
69

A Variadic Extension of
Curry’s Fixed-Point Combinator

Mayer Goldberg (gmayer@cs.bgu.ac.il)∗
Department of Computer Science

Ben Gurion University, Beer Sheva 84105, Israel

ABSTRACT
We present a systematic construction of a variadic
applicative-order multiple fixed-point combinator in
Scheme. The resulting Scheme procedure is a variadic ex-
tension of the n-ary version of Curry’s fixed-point combi-
nator. It can be used to create mutually-recursive proce-
dures, and expand arbitrary letrec-expressions.

Keywords: Fixed points, fixed-point combinators, applica-

tive order, lambda-calculus, Scheme, variadic functions

1. INTRODUCTION
Since the early days of Scheme programming, defin-
ing and using various fixed-point combinators have been
classical programming exercises (for example, Struc-

ture and Interpretation of Computer Programs [1, Sec-
tion 4.1.7, Page 393], and The Little LISPer [6, Chap-
ter 9, Page 171]): Fixed-point combinators are used to
replace recursion and circularity in procedures and data
structures, with self application.

Replacing mutual recursion with self-application is done
in one of two ways: (A) We can reduce mutually-recursive
functions to simple recursive functions, and use a singular
fixed-point combinator to replace singular recursion with
self-application. Examples of this approach can be found
in Bekič’s theorem for the elimination of simultaneous re-
cursion [3, Page 39], and in Landin’s classical work on the
mechanical evaluation of expressions [7]. (B) We can use
a set of multiple fixed-point combinators. This approach
is taken in a particularly beautiful construction due to
Smullyan [2, Pages 334-335]. When replacing recursion
among n ≥ 1 recursive functions, a different set of multiple
fixed-point combinators needs to be used for each n, each

∗This work was carried out while visiting
Basic Research in Computer Science (www.brics.dk),
funded by the Danish National Research Foundation.

.

Permission to make digital or hard copies, to republish, to post on servers
or to redistribute to lists all or part of this work is grantedwithout fee
provided that copies are not made or distributed for profit orcommercial
advantage and that copies bear this notice and the full citation on the
first page. To otherwise copy or redistribute requires priorspecific
permission.
Third Workshop on Scheme and Functional Programming. October 3,
2002, Pittsburgh, Pennsylvania, USA.
Copyright 2002 Mayer Goldberg.

set containing progressively more complex expressions.
In Scheme, however, we can do better. Scheme pro-

vides syntax for writing variadic procedures (i.e., proce-
dures that take arbitrarily many arguments), so that upon
application, an identifier is bound to a list of these ar-
guments. Scheme also provides two procedures that are
particularly suitable for use in combination with variadic
procedures:

• The apply procedure, which takes a procedure and
a list, and applies the procedure to the elements
of the list, as if it were called directly with the
elements of the list as its arguments. For exam-
ple: (apply + ’(1 2 3)) returns the same result as
(+ 1 2 3).

• The map procedure, which, in its simplest form,
takes a procedure and a list of arguments, and
applies the procedure to each one of these ar-
guments, returning a list of the results. For
example, (map list ’(1 2 3)) returns the list
((1) (2) (3)).

By using variadic procedures, apply, and map, we can de-
fine a single Scheme procedure that can be used to define
any number of mutually-recursive procedures. This way,
we would not have to specify that number in advance.

The construction of variadic multiple fixed-point com-
binators is not immediate. We are only aware of one
published solution — in Queinnec’s book LISP In Small

Pieces [8]. In Section 5 we compare our construction and
the one found in Queinnec’s book [8, Pages 457–458].

This work presents a variadic multiple fixed-point com-
binator that is a natural extension of Curry’s fixed-point
combinator. Our construction uses only as many Scheme-
specific idioms as needed for working with variadic proce-
dures (namely, apply and map), and is thus faithful both
to the spirit of Scheme, in which it is written, as well as to
the λ-calculus whence it comes.

