Ordering Multiple Continuations on the Stack

Dimitrios Vardoulakis Olin Shivers

Northeastern University
dimvar@ccs.neu.edu shivers@ccs.neu.edu

Abstract e The SML/NJ compiler implements exceptions by passing two

Passing multiple continuation arguments to a function in CPS form continuations to each functlon.: one for the normal return point

allows one to encode a wide variety of direct-style control con- and one for the current exception handler.

structs, such as conditionals, exceptions, and multi-return function e ORBIT [5] encodes conditionals as primitives that take two con-

calls. We show that, with a simple syntactic restriction on the CPS tinuations. Instead of having special syntax for if/then/else; O

language, one can prove that these multi-continuation arguments BIT employs a primitive proceduré;i £, with three arguments,

can be compiled into stack frames in the traditional manner. The a boolean and two continuations:

restriction comes with no loss in expressive power, since we can (%if bool continen conteise)

still encode the same control mechanisms. Control branches t@ontnen if the boolean argument is true,
In addition, we show that tail calls can be generalized efficiently and toconteseif it is false. By representing control operators as

for many continuations because the run-time check to determine functions, the compiler can wring even more utility out of its

which continuation to pop to can be avoided with a simple static general capabilities for reasoning about functions. This tech-

analysis. A prototype implementation in Scheme48 shows that our nigue has been explored in detail in the literature [5].

analysis is very precise. The “multi-return calculus” (wr) [12] can be considered a
generalization of the aforementioned Orbit technique. Where
Orbit uses this technique internally, Mg the mechanism is
exported to the language level: the direct-style term language is

Categories and Subject Descriptors F.3.2 [Semantics of Pro-
gramming Languages]: Program Analysis

General Terms Languages, Performance designed to provide the power of passing multiple return points
to user procedures, yet ensure that these return points can be
Keywords flow analysis, continuation-passing style, tail recursion stack allocated. The multi-return mechanism was specifically

designed to fit naturally with an IR that uses multiple continua-
tions to represent the multiple return points.

1. Introduction) , o .

. . . .) Finally, multiple-continuation function calls can be used to
_Contlnua_tlon-passmg styl_e (CPS) has a long _hlstory as a compiler implement “stream processing” computations, such as DSP
intermediate representation [1, 5, 7, 11], going back to Steele’s pipelines [13].

Rabbit compiler [14]. More recently, Kennedy studied the engi-
neering benefits afforded by CPS-based intermediate representa-
tions [4]. When used in compilers, CPS is usually extended in two
ways from the simple form we see in more foundational develop-
ments [8].

First, every element of a CPS term (lambdas, variable refer-
ences, and calls) is statically marked as either a “user” or a “contin-
uation” term. There is a similar user/continuation partition among
dynamic values, which respects the static partition: continuation

These two extensions are a standard part of the lore of engineer-
ing compilers using CPS. However, they raise issues that have yet
to be addressed. First, compiler writers work on the assumption that
statically partitioned CPS allows continuation closures to be treated
as stack frames. The question arises: why is this a safe assumption?
If we only have single-continuation calls, then it is fairly simple
to show that the continuation environment records can be managed
values are produced only from “continuatioR’terms, bound only W'th a L.":O policy. But V‘.’hat happens_when, as is often the case
in practice, we pass multiple continuations across procedure calls?

to “continuation” variables, and invoked only at “continuation” call h i hat th ; > i I
sites; likewise for “user” values. This partition enables the compiler 1N€ compiler assumes that the continuations being passed all lie
on the same stack, and so can all be passed as pointers into that

to produce code that uses a stack to manage procedure calls. Con . > . . .

tinuations are simply procedures whose environment record is aStack. IS this in fact always true? Does it remain true when one lifts

stack frame the idea of multiple return points from a limited, compiler-internal

Second, CPS-based compilers often pass many continuationd€chnique to a general user mechanism, a&in? _

across function calls: Further, when a function call is made, tail recursion requires that
the compiler clear the stack back to the caller's continuation. Even
if it is safe to suppose that all continuation arguments point into the
same stack, the compiler must now pop the stack back to the most
recent of these continuations. At a fixed call site, the continuation

Permission to make digital or hard copie; of all or part' of this work for permnal that is the “high-water” one can vary dynamica”y from call to

classropm use is gralnted without fee provided _that copies are r_mt made oudmtrlb_ call; in these cases, the compiler must emit code to compare the

for profit or commercial advantage and that copies bear this notice and the fubiritati d v adi h K

on the first page. To copy otherwise, to republish, to post on servers or ttritedes contln_uatlons atruntime, in O_r erto cc_)rrect y adjust the stack.

to lists, requires prior specific permission and/or a fee. This paper addresses the issues raised by the demands of stack-

PEPM'11, January 24-25, 2011, Austin, Texas, USA. managing procedure calls in a CPS setting that permits multiple

Copyright© 2011 ACM 978-1-4503-0485-6/11/01. .. $10.00 continuations to be passed across function calls.

¢ First, we describe a reasonable static restriction on CPS that pr € PR == [(A(halt) cal)]
ensures that multiple continuations can be safely passed across ve Var = UVar + CVar
function calls as pointers into a single stack (sections 2-5). u, war € UVar = asetofidentifiers

» Second, we describe a higher-order flow analysis that resolves k, wlar < CLVM - azet of |d82tlf|ers
the order of various continuations on a common stack, permit- ame Lam - ULam j_ I am
ting a program to avoid computing the “high water” continua- ulam € ULam == [(u K) call)]
tion at run time. This helps to make complex multi-return-point clam € CLam = [Ay (™) calD)]
program structure a more pay-as-you-go feature (section 6). call EUgZZ - [[U(?‘Z*l ++)OZ(HJ‘1”

e Third, we developAmr as a motivating example: it can be CCall e [(q 6*)qw]]
naturally converted into our Restricted CPS form using multiple heEwp = UEwp+ CExp
continuations; these continuations can be safely represented f.e€ UEzp = UVar+ ULam
as stack frames; antlyr programs that call procedures with g€ CExp = CVar+ CLam
many return points can be analyzed by our flow analysis. weLab = ULab+ CLab
It's worth noting that, while Fisher and Shivers developegk le ULab = asetoflabels
with an eye towards representing programs written in it with v, (€ CLab = asetoflabels
multi-continuation CPS, they did not exhibit a CPS conversion - —
algorithm for their language. The conversion we show is inter- Figure 1. Partitioned CPS

esting in that it handles the issue of “control polymorphism”
that arises by means of a simple type system; the CPS conver-
sion is thus type-directed (section 7). RCPS(x) = true

Fourth, we report on experimental results from a prototype im- ROPS([(Mi(ur ... n ki .. k) callD]) =

plementation of our analysis in Scheme48. Our findings show (fev(eall) C {ka, ..o, km} A ROPS(call)) v

that the analysis can find the youngest continuation in most ([(\(u” k%) call)] =a [(A(f co) (f (X (@ k) (cca)) ee))])
cases, and it requires little increase in compilation time and im- BCPS([(Ay (ui ... un) call)]) = RCPS(call)
plementation effort ovek-CFA (section 8). RCPS([(hy...ha)*]) = RCPS(h1) A--- A RCPS(hy)

These results are obtained in a setting that permits continuations Figure 2. The RCPS predicate defines Restricted-CPS terms
to be captured by operators suchcad1/cc, which can force the
run-time stack to be copied to, and restored from, the heap. The
net result is to put CPS intermediate representations as they are
employed in practice onto a more solid footing, and to make multi-
continuation function calls more efficient, in a general setting.

