Coarsening Optimization for Differentiable Programming

XIPENG SHEN* and GUOQIANG ZHANG, Facebook & North Carolina State Univ., United States
IRENE DEA, SAMANTHA ANDOW, and EMILIO ARROYO-FANG, Facebook, Inc., United States
NEAL GAFTER, JOHANN GEORGE, and MELISSA GRUETER, Facebook, Inc., United States
ERIK MEIJER, OLIN GRIGSBY SHIVERS, and STEFFI STUMPQS, Facebook, Inc., United States
ALANNA TEMPEST, CHRISTY WARDEN, and SHANNON YANG, Facebook, Inc., United States

This paper presents a novel optimization for differentiable programming named coarsening optimization. It
offers a systematic way to synergize symbolic differentiation and algorithmic differentiation (AD). Through it,
the granularity of the computations differentiated by each step in AD can become much larger than a single
operation, and hence lead to much reduced runtime computations and data allocations in AD. To circumvent
the difficulties that control flow creates to symbolic differentiation in coarsening, this work introduces ¢-
calculus, a novel method to allow symbolic reasoning and differentiation of computations that involve branches
and loops. It further avoids "expression swell" in symbolic differentiation and balance reuse and coarsening
through the design of reuse-centric segment of interest identification. Experiments on a collection of real-world
applications show that coarsening optimization is effective in speeding up AD, producing several times to two
orders of magnitude speedups.

CCS Concepts: » Software and its engineering — Compilers.

Additional Key Words and Phrases: differentiable programming, compiler, program optimizations, SSA,
Calculus

ACM Reference Format:

Xipeng Shen, Guoqiang Zhang, Irene Dea, Samantha Andow, Emilio Arroyo-Fang, Neal Gafter, Johann
George, Melissa Grueter, Erik Meijer, Olin Grigsby Shivers, Steffi Stumpos, Alanna Tempest, Christy Warden,
and Shannon Yang. 2021. Coarsening Optimization for Differentiable Programming. Proc. ACM Program. Lang.
5, OOPSLA, Article 130 (October 2021), 27 pages. https://doi.org/10.1145/3485507

1 INTRODUCTION

A program written with differentiable programming can be differentiated automatically. The
differentiation results can then be used for gradient-based optimization (e.g., gradient descent) of
the parameters in the program.

Differentiable programming have been used in scientific computing, physics simulations, and
other domains to help mitigate the burden of manual error-prone coding of derivative compu-
tations. Recent several years have witnessed a growing interest of differentiable programming

“Contact author: Xipeng Shen (xshen5@ncsu.edu). Work done while the first two authors were with Facebook Inc.

Authors’ addresses: Xipeng Shen, xshen5@ncsu.edu; Guogiang Zhang, gzhang9@ncsu.edu, Facebook & North Carolina
State Univ., Raleigh, United States; Irene Dea, irenedea@fb.com; Samantha Andow, samdow@fb.com; Emilio Arroyo-Fang,
earroyof@fb.com, Facebook, Inc., Menlo Park, United States; Neal Gafter, nmgafter@fb.com; Johann George, jog@fb.com;
Melissa Grueter, melissagrueter@fb.com, Facebook, Inc., Menlo Park, United States; Erik Meijer, erikm@fb.com; Olin
Grigsby Shivers, olinshivers@fb.com; Steffi Stumpos, stumpos@fb.com, Facebook, Inc., Menlo Park, United States; Alanna
Tempest, atem@fb.com; Christy Warden, christywarden@fb.com; Shannon Yang, shannony@fb.com, Facebook, Inc., Menlo
Park, United States.

This work is licensed under a Creative Commons Attribution 4.0 International License.
© 2021 Copyright held by the owner/author(s).

2475-1421/2021/10-ART130

https://doi.org/10.1145/3485507

Proc. ACM Program. Lang., Vol. 5, No. OOPSLA, Article 130. Publication date: October 2021.

http://creativecommons.org/licenses/by/4.0/
HTTPS://ORCID.ORG/0003-3599-8010
https://doi.org/10.1145/3485507
https://orcid.org/0003-3599-8010
https://doi.org/10.1145/3485507

130:2 X. Shen et al.

in machine learning (ML) [Baydin et al. 2018; van Merriénboer et al. 2018] and Probabilistic Pro-
gramming [Tehrani et al. 2020], to accommodate the needs of various customized ML operators,
user-defined operations in the learning targets (e.g., the physical environment of reinforcement
learning) and statistical sampling.

The key technique in differentiable programming is automatic differentiation. For a program
(P) that produces output (y) from some given values (X), automatic differentiation automatically
computes the derivatives (dy/dx) (x € X) without the need for users to write the differentiation
code. The given program P is called the primal code, and x is called an active input variable.

Existing approaches of automatic differentiation fall into two categories: (i) Symbolic differentia-
tion, which uses expression manipulation in computer algebra systems, (ii) Algorithmic differenti-
ation, which performs a non-standard interpretation of a given computer program by replacing
the domain of the variables to incorporate derivative values and redefining the semantics of the
operators to propagate derivatives per the chain rule of differential calculus (elaborated in Section 2).

Symbolic differentiation has been commonly regarded inappropriate for differentiable program-
ming, for several reasons: (i) It results in complex and cryptic expressions plagued with the problem
of “expression swell” [Cor 1988]. (ii) It requires models to be defined as closed-form expressions,
limiting the use of control flow and other features that are common in computer programs.