The rest of this paper is organized as follows. We first
review standard material about fixed-point combinators
for singularly recursive procedures (Section 2), and then
how to extend fixed-point combinators to handling mu-
tual recursion among n procedures (Section 3). We then
present our applicative-order variadic multiple fixed-point
combinator (Section 4), and compares it with Queinnec’s
solution (Section 5). Section 6 concludes.



70

2. SINGULAR FIXED-POINT COMBINA-
TORS

Fixed-point combinators are used in the λ-calculus to solve
fixed-point equations. Given a term M , we are looking
for a term x (in fact, the “smallest” such x in a lattice-
theoretic sense) that satisfies the equation Mx = x (the
fixed-point equation), where equality is taken to be the
equivalence relation induced by the one-step βη-relation.
A fixed-point combinator is a term that takes any term M

as an argument and returns the fixed point of M . If Φ is a
fixed-point combinator, and M is some term, then x = ΦM

is the fixed point of M , and satisfies Mx = x. Substituting
the definition of x into the fixed point equation, we see that
a fixed-point combinator is a term Φ such that for any term
M , ΦM = M(ΦM).

There exist infinitely-many different fixed-point combi-
nators, though some are particularly well-known. The
best known fixed-point combinator is due to Haskell B.
Curry [4, Page 178]:

YCurry ≡ λf.((λx.f(xx))(λx.f(xx)))

Encoding literally the above in Scheme would not work:
Under Scheme’s applicative order the application of

(lambda (f)

((lambda (x) (f (x x)))

(lambda (x) (f (x x)))))

to any argument will diverge, because the application
(x x) will evaluate before f is applied to it, result-
ing in an infinite loop. The solution is to replace
(x x) with an expression that is both equivalent, and
in which the evaluation of the given appilcation is de-
layed, namely, with a lambda-expression: If (x x) should
evaluate to a one-argument procedure, then we can
replace it with (lambda (arg) ((x x) arg)); If to a
two-argument procedure, then we can replace it with
(lambda (arg1 arg2) ((x x) arg1 arg2)), etc.1 Not
wanting to commit, however, to the arity of (x x), we
will use a variadic version of the η-expansion, i.e., wrap
(x x) with (lambda args (apply · · · args)), giving:

(define Ycurry

(lambda (f)

((lambda (x)

(f (lambda args (apply (x x) args))))

(lambda (x)

(f (lambda args (apply (x x) args)))))))

(1)

Fixed-point combinators are used in programming lan-
guages in order to define recursive procedures [6, 7]. The
trick is to define the recursive procedure as the solution to
some fixed-point equation, and then use a fixed-point com-
binator to solve this equation. For example, the Scheme
procedure that computes the factorial function satisfies the

1This transformation is known colloquially as “η-
expansion.” The η-reduction consists of replacing (λν.Mν)
with M when ν does not occur free in M . The point of
the η expansion in Scheme is that the body of procedures
evaluate at application time rather than at closure-creation
time, and so the η-expansion is used to delay evaluation.

following recurrence relation

fact ≡ (lambda (n)

(if (zero? n) 1

(* n (fact (- n 1)))))

can be rewritten as the solution of the following fixed-point
equation:

fact = ((lambda (fact)

(lambda (n)

(if (zero? n) 1

(* n (fact (- n 1)))))) fact )

and can be solved using, e.g., Curry’s fixed-point combi-
nator (Expr. (1)):

(define fact

(Ycurry

(lambda (fact)

(lambda (n)

(if (zero? n) 1

(* n (fact (- n 1))))))))

3. MULTIPLE FIXED-POINT COMBINA-
TORS

Just as recursive functions are solutions to fixed-point
equations, which can be solved using fixed-point combina-
tors, so are mutually recursive functions the solutions to
multiple fixed-point equations, which can be solved using
multiple fixed-point combinators:

A set of n multiple fixed points is defined as fol-
lows: Given the terms M1, . . . , Mn, we want to find
terms x1, . . . , xn (the set of fixed points), such that xi =
Mix1 · · ·xn, for i = 1, . . . , n (a system of n multiple fixed-
point equations).