(define (square n cc h)
(number? n (A1 (test)
(hif test
(X200 (*nn cc))

2. Restricted CPS (A3 (h "not a number"))))))
We propose Restricted CPS as a variant of Partitioned CPS [7].
Partitioned CPS splits the variables, lambdas and calls of a CPS Figure 3. Non-local exit

program into disjoint sets, the “user” and the “continuation” set,
so that it is easy to distinguish the two syntactically. Elements of
the direct-style source program end up in the “user” set in CPS.
Continuations and calls added by the CPS transform end up in the
“continuation” set.

We begin with a brief description of Partitioned CPS (Fig. 1).
The partitioning between the user and the continuation world hap-
pens by assigning labels to CPS terms from two disjoint sets; user
elements get labels frorfyLab and continuation elements get la-
bels from CLab. Hence, UVar, ULam and UCall refer to user
variables, lambdas and calls respectively. Similaflyar, CLam
and C'Call refer to continuation variables, lambdas and calls.

We assume that all variables in a program have distinct names
and all labels are unique. In such a program, the funciidrv)
returns the label of the lambda that binds the variatdad LV (1)
returns the list ofcontinuation parameters of thelam labeled!.

The functionfcv(h) returns the set of freevars of the termh.
Concrete syntax enclosed frj denotes an item of abstract syntax.

We use two notations for tuple&, ..., e,) and(es, ..., en),
to avoid confusion when tuples are deeply nested. We use the latte
for lists as well; ambiguities are resolved by the context. Lists are
also described by a head-tail notatier., 3 :: (1, 3, —47).

User functions take any number of user arguments and one
or more continuation arguments. Continuation functions take only
user arguments. In CPS, “returning” happens by calling a continu- *Sabry and Felleisen also proposed this constraint to fofibét-class
ation. Hence, onlylams can be returned, netams. Thus, a con- control in single-continuation CPS [9].
tinuation can only escape when it is bound tewar that occurs 2Note that although we use thecalculus to develop our theory, we add
free in aulam. constants and primitives in the examples to keep them shortlaad

Many applications of multiple continuations use them in a
“downward” fashion: after its creation, a continuation closure is
passed as an argument to a numbetlafns and then called — it is
never captured in a user closure.

This led us to observe that we can impose a syntactic con-
straint to Partitioned CPS and still maintain all its benefitg/@an
can refer only to continuations from its list of formals, it can-
not have freecvars® The only ulam that is allowed to have a
free cvar appears in the CPS translation @11/cc, which is
A (fee)(f N(xzk)(ce x)) cc)). We refer to this variant of
CPS as “Restricted Continuation-Passing Style” (RCPS, Fig. 2).

By placing this restriction we permit more effective reasoning
about the stack behavior of continuations. In section 5 we show that
even in the presence ekll/cc the continuation arguments of a
ulam are still on the stack.

The simple function in Fig. 3 takes two continuations. It com-
jputes the square of its argument and passes it to the current con-
tinuation, or it calls the handler continuation if it is passed a non-
number. The program is in RCPS since the user functions can only
refer to continuations that are passed to tfem.

3. Stack management in RCPS that holds the arguments of a call g, and was first pushed on

) . e .
Might and Shivers [7] generalizedr®IT’s stack policy to handle timets." A frame-siring is a sequence of stack actions.

multiple continuations. Here, we give an outline of this stack policy. peEF=¢ | F (Y] | F|Y)
Atruntime, continuations are closures whose environments live ¢ t
on the stack. A continuation is represented as a (ais) wherec Let’s return to our example and see how the stack looks after we

is a pointer to its code anda pointer into the stack. Continuations ~ Push (2|. Since the frames fonumber? and %if have been
access their free variables from a pointer into the stack, never from Popped, the stack igsquare|(1/(2|. So, by repeatedly cancelling
the heap. To ensure this in the presence of first-class continuations2djacent push/pop actions for the same frame, we get a picture of
we have to copy the stack when a continuation escapes and restoréhe stack. We call thisetting the frame-string:

it later when it is called.
o] :{Lplsz Ip1,p2.(p = pr (Y11)p2) V(0 = 1)(Y [p2)

Before a call to a user functiof(fe1...en q1...qm)], We ;
P otherwise

want to retain the frames needed fgr...q,, and remove any

redundant frames. There are two possibilities: In our example, if we net the frame string that starts yithand

e In atail call, all ¢;s are variables, so they are bound to closures ends with (halt| we get|2)|1)|square)(halt|. This gives us the
already born. The frames pushed after the birth of the youngest changeto the stack afte(2|.
closure are not needed. We pop these frames to restore the The associative operatot concatenates two frame-strings.
stack to the environment of the youngest closure. This way, all Might and Shivers showed that frame-strings modulo netting form
continuations are retained when we enter a group with respect to concatenation. So, for every frame-string
there exists another ope ! suchthatp+p~'| = |p~ ' +p| = .
Intuitively, the inverse string undoes the actigndid to the stack.
When inverting the concatenation of two frame strings, we know
that (p1 +p2)_1 =p t4+p
After this adjustment, the environment of the youngest continuation ~ To summarize, if the execution of a program is at tinsed we
is at the top of the stack. We push a frame f&8 arguments and net the frame string from the initial tim& to ¢, we will calculate
jump to f. Generally, this policy maintains the following invariant: ~ the stack at time. Also, if we net the frame string from some past
when aulam is executing, the second frame is the youngest live timet, to ¢, we will see the stack change singe The ability to
continuation. use frame strings both for recording all stack actions and for finding
In the same spirit, before calling a continuatipfy e*)], its net stack change makes them a particularly helpful mechanism to
environment must be on the top of the stack, so we reset the stackreason about the stack.
to the stack of its birtfl. We then push a frame for its arguments

and jump tog. The invariant maintained here is that durigg 5. Concrete semantics and stack properties

execution the second frame points to its environment. In thi . hat th . . d
Returning to our example, if we rusquare 5 halt err) n this section, we prove that the continuations passed to a user

the actions on the stack atequare| (number?| [number?) (1| fLéfn(;tion gvefol: the stazck,Tevgn iﬂ.the presenﬁe of first-class control
(%if] [%if) (2] |2) |1) |square) (*| |*) (halt|. The notation(s)| (cf. item 2 of theorem 2). To do this, we use the concrete semantics

means pushing a frame for,, and ops it. Initially we push of the ACFA analysis [7]. This semantics exterld€FA with alog
frames ?Orsqugre and numb‘:r?. V\%ér? vx?e evaluate\{ we ppop that records frame string®ACFA uses the log only for recording
a frame to restore the stack of its birth and then push a frame for frame strings, not for variable binding or return-point information;

its argument. The execution continues along these lines. The onlyt1€se are accomplished using environments, kikeFA. The log
thing to note is the evaluation ¢k n n cc); cc is bound tchalt, shows the stack actions that would happen at runtime if the program

s to maintain the stack invariant we have to pop to the stack at the V&S compiled using @B1T's stack policy. Here, we use the log to

time ofnalt's birth. Thus, we pop three frames before pusfiag Stu?’%éhgesr:wa;cnktiggh;xgiotrh(g fglgﬂgl:\?tii%ﬁ;?ns(;lr:)eséhown in Fig. 4