Consequently, existing differentiable programming systems are all based on algorithmic differ-
entiation (AD). Algorithmic differentiation computes derivatives through accumulation of values
during code execution to generate numerical derivative evaluations. In contrast with the effort
involved in arranging code as closed-form expressions under the syntactic and semantic constraints
of symbolic differentiation, algorithmic differentiation can be applied to regular code, allowing
branching, loops, and other language features. Some examples are Autograd [Maclaurin 2016],
PyTorch [Paszke et al. 2017], JAX [Bradbury et al. 2018], and Zygote [Innes 2020].

In this work, we advocate for a hybrid approach for differentiable programming. This new
approach seamlessly integrates symbolic differentiation with algorithmic differentiation through
coarsening, a compiler-based technique we introduce in this work.

The motivation of the new approach is to eliminate the large overhead in AD incurred by its
fine-grained differentiation and operation overloading. Rather than differentiation at each operation,
this new approach tries to enlarge the granularity to a sequence of operations, hence the name
“coarsening optimization". It identifies a part of the to-be-differentiated computations that are
amenable for symbolic differentiation, elevates it to a high-level symbolic representation, applies
symbolic differentiation on it, generates the code, and then integrates it back into the computation
flow of AD.

By doing that, the coarsening optimization gives four-fold benefits: (i) It avoids many calls
to the fine-grained differentiation functions and the creations of many intermediate results; (ii)
the symbolic representation makes it easy to directly benefit from expression simplifications by
existing symbolic engines and hence leads to more efficient code being generated; (iii) it can form
a synergy with computation reuse and hence amplify the benefits; (iv) it can sometimes remove
the unnecessary primal computations. If what users want is only the derivative of a function,
current AD still needs to run the primal computation because of the nature of its differentiation
process (Sec 2). But if coarsening can be applied to the entire function, then only its generated
differentiation function needs to run, foregoing the executions of the primal function.

In addition to those benefits, coarsening features several appealing properties: (i) As the coarsen-
ing optimization typically happens at compile time, it trades a slight increase of compile time for
significant runtime savings; (ii) functioning as a way to add "shortcuts" to AD, it can be seamlessly
integrated into both forward and backward differentiation; (iii) it applies regardless whether the
gradients are for first or higher order optimizations.

Proc. ACM Program. Lang., Vol. 5, No. OOPSLA, Article 130. Publication date: October 2021.

Coarsening Optimization for Differentiable Programming 130:3

To materialize the optimization, there are several major challenges.

Challenge I: Complexities from control flow (e.g., branches, loops). Symbolic differentiation
requires a closed form of the computation, which has been regarded as difficult for code involving
complex control flow. Limiting coarsening to the code segments between the appearances of such
complexities in a program would result in many short code segments, leaving many optimization
opportunities submerged and much power of coarsening untapped.

Challenge II: "Expression swell". "Expression swell" is a criticism to symbolic differentiation
mentioned in some literature, which refers to the observation that the derivative often has a much
larger representation than the original function has [Cor 1988]. For instance, in a straightforward
implementation, the derivative of the multiplication of n terms becomes an expression with n?
terms: d(fify - -~ fo) /dx = 2; d(fi) /dx [1 4 fj-

Challenge III: Tension with computation reuse. Some calculations in the primal computation may
be also required in the differentiation (e.g., eX# is part of both (1 + ¢X#) and its differentiation
over 8, XeX'#). Reuse opportunities can also exist between different parts of differentiation. The
fine-grained operations in algorithmic differentiation already build on such reuses. But in coarsened
differentiation, without a careful design, such reuse opportunities can get lost as the symbolic
transformation reorders and reorganizes the involved calculations. On the other hand, naively
maximizing computation reuse would limit the granularity of coarsening. So there is a challenge in
reconciling the tension between reuse and coarsening.

We address the challenges through two major innovations. (i) For challenge I, we introduce
¢-calculus, a novel method that allows symbolic reasoning and differentiation of computations
with complex control flow. Building on the ¢-function in single static assignment (SSA), ¢-calculus
makes the derivation of a closed form possible for computations involving complicated control
flow. It further offers a set of formulae for symbolically reasoning about and differentiating the
closed forms that involve ¢-functions. (ii) For challenges II and III, we propose reuse-aware SOI
identification as a way to identify the code segments of interest (SOI) for coarsening. It can strike a
good tradeoff between coarsening and reuse, and at the same time keep the effects of "expression
swell" under control.

Based on an AD tool for Kotlin (DiffKt), we evaluated coarsening on 18 settings of six applica-
tions on two machines. The results show that coarsening is effective in significantly expanding the
applicable scope of symbolic differentiation, and hence dramatically reducing the runtime overhead
of AD. The performance improvement is substantial, 1.03x-27X speedups of the differentiation and
1.08%-11x speedups of the end-to-end application execution. We further examined the potential
of coarsening on several other AD tools (Zygote [Innes 2020] for Julia, Jax [Bradbury et al. 2018]
for Python, Adept [Hog 2014] for C++) by experimenting with the implementations of the sym-
bolic differentiation results in their corresponding languages. The speedups from the coarsening
results are even greater, 66X-335X%, indicating the potential of coarsening in serving as a general
optimization technique for AD.

To the best of our knowledge, this is the first work that proposes a systematic approach to
integrating symbolic differentiation with algorithmic differentiation for differentiable programming.
The developed ¢—calculus offers the first method to enable symbolic differentiation of computations
spanning over complex control flow. The resulting hybrid differentiation approach gets the best of
both worlds, that is, the efficiency from the compile-time symbolic differentiation and the generality
of AD.

In summary, this work makes the following contributions:

e Itintroduces coarsening optimization, the first approach to systematical integration of symbolic
differentiation into algorithmic differentiation for general programs.