Extending the notion of singular fixed-point combi-
nators, n multiple fixed-point combinators are terms
Φn

1 , . . . , Φn

n, such that for any M1, . . . , Mn, we can let
xi = Φn

i M1 · · ·Mn, for i = 1, . . . , n, and {xi}
n

i=1 are the
multiple fixed points that solve the given system of equa-
tions. Substituting the definitions of {xi}

n

i=1 into the sys-
tem of multiple fixed-point equations, we arrive at the con-
cise statement that multiple fixed-point combinators are
terms that Φn

1 , . . . , Φn

n, such that for any M1, . . . , Mn, we
have

(Φn

i M1 · · ·Mn) =

Mi(Φ
n

1 M1 · · ·Mn) · · · (Φn

nM1 · · ·Mn)

for all i = 1, . . . , n.
Curry’s fixed-point combinator can be extended to a set

of n multiple fixed-point combinators for solving a system
of n multiple fixed-point equations. The i-th such exten-
sion, YCurry

n

i
, is given by

YCurry
n

i
≡ λf1 · · · fn.((λx1 · · ·xn.fi(x1x1 · · ·xn)

· · ·
(xnx1 · · ·xn))

(λx1 · · ·xn.f1(x1x1 · · ·xn)
· · ·

(xnx1 · · · xn))
· · ·
(λx1 · · ·xn.fn(x1x1 · · · xn)

· · ·
(xnx1 · · · xn)))



71

Encoded in Scheme, the applicative-order version of
Curry’s multiple fixed-point combinator, YCurry

n

i
, is given

by:

(define Ycurryin

(lambda (f1 ... fn)

((lambda (x1 ... xn)

(fi (lambda args

(apply (x1 x1 ... xn) args))

...

(lambda args

(apply (xn x1 ... xn) args))))

(lambda (x1 ... xn)

(f1 (lambda args

(apply (x1 x1 ... xn) args))

...

(lambda args

(apply (xn x1 ... xn) args))))

...

(lambda (x1 ... xn)

(fn (lambda args

(apply (x1 x1 ... xn) args))

...

(lambda args

(apply (xn x1 ... xn) args)))))))

(2)

Obviously, this is an abbreviated meta-notation, and for
any specific n, the ellipsis (‘· · · ’) would need to be re-
placed with the corresponding Scheme expressions (so that
fi refers to one of an actual list of parameters). In fact,
one way to describe the aim of this paper is that we would
like to avoid this meta-linguistic shorthand, and construct
a Scheme procedure that takes arbitrarily-many arguments
and returns a list of their multiple fixed points.

Mutually recursive function definitions can be rewritten
as solutions to multiple fixed-point equations. For exam-
ple, the Scheme procedures that compute the predicates
even, odd satisfy the following mutual recurrence relation:

even? ≡ (lambda (n)

(if (zero? n) #t

(odd? (- n 1))))

odd? ≡ (lambda (n)

(if (zero? n) #f

(even? (- n 1))))

can be rewritten as the solutions of the following system
of multiple fixed-point equations:

even? = ((lambda (even? odd?)

(lambda (n)

(if (zero? n) #t

(odd? (- n 1))))) even? odd? )

odd? = ((lambda (even? odd?)

(lambda (n)

(if (zero? n) #f

(even? (- n 1))))) even? odd? )

and can be solved using Curry’s multiple fixed-point com-

binators, where n = 2, and i = 1, 2:

(define E

(lambda (even? odd?)

(lambda (n)

(if (zero? n) #t

(odd? (- n 1))))))

(define O

(lambda (even? odd?)

(lambda (n)

(if (zero? n) #f

(even? (- n 1))))))

(define even? (Ycurry12 E O))

(define odd? (Ycurry22 E O))

(3)

The aim of the next section is to show how we can con-
struct a variadic version of Curry’s multiple fixed-point
combinator that can be used to define any number of re-
cursive mutually-recursive procedures.