At every transitiong refers to the state on the left of the arrow.
4. Framestrings Boldface letters indicate tuples of values. Execution traces alternate

. betweenFval and Apply states. At anFval state, we evaluate the
In order to formally express stack properties and prove them, we subexpressions of a call site before performing a call. Ataply

must have a way to describe actions on the stack. In languages Wlth-?tate’ we perform the call.

out tail calls, these push and pop actions correspond to sequences 0 The last component of each state is a unique timestamp, taken

calls and returns that nest properly. The call-string mechanism [10] X) ; h
can be used to describe these sequences. However, in properly tailll O™ e Setlime. The functionsuce increments the time at every

. . H'H . < . . .
recursive languages calls and returns no longer nest, because iterransition. Byt 2 ¢, we mean that, is a later time thart,

ative functions perform many calls and a single return. First-class ?hrgesir']r&?r'fa;\ﬁ?é?:;é%r;s :)(eacrltjig??u\:]\l?t?onnVf?cr)lrib\l/zsrigk;?egc;gnd.
continuations break call-return nesting even more. Howestak > DINdIng er ap . -

. . :) their binding times. The variable environmert maps variable-
operations (that is, pushes and pops) still nest in these Ianguages,time airs to values. To find the value of a variablave look u
of course. Might and Shivers adapted the call-string mechanism P : P

to create frame strings [7], an abstraction that works well for lan- theI_tlerpsvl(;lg)aksaauttr:gﬁt’r:r?sditli?rfsﬂ:r?(t):g Sé?(?ggr fczttg%ﬁu:t}:ze
guages with exotic calling behavior. Y- '

We already gained some intuition about the use of frame-strings we evaluate the operator and the arguments using fungtigmle

. ; ; . °~ [UEA]). Lambdas evaluate to closures, which contain the binding
't?]ethg J)Z?t(ffefr:gn;gg;gudrlgnseﬁz pxjgﬁsé?ggsngd agyaﬁggtﬁ'grkenvironment and also the time of creation. Variables are looked up

. S v . in ve using 5. Note that in the resulting/Apply state, we usel
stack actions with timestamesg., | 3,) means popping the frame andc to refer to the user and continuation arguments respectively,

¢ In anon tail call, someg;s are lambdas. These are newly born
continuation closures, closed over the current stack pointer.
Thus, all frames are needed and we leave the stack intact.

3Withoutcall/cc this is just popping, witktall/cc it might also include 4First-class continuations allow the same frame to be pusheé than
pushing some frames. once.

¢ € State = Fwval + Apply
Eval = UFEval + CFEval
UFEval = UCall x BEnv X VEnv X Log x Time
CEval = CCall x BEnv X VEnv x Log X Time
Apply = Proc x Proc* x VEnv x Log x Time
B € BEnv = Var — Time
ve € VEnv = Var x Time — Proc
¢, d, proc € Proc = Clo + halt
clo € Clo = Lam x BEnv x Time
0 € Log = Time — F
t € Time = acountably infinite, totally ordered set

[UEA] ([(fe*q¢™], B, ve, 6, t) — (proc, dec, ve, &, t')
t' = suce(s)

proc = A(f, B, ve, t)

d; = A(es, B, ve, t)

Cj = A(qj7 67 ve, t)

pa = 6(youngest(c;)) "

8 =@ +pad)|t — ¢

(lI(q e*)ﬂ7 B? Ue’ 67 t) _) (p/r'oc7 d7 Ue’ 6/7 t,)
t' = succ(s)

proc = A(q, B, ve,),
dz = A(e,L? ﬁ? U67 t)?
pPa = 5(157)_1
=A@ G@E) +padft — g

[AE] ([") cal)], B, ty), d, ve, 8,t) — (call, B ve, 8, t")

[CEA

of the form(clam, B, ty)

t' = succ(s)

B = Blvi— t']

ve' = ve[(v, t') > d; |
pa=(}|

8 =A@ WE) +padt — €]

h € Var
h € Lam

ve(h, B(h))
(h, B, 1)

Figure4. Semantics oACFA

A(h, B, ve, t) A{

although formally there is only one tuple of argumentsdipply

states. This harmless pattern matching helps us distinguish the twoOrd ({q, . . .

easily. TheCEval-to-CApply transition is similar (ruldCEA]).

From an Apply to an Eval state, we bind the formals of a
procedure(lam, 3, t.;) to the arguments and jump to its body. The
new binding environment’ is an extension off, with the formals
mapped to the current time. The new variable environment
maps eaclfv;, t') to the corresponding closutk.

States use a log to keep track of the actions they would perform
on the stack. We writé; for the log of the state with timestanip
(we omitt when it is clear from the context). Thefi,(¢') returns
a frame string of all the pushes and pops performed from tirme
timet. Also, we writed(t) ' to mean(é(t)) .

At each transition frony to ¢, pa records the stack change.
To find the stack actions from a timg in the past tot’, we
concatenate the actions frotp to ¢ with pa. Thus, the logy’ of
¢ is (N (8(t) + paN[t’ — <]. Naturally,d’(¢') is € because
some time must elapse for stack change to happen.

The stack policy dictates the stack actigns at each transi-
tion. At [UEA], we must undo all actions that happened since the
creation of the youngest continuation argument. We use the func-
tion youngest, which takes a set of closures, compares their cre-

tions in a similar way. Before calling a continuation, we must reset
the stack to the stack of its birth (rul€EA]). Before entering a
function, we push a frame for its arguments (rlA€£]).

We usehalt to denote the top-level continuation of a program
pr. The initial stateZ(pr) is ((pr, 0, to), (halt),d, [to +> €], o).

With the formal machinery in place, we can now show that in
a UFwal stateg, the frames that make up the environments for
the continuation arguments . . . g, are still on the stack. When
a continuatiory; is born, its environment is on the top of the stack,
so it suffices to show that the net stack change fggbirth tog is
push-monotonic (writteq |*, to mean a frame string that contains
just pushes). In this case, the stack adjustmiémungest(c;)) ™"
in [UEA] transitions consists solely of pops.

By observing the CPS translation @d11/cc you can see why
our claim holds even when we allow first-class control: when a
continuation is captured by @am, it can only be called later on,
it cannot be passed as an argument to anathen.

To prove push-monotonicity, we will show that each state satis-
fies a tighter set of constraintsf(theorem 2). The first constraint is
arguably the most important because it talks about stack properties
of any continuation closure ine. The stack motion between the
birth of such a closure and the current state can be arbitrary. The
constraint guarantees that when a continuation closure is created, it
captures continuations that are still on the stack.