Proc. ACM Program. Lang., Vol. 5, No. OOPSLA, Article 130. Publication date: October 2021.

130:4 X. Shen et al.

o It develops ¢-calculus that eliminates the barriers of control flow to symbolic differentiation.

e It proposes reuse-aware SOI identification to balance reuse and coarsening.

e It validates the benefits of coarsening, confirming its potential for significantly improving
AD efficiency.

2 BACKGROUND AND TERMINOLOGY

At the foundation of AD is the chain rule. We explain it in a simple setting. Suppose y is the
output of a sequence computations on input x, and y; (i = 1,2, - - - , k) are the intermediate results
produced during the sequence of computations from x to y, that is, y; = fi(x),y2 = f2(y1), -, yx =
Jfx(Yk-1), y = f(yx). The chain rule says that the derivative of y on x (or called x’s gradient regarding
y) can be computed as follows:

dy/dx = dy/dyy = dyi/dy— * - - * dy, /dx

In a program, besides the variables relevant to the deriatives of interest, there can be many other
variables. To distinguish them, we call the relevant output variables like y active output variables,
relevant input variables like x active input variables, and other relevant variables simply active
variables. Further, we call the computations in the original program from active input variables
to active output variables primal computations, and the computations to compute the derivatives
gradient computations.

There are two ways to interpret the chain rule, which lead to the forward and backward AD
respectively. We explain them by assuming an implementation of AD via operator overloading, the
most common way of implementation of AD.

The first is to regard the rhs of the chain rule a sequence of computations from the rightmost term
to the leftmost term. Corresponding to AD implementation, the derivatives of dy; /dx is computed
as a side step of operator overloading when y; is computed from x in the primal computation, and
the result is then passed to the next step of primal computation, which computes y, and dy,/dy;
and then multiplies it with the received value of dy; /dx. The process continues and produces dy/dx
eventually. This implementation is called forward AD.

The second way is to regard the rhs of the chain rule a sequence of computations from the
leftmost term to the rightmost term. In this case, at each step in the primal computation (which
is still right-to-left), some operations needed for differentiation are recorded in a data structure,
such as a stack [Hog 2014], as part of the operations of the overloaded operators. When the primal
computations reach the last step and the gradient computation actually starts, the operations on
the stack are executed in a backward order, starting from those of the leftmost term in the rhs of
the chain rule. After dy/dyy is computed, the result is passed to the next step, which computes
dyy /dyy—1 and then multiples it with the received value of dy/dyy. The process continues until the
gradient of x is computed. This implementation is called backward AD.

Backward AD is a more popular choice in existing AD tools because it is overall more efficient in
general settings [Margossian 2019]. The two methods are sometimes used together. Note that in
both of them, primal computations are necessary to run so that the overloaded operators can take
place, even if what the user wants are just the gradients. Coarsening optimization can lift such a
requirement as shown later in this paper.

In cases that are not differentiable (e.g., x=0 in relu(x)), AD tools approximate the gradients (e.g.,
using 0 at relu(0)); coarsening optimization preserves the same behavior.

Proc. ACM Program. Lang., Vol. 5, No. OOPSLA, Article 130. Publication date: October 2021.

Coarsening Optimization for Differentiable Programming 130:5

Symbolic repr. of
Source program [EEEVTee] (o SOls Symbolic
w/ alg. differen. elevation differentiation
Compiler Reuse-aware Symbolic

front end SOl identification optimization
Opt. SOIs & Opt.l
differen. SOls
Initial IR C.)ode gen. Opt. program
& integration w/ hybrid differen.

Fig. 1. The overall workflow of coarsening for AD. Solid boxes are the main components in coarsening.

3 OVERVIEW OF COARSENING OPTIMIZATION

The basic definition of coarsening optimization for AD is as follows:

DEFINITION 1. Let S be a sequence of program statements that implement the computations from
active input I to active output P. Coarsening optimized AD is applied to S if a closed form F is
produced that captures the computations in S and F goes through a symbolic differentiation with the
results integrated into the AD process.

Figure 1 shows the high-level workflow of coarsening for AD. The input is a program written in
a certain AD-based differentiable programming language. Coarsening works on the intermediate
representation (IR) output from the front end of the default compiler. From it, the reuse-aware
SOI identification component identifies the code segments of interest (SOIs), which are sent to
the symbolic elevation component to produce a symbolic representation of the SOIs. The symbolic
differentiation component takes them in and outputs the symbolic form of the differentiated SOIs.
The symbolic optimization component optimizes both the SOIs and the differentiated SOIs while
drawing on their contexts captured in the original IR. The optimizations include simplifications via
algebra systems, as well as identifying the places for profitable computation reuses between SOIs
and the differentiated SOIs.

Coarsening optimization can be applied for AD at both compilation and runtime. We take
compile-time optimization as the context of discussion.

Example. To help convey the intuition of coarsening optimization, we use CartPole as an example.
CartPole is an example that uses deep reinforcement learning (DRL). As illustrated in Figure 2 (a), a
pole is attached by an un-actuated joint to a cart, which moves along a frictionless track. The cart is
controlled by applying a force of +1 (to the right) or -1 (to the left) on the cart. The pendulum starts
upright, and the goal is to learn a cart control policy to prevent the pendulum from falling over.
The learning system consists of a Neural Network and a simulator of the cart and pole. At each
time step, the system goes through the computation outlined in the inner loop body in Figure 2 (b),
that is, calculating the output of the Neural Networks from the current cart and pole’s states to
decide the action for the cart to take, based on which, it then updates the states of the cart and pole
according to the physics model. This process continues for another two time steps. The resulting
total loss is then used in updating the weights of the Neural Networks via gradient descent. For
each weight w in the Neural Networks, (i) the program obtains the value d,, for the derivative of w
w.r.t. the loss, (ii) d,, is then used to create the differential Az.d,, * z, and (iii) the value of weight w
is updated by the result of evaluating the differential w.r.t. learning rate #:

w=w — (Az.d,, * 2)(n).

