Multi-return Function Call

Olin Shivers David Fisher
Georgia Tech College of Computing Georgia Tech College of Computing
shivers@cc.gatech.edu dfisher@cc.gatech.edu
Abstract addition, a “multi-return form”, which we write asery...rm>.t

Additionally, our expression syntax allows for parenthesisation to
disambiguate the concrete syntax. From here on out, however, we'll
ignore parentheses, and speak entirely of the implied, unambiguous
abstract syntax.

It is possible to extend the basic notion of “function call” to al-
low functions to have multiple return points. This turns out to
be a surprisingly useful mechanism. This paper conducts a fairly
wide-ranging tour of such a feature: a formal semantics for a min-
imal A-calculus capturing the mechanism; a motivating example; . . .
a static type system; useful transformations; implementation con- WWe'll develop formal semantics for the MRLC in a following sec-
cerns and experience with an implementation; and comparison totion, but let’s first qleflne the language mformally._ An expression is
related mechanisms, such as exceptions, sum-types and expliciﬁ'WayS evaluated ina context ofanum_ber ofwaltlng “return points”
continuations. We conclude that multiple-return function call is not (OF “ret-pts”). Return points are established with thelements of
only a useful and expressive mechanism, both at the source-codénulti-return forms, and are specified in our grammar byRRgro-

and intermediate-representation level, but is also quite inexpensiveductions: they are eith@rexpressions, or elements of the for#™
to implement. for positive numeral$, e.g, “#1", “#2”, etc.Here are the rules for

evaluating the various kinds of expressions in the MRLC:

Categories and subject descriptorsD.3.3 [Program-
ming language$ Language Constructs and Featuressatrol
structures, procedures, functions, subroutines and recuy$tdh3
[Logics and meanings of programk Studies of program
constructs—eontrol primitives and functional construct®.1.1

e X, N, AXx.e
Evaluating a variable reference, a numeral, arexpression
simply returns the variable’s, numeral’s, ®»s value to the
context'sfirst return point, respectively.

[Programming techniqueg: Applicative (Functional) Program- e e &

ming; D.3.1 Programming language$. Formal Definitions and Evaluating an application first causes the function fegnto

Theory—semantics and syntax be evaluated to produce a function value. Then, in a call-by-
name semantics, we pass the expressiaff to the function.

General terms: Design, Languages, Performance, Theory In a call-by-value semantics, we instead evaleat® a value,
which we then pass off to the function. In either case, the

Keywords: Functional programming, procedure call, control application of the function to the argument is performed in

structures, lambda calculus, compilers, programming languages, the context of the entire form's return points.

continuations Note that the evaluation @& and, in call-by-valuee, do not
happen in the outer return-point context. These inner evalu-

1 Introduction ations happen in distinct, single return-point contexts. So, if

. . . . we evaluate the expression
The purpose of this paper is to explore a particular programming-

language mechanism: adding the ability to specify multiple return (16)(g3)
points when calling a function. Let’s begin by introducing this fea-
ture in a minimalist, “essential” core language, which we will call in a context with five return points, then tfié and they 3 ap-
the “multi-returnA-calculus” (MRLC). The MRLC looks just like plications themselves are conducted in single ret-pt contexts.
the standard-calculus [2], with the addition of a single form: The app”cation off’s return value tcg’s return value, how-
| €Lam = Axe ever, happens in the outer, five ret-pt context.
ecExp :==x|n|l|ee|<en.rm| (e o <er...Mmp>
reRP :=1|# The multi-return form is how we establish contexts with mul-

N . tiple return points. Evaluating such a form evaluates the inner
An expression is either a variable referernxe & numeralf), aA- expressiore in a return-point context witm ret-pts, given by
expressionl( of the formAx.€), an applicationé; &), or our new ther;.

If e eventually returns a valueto a return point of the form
Ax.€, then we bindk to valuev, and evaluate expressiehin
the original form’s outer ret-pt contextf, however,e returns
vto aret-pt of the form “#i,” thew is, instead, passed straight

k to tha'" ret-pt of th r context.
Permission to make digital or hard copies of all or part of this work for personal or back to the™ ret ptofthe outer context

classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation 1Strictly speaking, the addition of numerals means our language

on the first page. To copy otherwise, to republish, to post on servers or to redistribute jg1t g5 primitive as it could be, but we'll allow these so that we'l
to lists, requires prior specific permission and/or a fee.

ICFP'04, September 1921, 2004, Snowbird, Utah, USA. have something a little simpler thanexpressions to use for arbi-
Copyright 2004 ACM 1-58113-905-5/04/0009 ...$5.00 trary constants in our concrete examples.




Consider, for example, evaluating the expression
A(f 6) (AX.X+5) (Ay.yxy)>

where we have slightly sugared the syntax with the introduction of
infix notation for standard arithmetic operators. The functios
called with two return points. Shoulfl return an integejj to the
first, then the entire form will, in turn, returp+-5 to its first ret-pt.

But if f returns to its second ret-pt, then the squarg @fill be
returned to the whole expression’s first ret-pt.