Let’s look more closely at the creation of continuation-closures.
For every continuation lambda., there is an innermost user
lambda); that contains it. Because of RCPS, can only refer
to continuation variables bound by. To create a closure over
A+, we must first call\;. Assume that at the time of the call we
pass continuations; . . . ¢,,, that are still on the stack. Then, if the
net stack motiom from the call to)\; to the creation ot is push-
monotonic,cs . . . ¢y, WIll still be on the stack whem is created.
There are two cases fox, : it can appear directly undev;, e.g.,

(A (u k1 k2) (u 15 (Ay(res) (+ 4 res k1))))
or after a series of Evals whose operators are lambdas,,

(A1 (k1) (A, (ul)
((Ayy (u2) ((Ay(w) (k1 u)) "hello"))
"fOO"))
"ba.r"))

In both casegy is push-monotonic.

DEFINITION 1 (Continuation ordering).

,qn}, B, ve, d,t) istrueiff:

o Let k € |Jfev(g:) and ve(k, B(k)) = (clam, 8, t).
Then, we havethat |5(') + &(t) "] is (" |"

o et k‘l,kg c UfCV(qi) and ’Ue(kl,ﬁ(lﬁ)) = (claml,ﬁl,h)
and ’Ue(kz, ﬂ(k’z)) = (clam27ﬁg7t2) and t1 X ta.
Then, we have that |§(t1) + 6(t2) ' | is (" |*

THEOREM 2. Let ¢ bea state of theform (.. ., ve, 9, t)

If (clam, 3,t") € range(ve) then Ord({clam}, B, ve,d,t’)
If ¢ € UEBval, ([(f e q1...qm)], B, ve,d,t) then
Ord({q1,-..,qm}, B, ve,o,t)

If ¢ € CEwal, ([(qge*)], B, ve,d,t)and g € clam then
Ord({q}, B, ve,4,1)

If ¢ € UApply, ((ulam, B,t'),dc1 ...cn,ve,d,t) and

¢; = (clamgi, Bi, t:) then Ord({ clam;}, Bi, ve, d,t;) and
[8(t:)] is (|" and for each ta,t, € {t1,...,tn} such that
ta < t, wehavethat [5(to) + 6(ty)] is (|

o If ¢ € CApply, ((clam, 8,t'),d, ve, 6, t) then
Ord({clam}, B, ve,d,t)

ation times and returns the most recent time. Then, the stack changeProof. We show that the constraints hold f6(pr) and are main-

should b&5 (youngest(c;))~". We compute for the other transi-

tained by transition. |

Note that in aCEval state, ifq is a variable we can guarantee [UEA] ([(fe* q1...gm)], B,ve,ce,t) — (do, d c,ve,ce,ages,t’)

nothing about it; it may be bound to a continuation that has escaped.
Thereforeg's environment may be popped.

However, in a program withowall/cc we can guarantee that
continuation environments are never popped becélize:! states
satisfy Ord ({q}, 8, ve, 4, t) even ifq is a variable.

6. Continuation-Age analysis

We now know that continuation environments are still on the stack
in UEwal states. This means that we never need to push frames to

restore environments i Eval. Also, it means that the environ- UAE]

ments are totally ordered on the stack at run time. Put formally, if
t1 andt, are the birthdays of two continuations then eithg(t:) |

is a suffix of | §(¢2)] or vice versa. So, if, is the birthday of the
youngest continuation theld(¢,) | is a suffix of | §(¢.) | wheret.

is the birthday of any other continuation.

So far there has not been an analysis that finds the youngest

Wega]

continuation, and one would have to resort to dynamic checks.
present Continuation-Age analysabbrev. Cage analysis) that can
find the youngest continuation statically in most cases. We first
show the workings of the analysis by example and then proceed to
develop a formal semantics for it. Consider the following snippet

of some RCPS programv:

()\(U,1 ... Us k1 k2 k3)
(ug k1 ks (A Cue) call) (e Cur)call’))E..0)

Assume that we lepr run and execution reaches the call dite
We know thatk;, k2 and ks are bound to closures whose envi-
ronments are totally orderedg., with ks being the youngest and
ko the oldest. Also, assume that is bound to a closure over
[y Cka ks e k7) call”)]. To find the ordering of the environ-
ments af we first observe that, is not used at the call site, so we
do not take it into account. Alsay, and A, will evaluate to newly
born closures, so the ordering after control entexsill be “ ks and

k- followed by k5 followed by k4”. Because of RCPS, this is the
only information we need to keep to decide the order of continu-
ations insidecall’’; remember thafcv(call”) C {ka, ks, ke, k7}.
For this reason, our analysis can simply record total ordees@fs
bound by the samelam.® It can forget which closures thesears
are bound to.

6.1 Concrete semantics

The concrete semantics 6age and some auxiliary definitions are
shown in Fig. 5. To remove elements from lists we use the set-
difference operator, with its meaning adapted in the obvious way.
We usemap(f, Ist) to apply a functionf to all elements ofst.
The functionind(elm, ist) finds the 1-based index efm in Ist
andget (s, lst) returns the element at indéxn [st. We also liftget
andind to sets of elements/indices respectively.

The semantic domains are the samé-#&3FA with the addition
of two domains to record the ordering of continuations.

ages, tor € Tor = (Pow(CVar))*
ce € CEnv = ULab x Time — Tor

We represent a total order as a list of setgwfrs, rather than just

a list of cvars, because we want to make explicit the case when two
closures are born at the same time. In our example, the order will
be ({ke, k7}, {ks}, {ka}). The continuation environment maps
pairs of user-labels and times to total orders. We wWrité;, k' to
mean that the index df is smaller than or equal to the index /df

5Even though the CPS translation afall/cc contains the term
[\ (z k)(cc x))] with a free cvar, this is not a problem since this
ulam does not contain a user call site. Thus, we do not need to fendgh
of continuations while if (A (z k) (cc x))].

t' = succ(s)

do = A(f, B, ve, t), of the form([(\; (W) calDD], ...)
d; = Ales, B, ve, t)

G = A(qj7 B, ve, t)

ce(VL(q;), Bg;)) F1<j<m.q€ Var
() V1<j<m.qg;€Lam
rename(S) = Get(Ind(S,{q1 ...qm)), LV (I))

ages = (rename(CLam) :: map(rename, tor)) \ {0}

tor =

(do, d, ve, ce, ages,t) —> (call, ', ve', ce’, ')
do = ([Ou Y calld], B, 1)

t' = succ(s)

p'=pBlv—t]

ve! = ve[(v, ¥) — d;]

ce’ = ce|[(l, t') — ages]

([¢ge1-..en)], B, ve, ce, t) —s (proc,d, ve, ce, t')
t' = succ(s)

proc = »A((L B, ve, t)

d; = Ales, B, ve,t)

[CAE] ([CA (™) calD)], B, ty),d, ve, ce, t) — (call, B, ve', ce, t")

!

t' = suce(s)

,3/ = ,3[1,% — t/]
ve' = ve[(us, t') — d;]
[

Ist ={(e1,...,em), elm =¢;

1 otherwise

ind(elm, lst) = {
Ind(S,Ist) = {ind(s,lst) | s € S}\ {L}

e; Ist={e1,...,em), 1<i<m

t(i,lst) =
get(i, Ist) {J_ otherwise
Get(I,lst) = { get(i,lst) | i € I} \ {L}

Figure5. Concrete semantics @fage Analysis

in tor, i.e, k is younger thark’.
k=<irk' =38,5" ke SAK€S Aind(S, tor) < ind(S', tor)

In UEwal, we gather order information about théum we are
in, and use it to compute order information about tien we are
about to enter. Since the new bindingscintake place inUApply,
ages serves as the carrier of that information between states.