Proc. ACM Program. Lang., Vol. 5, No. OOPSLA, Article 130. Publication date: October 2021.

130:6 X. Shen et al.

Input:
Control Parameters Loss Xo: initial states
Wo: initial Neural Networks parameters

Output:
W: final parameters of Neural Networks
Neural Network Environmen

CartPole State

t t=0
while (loss > threshold)
® loss =0
o for (i=0; i< B; i++)
angle = -3 : : {left, right} a = getdction(Xii, W)
velocity = 0.5%s >4 aa angle’ Xei+1 = updateState(Xisi, a)
ps ° loss += getLoss(Xt+i+1)
\ backpropagate(loss, W, X)
o~ v @i t+=B
(a) lllustration of the CartPole problem. The goal is to learn a cart control policy (b) Pseudo-code of the training
to prevent the pendulum from falling over harness of CartPole

. Loss values

w Neural Network
with parameters Wi, W2, W3

State of the cart pole system

C) Intermediate results
Time t Time t+% Time t+2, / Time t+3,
£20 - — "‘*‘v"__)L/ 220 _TL//* Xu3.0 at = sign(tanh(relu(relu(Xc' W1)W2)Wa)-€)

Xt,1 Xts1,1 Xt+2,1 Xta .
I [fi— rt = 9ar+0.045x: 32SiNXt 2
X1 M X2 M Xu2,2 V//,, Xt3,2
X2 o0 08 Py qt=(9.8sinxt2-rt*cosxt,2)/(0.65-0.4cos2xt,2)

J pi=r - 0.045qCosxe2

X(t+1),0 = Xt,0+0.02Xt,1
Xt+1),1 = Xt,1+0.02pt
Xi+1)2 = Xt,2+0.02xt,3

w
Xt+1),3 = Xt,3+0.02qt
le1 = (0.5-max(0, (2.4-[X(t+1),0))*(0.21-|X(t+1)2])))?
L = ket+lto+ltes
(c) Computation flow of the forward pass of CartPole with the main computations shown on the right.

Fig. 2. A running example CartPole. (a) Problem illustration (artwork source: fluxml.ai); (b) Pseudo-code of
the training harness; (c) The simplified computation graph of the forward pass and the core computations.

The learning then continues until the Neural Networks converge. The right part of Figure 2 (c)
shows the core computations of states update in each iteration.

Intuition of Benefits. We can get some intuition about the potential benefits of coarsening by
checking the differentiation of a state at time ¢ +2, x;,2, over the action at time ¢, a;, in Figure 2. The
result is needed in the computation of the gradient of a; regarding the loss L;, and the total loss
L. (The computation from the weight W to a is through Neural Networks, which have a standard
structure; the gradient calculation of that part is through a highly polished vendor-provided library
rather than the AD tool. Therefore, the actual effects of the AD on that benchmark is from the loss
to a.)

If we put down the entire computation from a; to x;420, we get the following (with constants
already folded):

X420 = Xt,0 +0.04x; 1 +0.003636a; + 0.000018xt,32sinxt,2

0.00016sinx;, — 0.00016a;cos%x; » — 0.000008x; 3%sinx; ,cos*x;
(0.65 — 0.405c0s%x;)

3.1)

Proc. ACM Program. Lang., Vol. 5, No. OOPSLA, Article 130. Publication date: October 2021.

Coarsening Optimization for Differentiable Programming 130:7

It consists of 29 operations. If a (backward) AD library is used to get its differentiation over a;,
during the primal computation, at each of the 29 operations, a pullback function is generated for
the differentiation of that operation, along with the closure and some intermediate objects allocated
to hold the intermediate results that the differentiation would need to use.

In contrast, if symbolic differentiation is applied to the expression in Equation 3.1, the result is
much simpler as shown as follows. The differentiation would then need to just make an invocation
to one function that consists of only several straight-line calculations. Besides saving computations,
it also saves the allocations of many intermediate objects.

d(xre20) _ 0.003636 + 0.00016c0s2x; 2 52
d(a;) ' 0.65 — 0.405c052x; 5 :

Besides the benefits demonstrated by the CartPole example, two other benefits are worth men-
tioning. First, because AD libraries are typically implemented via operator overloading, they have
to wrap data objects in a special type (e.g., Tensor in PyTorch) so that customized operations can be
invoked during the primal computations to implement the needed AD operations. Accesses to the
data objects are therefore subject to the boxing overhead. Inside the code generated by the symbolic
differentiation, as no operator overloading is needed, unboxed data objects can be directly used,
reducing the boxing overhead. This benefit is especially prominent when the data involved are a
collection of scalars or small vectors as in many physical simulations or Probablistic Programming
applications (examples in Sec 7).

The other benefit of coarsening not captured by the CartPole example is the cancellation of
terms or other simplifications that symbolic transformation can often harness. We explain it
with a simple expression involving two matrices (X;, X;) and one vector (v): (X,0)T (X1X,0). Its
symbolic differentiation over v can easily combine terms with common multipliers, yielding a form
XZT (X1 + XlT)Xz0, significantly simpler than what the default AD would compute, XzT (X1 X20) +
((X20)TX1X;)T. Simplification of symbolic expressions is a common feature in symbolic engines;
for more examples, please refer to the simplification module in Sympy [sym [n.d.]].