On the other hand, consider the expression
<A(f 6) (AX. x+5) #7>

Shouldf returnj to its first ret-pt, all will be as beforej + 5 will

fun filter f lis
let fun recur nil = ()
| recur (x::xs) =
if f x
then multi (recur xs)
#1
(fn ans => multi (x::ans) #2)
else multi (recur xs)
(fn O => multi xs #2)
#2
in multi (recur 1lis)
fn () => lis
#1
end

be returned to the entire form’s first ret-pt. But shofildeturn to

its second ret-pt, the returned value will be passed on to the entire
form’s seventh ret-pt. Thus, “#i” notation gives a kind of tail-call
mechanism to the language.

One final question may remain: with the ry...rp> multi-ret
form, we have a notation for introducing multiple return points.
Don’t we need a primitive form for selecting and invoking a cho-

Figure 1: The parsimonious filter function, written with a multi-
return recursion.

We recommend that you stop at this point and write the function,
given the recurrence specification above; it is an illuminating ex-
ercise. We'll embed the multi-return forre ry...rm> into ML
with the concrete syntaxailti e ri...ry." The result function

sen return point? The answer is that we already have the necessar{# Shown in figure 1. Note the interesting property of this function:

machinery on hand. For example, if we wish to write an expression
that returnst2 to its third ret-pt, we simply write

<42 #3

which means “evaluate the expression ‘42’ in a ret-pt context with
a single return point, that being the third return point of the outer
context.” The ability of the# notation to select return points is
sufficient.

2 Anexample

To get a better understanding of the multi-return mechanism, let's
work out an extended example that will also serve to demonstrate
its utility. Consider the common list utilit¢ilter: (a—bool)

— o list — a list which filters a list with a given element-
predicate. Here is ML code for this simple function:

fun filter f lis
let fun recur nil = nil
| recur (x::xs) =
if £ x then x ::
else recur xs
in recur lis
end

(recur xs)

Now the challenge: let us rewrifd 1ter to be “parsimonious,” that
is, to allocate as few new list cells as possible in the construction

oth recursive calls are “semi-tail recursive,” in the sense that one
return point requires a stack frame to be pushed, while the other
is just a pre-existing pointer to someplace higher in the call stack.
However, the two calls differ in which ret-pt is which. In the first
recursion, the first ret-pt is tail-recursive, and the second ret-pt re-
quires a new stack frame. In the second, it is the other way around.

Suppose we were using our parsimoni@tidter function to filter

even numbers from a list. What would the call/return pattern be
for a million-element list of even numbers? The recursion would
perform a million-and-one calls... but only a single return! Every
call would pass along the same pointer to the base of the call stack
as ret-pt one; therecur nil” base case would return through this
pointer, jumping over all intermediate frames straight back to the
stack base.

Similarly, filtering even numbers from a list containing only odd
elements would also performcalls and a single return, driven by
the tail-recursion through the second recursive call’'s second return
point.

Filtering mixed lists gives us the desired minimal-allocation prop-
erty we sought; contiguous stretches of elements not in the list are
returned over in a single return. This is possible because multi-
ple return points allow us to distribute codéer the call over a
conditional test containemhsidethe call. This combines with the
tail-recursive properties of the#” notation to give us the code im-
provement.

of the answer list by sharing as many cells as possible between the

input list and the result. In other words, we want to share the longest
possible tail between input and output. We can do this by changing
the inner recursion so that it takes two return points. Our function-
call protocol will be:

e Ret-pt #1: unit
output list = input list
The call returns the unit value to its first return point if every
element of the input list satisfies the tést

Ret-pt #2: a list

output list is shorter than input list

If some element of the input list does not satisfy the fegiie
filtered result is returned to the second return point.

There’s an alternate version of this function that uses three re-
turn points, with the following protocol: return unit to ret-pt #1

if output= input; return a list to ret-pt #2 if the output is a proper
tail of the input; and return a list to ret-pt #3 if the output is neither.
We leave this variant as an (entertaining) exercise for the reader.

3 Formal semantics

Having gained a reasonably intuitive feeling for the multi-return
mechanism, it is fairly straightforward to return now to the mini-
malist MRLC and develop a formal semantics for it. We can define
a small-step operational semantics as a binary relatioon Exp.
We'll first designate integers aridexpressions as “values” in our



semanticsy € Val = Z+ Lam. Then our core set of transition rules glish, this continuation would be rendered as, “Collect the fi-
are defined as follows: nal value for this expression; this value must be a function.
Then evaluate the application’s argument, and pass its value
[funapp to this function, along with the application’s continuation.”
(Ax.e) &2~ [x— ez]e This implicit continuation is the one indexed by th#1* in

[rpse] N 5o NTE A(Ax.e) #1>17.

So the rettail rule indexes continuations given by the return
VI~V [ret]] TWED ~V points of a multi-return expression, while retl allows us to
index the continuation implicit in the recursive evaluation of
the application’s function expression.