Let's see how to find the order for the nextzm using the order
of the currentulam. If there are any lambdas among. . . g,
the variables they will be bound to will be the youngest. So
rename(CLam) gathers the indices of lambdas amang . . ¢,
and uses them to index in the list of formals.af If every ¢; is
a variable,rename(CLam) returns the empty set. If there are
variables amongy; ... gm, they are bound by the saméam,
and ce(VL(g;), B(g;)) gathers the order information for that
ulam. Then, we filter out variables that are not amang . . g,
and index the rest in the list of formals of. In our example,
ce(VL(ks), B(ks)) returns({ks}, {k1}, {k2}) andmap(rename,
({ks}, {k1}, {k2})) returns({ks}, {ka},?). We remove possible
empty sets from our list and we have the neyes.

Since only user states can influence the ordering, the semantics
for CEval and CApply are the same as-CFA. Note that we can
compute continuation ages without using information about the
stack actions, thus we do not need a log in@age semantics.

' = suce(¢
do € A(f. B, 5. 5), of the form([Ox (wHy call)], ...) w2 #2> (A (@) z4+1) A @) z)> — <2 (A (z) 2> — 2
- A 9 37 6\67 2€)

((A(E) if test
af 2 Q@z+1) A@ax—D»

tors— 4 €€(VL(@;), Bilg;)) 31 <j<m.g; € Var af 3 #Ib)
() V1<j<m.q; € Lam AWy * y))
ren(S) = Get(Ind(S,{q1 ...qm)), LV (1))
ages ={ (ren(CLam) :: map(ren, tor))\{0} | tor € tors} Figure7. Examples of\mr

[UAE] (do, d, Te, ée, ages, {) ~ (call, B, ve’, &', 1)
do = ([h)ecald], B, 11)
t' = suce()

THEOREM 3. Let ¢ beany state of theform (... ., ve, ce,...) and

B8 = B[v 1) ce(l,t) = tor. If ki <ior k;j and ve(ki, t) = (clam, B, ty)
o' = de U [(v,) — d;] and ve(k;,t) = (clam’, B¢, t¢) then t¢ <t i.e, ve(k;,t) was
&' =ée Ul) — ages) born later than ve(k;,t).
TR Ao~ oA e I P Secondly, we show that the abstract semantics simulates the con-
[CEA] g,[[iq j/;\;étgn)ﬂ’ B, ve, ¢e, t) ~ (proc, d, ve, ce, t') crete semantics, which means that our approximation is safe.
proc EAA(qaﬁafelt) THEOREM4 (Soundness dEage analysis).If |s|E¢ andg —
di = Ales, B, ve, t) ¢’ thenthereexists ¢’ suchthat ¢~ ¢" and |¢'| C |¢/].
[CAE] ([(™) ealDd], B, 1), d, e, ée,)~ (call, B, e, ée,) Regarding the time complexity @age: sincen elements can
t' = suce($) be totally ordered im! ways, and the range @f'Env records sets
B = B[Ui 1] of total orders, the analysis is exponentiaimax-len;c yrq, LV ().
B This is not a problem in practice, since the number of continuation
e’ = ve U [(ui, ¥') = di] arguments is usually small. A factor that can influence the speed of
Figure 6. Abstract semantics faZage Analysis Cage more dramatically is the choice dfime, since fork greater
than zeradk-CFA is exponential in the size of the program [15].
Alternatively, there is a less precise lattice we can use for
6.2 Abstract semantics CEnv. CEnv can record partial orders ofvars and the join
Abstracting the semantics Gage raises no difficulty. Likek-CFA, would be set-intersection. Thek; would be younger thark;

in ce; U ceq iff (ki, kj) € cer and (k;, k;) € ces. However,
join introduces more approximation than we would like. For
example, considee:r = {(ki, k2), (k1, k3), (ke, k3)} and

making the setlime finite ensures computability of the abstract
state-space. The abstract counterpartg®of and CEnv are

ages, tors € Tor = Pow(Tor) ey = {(ks, ka), (ks, k1), (k2, k1)}.2 Then,ée; U ée, is () even
é € CEnv = ULab x Time — Tor though we know thak- is never the youngest. In other words, this

representation cannot express properties like “eitheor k3 is
Since one abstract state corresponds to many concrete states, Weounger tharks.”
have to fold/nlany total orders to one elementZafr. Thus, the
elements ofTor are sets of total orders, with set-union being the
join operation. For avar to be the youngest itors, it has to be 6.4 Cagevs ACFA for age analysis
the youngest in every total order containedims. This happens Theoretically, we could usACFA to find the youngest continu-
because different elements tfrs Correspond to different flows of ation. SinceACFA tracks stack Change, we would check if the
control in the abstract semantics. Some of these flows may havechange between the birthdays of two closures is push monotonic.
occurred due to imprecision introduced by the static analysis, but |n practice, this does not work well for the following reasons.
most of them will have a concrete counterpart, so we make surethat First, variables in the abstract are bound to sets of closures. So,
all concrete flows agree on the agecohirs. We also define maps if we want to compare the age of twaars at a call site, we must

from the concrete to the abstract domains. check that every closure in one set is younger than every closure
[tor| = {tor} in the other set. But then we would end up comparing closures
[ce| = (A1 D) |—|\t|:f lee(l,1)]) from different flows, which causes imprecisioBage decouples

o o variables from their bindings and remembers distinct flows as dis-
The abstract semantics is shown in Fig. 6. Contrary to the tinct total orders, thus avoiding these problems.

elements taje and ce we join them instead of doing a destructive can be imprecise in the presence of recursion. It does roughly the
update. The two semantics are otherwise similar. following: it can remember exactly one push or one pop action for
some\,, but if we push two (or more) frames far, , ACFA will
6.3 Soundness record this agy|*. Therefore, if we enter a recursive procedure and
There are two results we need to establish for our analysis to belater return, ACFA will not net the pushes and popSage does
sound. We first show that a total order @fars “agrees” with the not suffer from this problem because it does not use the stack to
birthdays of the closures to which these variables are bound. compute continuation age.

