
31

This is Scribe!

Manuel Serrano
Inria Sophia-Antipolis

2004 route des Lucioles - BP 93
F-06902 Sophia Antipolis, Cedex

France
Manuel.Serrano�sophia.inria.fr

http://www.inria.fr/mimosa/Manuel.Serrano

Erick Gallesio
Université de Nice - Sophia Antipolis

930 route des Colles, BP 145
F-06903 Sophia Antipolis, Cedex

France
Erik.Gallesio�unie.fr

http://saxo.essi.fr/

~

gallesio

ABSTRACT

This paper presents Sribe, a funtional programming lan-

guage for authoring douments. Even if it is a general pur-

pose tool, it best suits the writing of tehnial douments

suh as web pages or tehnial reports, API doumentations,

et. Exeuting Sribe programs an produe douments of

various formats suh as PostSript, PDF, HTML, Texinfo

or Unix man pages. That is, the very same program an

be used to produe douments in di�erent formats. Sribe

is a full featured programming language but it looks like a

markup language �a la HTML.

1. INTRODUCTION

Sribe is a funtional programming language designed for

authoring doumentations, suh as web pages or tehnial

reports. It is built on top of the Sheme programming lan-

guage [5℄. Its onrete syntax is simple and it sounds familiar

to anyone used to markup languages. Authoring a doument

with Sribe is as simple as with HTML or L

A

T

E

X. It is even

possible to use it without notiing that it is a programming

language beause of the oniseness of its original syntax:

the ratio markup/text is smaller than with the other markup

systems we have tested.

Exeuting a Sribe program with a Sribe evaluator pro-

dues a target doument. It an be HTML �les that suit web

browsers, L

A

T

E

X �les for high-quality printed douments, or

a set of info pages for on-line doumentation.

Building purely stati texts, that is texts avoiding any kind

of omputation, is generally not suÆient for elaborated

douments. Frequently one needs to automatially produe

parts of the text. This ranges from very simple operations

Permission to make digital or hard copies, to republish, to post on
servers or to redistribute to lists all or part of this work isgranted with-
out fee provided that copies are not made or distributed for profit or
commercial advantage and that copies bear this notice and the full cita-
tion on the first page. To otherwise copy or redistribute requires prior
specific permission. Third Workshop on Scheme and Functional Pro-
gramming. October 3, 2002, Pittsburgh, Pennsylvania, USA.Copyright
2002 Manuel Serrano, Erick Gallesio.

suh as inserting in a doument the date of its last update

or the number of its last revision, to operations that work

on the doument itself. For instane, one may be willing

to embed inside a text some statistis about the doument,

suh as the number of words, paragraphs or setions it on-

tains. Sribe is highly suitable for these omputations. A

program is made of stati texts (that is, onstants in the

programming jargon) and various funtions that dynami-

ally ompute (when the Sribe program runs) new texts.

These funtions are de�ned in the Sheme programming lan-

guage. The Sribe syntax enables a sweet harmony between

the stati and dynami omponents of a program.

Authoring douments with a programming language is of

ourse not a novel idea, and a lot of systems have used this

approah, suh as the T

E

X [8℄ typesetting system. PostSript

[1℄ an also be lassi�ed in this ategory. Even if it is not

generally diretly used for authoring, it represents a dou-

ment as a program whose exeution yields a set of printed

pages.

On the other side, solutions based on the SGML [2℄ or XML

[3℄ formats propose a model where all the omputations on a

doument are expressed outside of the doument itself. For

instane, the DOM [20℄ approah extols a strit dihotomy

between douments and programs. This dihotomy is pre-

sented as a virtue by its proponents, but it is our opinion

that it makes simple douments harder to ode than with a

general linguisti tool beause it requires the usage of sev-

eral di�erent languages with di�erent semantis and di�er-

ent syntax.

With the development of dynami ontent web sites, a great

number of intermediate solutions based on programming

languages have been proposed. These solutions generally

onsist in giving a way to embed alls to a programming

language inside a doument. PHP [9℄ is probably the most

representative of this kind. A doument is a mix of text and

ode expressed with di�erent syntaxes. This implies that

the author/programmer must deal at the very same time

with the underlying text markup system as well as the pro-

gramming language. Furthermore, these tools do not permit

to reify a doument struture and are generally limited to

the prodution of web pages only.

The approah we propose is inspired by the LAML system

32

[12℄ whih uses Sheme as a markup language. In LAML

as in Sribe, a doument is a program and its evaluation

yields its �nal form. Both languages permit the user to type-

set douments using an unique syntax. However, LAML is

limited to the prodution of HTML, whereas, as said before,

the evaluation of a Sribe program an produe several out-

put formats.

In Setion 2 we present an overview of the Sribe system for

authoring simple stati douments. We show that a Sribe

program looks like a doument spei�ed in a markup lan-

guage. A more omplex usage of the language is shown in

Setion 3, where some simple text generations are done, as

well as some text inlusions built by introspeting the do-

ument itself. Setion 4 shows various ustomizations that

an take plae during the exeution of a Sribe program.

Finally, we ompare in Setion 5 Sribe with various tools

or programming languages used for authoring douments.