4. A VARIADIC MULTIPLE FIXED-
POINT COMBINATOR

Expr. (Expr. (2)) specifies Ycurryin for any i, n, such that
1 ≤ i ≤ n. For different choices of i, n, we would get a
different procedure, and as n grows, each procedure gets
progressively larger and more complex. This could be
a real problem, for example, if we were to use multiple
fixed-point combinators to expand letrec-expressions: We
would need many different multiple fixed-point combina-
tors, for many different values of n, even in a moderately-
large program. We could, of course, hide the multiple
fixed-point combinators through the use of a macro, but we
couldn’t hide the code bloat that would follow from the cre-
ation of a large number of these ever-growing “recursion-
makers.”

We address this issue by constructing a variadic multiple
fixed-point combinator in Scheme. Variadic procedures,
used together with the builtin procedures apply and map,
form the basis for our programming idioms for working
with meta-linguistic ellipsis in Scheme.

Throughout the rest of the section we are going to em-
ploy the following conventions, or rules, for converting
“meta-linguistic Scheme” into actual Scheme:

Argv Lists of arguments will be written in Scheme as a
single variable named in the plural. For example,
x1 · · · xn and f1 · · · fn will be written as xs and fs

respectively.

AbsArgv An abstraction over a list of arguments will be
written in Scheme using a variadic lambda. For ex-
ample: (lambda (f1 · · · fn) M) will be written as
(lambda fs M ).

AppArgv An application of a procedure to a list of ar-
guments will be written as an application of the
Scheme procedure apply to the procedure and the
variable denoting the list of arguments. For exam-
ple: The expression (xi x1 · · · xn) will be written
as (apply xi xs).

IndAbsArgv A list of expressions that is indexed by
some variable (e.g., (xi x1 · · · xn), which is in-
dexed by xi = x1 · · · xn) will be written in



72

the following way: We shall consider a “repre-
sentative member” indexed by some variable, and
then abstract over that variable and map the
resulting procedure over the indexing set, using
the map procedure. For example, the list of
terms (apply x1 xs) · · · (apply xn xs) will be
obtained by considering the “representative member”
(apply xi xs), abstracting over xi , and mapping
the resulting procedure over xs, giving

(map (lambda (xi) (apply xi xs)) xs)

Recall YCurry
n

i
, the variadic extension of Curry’s fixed-

point combinator, in Scheme (Expr. (2)):

(lambda (f1 · · · fn)

((lambda (x1 · · · xn)

(fi (lambda args

(apply (x1 x1 · · · xn) args))

· · ·
(lambda args

(apply (xn x1 · · · xn) args))))

(lambda (x1 · · · xn)

(f1 (lambda args

(apply (x1 x1 · · · xn) args))

· · ·
(lambda args

(apply (xn x1 · · · xn) args))))

· · ·

(lambda (x1 · · · xn)

(fi (lambda args

(apply (x1 x1 · · · xn) args))

· · ·

(lambda args

(apply (xi x1 · · · xn) args))

· · ·
(lambda args

(apply (xn x1 · · · xn) args))))

· · ·
(lambda (x1 · · · xn)

(fn (lambda args

(apply (x1 x1 · · · xn) args))

· · ·
(lambda args

(apply (xn x1 · · · xn) args)))))))

The various representative sub-expressions we will consider
are enclosed in nested frames.

Starting with the innermost frame, for any xi =
x1 . . . xn, the application (xi x1 · · · xn) is written, us-
ing the AppArgv rule, as

(apply xi xs) (4)

Moving outward, towards the next enclosing frame, we ap-
ply to Expr. (4) the variadic version of the η-expansion in
order to make sure that our fixed points reduce properly
under applicative order:

(lambda args

(apply (apply xi xs) args))

(5)

Note that the above expression is indexed by xi (that is,
xi is a free variable that ranges over a list) in Expr. (5),
and we need to obtain the list of such expressions for each
xi = x1 · · · xn. Using the IndAbsArgv rule, we abstract
xi over Expr. (5) and map the resulting procedure over
the list xs. The list of applications is therefore given by

(map (lambda (xi)

(lambda args

(apply (apply xi xs) args))) xs)

(6)

Moving outward towards the next enclosing frame, we see
that Expr. (6) forms the list of arguments to fi (which
is also a free variable that ranges over a list). Using the
AppArgv rule, the application is written out using apply:

(apply fi

(map (lambda (xi)

(lambda args

(apply

(apply xi xs) args))) xs))

(7)

Moving outward, towards the next enclosing frame, we see
that Expr. (7) is the body of an abstraction over x1 · · · xn.
Using the AbsArgv rule, we encode this abstraction using
a variadic lambda with the parameter xs:

(lambda xs

(apply fi

(map (lambda (xi)

(lambda args

(apply

(apply xi xs) args))) xs)))

(8)

Moving outward, towards the next enclosing frame, we see
that Expr. (8) is indexed by fi (that is, fi is a free vari-
able that ranges over a list) in Expr. (8), and we need to
obtain the list of such expressions for each xi = x1 . . . xn.
Using the IndAbsArgv rule, we abstract fi over Expr. (8)
and map the resulting procedure over the list fs. The list
of applications is therefore given by

(map (lambda (fi)

(lambda xs

(apply fi

(map (lambda (xi)

(lambda args

(apply (apply xi xs) args)))

xs))))

fs)

(9)

The above expression corresponds to the list x1 · · · xn.
The next step is to compute the list of multiple fixed
points: For any particular i ∈ {1, . . . , n}, the i-th fixed-
point combinator YCurry

n

i
is given by (xi x1 · · · xn),

which, in Scheme would be written as (apply xi xs).
Using the IndAbsArgv rule, to obtain the list of all
such terms, for each xi = x1 . . . xn, we abstract xi over
Expr. (9) and map the resulting procedure over the list
xs. This is the second time we have referred to the list
x1 · · · xn in this step, so rather than compute it twice, we
bind its value to the identifier xs, using a let-expression,
the body of which will be:

(map (lambda (xi)

(apply xi xs)) xs)



73

Using the AbsArgv rule, we now abstract over f1 · · · fn

using a variadic lambda, and define the procedure
curry-fps that takes any number of procedures and re-
turns a list of their multiple fixed points:

(define curry-fps

(lambda fs

(let ((xs

(map

(lambda (fi)

(lambda xs

(apply fi

(map

(lambda (xi)

(lambda args

(apply (apply xi xs) args)))

xs))))

fs)))

(map (lambda (xi)

(apply xi xs)) xs))))

(10)

On the other hand, if we are only interested in YCurry
n

1
,

for example, for the purpose of macro-expanding letrec-
expressions without using side-effects, then we can simplify
the body of the let-expression in Expr. (10) so that we just
compute the first fixed point:

(define curry-fps-1n

(lambda fs

(let ((xs

(map

(lambda (fi)

(lambda xs

(apply fi

(map (lambda (xi)

(lambda args

(apply

(apply xi xs) args)))

xs))))

fs)))

(apply (car xs) xs))))

(11)

For example, consider the general letrec-expression,
where M 1, . . . ,M n denote the definitions of the procedures
f1, . . . , fn respectively, and Expr

1
, . . . ,Expr

m
denote the

expressions in the body of the letrec:

(letrec ((f1 M 1)
...

(fn M n))

Expr
1
· · ·Expr

m
)

Using curry-fps-1n, the above expression can be rewrit-
ten, without side effects, using the fresh variable body, as
follows:

(curry-fps-1n

(lambda (body f1 · · · fn) Expr
1
· · ·Expr

m
)

(lambda (body f1 · · · fn) M 1)
...

(lambda (body f1 · · · fn) M n))

5. RELATED WORK
In his book LISP In Small Pieces [8, Pages 457–458],
Queinnec exhibits the Scheme procedure NfixN2, that is
a variadic, applicative-order multiple fixed-point combina-
tor. The NfixN2 procedure, along with a help procedure
are given below:

(define NfixN2

(let ((d

(lambda (w)

(lambda (f*)

(map

(lambda (f)

(apply f

(map

(lambda (i)

(lambda a

(apply

(list-ref ((w w) f*)

i)

a)))

(iota 0 (length f*)))))

f*)))))

(d d)))