[retlam]

[rettall 1<i<m

SAVHD> ... I~ <V D>

to which we add standard progress rules to allow reduction in any Note a pleasing anti-symmetry between function call and return in

term context this calculus: application is strict in tHanction(i.e., we need to
d know where we are going), while return is strict in treduebeing
[funprogd %17 [argprog% passed back.€., we need to know what we are returning). We can-
Q&€& G1&~ & not have a sort of “normal-order” return semantics allowing general

non-value expressions to be returned: the non-determinancy intro-

e~¢ duced would destroy the confluence of the calculus, giving us an
[retprog @ r...Imp~<€ri...r> inconsistent semantics. To see this, suppose we added a “call-by-
name return” rule of the form
[bodyprogﬁ < lrp...rmpp~le
, allowing an arbitrary expressiomrather than a valug to be re-
rpprog [~ turned_through a multl-return_form. This would introduce semanti-
< r...l. rmp~<er.. I i cally divergent non-determinism, as shown by the use of our new,

) ) o bogus rule and the rettail rule to take the same expression in two
funapp The funapp schema is the usual “function applicatiin®  yery different directions:

rule that actually appliesaterm to the argument.
AT HD 11 o>~ 1 47 #2> (by bad rule)

rpsel The rpsel schema describes how a value being returned se- <7 H11 I~ <7 o> (by rettail rule)

lects the context’s first return point.

retlam The retlam schema describes how a value is returned to Restricting the progress rules to just funprog and retprog gives us
a A return point—the\ expression is simply applied to the the call-by-name transition relatier,. The normal-order MRLC
returned value. has some interesting and exotic behaviours, but exploring them
is beyond the scope of this paper, so we will press on to the
applicative-order semantics. For call-by-value, we simply restrict
the function-application rule to require the argument to be a value:

rettail The rettail schema describes how a value is returned tail-
recursively through #i return point. We simply select th&®
return point from the surrounding context, collapsing the pair
of nested multi-return contexts together.

retl Note that the rettail schema does not apply tafateturns— [funapg] (Ax.8) v~ [x— Ve
only those that appear nested within another surrounding
multi-return form providing the selected return point. With
only this rule to define returns throughret-pts, expressions
such asq(Ax.e) #1> 17 would be stuck. The retl rule allows
such an expression to progresgia.e) 17.

To establish the MRLC as a reasonable semantics, we need to en-
sure that the transition relations are confluent. The call-by-value,
call-by-name and full MRLC transition relations are all confluent.
The proofs are beyond the scope of this p&peut they are fairly

The necessity of this extra rule seems like a small blemish on straightforward variants of the standard confluence proof fohthe

the semantics, especially since, as written, itis partially redun- calculus.

dant with rettail on expressions of the forrv #1>rq ... rm>,
whose transition is covered by both rettail and retl. This mi- 4 T
nor “non-determinancy” is harmless, but we must either cover ypes

it in the details of any confluence proof or eliminate it by in-  Our basic untyped semantics in place, we can proceed to consider-
troducing surrounding context into the retl rule to restrict it ation of type systems and static safety. The type system we develop
to multi-ret forms appearing within application expressions. is a static, monomorphic system. The key feature of this system
Either way, it's a bit of extra work. is that expressions have, not a single typéut, rather, avector

of types(t1...th)—one for each return point. Further, we allow

a small degree of subtyping by allowing “holes” (written in the
vector of result types, meaning the expression will never return to
the corresponding return point. So, if we extended the MRLC to
have if/then forms, along with boolean and string values, then, as-
suming thab is a boolean expression,

Nonetheless, it's a necessary, and, we suggest, illuminating
rule, rather than the sort of structural blemish we'd prefer
to just sweep under the rug. Part of the point of the MRLC
is to provide language-level access to the different continu-
ations that underly the evaluation of the program—albeit in
a way that still manages to keep these continuations firmly
under control. (We'll return to this theme later.) Consid- if bthend3 #2 else<“three” #4>
ered from the continuation perspective, evaluation of a func-
tion call hides an implicit continuation, the one passed to the 2As with other omitted proofs, full details will be given in a
evaluation of the application’s function subexpression. In En- forthcoming technical report.




would have principal type vectdtL,int, L, string), meaning, “this

The type system can be extended to handle parametric polymor-

expression either returns an integer to its second ret-pt, or a string tophism with no great difficulty, and algorithfi?’ can be straightfor-
its fourth ret-pt; it never returns to any other ret-pt.” For that matter, wardly adapted to infer types in a Hindley-Milner system for the

this expression has any type vector of the fqmmint, 3, string), for
any typesa andf. We lift this base form of subtyping to MRLC

MRLC [10]. We have also proved the correctness of this variant
of algorithm W. The extension amounts to using a variant of row

functions with the usual contravariant/covariant subtyping rule on polymorphism [18] on the types of the hidden, second-class contin-

function types.

Let us write T to mean a finite vector of types with holes allowed
for some of the elements. More precise?yjs a finite partial map
from the naturals to types, where we Wrﬁi} = 1 to mean that

is not in the domain of . Then our domain of types is

TeTi=int | T T
(Notice thatL is nota type itself.)

Types and type vectors are ordered by the inductively-defined
andC subtype relations, respectively:

Tsup = Tsub TsubE Tsup

Tsub— Tsub & Tsup— Tsup

int Cint

We definet sy C- ?Supto hold when
Vi e Dom( Tgyp) . i € DOM(Tsyp) A Tsupli] T Tsugli]-

In other words, type vecto?,51 is consistent with (is a sub-type-
vector of) type vecton y if T4 is pointwise consistent with j,.

uation tuples.