2. SCRIBE OVERVIEW

This setion presents an overview of the Sribe program-

ming language and its implementation. First, the syntax is

presented in Setion 2.1. Then, in Setion 2.2, the struture

of a program is presented. Finally, Setion 2.3 ontains some

few words about the urrent state of the Sribe implemen-

tation.

2.1 Sc-expressions

We have designed the Sribe syntax so that it as unobtru-

sive as possible. We have found of premium importane to

minimize the weight of meta information when authoring

doumentations. A omplex syntax would prevent it to be

used by non omputer sientists. A Sribe program is a list

of expressions (S-expression heneforth) that are extended

S-expressions [11℄. An S-expression is:

� An atom, suh as a string or a number.

� A list of S-expressions.

� A text.

Atomi expressions and lists are regular Sheme expressions.

A text is a sequene of haraters enlosed inside square

brakets. This is the sole extension to the standard Sheme

reader. The braket syntax is very similar to the standard

quasiquote Sheme onstrution. In Sheme, the quasiquote

syntax allows to enter omplex lists by automatially quoting

the omponents of the list. It is to be used in onjuntion of

the omma operator that allows to unquote the expressions.

For instane, the Sheme form:

`(ompute pi = ,(* 4 (atan 1)))

is equivalent to the expression:

(list 'ompute 'pi '= (* 4 (atan 1)))

whih evaluates to:

(ompute pi = 3.1415926535898)

The Sribe braket form ollets all the haraters between

the brakets in a list of haraters strings. Computations

inside brakets are handled by the haraters sequene \,(".

For instane, the text:

[text goodies: ,(bold "bold") and ,(it "itali").℄

is parsed by the Sribe reader as:

(list "text goodies: " (bold "bold")

"and" (it "itali") ".")

The Sribe syntax is unobtrusive, and easy to typeset with

an editor aware of Lisp-like syntax, suh as Emas. Do-

uments expressed in Sribe are also generally shorter to

type-in than their ounterpart expressed in lassial format-

ting languages. For instane, the size of the Sribe soure

�les of this paper is about 42,200 haraters long, whereas it

is 53,000 haraters in L

A

T

E

X and 72,000 in HTML. Even if

it is somehow unfair to ompare hand-written ode against

generated ones, these �gures give the intuition of the om-

patness of Sribe programs. The idea of extending a stan-

dard Sheme reader for text proessing omes from the BRL

system [10℄.

2.2 Scribe as a markup language

In this setion, we present how to build a doument using

Sribe. As said before, programming skill is not needed to

produe a doument. In fat, non programmer writers an

see Sribe as a simple doument formatting system suh as

HTML or nro� [14℄.

Sribe provides an extensive set of pre-de�ned markups.

These roughly orrespond to the HTML markups. The goal

of this setion is to give an idea of the look and feel of this

system. It will avoid the tedious presentation of an extensive

enumeration of all the markups available. For a omplete

manual of Sribe, interested readers an have a look at

http://www-sop.inria.fr/mimosa/fp/Sribe.

2.2.1 Scribe Markups

A Sribe markup is lose to an XML element. The at-

tributes that an appear inside an XML element are repre-

sented by Sheme keywords. They are identi�ers whose �rst

(or last harater) is a olon. Sheme keywords have been

introdued by DSSSL [4℄, the tree manipulation language

assoiated to SGML. So, the following XML expression:

<elmt1 att1="v1" att2="v2">

Some text <elmt2>for the example</elmt2>

</elmt1>

is represented in Sribe as:

(elmt1 :att1 v1 :att2 v2

[Some text ,(elmt2 [for the example℄)℄)

33

2.2.2 Document Structure

As said before, a Sribe program onsists in a list of S-

expressions. Among these, the doument one serves a speial

purpose. It is used to represent the omplete doument. All

the subdivisions of a doument must appear as arguments

of the doument all. So, the general struture of a Sribe

doument looks like:

<s-expr>

...

(doument :title <s-expr> :author <s-expr>

(abstrat <s-expr>)

(setion :title <s-expr>

...

(subsetion :title <s-expr>)

...

(subsetion :title <s-expr>)

...)

...

(setion :title <s-expr>))

As we an see, all the setioning omponents of a doument

are embedded in their ontaining omponent (i.e. subse-

tions are embedded in setions, setions are inside hapters,

and so on). This strit nesting of doument omponents is

partiularly useful when one wants to do introspetion on

the struture of the doument, as we will see in Setion 3.2.

2.2.3 Scribe standard library

Sribe is provided with the usual funtions for text pro-

essing. Some of these are presented here.

The Lists o�ered in Sribe are lassial: itemization, enu-

meration and desription. For instane, the following ex-

pression:

(itemize (item [A first item.℄)

(item [A ,(bold "seond") one.℄)

(item (desription

(item :key (bold "foo")

[is a usual Lisp identifier.℄)

(item :key (bold "bar")

[is another one.℄)))

(item (enumerate (item "One.")

(item "Two."))))

produes the following output text:

� A �rst item.

� A seond one.

� foo is a usual Lisp identi�er.

bar is another one.

� 1. One.