(define iota

(lambda (start end)

(if (< start end)

(cons start (iota (+ 1 start) end))

’())))

(12)

While Queinnec’s construction certainly works, it strikes
us as unnatural in the context of Scheme:

The name of the iota help procedure comes from the
programming language APL, where, given an integer ar-
gument n, the monatic iota function returns the vec-
tor of integer in the range 1, . . . , n. The above im-
plementation of iota in Scheme takes two integers start

and end, and returns the list of integers in the range
of start , . . . , end − 1. A common programming idiom
in APL is to de-reference a vector v by another vector
w of indecies into v, to obtain a permuted sub-vector
of v that is the same size as w. We note the use
of this idiom in the procedure NfixN2, where the list
(iota 0 (length f*)) is used as a list of indecies for ex-
tracting elements from the list returned by ((w w) f*),
and is used to construct a new list in the expression
(map (lambda (i) · · · ) (iota 0 (length f*))). In
fact, the procedure NfixN2 could be coded directly and
concisely into DyalogAPL [5], a dialect of APL2 that sup-
ports closures and higher-order functions.

Furthermore, the construction of the variadic fixed-point
combinator is not a natural extension of one of the familiar
singular fixed-point combinators, e.g., Curry’s or Turing’s
fixed-point combinators. This is probably due to the use
of APL idioms in the code.

We feel that from a pedagogical point of view, it would
be better to exhibit a variadic fixed-point combinator that
is a natural extension of one of the familiar singular fixed-
point combinators, in a way that would be both systematic
and native to Scheme.

The natural idioms for working with variadic procedures
are apply and map. By sticking to these procedures and de-



74

clining the temptations to use other procedures and other
metaphors, we obtained a construction for multiple fixed-
point combinator that corresponds rather faithfully to the
extension of Curry’s fixed-point combinator to n multiple
fixed-point equations.

An additional benefit is efficiency: While fixed-point
combinators in Scheme are not normally evaluated by their
efficiency (but rather by applicative order call-by-value),
and while this remark is not intended to be a sales pitch
for super-fast, super-efficient fixed-point combinators, it
should not be surprising that when we adhere to program-
ming metaphors that are natural for a given language, we
are often rewarded by better execution times. The NfixN2

(Expr. (12)) procedure presented in Section 5 uses a vari-
ant of the iota function in APL in order to generate in-
dices, repeatedly, with each recursive call. But generating
indices is only half the problem: The individual functions
are then accessed using list-ref, which traversing a list
of functions at linear time. This suggests that the aver-
age time to access a function will increase as the number
of mutually recursive functions grows. Empirical evidence
suggests that this is indeed the case.

We ran two kinds of tests: Firstly, we tried to see how
the two variadic fixed-point combinators would perform on
a set of mutually-recursive functions, as the input grew.
Secondly, we tried to see how the two variadic fixed-point
combinators would perform when the number of mutually-
recursive functions was increased.

Below, we tabulated the CPU time (in milliseconds, un-
der Petite Chez Scheme running on a dual UltraSPARC-II
with 1G RAM) for evaluating the mutually-recursive even?
and odd? procedures for various input values (given by N):

N curry-fps NfixN2

103 10 30
104 70 250
105 760 2,430
106 7,500 24,650
107 74,810 242,570

In order to test execution speeds as the number
of mutually-recursive procedures changed, we created a
Scheme procedure that given an integer argument n cre-
ates n mutually-recursive procedures. We started with the
standard definition of Ackermann’s function:

(lambda (a b)

(cond ((zero? a) (+ b 1))

((zero? b) (ack (- a 1) 1))

(else (ack (- a 1)

(ack a (- b 1))))))

We duplicated this definition n times, numbering each
instance sequentially. Then, for each call to ack in the
body of each of the instances of ack, we randomly select
one of the numbered instances. We then use the same n

mutually-recursive procedures to time the computation of
Ackermann(3, 5) using both variadic multiple fixed-point
combinators.

