.
/bin/sh: the biggest UNIX security loophole.
11217-840302-04TM, AT&T Bell Laboratories (1988).

[refman] Olin Shivers.
Scsh reference manual.
In preparation.

[S48] Richard A. Kelsey and Jonathan A. Rees.
A tractable Scheme implementation.
To appear, Lisp and Symbolic Computation, Kluwer Aca-

demic Publishers, The Netherlands. (Also URL ftp://

altdorf.ai.mit.edu/pub/jar/lsc.ps)

[tcl] John K. Ousterhout.
Tcl: An embeddable command language.
In The Proceedings of the 1990 Winter USENIX Conference,

pp. 133–146. (Also URL ftp://ftp.cs.berkeley.edu/

ucb/tcl/tclUsenix90.ps)

34

Notes

{Note Agenda}

In fact, I have an additional hidden agenda. I do believe that computational
agents should be expressed as procedures or procedure libraries, not as
programs. Scsh is intended to be an incremental step in this direction, one
that is integrated with Unix. Writing a program as a Scheme 48 module
should allow the user to make it available as a both a subroutine library
callable from other Scheme 48 programs or the interactive read-eval-print
loop, and, by adding a small top-level, as a standalone Unix program. So
Unix programs written this way will also be useable as linkable subroutine
libraries—giving the programmer module interfaces superior to Unix’s
“least common denominator” of ASCII byte streams sent over pipes.

{Note No port sync}

In scsh, Unix’ stdio file descriptors and Scheme’s standard i/o ports
(i.e., the values of (current-input-port), (current-output-port) and
(error-output-port)) are not necessarily synchronised. This is impos-
sible to do in general, since some Scheme ports are not representable as
Unix file descriptors. For example, many Scheme implementations pro-
vide “string ports,” that is, ports that collect characters sent to them into
memory buffers. The accumulated string can later be retrieved from the
port as a string. If a user were to bind (current-output-port) to such a
port, it would be impossible to associate file descriptor 1 with this port, as
it cannot be represented in Unix. So, if the user subsequently forked off
some other program as a subprocess, that program would of course not see
the Scheme string port as its standard output.

To keep stdio synced with the values of Scheme’s current i/o ports, use
the special redirection stdports. This causes 0, 1, 2 to be redirected from
the current Scheme standard ports. It is equivalent to the three redirections:

(= 0 ,(current-input-port))

(= 1 ,(current-output-port))

(= 2 ,(error-output-port))

The redirections are done in the indicated order. This will cause an error if
the one of current i/o ports isn’t a Unix port (e.g., if one is a string port).
This Scheme/Unix i/o synchronisation can also be had in Scheme code (as
opposed to a redirection spec) with the (stdports->stdio) procedure.

35

{Note Normal order}

Having to explicitly shift between processes and functions in scsh is in part
due to the arbitrary-size nature of a Unix stream. A better, more integrated
approach might be to use a lazy, normal-order language as the glue or shell
language. Then files and process output streams could be regarded as first-
class values, and treated like any other sequence in the language. However,
I suspect that the realities of Unix, such as side-effects, will interfere with
this simple model.

{Note On-line streams}

The (port->list reader port) procedure is a batch processor: it reads the
port all the way to eof before returning a value. As an alternative, we might
write a procedure to take a port and a reader, and return a lazily-evaluated
list of values, so that I/O can be interleaved with element processing. A
nice example of the power of Scheme’s abstraction facilities is the ease with
which we can write this procedure: it can be done with five lines of code.

;;; A <lazy-list> is either

;;; (delay ’()) or

;;; (delay (cons data <lazy-list>)).

(define (port->lazy-list reader port)

(let collector ()

(delay (let ((x (reader port)))

(if (eof-object? x) ’()

(cons x (collector)))))))

{Note Tempfile example}

For a more detailed example showing the advantages of higher-order proce-
dures in Unix systems programming, consider the task of making random
temporary objects (files, directories, fifos, etc.) in the file system. Most
Unix’s simply provide a function such as tmpnam() that creates a file with
an unusual name, and hope for the best. Other Unix’s provide functions
that avoid the race condition between determining the temporary file’s
name and creating it, but they do not provide equivalent features for non-
file objects, such as directories or symbolic links. This functionality is easily

36

generalised with the procedure

(temp-file-iterate maker [template])

This procedure can be used to perform atomic transactions on the file
system involving filenames, e.g.:

• Linking a file to a fresh backup temporary name.

• Creating and opening an unused, secure temporary file.

• Creating an unused temporary directory.

The string template is a format control string used to generate a series of
trial filenames; it defaults to

"/usr/tmp/<pid>.~a"

where <pid> is the current process’ process id. Filenames are generated by
calling format to instantiate the template’s ~a field with a varying string.
(It is not necessary for the process’ pid to be a part of the filename for the
uniqueness guarantees to hold. The pid component of the default prefix
simply serves to scatter the name searches into sparse regions, so that
collisions are less likely to occur. This speeds things up, but does not affect
correctness.)

The maker procedure is serially called on each filename generated. It
must return at least one value; it may return multiple values. If the first
return value is #f or if maker raises the “file already exists” syscall error
exception, temp-file-iterate will loop, generating a new filename and
calling maker again. If the first return value is true, the loop is terminated,
returning whatever maker returned.

After a number of unsuccessful trials, temp-file-iterate may give up
and signal an error.

To rename a file to a temporary name, we write:

(temp-file-iterate (λ (backup-name)

(create-hard-link old-file

backup-name)

backup-name)

".#temp.~a") ; Keep link in cwd.

(delete-file old-file)

Note the guarantee: if temp-file-iterate returns successfully, then the
hard link was definitely created, so we can safely delete the old link with
the following delete-file.

37

To create a unique temporary directory, we write:

(temp-file-iterate (λ (dir) (create-directory dir) dir))

Similar operations can be used to generate unique symlinks and fifos, or to
return values other than the new filename (e.g., an open file descriptor or
port).

38