2. Two.

Of ourse, all the usual text ornaments are available in

Sribe, that is one an easily produe text in bold, itali,

underline or ombine them.

The Sribe standard library also o�ers the usual tools for

inter and intra doument referenes, footnotes, tables, �g-

ures, ... It provides also an original onstrution, the prgm

markup, to pretty-print odes or algorithms. In ontrast

with previous systems suh as L

A

T

E

X there is no need, in

Sribe to use external pre-proessors suh as SLaTex [17℄

and Lisp2TeX [15℄ for pretty-print programs inside texts.

The prgm form takes as an option the language in whih

the ode is expressed and its evaluation yields a form that

is the pretty-printed version of this ode. For instane, the

following all

(prgm :language (from-file "ex/C-ode."))

produes the following output

int main(int arg, har **argv) f

/* A variant of a lassial C program */

printf("Hello, Sribe\n");

return 0;

g

if the C program soure is loated in �le ex/C-ode..

2.3 Front-ends and Back-ends

The urrent version of Sribe whih is available at http:/-

/www-sop.inria.fr/mimosa/fp/Sribe ontains two front-

ends whih are used to translate existing doument soures

into Sribe douments:

� sribeinfo ompiles Texinfo into Sribe. An exam-

ple of suh a ompilation an be browsed at http:/-

/www.inria.fr/mimosa/fp/Bigloo/do/r5rs.html. It

is an on-line version of the Sheme de�nition, automat-

ially produed from a Texinfo soure.

� sribebibtex translates Bibtex bibliography databases

into Sribe soures. This tool is, for instane, used to

produe the bibliographi referenes of this paper.

Sribe an produe various kinds of doument formats.

Currently �ve bak-ends are supported:

� HTML: It is extensively used on the Sribeweb page.

� PS or PDF (via L

A

T

E

X): That is, for instane, used

to produe the PostSript version of this paper.

� Man: whih is the format of Unix \man pages".

� Text: whih is a plain text format.

� Info: whih is the format of the Emas doumenta-

tion.

Sribe user programs are independent of the target for-

mats. That is, using one unique program, it is possible to

produe an HTML version, and a PostSript version, and

an ASCII version, et. The Sribe API is general purpose.

34

It is not impated by spei� output formats. Independene

with respet to the �nal doument format does not limit

the expressiveness of Sribe programs beause spei�ities

of partiular formats are handled by dediated bak-ends.

Bak-ends are free to �nd onvenient ways to implement

Sribe features. For instane, intra doument referenes

are handled di�erently by the HTML bak-end and the T

E

X

bak-end. In HTML, they appear as hyper-links whose text

is the title of the setion. In T

E

X they appear as setion

numbers. An output target may even not support some

Sribe features. In that ase, the bak-end ould possibly

omit them (for instane, �gures in ASCII formats, or dialog

boxes in PostSript douments).

When ustomization of the produed douments is required,

the Sribe hook form must deployed. It enables to insert

haraters in the �nal doument. Coupled with onditional

evaluation, the hook form an be used to implement �ne

grain tuning aware of the idiosynrasies of the target format

(see Setion 3.3).

3. DYNAMIC TEXTS

We show in this setion various situations where dynami

texts, that is texts not written as is in the Sribe soures,

an be used when authoring douments. We have isolated

two kinds of omputations. The ones that produe some

parts of the doument being proessed (Setion 3.1). The

ones that involve introspetion on the soure text (Setion

3.2). These omputations orrespond to two di�erent eval-

uation stages of the Sribe evaluator. The �rst ones are

front-end omputations that take plae at the very begin-

ning of the exeution of a program. The seond ones are

bak-end omputations that take plae at the very end of

the exeution while an internal representation of the whole

Sribe program has been loaded in memory.

3.1 Computing Sc-expressions

Many typesetting systems suh as L

A

T

E

X enable users to de-

�ne onveniene maros. In its simplest form, a maro is

just a name that is expanded into, or replaed with, a text

that is part of the produed doument. Maros are imple-

mented in Sribe by the means of funtions that produe

S-expressions. For instane, a maro de�ning the typeset-

ting of the word \Sribe" is used all along this paper. It is

de�ned as follow:

(define (Sribe.tex)

(s "Sribe"))

That an be used in a S-expression suh as:

[This text has been produed by ,(Sribe.tex).℄

That produes the following output:

\This text has been produed by Sribe."

The funtion Sribe.tex is overly simple beause it merely

inserts in the Sribe program one new string eah time it is

alled. Sometimes we need to ompute more omplex parts

of a doument and some texts are better to be omputed.