As a final remark before leaving types, it's amusing to pause and

note that one of the charms of this type system is that it provides a

type for expressions whose evaluation never terminates: the empty
type vector().2

5 Transformations

Besides the usual-calculus transformations enabled by thand

n rules in their various forms (general, CBN and CBV), the pres-
ence of multi-return context as an explicit syntactic element in the
MRLC provides for new useful transformations. For example, the
“ret-comp” transform allows us to collapse a pair of nested multi-ret
forms together:

eI I Y. T =<er]...rih>  [ret-comp]

where

o r] ri = #j
PAxari X ry...ri> (xfresh) rj € Lam

This equivalence shows how tail-calls collapse out an intermediate

tem, given by the judgementt e: ?, meaning “expressioa has
type-vectort in type-environmenk.” Type environments are sim-

eats all surrounding context, freeing the entire pending stack of call
frames represented by surrounding multi-return contexts. Thus a
function call that takes no return points and so never returns can

ply finite partial maps from variables to types. The type-judgment eagerly free the entire run-time stack.

relation is defined by the following schemata:

I Fn:(int) 7 x € Dom(T")

MEx:(Mx
Mx—1kFe:t
FF)\X.EZ<T—> T>

F|—e1:<r—>?> et 1,0

FFere: Gy TE Tpp
I'I—e:TAe . T ricLam
Y ) Tedj] = . o
Fl—r,.<rJ—>r]>(Vr,eLam) T[i] rj=*#

FH<er..rmp: T TeLTee TLET

The type system, as we've defined it, is designed for the call-by-
value semantics, and is overly restrictive for the call-by-name se-
mantics. Development of a call-by-name type system is beyond the
scope of this paper; we simply remark that it requires function types

to take a type vector on tHeft side of the arrow, as well as the right

side. We have established the type-safety of the call-by-value sys-

Another useful equivalence is the mirror transform:

le=<el> [mirror]

Note that the mirror transform does not hold for the normal-order
semantics—shifting from its non-strict role as an application’s
argument to its strict role in a multi-ret form can change a termi-
nating expression into a non-terminating one. Since both positions
are strict in the call-by-value semantics, the problem does not arise
there.

These equivalences are useful to allow tools such as compilers to
manipulate and integrate terms in a fine-grained manner (as we’'ll
see in the following section). We have established that these trans-
forms preserve meaning with respect to the CBV semantics. To
briefly sketch the proof, we show that the transition relation that is
the union of each transformation (performed at any subterm within
a term) and the set of call-by-value transitions is confluent; in addi-
tion, a single transformation does not make a non-terminating ex-
pression terminating (in the CBV-only system), or vice-versa. In
order to show that the combined semantics are confluent, we invoke
the Hindley-Rosen lemma, which states that if two commuting re-
lations are confluent, then their union is confluent. The rest of the

tem by the usual subject-reduction technique. The theorem guaran- - )
tees that a well-typed program will never attempt to return a value Proof is done simply by cases.
to a non-existent return point, or to one that expects a value of the
wrong type. The proof is completely standard and contains no tech-
nical surprises or unusual (or even interesting) insights.

3Not every such expression can be assigned this type, of
course. ..



6 Anchor pointing and encoding in the pc underlying primitive%< function that encodes its result in the pc

Consider compiling the programming-language expressis™ using multiple return points:
in the two contextsf (x<5)” and “if x<5 then ...else ...”

In the first context, we want to evaluate the expression, leaving a
trueffalse value in one of the machine’s registers. In the secondWith similar control-oriented definitions for the short-circuiting
context, we want to evaluate the inequality, branching to one or boolean syntax forms

another location in the program based on the outcome—in other

< = M&xy. <4< x y) (A_.true) (A_.false)>

words, rather than encode the boolean result as one of a pair of xandy = <(%if X0 A_.y A_.falsep

possible values in a general-purpose register, we wish to encode it Xory = <a(%if X) A_.true A_.y >

as a pair of possible addresses in the program counter. Compiler not =  Ax. <(%if X) A_.false A_.true>

writers refer to this distinction as “eval-for-value” and “eval-for- . . Lo .
control” [4]. the anchor-pointing transform is capable of optimising the transi-

tions from encoded-as-value to encoded-as-pc.

Not only do programs have these two waysohsumingooleans,
they also have corresponding means pobducing them. On For example, suppose we start out with a conditional expression
many processors, the conditionat<s” will be produced by a that uses a short-circuit conjunction:

conditional-branch instruction—thus encoded in the pc—while the
boolean function call £sLeapYear (y)” will produce a boolean
value in one of the general-purpose machine registers—thus en-
coded as a value.

if (0 <= i) and (i < n) then € else &

First, we expand the “and” into its if/then/else form, and rewrite our
infix conditionals into canonical application syntax:

Matching up and optimally interconverting between the different
kinds of boolean producers and consumers is one of the standard
tasks of good compilers. In the functional world, the technique for
doing so relies on a transformation called “anchor pointing,” [17, 9]

defined for nested conditional expressions—sometimes called “if- (Note the tell-tale if-of-an-if that signals an opportunity to shift to

if (if (<= 0 i) then (< i n) else false)
then €
else &

of-an-if.” The transformation is evaluation for control.) Next, we translate the if/then/else syntax
if (if a then b else ¢) if a into its functional multi-return equivalent:

then d = then (if b then d else €)

else e else (if C then d else € Q(hif <(Bif (<= 0 1))

although we usually also replace the expresstbaade with calls ;,- f(;;e;l)

to let-bound thunkd_.d andA_.e to avoid replicating large chunks Ae =

of code (where we write " to suggest a fresh, unreferenced “don’t- 7\*: e

care” variable for the thunk, in the style of SML). In the original

form, theb andc expressions are evaluated for value; in the trans- andp-reduce the eval-for-control versions of theandx functions:
formed resultp andc are evaluated for control.