As mentioned in Section 1, to make coarsening optimization effective, there are three main
challenges: control flows, "expression swell", and tension between coarsening and reuse. We next
explain our solutions to these challenges.

4 ADDRESSING CONTROL FLOW: ¢-CALCULUS

Control flow complexities are commonly perceived obstacles for symbolic differentiation. For
straight-line code, it is easy to derive a closed form for the computations by symbolically substituting
later references with their earlier definitions in the code. In the presence of control flow branches,
the complexity increases exponentially: If we build a closed form for each possible path, in the
worst case, there would be O(28) closed forms for B conditional statements. That would not only
increase the amount of work and execution time of symbolic differentiation, but also complicate
compiler-based code generation from the differentiation results. The problem worsens when there
are loops mixed with if-else. Without a closed form, symbolic differentiation cannot apply.

Without an effective way to handle control flow, coarsening can apply only to small pieces in a
program, with each piece consisting of the code between two adjacent control flow branching or
merging points. For some programs, that could lead to only small optimization scopes, leaving the
power of coarsening optimization untapped.

We address the problem by proposing ¢-calculus. It consists of a set of notations for symbolically
representing loops and conditional statements, and introduces a series of formulae to facilitate

Proc. ACM Program. Lang., Vol. 5, No. OOPSLA, Article 130. Publication date: October 2021.

130:8 X. Shen et al.

// x: the active variable // x: the active variable
1 d=p+qgx 1 d=p+qx
2 if(d>0) 2 if(d>0)
3 a=dos // x: the active variable 3 a=d»
4 if(a>50) SOI-1: d=p+qx 4 if(a>50)
5 z=a SOI-2: a=dos 5 zZi=a
6 else SOI-3: z=a 6 else
7 z =sin(a) SOI-4: z=sin(a) 7 22 = sin(a)
8 else SOI-5: z=In(1+ed) 8 z3=a(z1, 22)
9 z=In(I+ed) SOI-6: L=z(1+ed) 9 else
10 L=z(1+ed) 10 z4=In(1+ed)
11 zs = $1(z3, 24)
12 L=2zs(1+ed)

(a) original code (b) SOIs segmented by branches (c) code in SSA

L= gi(@a((prqx)°, (prq-x)sin((pqx)°), In(l-+eta))(I+ewra)
(d) SSA-based closed-form expression
dL/dx = q-e®* a1 (§a((prq-x)°S, (prq-x)-sin((p+q-x)03)), In(1-+era))
+ $1(¢2(0.5-q(ptq-x)03, q-sin(p+q-x)*-5+(ptq-x)-0.5-q-(p+q-x)-0Scos(p+q-x)0-5), g-e®rax/(1+e®tax)) (1+e®+ax)
(e) symbolic differentiation result on the closed form

dL/dx = q-e®*a0di(ga((p+q-x)*3, (p+q-x)sin((p+q x)°3)), In(1+e®+ax))
+ 1(§2(0.5(p+q-x) 03, sin(p+q-x)°5+0.5(p+q-x)%5cos(p+q-x)05) q(1+e®*a), g-e®tax)

(f) simplified symbolic differentiation result on the closed form

Fig. 3. lllustration of SSA and ¢-calculus on an example with conditional statements

the reasoning and differentiation on the extended symbolic form. As ¢-calculus is inspired by the
concept of ¢ functions in SSA, we first give a quick review of SSA.

4.1 Background on SSA and ¢ Functions

Static Single Assignment form (SSA) is a kind of code representation widely used in modern
compilers [Aho et al. 2006; Cytron et al. 1989]. Code in SSA has two properties: (i) no two static
assignments assign values to the same variable; (ii) every reference refers to the value defined by
a single static assignment. It uses a special ¢ function to resolve name ambiguities. A ¢ function
"chooses" the right name among its (two or more) arguments based on the actual control flow.

Figure 3(c) shows the SSA form of the code in Figure 3(a). There are three assignments to z in
the original code. They are all replaced with different names zy, z;, z4. Meanwhile, two ¢ functions
are inserted in Figure 3(c), with the one on line 8 resolving the name ambiguity caused by the inner
if-else, and the one on line 11 for the outer if-else.

Figure 4(b) shows the SSA form of the loop in Figure 4(a). The loop structure involves two
merging points, with one at the entry (L1), the other at the exit (L2). There are two ¢ functions at
the entry, respectively for variables s and i; there is one ¢ function at the exit, for variable s. The
former are called entry ¢-functions and the latter is called exit ¢-function of the loop [Ottenstein
et al. 1990]. All loops, either regular or irregular (e.g., while loops with breaks), have such pairs of
¢-functions.

Proc. ACM Program. Lang., Vol. 5, No. OOPSLA, Article 130. Publication date: October 2021.