Either beause they ontain pattern repetitions or beause

they are the result of the evaluation of an algorithm, suh

as the table of Figure 1.

n= fat

3 6

4 24

5 120

6 720

7 5040

8 40320

9 362880

10 3628800

11 39916800

Figure 1: Fatorial

This table an be statially delared in a program using a

S-expression suh as:

(table :border 1

(tr (th "n=") (th "fat"))

(tr (td :align 'enter (bold 3))

(td :align 'right (it 6)))

(tr (td :align 'enter (bold 4))

(td :align 'right (it 24)))

(tr (td :align 'enter (bold 5))

(td :align 'right (it 120)))

(tr (td :align 'enter (bold 6))

(td :align 'right (it 720)))

(tr (td :align 'enter (bold 7))

(td :align 'right (it 5040)))

(tr (td :align 'enter (bold 8))

(td :align 'right (it 40320)))

(tr (td :align 'enter (bold 9))

(td :align 'right (it 362880)))

(tr (td :align 'enter (bold 10))

(td :align 'right (it 3628800)))

(tr (td :align 'enter (bold 11))

(td :align 'right (it 39916800))))

Obviously the table onstrution an be automated. The

fatorial values an be omputed and the table rows an be

generated. Unlike many other markup languages, Sribe

enables this omputation to take plae inside the doument

itself. Let us assume the standard de�nitions for the upto

and fat funtions:

(define (upto min max)

(if (= min max)

(list max)

(ons min (upto (+ min 1) max))))

(define (fat n)

(if (< n 2)

n

(* n (fat (- n 1)))))

The generation of the fatorial table requires two additional

Sribe funtions. The �rst one builds table rows:

(define (make-fat-row n)

(tr (td :align 'enter (bold n))

(td :align 'right (it (fat n)))))

35

The seond one is in harge of reating the table:

(define (make-fat-table n)

(apply table :border 1

(tr (th "n=") (th "fat"))

(map make-fat-row (upto 3 n))))

3.2 Computing Sc-ast

.html

.ps

Sc−expr Sc−ast
.scr

Scribe Evaluator.bib

.texi

.html

A B

C

D

E F

G

.tex

... ...

.pdf

Figure 2: The Sribe proess

The evaluation of a Sribe program involves three steps

(see Figure 2):

� First, the soure �le is read and represented as a list

of S-expressions (edge \A").

� Seond, the S-expressions are evaluated using the stan-

dard Sribe library. This produes an abstrat syntax

tree named S-ast (edge \B").

� Third, the S-ast is translated into the target format

i.e., HTML, L

A

T

E

X , ... (edges \C" and \D").

The omputations previously presented in Setion 3.1 take

plae on the edge \E". This setion fouses now on the om-

putations that are involved on edges \F" and \G".

Frequently some parts of a doument may refer to the dou-

ment itself. For instane, introspetion is needed to ompute

a table of ontents. Sribe is provided with introspetion

failities that an be used in user programs. For instane, it

enables the omputation of suh a sentene:

\This doument ontains 9 setions."

The atual number of setions is the result of a user om-

putation. The whole sentene is omputed by the following

S-expression:

[This doument ontains

,(hook :after

(lambda ()

(display (length

(doument-setions*

(urrent-doument))))))

setions.℄

It uses the Sribe library funtion hook whih enables om-

putations to take plae while the S-ast is built, that is on

the edge \F" of Figure 2. The :after argument is a fun-

tion whih is exeuted one the S-ast is translated into the

target format. It prints a string that is inserted in the tar-

get. Obviously, the dynami text of the previous example

annot be omputed earlier in the Sribe evaluation pro-

ess sine the number of setions annot be omputed until

all the setions are built! The funtion of the standard li-

brary urrent-doument returns a struture that desribes

the doument being proessed. The funtion doument-

-setions* returns the list of setions ontained in a do-

ument. Not that, sine the hook funtion enables arbitrary

haraters insertion, it an be used to introdue low level

bak-end ommands suh as T

E

X ommands or HTML om-

mands in the target. For instane, the Sribe ommand

LaTeX whih produes the following \L

A

T

E

X" is implemented

as:

(define-markup (LaTeX)

(if (sribe-format? 'tex)

(hook :after (lambda () (display "\\LaTeX")))

"LaTeX"))

Sometimes, instead of printing haraters into the target,

it is needed that the evaluation of a hook node produes a

fresh S-expression. That is, an expression that has to be

evaluated by the Sribe engine (the edge \G" of Figure 2)

1

.

This is illustrated by the following example. The user fun-

tion doument-tree omputes the hierarhial struture of

a doument. Applied to the urrent doument it produes:

+--ABSTRACT

+--1 Introdution

+--2 Sribe overview

| +--2.1 S-expressions

| +--2.2 Sribe as a markup language

| | +--2.2.1 Sribe Markups

| | +--2.2.2 Doument Struture

| | +--2.2.3 Sribe standard library

| +--2.3 Front-ends and Bak-ends

+--3 Dynami texts

| +--3.1 Computing S-expressions

| +--3.2 Computing S-ast

| +--3.3 Conditional exeution

+--4 Customization

+--5 Related work

| +--5.1 SGML and XML

| +--5.2 Sheme vs. other funtional languages

| +--5.3 LAML

| +--5.4 BRL

| +--5.5 Wash

+--6 Conlusion

+--7 Referenes

+--APPENDIX

Figure 3: Tree

The tree branhes are displayed using a typewriter font and

a layout that preserves spaes and line breaks. The tree

1

Introduing a fresh S-expression in the tree may intro-

due inoherenes for ross-referenes. When iterations are

needed, it belongs to the programmer to implement it.