Q(hif <a(%if <<= 0 i) A_.true A_.falseD)

In the MRLC, we can get this effect by introducing primitive “con- A .<a(%< i n) A .true A .falsep
trol” functions. The%if function consumes a boolean, and returns A .falsep) B -
to a pair of unit return pointsa(%if b) rinenreisé>. In other words, A.e B
it is the primitive operator that converts booleans from a value en- A e
coding to a pc encoding. The anchor-pointing transformation trans-
lates to this setting: Now we have driply-nested conditional expression. Apply the
anchor-pointing transform to the secoftif and the%<= condi-
<:1>(°/°if a(kif @ A_.b A_.c>) d & tionals. This, plus a bit of constant folding, leads to:
a(kif a) A_.<«(%if b) d e A(%if <aCh<= 0 i) A_.<(%< i n) A_.true
A_.<(%if c) d e A_.falsep
A_.falsep
This transform, in fact, is easily derived from the basic ret-comp ;*'gb

and mirror transforms, plus some simple constant-folding,nh
applications to boolean constants. (You may enjoy working this out Now we apply anchor-pointing to the firét £ and they<= applica-
for yourself.) We can also defimreway case branches with multi-  tjon, |eading to:

return functions; for an intermediate representation for a language

such as SML, we would probably want to provide one such func- <(%<= 0 i) A_.<(%if <(%< i n) A_.true
tion for each sum-of-products datatype declaration, to case-splitand A_.falsep»)
disassemble elements of the introduced type. A.e

A_.en
Recall that some boolean functions are primitively implemented on A ,q(iiiz false)
the processor with instructions that encode the result in the pc— A e
integer comparison operations are an example. We can express this A .en>

at the language level by arranging for the primitive definitions of
these functions similarly to provide their results encoded in the pc. Applying anchor-pointing to the first arm of th= conditional,
For example, the exportedfunction can be defined in terms of an  and constant-folding to the second arm gives us:



<A%<= 0 i) A_.<(%< i n)
A _.<a(%if true) A _.e1 A_.e>
A_.<(%hif false) A_.e1 A _.ed>
A e

Some simple constant folding reduces this to the final simplified
form that expresses exactly the control paths we wanted:

<A(h<= 0 i) A_.<a(%< in) A _.e A _.e>
A e

Note one of the nice effects of handling conditionals this way: we
no longer need a special syntactic form in our language to handle
conditionals; function calls suffice. The ability of multi-return func-
tion call to handle conditional control flow in a functional manner
suggests it would be a useful mechanism to have in a low-level in-

termediate representation. CPS representations can also manage

this feat, but at the cost of significantly more powerful machin-
ery: they expose continuations as denotable, expressible, first-clas
values in the language. The multi-return extension is a more con-
trolled, limited linguistic mechanism.

7 Compilation issues

Compiling a programming language that has the multi-return fea-
ture is surprisingly trouble-free. Standard techniques work well
with only small modifications required to exploit some of the op-

portunities provided by the new mechanism.

7.1 Stack management

Calling subroutines involves managing the stack—allocating and
deallocating frames. Typically, modern compilers distinguish be-
tween tail calls and non-tail calls in their management of the stack
resource. The presence of multiple return points, however, intro-
duces some new and interesting possibilities: semi-tail calls and
even super tail calls.

In the multi-return setting, there are three main cases for passing
return points to a function call:

e All ret-pts passed to called function
E.g, <(f 5) #1 #3 #2 #i:
If a function call simply passes along all of its context’s return
points, in a tail-call setting, then this is simply a straight tail
call. The current stack frame can be immediately recycled
into f’s frame, and thus there is no change in the number of
frames on the stack across the call.

Ret-pts are strict subset of caller’s ret-pts

E.g, <(f 5) #6 #4

However, we can have a tail call that drops some of the call-
ing context's return points. In this case, the caller can drop
frames, collapsing the stack back to the highest of the sur-
viving frames. In this way, a call can be “super tail recursive,”
with the stack actually shrinking across a call. This aggressive
resource reclamation does require a small amount of run-time
computation: in order to “shrink-wrap” the stack prior to the
call, the caller must compute the minimum of the surviving re-
turn points, since there’s no guaranteed order on their position
in the stack.

Some ret-pts are\ expressions
If any return point is & expression, then we must push stack

frames to hold the pending state needed when these return

points are resumed. However, we can still shrink-wrap the

S

stack prior to allocating these return frames, if some of the
calling context’s return points are also going dead at this call.
The ability to mix#i andA return points in a given call means
we can have calls that are semi-tail calls—both pushing new
frames and reclaiming existing ones.