Coarsening Optimization for Differentiable Programming 130:9

)) // x: the active variable
// x: the active variable 1 s1=a 2s3=s2+X
l s=a) =0 (8: represents a loop) @s3= Pri(sy, s3) +x
2 for (i=0; i<k; i++) 3 if (i1 <k) Qs3= ¢ri(sy, $3) +x 283= @ri1(a, s3) + X
3 s=s+x 4 LI: s2=dri(s, s Sgexit = a + k*x
5 = iu Ei| iz)) 84 = QL1 (a, S3exit)
6 $3=s2F X s4 =L (a, S3exit)
7 =i2+1 =d¢rr(a, a+k¥x)
8 if (i3<k) goto L1 =a + k*x
9 L2: sa=Prr (s, s3)
d) Get a closed f
(a) Original code (b) SSA form (c) Symbolic representation (d) Get a closed form

Fig. 4. lllustration of SSA and ¢-calculus on a simple loop

4.2 Notations in ¢-Calculus

Inspired by SSA, ¢-calculus uses ¢ functions and other notations to symbolically represent condi-
tional statements and loops:

e ¢(ay, ay, - ,ar): the standard ¢ function in SSA. Numerical subscripts are sometimes added
to a standard ¢ function to distinguish ¢ functions that have different conditions.
o ¢ri(as, az -+ ,ax) & ¢priv(as, az, - - -, ax): the entry and exit ¢ functions of loop i.

e ;% < S >:the computations in a statement S are surrounded by loop i with u iterations.
Sometimes, the loop ID (i) is used in S to also denote the iteration number, which, by default,
goes from 0 to u — 1. In the representation of a loop for symbolic differentiation in coarsening,
u can be a constant, an expression, or a symbol. For irregular loops (e.g., the while loop in
Figure 6), for instance, u is a symbol in the expression that is symbolically differentiated, and
its value is recorded in the execution of the primal code. In the following discussion, unless
necessary, we omit u and/or i in the loop notations for better readability.

e >, []: the standard math notations of summation and product.

° g{)Li(j) : the instance of ¢r; in the jth iteration of loop i

e a): if g is an expression in the argument list of ¢r;, a'/) represents the value of a after j
iterations of loop i.

® acyir(1): the value(s) of a at the exit of loop L.

e flnl: recursively apply function f for n times.

This set of notations are simple extensions of the standard ¢ function. But with them, code
with complex control flow can now be symbolically expressed. Figure 3(d), for instance, shows the
symbolic form of the computation of L by the code in Figure 3(a). Figure 4(c) shows the computation
of s by the loop in Figure 4(a). The derivation of them involve just direct substitutions of names
with their corresponding expressions; the ¢-notations offer ways to symbolically represent the
effects of loops and conditional statements.

Note that unlike the form in Figure 3(d), in Figure 4(c) is not yet a closed form: There is still
the presence of £. Even for the closed form in Figure 3(d), it still contains ¢ functions. The other
component of ¢-calculus, formulae in ¢-calculus, offers the facilities for (i) getting closed forms by
removing £ and (ii) differentiating expressions involving ¢ functions.

4.3 Formulae in ¢-Calculus

Figure 5 provides the core set of formulae in ¢-calculus; at the top of the figure are five fundamental
formulae and at the bottom are nine useful corollaries derived from the fundamental formulae.
Most of the formulae are quite straightforward, but when being used together, they are powerful in

Proc. ACM Program. Lang., Vol. 5, No. OOPSLA, Article 130. Publication date: October 2021.

130:10 X. Shen et al.

FUNDAMENTAL FORMULAE

i a if i=1
(F1) Identify formula: dla, a, .. a) =a (F4) Loop entry formula: gf)(L”(a,S) = ”7,/4; P> 1
sTYif i
(F2) Distributive formula: f(¢(as, az, ..., an)) = ¢(f(ai), flaz), ..., flan) (F5) Loop exit formula:
(F3) Commutative formula: 45(11, b) = </T(/7, a) ,/ /)’:/7/ (lsi,_jsm) & biV=qa

dr(a,br,bz,....bw) = biexit

COROLLARIES

(€s) Ru.d=f{pu(p, d)

Stx1, ..., xi-1, §(a,b), xi, ..., xi)
©n => dexir) = f"!(p)

=@¢(f(x1, ..., Xi-1, @, Xi, ..., Xk), f(X1, ..., Xi-1, b, Xi, ..., Xk)
(ce) L[ud=adip d) +b

©2) Wab) _ %a %» => desity = a’p + b Y=o @

Ox10xy - OXE | 0X10Xp - - OX) 010Xy - ~~6xk)

(€7 R d=ad¢up d)+b[i]
(©3) $1(a, $2(b,c)) = p2(¢1(a,b), 1 (a,c)) => devi) = a@'p + Yli=g aib[n-1-i]
(©8) R d=afi] pr(p, d) + bli]
=> dexirr) = p(M*1i=o afi])
+ Ynlizg b[n-1-i]Ni=g a[n-1-j]

€4 ¢, (a, $2(a,c)) = $a(a, ¢1(a,c))

(c9)
Qi d=a(Pu(p, d)b

=> dovigry = ab+n-Iph"

Fig. 5. Main formulae in ¢-calculus.

getting rid of ¢ and loop notations from the symbolic representation of code. We next explain each
of the formulae and provide brief proofs.

4.3.1 Fundamental ¢ Formulae.

1) Identity Formula (F1 in Figure 5). The identity formula says that if all the arguments in
a ¢ function equal to one another, the ¢ function can be replaced with any of its argument. It
immediately follows the definition of the ¢ function.

2) Distributive Formula (F2 in Figure 5). This formula says that a function that applies to a
¢ function can be distributed to each of the arguments of that ¢ function. It can be easily proved
based on the definition of ¢ function.

3) Commutative Formula (F3 in Figure 5). This formula shows the relationship between a ¢
function and its complement. In the formula, 5 is the complement of ¢, that is, it chooses the first
argument when ¢ chooses the second, and the second when ¢ chooses the first. The correctness of
this formula immediately follows the definition.

4) Loop entry formula (F4 in Figure 5). This formula shows the inherent property of a loop-
entry ¢ function. For the definition of a loop-entry ¢ function, ¢ is reached always through the
back edge of loop L except for its first instance in that loop. The formula hence follows. This simple
formula is essential for ¢-calculus to deal with loops as shown later.