7. From A\yr to RCPS 7.2 Typesfor control-monomor phism

The multi-return\-calculus [12] is a variant of th&-calculus in We modify the original type system ofyir to annotate function
which functions may have many return points. Return points are types with the number of return points that a function expects.
not first-class continuations, hence they give the programmer the Each expressioais assigned a type vector,, . .., 7,) mean-
ability to express a wide variety of algorithms without paying the ing that if e returns a value to its " return point,v has typer;.
cost of general-purpose, heap-allocated continuations. Seareh algoPlacing L instead of a type at indexmeans that never returns
rithms that take a success and a failure continuation, functional treeto that return point. For examplel1 #2 has type(L, int). But
transformations and LR-parsers are typical examples of programs«l1l #2> never returns to any return point for i > 2. Hence
that are naturally and efficiently expressed with this mechanism. it can also have typé.L,int, 1), (L, int, L, 1), etc. Moreover,
The multi-return form<e 71 ...7.,> IS how we get contexts (int, int) is also a possible type since the requiremendlif #2>

with many return points. The expressienis evaluated withim returns to its first return point it gives back an integer” is vacuously
return points in scope. l& does not use the multi-return form true. To model these, our type system has a notion of subtyping.
internally, it will always return to the first one, as in the first Types include integers and functions, and type vectoese

example of Fig. 7. However, i is of the form<e’ #i> then the finite maps from natural numbers to types. Th&fi] =L means
result ofe’ will be passed ta, as in the second example. Areturn thati ¢ dom(7).
point# passes its input to thé" return point of its own context.

Restricted CPS, with the restrictions it places on continuations, TeT == int | (r,m) = 7
would seem like a natural target fasir. However, a subtlety of el = N7

Amr IS that functions are polymorphic in the number of return
points that they expect, they do not specify it explicitly in their Function types include a natural numbgrmeaning that: return
syntax. The last snippet of Fig. 7 is one such example. Depending points must be provided when a functigns applied. Obviously,
on the result of the test, the square function will be evaluated in a we run into trouble iff tries to return ta-; for ¢ > n. Therefore,
context with one or two return points, even though it always returns we require that7| < n where|7| ismin{¢ | Vj > 4. 7[j] =L1}.
to the first. Since in RCPS alam has to specify the number of The subtyping rules for types and vectors are
continuations it expects, we cannot translate this code to RCPS. R

A control-monomorphic variant however has a simple transform int C int T C Ta Ta ETh
to RCPS. We require that a function take a specific number of return - (Tayn) = 7o C (1, n) = T
points, which we pass when we apply the function. We change the
syntax and semantics ofyr slightly to reflect this (section 7.1). . o - - oo o
We provide a type system that rejects control-polymorphig: Vi€ dom(fa). i € dOT(Tb) A Tali] E T[]
programs and prove it sound (section 7.2). Then, we give a type- Ta E T
directed transform from\ig to RCPS (section 7.3).

The type system is shown in Fig. 9. It assigns type vectors to

7.1 Syntax and semantics expressions under an environmé&htvhich is a partial map from
o o . variables to types.

Expressions in control-monomorphig;r include variables, num- The rules for numbers and variables are standard (num, var).

be_rs, functlonsz applications with a specified nymber of return Tq typecheck a functior{A (z) e), we typecheck its body in an

points and multi-return forms. Numbers and functions are values: environment extended with. The side condition states that if the

lam € Lam = (\(2) €) function useg7| return points then it must request at least as many

Fop e . in its type.
e€fp == |n| am |atere) riormp [<e i For an applicationk(e; e2) 71...rm> We require thate;
7€ RP = lam |#Z have a function type with exactlyn return points (appl). The

type of the argument must be a subtype of what the function
expects (side condition 1). If thg® return point is alam with
type ((7, m;) — 7), then anything that; returns to it must
be a subtype of;. Additionally, anything that; returns to the
context must be consistent with what the whole expression returns.
For this, we requiré’; C7.,,, (side condition 2). On the other hand,
if the return point is of the forng#: then whatevee; returns to its
41 return point will be sent to the context®' return point, which
is why we requirer|[j] C T,pp[i] (side condition 3).

For a<e ri...r,> expression (multi) the typing constraints
required from return points are the same as in the application case
the last example of Fig. 7, we have to mention the return points (Side conditions 2, 3). We also require thaonly try to return to

when applying a function. Our type system checks that a function "1 - - - " (Side condition 1). i)
is always applied in contexts with the same number of return points. . VW& can now see why the type system rejects control-polymorphic

A note about the stack behavior afz deserves a mention. MR Programs. The operator of our last example is

The semantics is call-by-value (Fig. 8). To evaluate 71 ... 7rm,>,
we first evaluate: in a context withm return points (multi-prog).
If it reduces to a value and there is a single return point which is
a function, we apply it ta (fst-lam). If the single return point is
#1 we returnu to the context (fst-sharp). When there are multiple
return pointsy is returned to the first one (multi-drop). dfevalu-
ates tocw #i> in a context withi or more return points then we
passv to r; (multi-select).

In an application we start with the operator (rator), then the
operand (rand) and then the body of the function (app). These rules
highlight the difference from control-polymorphigyr. Unlike

When a return point is a function, it requires a frame to be pushed, ONE) if test
while a+#i return point just points to an older frame. Thus, when af 2 O@z+1 A@z—Db
all return points oke r1 ... rpy,> are not functions, the stack does af 3) #1)
not grow, and it might even shrink. This is essentially the tail call
mechanism applied tayr.’ The true-branch requiresto have a type of the formi(int, 2) —
T) and the false-branch requirgsto have a type of the form
6 For readability, we omitted the reflexive pairs from the riefas. ((int, 1) — 7). Since none of these types is a subtype of the

7 For details, see [12] where semi-tail calls and super-td# eae explained. other, the body cannot be typechecked with a unique typ¢.for

e—eé

multi — pro fst — lam
[prog] e T TmD =<’ T Ty [] w (A(@) e — [v/z]e
[fst — sharp] S — [multi — drop]
w #1l>—wv W TL...TD>— <UD
1 < ’
[multi — select] - stsm [rator] a=-a -
A4AV FHD T T = <w T A(er e2) r1...Tmb> —<A(e] e2) ri...T,b
!
[rand] 27 & y [app]
ACA (@) e) e2) ri...rm> = A((A(@) €e) e3) T1...TmD A@) e v) ri...rm> = u/zle T TR
Figure 8. Operational Semantics ofuir
T Fe:T
[um] T F n: (int) [var] z € dom(T) [abs] o be:? o
'k z: (I'x)) ' @e) : {((r,n) > 7)
F'kte:{((r,m)—>7) TFe: 7 Q) BC(7)
lappl] ' r;: ((r5, my) > 75)(¥Vr; € Lam) (2 Vr; € Lam. (7[j] =L VvV Tj] € 75) A 75 C Tapp
I'E «lere2) ri...rpd: Fapp (3 Vr; = #i. 7_:[.7] =Ll vV 7_"[]} c 7_—‘app Z]
I' + 617_':3 (l) |7_—‘e‘<m
[multi] 'k or;: <(Tj, m]-) — ﬂ)(V’I“J S Lam) 2 Vr; € Lam. (7_:6[]} =LV 7_Je[]] C Tj) ANTET
'k <e ri...7m> : T (B) Vry=#i.7eljl =L V Te[j] T 7[4]
Figure9. Types
Trivial Term:
Tz] ==z
Tn]=n

T @ e)] = A (@ki...kn)Le] ki... km) where (A (z) e) hastype((r, m) — 7)

Return Point:
R#i ki .. . ki =k
Z[N (@) ed]ki...ki= A@)Se]kr... k)