The table below lists the CPU time (again, milliseconds,
under Petite Chez Scheme running on a dual UltraSPARC-

II with 1G RAM) for evaluating mutually-recursive ver-
sions of Ackermann’s function, as the number of mutually-
recursive procedures (given by N) varies.

N curry-fps NfixN2

1 320 570
2 390 1,160
3 390 1,910

10 770 14,280
20 1,240 51,670
30 1,770 112,050

100 5,640 1,199,370
200 12,650 5,020,170
300 18,970 > 12 hours

1000 99,929 —

It is clear that using either NfixN2 or curry-fps to de-
fine a large set of mutually-recursive procedures will result
in performance penalties that are proportional to the num-
ber of procedures, however it is also clear that using the
built-in support for working with lists of arguments (i.e.,
apply, map and variadic procedures) is superior to picking
individual elements explicitly.

6. CONCLUSION
We presented a systematic construction for an applicative-
order variadic multiple fixed-point combinator in Scheme.
Starting out with Curry’s singular fixed-point combina-
tor, we considered the extension to multiple fixed-point
equations, parameterized by the number of equations and
the index of the fixed point. Using variadic lambda-
expressions, and the elementary procedures for working
with lists of arguments (apply, map), we were able to for-
mulate four rules, or conventions, for converting Scheme
expressions written with meta-linguistic ellipses (‘· · · ’) into
actual Scheme code. This enabled us to define a multiple
fixed-point combinator without having to specify the num-
ber of equations. The value returned by this procedure is
the list of all the fixed points.

This variadic multiple fixed-point combinator directly
corresponds to the multiple fixed-point extension of
Curry’s singular fixed-point combinator.

7. ACKNOWLEDGMENTS
This work was supported in part by the Danish Research
Academy. The author is grateful to BRICS2 for hosting
him and for providing a stimulating environment. Thanks
are also due to Olivier Danvy for his invaluable suggestions
and encouragement, and to the referees, whose comments
and suggestions on an earlier version of the manuscript did
much to improved the paper.

APPENDIX

A. SAMPLE RUN

2Basic Research in Computer Science (www.brics.dk),
funded by the Danish National Research Foundation.



75

We encode the procedures even? and odd? in Scheme
(Exprs. (3)) using the variadic curry-fps procedure (de-
fined in Expr. (10)) for computing the list of multiple fixed
points.

;;; defining the Even functional:

> (define E

(lambda (even? odd?)

(lambda (n)

(if (zero? n) #t ; return Boolean True

(odd? (- n 1))))))

;;; Defining the Odd functional:

> (define O

(lambda (even? odd?)

(lambda (n)

(if (zero? n) #f ; return Boolean False

(even? (- n 1))))))

;;; Finding the list of fixed points:

> (define list-even?-odd? (curry-fps E O))

> (define even? (car list-even?-odd?))

> (define odd? (cadr list-even?-odd?))

> (even? 6)

#t

> (odd? 4)

#f

B. REFERENCES
[1] Harold Abelson and Gerald Jay Sussman with Julie

Sussman. Structure and Interpretation of Computer

Programs. The MIT Press, McGraw-Hill Book
Company, Second edition, 1996.

[2] Hendrik P. Barendregt. Functional Programming and
the λ-calculus. In Jan van Leeuwen, editor, Handbook

of Theoretical Computer Science, chapter 7, pages 323
– 363. MIT Press, Cambridge, Massachusetts, 1990.

[3] Hans Bekič. Programming Languages and Their

Definition. Number 177 in Lecture Notes in Computer
Science. Springer-Verlag, 1984.

[4] Haskell B. Curry, Robert Feys, and William Craig.
Combinatory Logic, volume I. North-Holland
Publishing Company, 1958.

[5] Dyadic Systems, Limited. Dyalog APL.
http://www.dyadic.com/.

[6] Daniel P. Friedman and Matthias Felleisen. The

Little LISPer. Science Research Associates, Inc, 1986.

[7] Peter J. Landin. The Mechanical Evaluation of
Expressions. Computer Journal, 6:308–320, 1964.

[8] Christian Queinnec. LISP In Small Pieces. Cambridge
University Press, 1996.



76