36

nodes are displayed underlined and in itali. The ompu-

tation involved in doument-tree produes a regular S-

expression that is evaluated by the Sribe engine. This

ensures bak-end independene beause it prevents the hook

all to speify how underline and itali have to be rendered

for eah spei� target format. The funtion doument-tree

is de�ned as:

(define (doument-tree)

(hook :proess #t

:after (lambda ()

(prgm

(make-tree (urrent-doument))))))

The argument :proess #t means that the result of the

appliation of the :after funtion has to be evaluated bak

by the Sribe engine. This funtion onstruts a new S-

expression whih is made of a prgm all. The de�nition of

make-tree is:

(define (make-tree do)

(let loop ((s (sribe-get-hildren do))

(m "")

(f underline))

(if (null? s)

'()

(append (make-row m (ar s) f)

(loop (sribe-get-hildren (ar s))

(string-append m "| ")

it)

(loop (dr s) m f)))))

The funtion make-row is:

(define (make-row m s f)

(list (string-append m "+--")

(f (sribe-get-title s))

"\n"))

The library funtion sribe-get-hildren returns the el-

ements ontained in a setion or a subsetion. The library

funtion sribe-get-title returns the title of a setion or

a subsetion.

In addition to illustrating Sribe introspetion, this exam-

ple also shows how suitable funtional programming lan-

guages are to ompute over texts: the whole implementa-

tion of Figure 3 is a simple reursive traversal of the tree

representing the doument (funtion make-tree).

3.3 Conditional execution

Conditional exeution is required when the text to be pro-

dued depends on some properties of the target format. The

sribe-format? prediate heks whih target format is to

be produed. It is used several times in the paper. For in-

stane, in Setion 3.1 we have presented the de�nition of the

Sribe.tex maro. The atual maro used in the soures

of this paper is slightly more omplex. Instead of rendering

the word \Sribe", when targeting HTML, it introdues a

referene to the Sribe home page. Moreover, beause of

our poor English style, we have also deided to introdue

an URL link only one per setion. So, the atual funtion

used in the paper soure is de�ned as:

(define Sribe

(let ((se #f))

(lambda ()

(if (sribe-format? 'html)

(hook :after

(lambda ()

(let ((s (urrent-setion)))

(if (eq? s se)

(Sribe.tex)

(begin

(set! se s)

(ref :url (sribe-url)

"Sribe")))))

:proess #t)

(Sribe.tex)))))

4. CUSTOMIZATION

A real and pratial programming language is useful when

onsidering ustomizations (in Sribe they usually take plae

in style �les). Sribe ustomizations enable users to hange

the way douments are rendered. They are ubiquitous in the

standard Sribe API. For instane, one may setup the way

a bold text is rendered, on�gure the header and the footer

of the doument, or even de�ne margins. One may also spe-

ify the struture of the produed douments. In this setion

we illustrate how one may bene�t from the expressiveness

of Sribe in order to ahieve omplex ustomizations. In

partiular, we will show how omputers program an be ren-

dered.

Depending of the spei�ed language, Sribe uses di�erent

olors and fonts when rendering omputer programs. The

standard implementation supports several languages suh as

Sribe, Sheme, C, or XML. Computer programs are spe-

i�ed by the prgm markup (see Setion 2.2.3) whih aepts

one optional argument whih is a funtion implementing the

rendering of the program. This funtion is alled a pretty-

printer. One may de�ne its own pretty-printers.

For the sake of the example, let us implement a pretty-

printer for rendering make�les whih uses some olors for

make targets, variables, and omments. In addition, for

bak-ends supporting hyper links (suh as HTML) a ref-

erene to its de�nition is added to the text when a variable

is used. For other bak-ends, variable referenes are under-

lined.

SCRIBE= sribe

SFLAGS= -J style

MASTER= main.sr

INPUT= abstrat.sr intro.sr what.sr why.sr this.sr

EXAMPLE= ex0 ex1 ex2 ex3 ex4 makefile

STYLE= style/loal.sr

main entry

all: sribe.tex

sribe.tex: $(MASTER) $(INPUT) $(STYLE) $(EXAMPLE)

$(SCRIBE) $(SFLAGS) $(MASTER) -o sribe.tex

37

A pretty-printer funtion is a Sribe funtion aepting one

parameter. This formal parameter is bound to a string rep-

resenting the text to be pretty-printed. A pretty-printer

returns a S-expression representing the pretty-printed pro-

gram that must be inluded in the target doument. The

de�nition of the makefile pretty-printer is:

(define (makefile obj)

(parse-makefile (open-input-string obj)))

In order to implement the pretty-printer we are using Bigloo

regular parser [16℄. This mehanism enables a lexial anal-

ysis of harater strings.