7.2 Procedure-call linkage

The MRLC makes it clear that multiple return points can be em-
ployed as a control construct at different levels of granularity, from
fine-grained conditional branching to coarse-grained procedure-call
transfers. This is analogous to the usa-@&xpressions in functional
languages, which can be used across a wide spectrum of control
granularity. Just as with-expressions, a good compiler should be
able to efficiently support uses of the multi-return construct across
this entire spectrum.

The most challenging case is the least static and largest-grain one:
passing multiple return points via a general-purpose procedure-call
linkage to a procedure. There are three cases determining the pro-
tocol used to pass return points to procedures:

e lret-pt (1 registert+sp

In the normal, non-multi-return case, where we are only pass-
ing a single return point to a procedure, we need one register
(or stack slot) for the return pc. Since the pending frame to
which we will return is the one just below the called proce-
dure’s current frame, the stack pointer does double duty, in-
dicating both the location of the pending frame as well as the
allocation frontier for the current frame.

> 1ret-pt (2nregisterst-sp

In general, however, we pass each return point as a frame-
pointer/return-pc pair of values, either in registers or stack

slots, just as with parameters (which should come as no sur-
prise to those accustomed to continuation-based compilers,
since function-call continuations are just particular kinds of

parameters).

However, if a procedure has more than one return point, we
cannot always statically determine which one will be the
topmost pending frame on the stack when the function is
executed—in fact, this could vary from call to call. So we
must separate theédle of the stack pointer from that of the
registers that hold the frame pointers of the return points. The
stack pointer is used fallocation—it indicates the frontier
between allocated storage and unused, available memory. The
return frame pointers are fdeallocation—they indicate back

to where the stack will be popped on a return.

Registers used by the function-call protocol for return points
can be drawn from the same pool used for parameters, over-
flowing into stack slots for calls with many return points or
parameters. Thus a call that took many return points might
still be accomplished in the register set, if the call did not take
many parameters, andce versa We might wish to give pa-
rameters priority over ret-pts when allocating registers in the
call protocol on the grounds that (1) only one of the ret-pt val-
ues will be used and (2) invoking a ret-pt is the last thing the
procedure will do, so the ret-pt will most likely be referenced
later than the parameters. (Neither of these observations is al-
ways true; they are merely simple and reasonable heuristics.
For example, a procedure may access multiple ret-pts in order
to pass them to a fully or partially tail-recursive call. If the
call is only partially tail-recursive, then the procedure may
subsequently resume after the call, accessing other parame-



ters. These issues can be addressed by more globally-awareSo, in short, the simple tail-call rule for managing callee-saves reg-
parameter- and register-management techniques.) isters applies with no trouble in the multi-return case. Note, how-
ever, that this rule does have a cost in our new, semi-tail call setting:
the presence of the “#1” in the example above means we can't use
callee-saves registers to pass values betweg(f thecall point and
theAx.ereturn point.

e Oret-pt (O registerst sp)
This singular case has a particularly efficient implementation:
not only can we avoid passing any ret-pc values, we can also
reclaim the entire stack, by resetting sp to point to the original

stack base!

. . : . . . A I
Besides being an interesting curiosity, we can actually use this 8 Ctual use

property, in situations involving the spawning of threads, to The multiple-retgrn mechanism is usef_ul fOI: many more programs
indicate to the compiler the independence of a spawned threadthan the single filter function we described in section 2. Other ex-
from the spawning thread’s stack. We have wished for this @mples would be:

feature on multiple occasions when writing systems programs

in functional languages. e compiler tree traversals that might or might not alter the code

tree;

Note that ret-pt registers, being no different from parameter reg- ) ) )
isters, are available for general-purpose use inside the procedure ¢ algorithms that insert and delete elements in an ordered-tree

body. Code that doesn’t use multiple return points can use the reg- seft;
isters for other needs. Multi-return function call is a pay-as-you-go ) ) o
feature. e search algorithms usually expressed with explicit success

and failure continuations—these can be expressed more suc-
cinctly, and run on the stack, without needing to heap-allocate

7.3 Static analyses continuations.

There are some interesting static-analysis possibilities that could Scheme programmers frequently write functions that take multiple
reveal useful information about resource use in this function-call continuations as explicit functional parameters, accepting the awk-
protocol. For example, it might be possible to do a sort of live/dead Ward notational burden and run-time overhead of heap-allocated
analysis of return points to increase the aggressiveness of the precontinuations (which are almost always used in a stack-like man-
call “shrink wrapping” of stack frames. An analysis that could order "€r). This longstanding practice also gives some indication of the
return points by their stack location could eliminate the min compu- Utility of multiple return points.

tation used to shrink-wrap the stack over multiple live return points.