Serious Term:
y[[to]] ki...ki = (ky gﬂtoﬂ)
If every k; is a variable,
y[[ﬂ(to tl) T .."I‘ml>}] k‘l k’l = (y[[toﬂ yl[h]] (%[[Tﬂ]lﬁ k’l) (%[[rm]]kl k‘l))
y[[ﬁ(t() 81) T1.. .T’ml>]] /C1 . ..kl = fﬂsl]] (A(x)(ﬂ[[to]] x (%l[?‘l]]kl kl) (%[[Tm]]/ﬁ kl)))
yl[ﬂ(So tl) T .. .’I‘ml>ﬂ k,‘l .. ‘kl = ,7[[80] (A(ZIZ’) (ZIZ’ y[[tl}] (%l{?ﬁ]]]ﬁ .. k’l) e (%[[Tm]]k‘l .. k‘l)))
,VHQ(S() 81) T1 ,..T‘ml>]]]ﬁ ...kl = yﬂSQ]] (A(f)?’ﬂsl]] (A(JE) (f x (%[[Tl]]/ﬁ kl) (%’ﬂrm]]kl kl))))
If there exists dam amongk; . .. k; ,
Y[[ﬂ(eoel) Tl...TmD]kl...kl:(()\(lﬁ...kl)y[[Q(eoel) 7"1...Tml>]]k1...k:l) k’1l€l)
If every k; is a variable,
5’[[<le 71 ...Tmb]] ki... k= 7[[6]] (%[[Tﬂ]k’l kD L (%[[Tm]]k1 kD
If there exists dam amongk; . . . ki,
e r1.cormp] ki ki = (k.. kD)L e] (Z]r]ky .. k) ... (Z]rm]ki.. k) k... kD

Figure 10. Transformation of\\ir to Restricted CPS

We split the type-soundness proof in the progress and preserva-all continuation arguments are treated the way variables are now

tion theorems. treated. In the following transform, the return po{®t(y) e’) will
be duplicated in the RCPS output:
THEOREMS5 (Progress).
If ' F e : 7andeisclosed then either e isavalue, or e isof the FLlaa (@) e) 42) #1 #1> (A () e)Hp] hall
. . !
form < #i> where i>1,0re — e’ = S[aO@ e) 42) #1 #1b] () L[] halt)
THEOREM6 (Preservation). . = (A (z k1 k2) Z[e] k1 ko) 42 ,
fT + e: 7ande— ¢ thenT + ¢ : 7' where 7' C 7. A\ (y) Z[€] halt)

A\ () L[€] halt)
Both proofs proceed by structural induction enln the progress . . .
theorem, note that a well-typed expression does not always reducen the other hand, our transformation yields the more compact:
to a value. It might evaluate to a multi-return form that cannot take () (A ki ko) P[e]kika) 42 k k)
any steps. The proofs require the following lemmas. A () Z[e'Thalt))

LEMMA 7 (Weakening).

fTz—7]Fe:Tandaz¢ FV(e) thenT' F e : 7. 8. Evaluation of Cage

LEMMA 8 (Substitution). We implementedCage in Scheme48. Our compiler takes a multi-

If Tfz— 7] F e: 71, ¢ isclosedand hastype - ¢’ : 7', and return Scheme program to RCPS, on which it r@age. It does

7'C(r) then T I [¢//x]e : 7» suchthat 7 C 7. not go all the way down to machine code. We measured the preci-
sion by counting the multiple-continuation call sites for which the

7.3 Transformation of Avr to RCPS analysis can find the youngest continuation statically. The results

In this section, we describe a CPS transformation fibak to are encouraging, since the analysis is very precise, with little addi-
RCPS (Fig. 10). Fisher and Shivers have shown that multi-return tional costin running time and implementation effort okeCFA.
functions are cheap to implement and do not require novel compila- Our analysis handles a purely functional subset of Scheme with
tion techniques. By translatingr to RCPS, it becomes amenable numbers, booleans, lists, explicit recursion, and multi-return func-
to Cage Analysis which can further improve performance. tions. We changed the front end of Scheme48 to accept a multi-
The transform relies on information provided by the type system "€turn construct. After the front end takes care of parsing and
to add the correct number of continuation parametetddms. We macro-expansiorevery call in the AST is represented as a multi-
use standard techniques [3] to make the transform compositional "Urn call.eg., (+12) becomesy(+12) - #1>. This makes the

and first-order. Last, some effort is spent on making sure that the CONversion to RCPS more uniform. The compiler then dage,
transform does not duplicate code. followed by a final linear pass that computes the results per call site

The transform uses three mutually recursive functions, for triv- (Since ages irte are grouped bylam labels). For in’stance, assume
ial terms, serious terms and return points. Variables and values arethat;yfor the lambda expressidi; (f k1 k2) (£ *(1 2 3) k2
trivial terms and the rest are serious. The metavariablasd s k1)), Cage finds thatk1 is younger thark2 in every total or-
range over trivial and serious terms respectively. Underlined lamb- der contained it J; - ce(l, ¢). Then, the final pass will deduce
das) generate fresh identifiers to avoid variable capture. We apply thatk1 is always younger thake at-y. Our currentimplementation
the transform to awr programe by calling.” [e] halt. spots t_he opportunity for optimization and stops. However, this in-

The translation of variables and numbers is straightforward. formation could be passed to a code-generation phase, which would
When translating alam, we look at its type to find out how many ~ avoid emitting code to check the ages of continuations at

continuations it takes in CPS. Fisher and Shivers suggested that LR-parsers can be compiled to
A #i return point becomes a reference to#fecontinuation of Amr, With considerable speed gains [12]. Each state of the parser’s
its context. A(() e) return point becomesa@am in CPS. Here, automaton is represented as a function; a shift is a function call.

there is possible code duplication that we want to avoid. Assume Reductions do not return to a state function’s immediate caller;
that one o, . . . k; is aclam. Then, ife refers to the corresponding ~ Put to points higher in the stack. This is handled with multiple
return point more than once, thigam will be duplicated. For this return points to point to the necessary frames; a simple analysis

reason, the rest of the rules callwith cvar arguments only. determines how these return points represent the target reduction
If . is applied to a trivial term then we return the term to the States. Such parsers contain an abundance of multi-continuation
first continuation. calls, which makes them attractive benchmark<Jage.