(define (parse-makefile port::input-port)

(read/rp

(regular-grammar ()

((: #\# (+ all))

;; makefile omment

(let ((mt (the-string)))

(ons (it mt) (ignore))))

((bol (: (+ (out " \t\n:")) #\:))

;; target

(let ((prompt (the-string)))

(ons (bold prompt) (ignore))))

((bol (: (+ alpha) #\=))

;; variable definitions

(let* ((len (- (the-length) 1))

(var (the-substring 0 len)))

(ons `(list ,(mark var)

(olor :fg "#bb0000" (bold ,var))

,"=") (ignore))))

((+ (out " \t\n:=$"))

;; plain strings

(let ((str (the-string)))

(ons str (ignore))))

((: #\$ #\((+ (out ")\n")) #\))

;; variable referenes

(let ((str (the-string))

(var (the-substring 2 (- (the-length) 1))))

(ons (ref :mark var (underline str))

(ignore))))

((+ (in " \t\n:"))

;; separators

(let ((nl (the-string)))

(ons nl (ignore))))

(else

;; default

(let (((the-failure)))

(if (eof-objet?)

'()

(error "prgm(makefile)"

"Unexpeted harater"

)))))

port))

5. RELATED WORK

In this setion we ompare Sribe and other markup lan-

guages. We also ompare it with other e�orts for handling

texts in funtional programming languages.

5.1 SGML and XML

As stated in [3℄ \XML, the Extensible Markup Language, is

W3C-endorsed standard for doument markup. It de�nes a

generi syntax used to mark up data with simple, human-

readable tags. It provides a standard format for omputer

douments". In other words, XML is a mean to speify

external representations for data strutures. It is a mere

formalism for speifying grammars. It an be used to repre-

sent texts but this is not its main purpose. The most pop-

ular XML appliation used for representing texts (hene-

forth XML texts) is XHTML (a reformulation of HTML

4.0). XML an be thought as a simpli�ation of SGML.

They both share the same goals and syntax.

The fundamental di�erene between XML and Sribe is

that the �rst one is de�nitely not a programming language.

In onsequene, any proessing (formating, rendering, ex-

trating) over XML texts requires one or several external

tools using di�erent programming languages whih appear

to be, most of the time, Java, Tl, and C. A vast e�ort has

been made to provide most of the funtional programming

languages with tools for handling XML texts. It exists XML

parsers for mostly all funtional programming languages.

Haskell has HaXml [19℄, Caml has Px and Tony, and Sheme

has SSax [7℄.

In addition to parsers, Sheme has also SXML [6℄ whih is

either an abstrat syntax tree of an XML doument or a on-

rete representation using S-expressions. SXML is suitable

for Sheme-based XML authoring. It is a term implementa-

tion of the XML doument.

The doument style semantis and spei�ation language

(aka DSSSL [4℄) de�nes several programming languages for

handling SGML appliations. The DSSSL suite plays ap-

proximatively the same role as XML XSLT, DOM and SSAX

do: it enables parsing and omputing over SGML dou-

ments. The DSSSL languages are based on a simpli�ed ver-

sion of Sheme.

XEXPR [21℄ is a sripting language that uses XML as its

primary syntax. It has been de�ned to easily embed sripts

inside XML douments and overomes the usage of an ex-

ternal sripting language in order to proess a doument.

The language de�nes itself to be very lose to a typial Lisp

or ombinator-based language where the primary means of

programming is through funtional omposition. XEXPR al-

lows the de�nition of funtions using the<define> element.

Hereafter is a de�nition of the fatorial funtion expressed

in XEXPR:

<define name="fatorial" args="n">

<if>

<lt><n/>2</lt>

<n/>

<multiply>

<n/>

<fatorial>

<substrat><n/>1</substrat>

</fatorial>

</multiply>

</if>

</define>

whih must be ompared with the Sheme version given in

Setion 3.1. Obviously, writing by hand large sripts seems

hardly ahievable in XEXPR. Furthermore, a areful reading

38

of the report de�ning this language seems to indiate that

there is no way to manipulate the doument itself inside

an XEXPR expression. The language seems then limited

to simple text generations inside an XML doument, as the

ones presented Setion 3.1

Besides deploying one unique formalism and syntax for au-

thoring douments we have found that Sribe enables more

ompat soures than XML (see Setion 2.1). The Sribe

syntax is less verbose than the XML one mainly beause the

losing parenthesis of a S-expression is exatly one hara-

ter long when it is usually muh more in XML.

5.2 Scheme vs. other functional languages

We have hosen to base Sribe on Sheme mainly beause

its syntax is genuinely lose to traditional markup languages.

Suh as XML, the Sheme syntax is based on the represen-

tation of trees. The modi�ations to apply to the Sheme

grammar are very limited and simple. This makes this lan-

guage suitable for text representation. The other funtional

languages suh as, Caml and Haskell, rely on LALR syntaxes

that do not �t the markup look-and-feel.

In addition, we think that the Sheme type system is an

advantage for Sribe programs. It is onvenient to dispose

of fully polymorphi data types. As presented in Setion 2.1,

an S-expression an be a list whose elements are of di�erent

types. For instane, the �rst element of suh a list ould be

a harater string and the next one a number. This enables

ompat representation of texts. If the underlying language

imposes a stronger typing system, the soure program, that

is the user text, will be polluted with ast operations that

transform all the values into strings.

We have onsidered using a all-by-name semantis for Sri-

be funtion appliation in order to implement the nesting

of S-expressions. As presented in Setion 3.2 the Sribe

library proposes introspetion funtions. For instane, the

doument-setions* returns the list of setions ontained

in a doument strutured suh as:

(doument ...