We have not, however, done any significant work in this direction. V&'ve found that once we'd added the mechanism to our mental

“algorithm-design toolkit,” opportunities to use it tend to pop up
with surprising frequency. As an example, we are currently in the

7.4 Callee-saves register management midst of implementing a standard Scheme library for sorting [16].
This library contains a function for deleting adjacent identical ele-

One of the difficulties with the efficient compilation of exceptionsis MeNts in a linked list—which exactly fits the pattern we exploited
the manner in which they conflict with callee-saves register use. If N the “parsimonious filter” example. Since Scheme does not have
a procedurd® stores a callee-saves register away in the stack frame, multi-return function calls, our implementation of this function is
an exception raised during execution of a dynamically-nested pro- M0re complex and less efficient than it needs to be.

cedure call cannot throw directly to a handler abBigeframe—the
saved register value would be lost. Either the callee-saves regis-
ters must be dumped out to the stack for retrieval after the handler-
protected code finishes, or the control transfer to the exception’s
handler must instead “unwind” its way up from the invoking stack
frame, restoring saved-away callee-saves registers on the way ou
The first technique raises the cost of establishing a handler scope
while the second raises the cost of invoking an exception.

Shao, Reppy and Appel have shown [15] how to use multiple con-
tinuations to unroll recursions and loops in a manner that allows
functions to pack lists into larger allocation bloéksThe cost of
explicit continuations rendered this impractical when conditional
tcontrol information must be distributed past multiple continua-
tions; the more restricted tool of the MRLC’s multiple-return points
Wwould make this feasible.

When casting about for a larger example to try out in practice,
multi-return setting. As with any function-call protocol (even the however, one particular use took us by storm: LR parser genera-
traditional single-réturn one) supporting constant-stack tail-calls tors [3]. A parser generator essentially is acompller thqt translates
any tail call must restore the callee-saves registers to their entr’ya (_:ontext-free grammar to a program f_or a particular kind of ma-
values before transferring control to the called procedure (so tail- chine, a push-down automaton (P[-)A)’ justas a regular-exprgsson
calls have some of the requirements of calls, and some of the re_matcher compiles regular expressions into a program for a finite-
quirements of returns). Multi-return procedljre calls allow for a state automaton. For our purposes, we can describe a PDA as a
new possibility beyond :‘tail call” and “non-tail call:” the “semi-tail machine that has three instructions: shift, goto, and reduce. N-OW‘
call,” which pushes frameand passes along existihg return points once we havg our PDA program, We.have two options for executing
o ' ' it. One path is to implement a PDA in the target language (say, for

9, example, C), encode the PDA program as a data structure, and then

a(f 5) (Ax.€) #1>. run the PDA machine on the program. That is, we execute the PDA

program with an interpreter.

In contrast, it's fairly simple to manage callee-saves registers in the

We must treat this case with the tail-call restriction by restoring
all callee-saves registers to their entry values prior to transferring  “It's a curious but ultimately coincidental fact that their paper
control to f in order to keep from “stranding” callee-saves values uses the same filter-function example shown in section 2—for a
in a skipped frame shoulfireturn through its second return point. ~ completely different purpose.




The other route, of course, is to compile: translate the PDA program input size | non-MR MR parser
down to the target language. The attraction of compiling to the | Input (symbols) | parser | MR parser| with inlining
target language is the transitivity of compilation—we usually have | l00p 18 | 78,151 9,336 8,915
a compiler on hand that will then map the target language all the | matmul 121 114,987 36,025 33,386
way down to machine language, and so we could run our parser af 8queens 235 | 164,693 70,797 65,505
native-code Speeds_ merge 409 219,649 99,743 89,486
large 1,868 | 802,008 366,498 324,459

Translating PDA programs to standard programming languages, Taple 1. Performance measurement for standard/table-driven
however, has problems. Let's take each of the three PDA instruc- ang multi-return-based LALR parsers generated from the
tions in turn. The “shifts” instruction means “save the current  Tiger grammar. Timings are instruction counts, measured on
state on the stack, then transfer to stsle This one is easy o the SPIM Sparc simulator. Input samples are (1) a simple loop,

represent, encoding state in the pc: if we represent each parse{2) matrix multiply, (3) eight-queens, (4) mergesort, (5) samples
state with a different procedure, then “shift” is just function call.  2_4 yeplicated multiple times.

The “gotos” instruction, similarly, is just a tail-recursive function
call. How about reduce? The “redun&instruction means “pom We then built two parsers to recognise the Tiger grammar (a rea-
states off the stack, and transfer control to title (last) state thus sonably complex grammar which we happened to have convenient
popped.” Here is where we run into trouble. Standard programming to hand). The parser keeps pending state information, which drives
languages don’t provide mechanisms for cheaply returning severalexecution control decisions on the procedure call stack, and uses
frames back in the call stack. Worse, the valua oed when re- a separate, auxiliary stack to store the values produced and con-
ducing from a given state can vary, depending upon the value of thesumed by the semantic actions. We were pleased to discover that
next token in the stream. So a particular state might wish to return the return-point requirements for our sample grammars were very
three frames back if the next token is a right parenthesis, but five limited. Of the 137 states needed to parse the Tiger grammar, 106
frames back if it is a semicolon. needed only one return point; none needed more than two. Reduc-
tions in real grammars, it seems, are sparse.
While this is hard to do in Java or SML or other typical program-
ming languages, it can be done in assembler [13]. The problem with The compiled parser, of course, ran significantly faster than the in-
a parser generator that produces assembler is that it isn’t portable terpreted one. The compiled PDA parsed our sample input 2.5-3.5
and, worse, has integration problems—the semantic actions embedtimes faster than the interpreted PDA (see table 1). One source of
ded inside the grammar are usually written in a high-level language. speedup was the fact that when a state is only shifted into from one
For these reasons, standard parsers such as Yacc or Bison [8] ustgther state, the Tiger compiler saw it as a procedure only called
ally go the interpreter route: the grammar is converted to a C table from one site, and would inline the procedure. This happens quite
which is interpreted by a PDA written in C. frequently in real grammars—78% of the Tiger-grammar states can