5) Loop exit formula (F5 in Figure 5). This formula says that ¢y (a, by, ba, - - - , by,) equals the
value of b; at the exit of loop L if (i) the value of all arguments, except the first, of ¢+ are the same
at ¢b;/, and (ii) those arguments before the entry point of the loop have the value equaling the first
argument’s value a. Its correctness can be easily proved with the identity formula. Notice that the
only time when ¢/ takes its first argument is when the entire loop is skipped, in which condition,
according to (ii), b1exir equals a; in any other condition, ¢;» must take one of the other arguments,
the value of which at the exit of the loop, according to (i), must equal b,y This formula is useful
for removing loop exit ¢ functions in the application of ¢-calculus as shown later.

Proc. ACM Program. Lang., Vol. 5, No. OOPSLA, Article 130. Publication date: October 2021.

Coarsening Optimization for Differentiable Programming 130:11

4.3.2 Corollaries. At the bottom of Figure 5 are some of the corollaries attained from the funda-
mental formulae. They provide facilities for transforming and simplifying ¢ expressions.

The corollaries are in two groups. The first group consists of C1 to C4. These corollaries offer
conveniences for symbolic differentiation, optimizations, and code generations, reducing compu-
tations and code size. Corollary C1 can be easily derived from the distributed formula through
currying. Corollary C2 follows corollary C1 when we substitute f with partial derivative. Corollary
C3 follows corollary C1 when we substitute f with the ¢ function. Corollary C4 is attained when
we apply C1 and then the identity formula (F1).

The other group consists of corollaries C5 to C9, which offer conveniences for transforming ¢
expressions into closed forms for symbolic differentiation.

Corollary C5 is proved as follows.

Proor. Because of F4, we have the following relations:

dV = f(¢;" (p.d) = f(p) (43)

d® = (¢ (p.d)) = FdD) = F(f(p)) = f) (p) (44)

d® = £(¢ (p.d)) = £(dP) = F(FZ (p)) = f1¥)(p) (45)

(4.6)

d™ = f(¢" " (p.d) = Fd") = F(FI) = 1 (p) (47)

Because of the definition of SSA, after the loop entry function ¢;. in the final iteration of loop
L, there shall be no other assignment to d before the exit of the loop. Hence, deyi;(1) = d (m) =

fi"(p). o

Corollaries C6 to C9 are variants of C5 with function f instantiated in several forms. They can
be proved in a way similar to C5.

4.4 Examples

We now use several examples to show how ¢-calculus helps symbolic differentiation. We start with
two simple ones and end with a more complicated case with nested loops, breaks, if-else, and arrays.

(I) If-Else Example. We first look at the example in Figure 3. The ¢ functions resolve the
difficulty for getting a closed form for the code. With the code in SSA, the derivation of the closed
form for the code can simply ignore the conditional statements. What it needs to do is only to apply
simple substitution of names with corresponding expressions based on the data flow. Figure 3(d)
shows the closed form obtained from the SSA form in Figure 3(c). We add subscripts to the ¢
functions to help tell different ¢ functions apart.

According to corollary C2, we can apply derivation on x on the closed form and distribute the
operation to the arguments of the ¢ functions. The result is shown in Figure 3(e). The underlines
indicate two simplification opportunities. (i) The first underlined expression, (p + gx) * 0.5 * q *
(p + qx)™%3, can be easily simplified by symbolic engines into 0.5q(p + qx)°>. (ii) The second
simplification opportunity appears after the distributive formula (F2) is applied such that the final
term (1+eP*9%) in the expression in Figure 3 (e) is distributed into the ¢ functions. That term cancels
the denominator of the second underlined expression. Figure 3 (f) shows the result after symbolic
simplication. It is worth noting that such optimization opportunities appear because of ¢-calculus:
They are both about interactions of the codelets across the boundaries of conditional branches, and
hence would need the involved computations to be treated together. If each straight-line section of

Proc. ACM Program. Lang., Vol. 5, No. OOPSLA, Article 130. Publication date: October 2021.

130:12 X. Shen et al.

the codelet is symbolically differentiated individually as shown by the segments of interest (SOIs) in
Figure 3, those simplifications cannot get exposed. From Figure 3(f), code can then be generated with
the ¢ functions materialized with conditional statements that check the corresponding branching
decisions recorded during the primal computation.

(IT) Simple Loop Example. Figure 4 (d) shows how ¢-calculus helps produce a closed form
for the loop in Figure 4 (a). With ¢-calculus notations, the loop is symbolically represented in
Figure 4 (c), on which, corollary C6 removes the loop notation and the loop entry ¢, and produces
the closed form of s; at the exit of the loop: a + k X x (k is the loop trip count). The application of
loop exit formula F5 to the expression of s, removes the loop exit ¢ function, producing the simple
expression a + k X x. Symbolic differentiation can then be applied easily. For illustration purpose,
this loop is made simple and the derivation of the closed form may resemble the recognition of
induction variables in loop parallelizations [Tu and Padua 1995]. The next example gives a more
thorough demonstration of the power of ¢ calculus.

(III) Complex Example (BGDHyperOpt). Figure 6 shows a more complex example. The code
in Figure 6 (a) implements the use of batch gradient descent to determine the linear model on a
dataset (x for inputs, y for response). The differentiation of interest is d(err)/dr, where r is the
learning rate; this gradient can be used in finding out the best learning rate—a so-called meta
learning problem that optimizes hyperparameters of a machine learning process.