(hapter ...)

(hapter

...

(setion ...)

...)

...)

The ontainer nodes (representing douments, hapters, se-

tions, ...) of the S-ast are provided with pointers to the

hildren they ontain and vie versa. Sine laziness enables

to postpone the omputation of expressions until they are

required, it an be used to delay the evaluation of inner ele-

ments of a doument until the whole doument is delared.

We have obtained the same e�et by adding a seond traver-

sal of the S-ast (see 3.2).

5.3 LAML

LAML (Lisp as a Markup Language) [13℄ is an attempt to

use Sheme as a markup language. It mirrors the HTML

markups in Sheme. That is, for eah HTML markup there

is a orresponding Sheme funtion in LAML. The HTML

doument:

<html>

<head><title>An example</title></head>

<body>

This is an HTMLexample.

</body>

</html>

is mirrored in LAML as:

(html

(head (title "An example"))

(body (br)

"This is an" (em "HTML") "example."

(br)))

So, LAML and Sribe are very lose. They rely on the

natural Sheme syntax and they both onsider a doument

as a program. However, there is two important di�erenes

between them:

� The syntax: Sribe uses an extended Sheme syntax.

As presented Setion 2.1, it introdues the [...℄ no-

tation that, as we have shown, enables ompat soure

texts.

� The S-ast: The evaluation of a LAML funtion all

diretly produes an HTML expression. For instane,

the de�nition of the LAML em funtion of the previous

example is:

(define (em str)

(string-append "" str ""))

Contrarily to Sribe, LAML does not build a tree rep-

resenting the text to be generated. This diret map-

ping has three drawbaks:

1. LAML soures annot produe other formats than

HTML.

2. It is omplex to implement eÆiently a LAML in-

terpreter. As reported in [12℄, the LAML evalua-

tion proess alloates a lot of strings of haraters.

This exerises intensively the memory manager

(garbage olletion and memory opies). These

string manipulations are totally avoided by Sri-

be. One Sribemarkup alloates one objet that

is a node of the S-ast. This node is used until

the bak-end has ompleted the �le generation.

It never happens that a node nor the haraters

is ontains are dupliated.

3. Introspetion over a LAML doument is omplex.

In partiular, it has to take plae before the string

representing an HTML expression is built. That

is, it has to take plae before LAML funtions are

alled. In other words, LAML is of no help for

omputing on douments. LAML users have to

implement their own data representation before

using LAML funtions.

39

5.4 BRL

The Beautiful Report Language BRL [10℄ de�nes itself as a

database-oriented language to embed in HTML and other

markups. In some extent BRL approah is very similar to

the PHP one: it proposes to mix the text and the program

whih form the doument in the same soure �le. For BRL,

a doument is a sequene of either strings or Sheme ex-

pressions. BRL displays strings as is and evaluates Sheme

expressions. To alleviate doument typesetting using this

onventions, BRL has introdued a new syntax for hara-

ter strings: there is no need to put a quote for a string

starting a �le or terminating a �le. Furthermore, \℄" and

\[" an be used to respetively open and lose a string. So,

℄a string[

is a valid string in BRL. The interest of this notation seems

more evident in a onstrution suh as

The value of pi is [(* 4 (atan 1))℄.

where we have a Sheme expression enlosed between two

strings (\The value of pi is" and \."). However, this

syntax an be sometimes omplex as it is shown in the fol-

lowing exerpt from the referene manual.

[(define rowount (sql-repeat ...)

(brl ℄

<a href="p2.brl?[

(brl-url-args brl-blank? olor)

℄">(brl-html-esape olor)℄

[)))℄

As we an see, BRL is just a sort of preproessor and as suh

it annot be used to do introspetive work on a doument.

5.5 Wash

Wash [18℄ is a family of embedded domain spei� languages

for programming Web appliations. Eah language is em-

bedded in the funtional language Haskell, whih means that

it is implemented as a ombinator library. The basi idea

of Wash is to build a data struture that an be rendered

to HTML text. Beause of the type system of the Haskell

type heker, Wash guarantees the well-formedness of the

generated HTML pages. Using a Haskell interpreter it is

possible with Wash to interatively reate and manipulate

web pages.

If Wash shares with Sribe the onstrution of a data stru-

ture representing the text to be rendered, no e�ort is made

to provide it with a onise syntax. A \hello, word" page

whih is in HTML:

<html>

<head>

<title>Hello, World</title>

</head>

<body>

This is the traditional "Hello, World!" page.

<hr>

</body>

</html>

and that an be implemented in Sribe as:

(define *title* "Hello, World!")

(doument :title "Hello, World" [

This is the traditional ,(begin *title*) page.

,(hrule)℄)

would be written in Wash as:

do head :: HEAD

do head =

make head

`add` (make title `add` "Hello, World")

do body :: BODY

do body =

make body

`add` (make heading 1 `add` title)

`add` ("This is the traditional \""

++ title ++

"\" page.")