Multi-ret I e thi bl icelv—th . " be inlined. Representing the parser directly in a high-level language
ult-return calls solve this probiem nicely—iney give us exaclly  4ayed it to be handled by general-purpose optimisations.
the extra expressiveness we need to return to multiple places back

on Fhe stack. When_our compiled PDA program does a shift t_)y These simple experiments provide only the most basic level of eval-
calling a procedure, it passes the return points that any reduc'['onuation, in the sense that a real, end-to-end implementation has been
from that state forward might need. successfully constructed with no serious obstacles cropping up un-

To gain experience with multi-return procedure calls, we started foreseen, and that it performs roughly as expected.

with a student compiler for Appel’s Tiger language [1], which one L

of us (Shivers) uses to teach the undergraduate compiler course aj "€re is still much we could have done that we have not yet done.

Georgia Tech. Tiger is a fairly clean Pascal-class language. The stu-"V€ did not, for example, arrange for our parsers to execute semantic
dent compilers are written in SML, produce MIPS assembly, and actions while parsing—they are simply recognisers. This shows off

feature a coalescing, graph-coloring register allocator. One grad- e éfficiency of the actual parsing machinery to best advantage.
uate of the undergraduate compiler course took his compiler and OUr basic intent was simply to exercise the multi-ret mechanism,
modified it to add a multi-return capability to the language. This al- Which function our parsers performed admirably.

lowed us to completely try out the notion of adding multiple-return

points to a language, from issues of concrete syntax, through static  \/ariations

analysis, translation and execution, giving us a tool for experiments. . . .

Designing the syntactic extensions was a trivial exercise, requiring WWe've covered a fair amount of ground in our rapid tour of the
only the addition of the multi-ret form itself and modification of ~Multi-return mechanism, providing views of the feature from mul-
the declaration form for procedures. We designed the syntax exten-iPlé perspectives. But we've left many possibilities unexplored.
sions with our “pay-as-you-go” criteria in mind—code that doesn’t We've pointed out some of these along the way, such as normal-

use multiple return points looks just like standard Tiger code. order semantics or static analyses.

A second undergraduate modified a LALR parser-generator tool 9 1 Return-point syntax
written in Scheme by Dominique Boucher, adding two Tiger back-

ends, one compiling the recogniser to multi-return Tiger code, and gpe yariation we have not discussed is the syntactic restriction of
the other producing a standard “table&PDA’ implementation. The oy, points to\ expressions. This is not a fundamental require-

only non-obvious part of this task is the analysis to determine which . ant The entire course of work we've laid out goes through just
return points must be passed to a given state procedure. This is;q easily if we allow return points to be any expression ati.all (

a simple fixed-point computation over the PDAS state machine. pp " ¢ | #) and change the semantics schema for returning
(Specifically, a state procedure must be passed return points for any,4,es in an equally trivial manner:

reduction it might perform, plus return points to satisfy the needs
of any state to which it might, in turn, shift.) dvVen...Iyp> ~ ev



However, it doesn’t seem to add much to the expressiveness of theclear, since exceptions are just a second continuation to the main

language to allow return points to be true computations themselvescontinuation used to evaluate an expression.

(that is, function applications). One can alway&xpand a return

point of the forme; e, to Ax.(e1 &) x. But allowing general expres- ~ However, exceptions are, in fact, semantically different from mul-

sions for return points does introduce issues of strictness and non-iple return points. They are a more heavyweight, powerful mecha-

termination into the semantics of return that were not there before, Nism, which consequently increases their implementation overhead

and this, in turn, restricts some of the possible transformations. ~ and makes them harder to analyze. This is because exceptions are
used to implememnton-localcontrol transfers, something that can-

A third possibility borrows from SML's “value restriction:” restrict  not be done with multi-ret function calls. For example, consider the

return points to be eitheér expressions or variable references [11]. expression

Variable references are useful ret-pts for real programming, as they sin(1/£(x))

give the ability to name and then use “join points” in multiple lo-

cations. This seems somewhat more succinct than the awkwardif £ raises an exception, the program can abort the entire, pending

alternate of binding the join point to a name, and then referring to reciprocal-and-then-sine computation by transferring control to a

it with n-expanded return points in the desired locations. handler further back in the control chain.

Restricting return-point expressions Xaexpressions and variable  Multi-ret function calls, in contrast, do not have this kind of global,
references eliminates code blowup in transformations, since largedynamic scope. They do not permit non-local control flow—if a
ret-pt expressions can be let-bound and replaced by a name befordunction is called, it returns. This makes them easier to analyze and
replication. It eliminates issues of control effect, since both forms permits the kind of transformations that encourage us to use them
of expression can be guaranteed to evaluate in a small, finite amounto represent fine-grained control transfers such as local conditional
of time. For a real programming language, we prefer this syntax branches—in short, they make for a better wide-spectrum, general-
best. purpose control representation, as opposed to a control mechanism
tuned for