Application is split in four cases depending on the operator and _ We ranCage (with £ = 0) on a parser for a medium-sized,
the operand. Note how the continuations . . k; are passed to all ~ Pascal-like language. Out of the 973 callsifams, 152 pass two

return points, which is why we require that they all beurs to continuations and 32 pass three. If there isl@an argument, it

prevent duplication. If there is @am amongk:; . . . k; we create a is trivially _th_e youngest continuation. This happens in 20 calls.

newwulam and transform the application using the newrs® The remaining 164 pass onlyvars. Cage found the youngest
For<e ri...rm>, We have to translatein a context withm continuation in 142, and in 22 calls it narrowed the youngest down

continuations. Here again we splitin two cases to avoid duplication. {0 tWo choices instead of three. There wascall site for which the
It is simple to see why our transformation generates RCPS analysis failed to gain at least partial informati@age amounts to
code. The only place where alam is generated is the rule 19-8% of the total running time of the abstract interpretation (the

T\ (@) e)], and we pass only the newly-creategrs toe. rest is spent on flow analysis), and 32.2% of the code size.
The duplic’ation of code is best seen in an example. Assume The effectiveness of the analysis is also illustrated by tail-
that we omit the rules that take care @fms in ki ... k;. Then, recursive programs that can throw exceptions. The RCPS program

of Fig. 11 sums all numbers in a listand returns tac, or throws

8This rule may appear to break compositionality at first glabeeause the ~ @n €xception by calling if it finds a non-number irL. It could
right hand side does not cai¥ on a proper subexpression of the left hand _have begn written originally in any language with exceptions, or
side. However, it can be expanded to four rules as in thezaikble case, in a multi-return language. Placed in some code that computes the

which is compositional. We use one rule only for readability. sum of a list of lists of numbers, this essentially becomes the inner

(define (suml 1 acc cc h) 10. Conclusions

In this paper, we show how a simple syntactic constraint on a CPS

ber? fst . . - - .
(number? fst) intermediate representation enables efficient use of the stack in the

()\((;:je.fStgistQ presence qf mu_ItipIe continuations._ We prove that when we pass
00 many continuations to a user function th_elr environments are still
(cdr 1 on the stack. The generalization of the tail-call mechanism dictates

O\(rest) that we pop to the most recent of these frames before control enters

a user function.
We proceed to develdpage, an analysis that finds the youngest
frame at compile time in most cases. The main idea beGemgk
is that inside a functiofi(\ (uy ... um ki ...kn) call)] we only
- 5 - - - need to remember age information abéut . . k,,, we canforget
Figure 11. Tail recursion with exceptions which closures these variables are bound to. This decoupling be-
tween variables and bindings is possible because of Restricted CPS.
A prototype implementation ofage in Scheme48 shows that
it is a precise analysis with little extra overhead in compilation
time overk-CFA. Therefore, control constructs that require passing
many continuations, like exceptions and multi-return functions, can
be compiled to fast native code.

(+ acc fst
(A(sum) (suml rest sum cc h))))))
(M) (h "not a number")))))

loop, so optimizing it is crucialCage statically figures out that the
continuations in the recursive call have the same age.

In the following programCage fails to figure out the youngest
continuation passed t9; whenk is 0. That is because iR the first
continuation is the youngest, andthe second. Similar examples

can be written for any: Acknowledgements We would like to thank Mike Sperber for his

(O£ k) (Uif some-test help with Scheme48, David Fisher for insightful discussions on the

) OO (f O (k 1) k)2 control-polymorphic nature okmr and the anonymous referees,
QO Gk OG & PNBN whose helpful comments greatly improved this paper.
(k1 k2) ...)"
halt) References
Overall, we are satisfied with the precision@dge. It remains [1] A. Appel. Compiling with Continuations. Cambridge Univ. Press,

to be seen how useful it is in practice. More experience with multi- 1992'_)))
return code and multi-continuation CPS is needed to seexif- [2] W. Clinger, A. Hartheimer, and E. Ost. Implementation Stgées for

only call sites show up as often as in the programs presented here. Tzrilt)%lfzg i%gt;””aﬂongﬂighe"order and Symbolic Computation,

[3] O. Danvy and L. R. Nielsen. A first-order one-pass CPSdfiema-
9. Related work tion. Theoretical Comp. Science, 308(1-3):239-257, November 2003.
CPS was first formalized by Plotkin [8] and was used as an IR [4] A. Kennedy. Compiling with continuations, continued. literna-

in Rabbit [14] and @BIT [5], which were early and influential tional Conference on Functional Programming, pages 177-190, 2007.

compilers for Scheme. Shivers used CPS to solve the control-flow (51 b kranz. ORBIT: An Optimizing Compiler for Scheme. PhD thesis,

problem in higher-order functional languages [11]. Yale University Department of Computer Science, New Havem-Co
The starting point for the present work has be&e@FA [6, 7]. necticut, February 1988.

ACFA is a static analysis that can reason about stack change in (g} m. Might. Environment Analysis of Higher-Order Languages. PhD

functional languages with first-class control. To dadCFA has thesis, Georgia Institute of Technology, June 2007.

been primarily used to show environment equivalence and related [7] M. Might and O. Shivers. Analyzing the environment sturet of

optimizations, but it enables, in principle, many stack-related trans- higher-order languages using frame stringBheoretical Computer

formations. We use several elementsXdEFA in this paper. First, Science, 375(1-3):137-168, May 2007.

we base our Restricted CPS on Partitioned CPS. More importantly, [8] G. Plotkin. Call-by-Name, Call-by-Value and theCalculus. Theo-

we use frame strings and the concrete semanti¢s@ffA to prove retical Con'muter Seience, 1:125-159, 1975. '

that continuation arguments atams are still on the stack. [9] A. Sabry and M. Felleisen Reasoning About Proarams. in
Kennedy [4] proposed a variant of CPS which, like#T, pro- CbntinngItion-Passing Style iriSP and Functgi’onaj Program?ning

vides a variety of choices for procedures. He argues that CPS is 65288 298, 1992, ‘

preferable over ANF and monadic languages because function in-) . .

lining does not require renormalization steps or the use of commut- (10 gﬂﬁj;se}gr i?]d,\':‘u cphnnui(ce:(" ;:’éo J%F:gg aggﬁi;;;ﬁ?gg@“gﬂﬁ;g%w

ing conversions. Also, he advocates CPS as a suitable IR even i’n Theory and Application. Prentice Hall International, 1981. ’

the abse_nc_e of first-class co_ntrol |n_th_e source Ianguage._Kennedy 5[11] 0. Shivers.Control-Flow Analysis of Higher-Order Languages. PhD

CPS satisfies some syntactic restrictions similar to Restricted CPS. thesis, Carnegie-Mellon University, May 1991

The main differences are that his CPS does not deal with first-class ' . S L

control and that user lambdas can take up to two continuation ar- [12] O- Shivers and D. Fisher. Multi-return function caldournal of

guments, the current continuation and a handler continuation. If a FunCt'F)naI Programm'_ng’ 16(4)'_547_‘_582’ July/September 209_6'

ulam can throw many exceptions, the handler must be polymor- [13] O. Shivers and M. M|_ght. Contlnuatlons_and transducenposition.

phic; in RCPS we can pass as many continuations as needed. In Prog. Language Design and Implementation, pages 295-307, 2006.
There has been significant work done on efficient run-time im- [14] G. Steele. Rabbit: A compiler for Scheme. Technical Repas,

plementations of first-class continuations, that is, continuations that ~ Massachusetts Institute of Technology, 1978.

outlive their dynamic extent and so require the stack to be saved in[15] D. Van Horn and H. Mairson. Deciding-CFA is complete for

the heap [2]. Our work here, however, focusses on demonstrating ~ EXPTIME. InInternational Conference on Functional Programming,

the circumstances under which we may safely assume that continu- ~ Pages 275-282, 2008.

ations need not be copied, and on reasoning about the relationships

between different continuations that are known to live on the stack.