`add` make hr

where title = "Hello, World!"

do :: HTML

do = make html `add` do head `add` do body

putStr (show html do)

It is obvious that Wash is designed for programmers. Un-

like Sribe it annot be as easily used in replaement of

traditional markup languages.

6. CONCLUSION

Sribe is a funtional programming language for authoring

various kind of eletroni douments. It an be used to

produe target formats suh as HTML and PostSript. It

relies on an original syntax that makes it looking familiar to

anyone used to markup languages suh as HTML.

We have shown that the evaluation of a Sribe program

involves two separate stages. During the �rst one the soure

expressions are read using the Sribe reader. These expres-

sions are then evaluated using a lassial Sheme interpreter.

This stage produes an internal representation of the soure

program. The seond evaluation stage uses that represen-

tation and, as a onsequene, enables omputations on the

representation itself. That is, during the seond stage a

Sribe program may ompute properties about itself.

Sribe is used on daily basis to produe large douments.

For instane, the whole web page http://www.inria.fr-

/mimosa/fp/Bigloo and the doumentations it ontains are

implemented in Sribe. Obviously, the urrent paper is

a Sribe program. An HTML version an be browsed at

http://www.inria.fr/mimosa/fp/Sribe/do/sribe.html.

40

7. REFERENCES

[1℄ Adobe System In. { PostSript Language Referene

Manual { Addison-Wesley, Readings, Massahusetts,

1985.

[2℄ Goldfarb, C. { The SGML Handbook { Oxford

University Press, 1991.

[3℄ Harold, E.R. and Means W.S. { XML in a nutshell {

O'Reilly , Jan, 2001.

[4℄ ISO/IEC { Information tehnology, Proessing

Languages, Doument Style Semantis and

Spei�ation Languages (DSSSL) { 10179:1996(E),

ISO, 1996.

[5℄ Kelsey, R. and Clinger, W. and Rees, J. { The Revised(5)

Report on the Algorithmi Language Sheme {

Higher-Order and Symboli Computation, 11(1), Sep, 1998.

[6℄ Kiselyov, O. { Implementing Metast in Sheme {

Sheme workshop, Montr�eal, Canada, Sep, 2000.

[7℄ Kiselyov, O. { A better XML parser through

funtional programming. { Pratial Aspets of

Delarative Languages, Portland, Oregon, USA, Jan, 2002.

[8℄ Knuth, D. { The TEXbook, { Addison-Wesley, Readings,

Massahusetts, 1986.

[9℄ Lerdorf, R. { PHP Poket Referene { O'Reilly &

Assoiates, Jan, 2000.

[10℄ Lewis, B { BRL Referene Manual {

http://brl.soureforge.net/2002.

[11℄ MCarthy, J. { Reursive funtions of symboli

expressions and their omputation by mahine { I {

Communiations of the ACM , 3(1), 1960, pp. 184{195.

[12℄ N�rmark, K. { Programming World Wide Web Pages

in Sheme { Sigplan Noties, 34(12), 1999.

[13℄ N�rmark, K. { Programmati WWW authoring using

Sheme and LAML { The Eleventh International World

Wide Web Conferene, Honolulu, Hawaii, USA, May, 2002.

[14℄ Ossana, J. { UNIX Programmer's manual:

Supplementary Douments { 1982.

[15℄ Queinne, C. { Literate programming from Sheme

to TeX { LIX RR 93.05, Laboratoire d'Informatique de l'

Polytehnique, 91128 Palaiseau Cedex, Frane, Nov, 1993.

[16℄ Serrano, M. { Bigloo user's manual { 0169,

INRIA-Roquenourt , Frane, De, 1994.

[17℄ Sitaram, D. { SLaTeX { http://www.s.neu.edu/home-

/dorai/slatex/slatxdo.html.

[18℄ Thiemann, P. { Modeling HTML in Haskell { Pratial

Aspets of Delarative Languages, 2000, pp. 263{277.

[19℄ Wallae, M. and Runiman, C. { Haskell and XML:

Generi Combinators or Type-Based Translation? {

Int'l Conf. on Funtional Programming , Paris, Frane,

1999.

[20℄ World Wide Web Consortium { Doument Objet

Model (DOM) Level 1 Spei�ation { W3C

Reommendation, Ot, 1998.

[21℄ World Wide Web Consortium { XEXPR - A Sripting

Language for XML { W3C Note, Nov, 2000.

APPENDIX

For the sake of the example, we present in this Annex, the

whole Sribe soure ode for the abstrat of this paper:

(paragraph [

This paper presents ,(Sribe), a funtional programming

language for authoring douments. Even if it is a general

purpose tool, it best suits the writing of tehnial

douments suh as web pages or tehnial reports, API

doumentations, et. Exeuting ,(Sribe) programs an

produe douments of various formats suh as PostSript,

PDF, HTML, Texinfo or Unix man pages. That is, the very

same program an be used to produe douments in different

formats. ,(Sribe) is a full featured programming language

but it ,(emph "looks") like a markup language ,(emph "�a la")

HTML.

℄))

This paper has been generated by Sribe (http://www-sop.inria.fr-

/mimosa/fp/Sribe) (via L

A

T

E

X and the ACMpro lass.)