The code consists of a for loop nested within a while loop; the while loop has a break in an
if-else statement; there is another for loop following the while loop. To our best knowledge, no
prior work can compute d(err)/dr symbolically due to the control flow complexities.

Figure 6(b) shows the SSA form of the codelet. It includes nine ¢ functions; one of the loop exit
¢ functions (¢-) has three arguments because of the break statement in the while loop.

Figure 6(c) shows the application of ¢-calculus with the text boxes indicating the formulae or
corollaries used at the important steps. We explain the process as follows.

Lines 1-5: Corollary C7 helps attain the closed-form expression of the value of d3 at the exit of the
inner for loop; Formula F5 then resolves the ¢; function and leads to the closed-form expression
of d>.

Lines 7-10: This part tries to get the closed-form expression for the third argument (w3) of the
¢ function on Line L6 in Figure 6(b). The part starts with a series of substitutions based on the
results from Lines 1-5 in Figure 6(c), and then uses corollary C6 to get the closed-form expression
of the value that w3 has at the normal (rather than via break) exit of the while loop.

Lines 12-16: This part tries to get the closed-form expression for the second argument (w2) of ¢
It starts with substitutions with the results obtained already. It then uses the distributive formula F2
to transform the ¢ function on Line 14 in Figure 6(c) to a form matching the lhs form in corollary
C6. The transformation is to factor out the terms in the second argument of ¢y such that the second
arguement turns into pure w2 as shown on Line 15. Then corollary C6 can be applied, resolving the
loop notation and also the ¢ function and producing the closed-form expression of w2 at the exit
of the while loop as shown on Line 16 in Figure 6(c) (K stands for the trip count of the while loop).

Lines 17-18: simple substitutions of the three arguments in ¢, .

Lines 20-24: This part tries to get the closed-form expression for e4. It first applies corollary
C7 to the expression on Line 20 in Figure 6(c) to resolve ¢; and the loop notation, producing the
closed-form expression for e3,;; on Line 21. It then applies formula F5 to resolve ¢’ on Line 22,
producing the closed-form expression on Line 24 for e4.

Line 26: A simple substitution with the results produced so far gives the closed-form expression
of the final variable err. (For the sake of readability, we leave out the substitution of w4.) Symbolic
differentiation can then be applied to err on r.

Proc. ACM Program. Lang., Vol. 5, No. OOPSLA, Article 130. Publication date: October 2021.

Coarsening Optimization for Differentiable Programming 130:13

1 wil=0;
2 k1=0;
3 ifki<T)
L3: w2 = ¢pk(wi, w3);
5 k2 = ¢k(k1, k3);
// r: the learning rate source (active variable) 6 E? i 52 +1
// err: the error; sink (output variable) ; i ’0 ’
1 w=0 n=u
2 \I:/: 0 9 if (1 < M)
3 while (k<T) L4: d2 = ¢i(d1, d3);
4 ket 1 i2 = (i1, i3);
5 d=0 while for 12 %3—:i gi:?xlll ylil - 2*X[T*X[iT*w2;
6 for (i=0; i< M; i++) loop loop o !
7 d += 2°[il*(y[i] - x[i] * w) L l‘; w it (;3 (<d:\/I)d3)_goto L4
d=d/M - = eeldi, do)
8 if (d<0.001) 16 d5=diM
9 break 17 if (d5 < 0.001)
10 else 13 | goto L6;
11 —w-r*d else
12&=‘(,JV wer 20) w3 =w2-r*d5;
13 for -0) TRt

14 e +=(y[i] - x[i] * w)2 —
15 err = (€95)/M 28 e1=0
24 j1=0
25 if (i1 < M)
I_ L7: e2 = ¢j(e1, e3);
27 j2 = ¢i(i1, j3);
for 28 e3 = e2 + (y[j] -x[j] * w4)?
loop 29 j3=j2+1
I_ 30 if(3<M) gotol7
L8: e4 = ¢y(el, el)
32 err=e4%5/M

(a) Original code (b) SSA form
[Sw=3 iyl S = 3 xdil Sy = Siviil: See = 3 X[; Se=3yiP |
1 gd3= q)i(o, dS) + 2X[i]'y[i] - 2'X[i]’X[i]'W2
2 dBext = ¥i 2x[i1*y[il - 2*X[II*x[i*w2
e e 17 wé = dre(w1, W2exit, W3exi)
3 d4 = di(d1, d3) = 3 2x[T'yli] - 2*x["x[T*w2 18 = du(0, -2(/M)Sey 320 (142(/M)Sxc)s,
4 = 2542500 (0,w3) “2(/M)Sry 3 Meco (142(/M)Sx0)¥)
5 d5 = (2Sx- 2Sx" (0,W3))/M o
6 e e
7 Lwd=w2-rds 20 %3 =90, ?3) + _(y{J] X[[] * way
BW8 = (0, W) - 2S/M + 2S" GO WM [Formuta re) |5y Soert > 2 WO - x[Iwar?
Z kas - q(J: (22)/;vu)rd::o +3) r 2xzs¢k/(|\/fw) 22 e4 = iel, €3) = 3; (Ll - x0l'w4)2
kW3 = (1+2rSxo/M)*di(0, w3) - 2rSyy, 23 =3yl - 2x[ily[]" wa+x[jP w42
10 Wexit = ~2(r/M)Sxy 3%-Tk=0(1+2(r/M)Sx2)* 24 =Sy2- 28, WA+ Sx'w4?
11 25
12 w2 = pk(0, w3) 26 err = (Sy2 - 28y *Wa+ Sx2*'w42)0-5/M

13 Qw2 = Gk(0, W2-2(r/M)*(Sxy- Sxo*w2))
14 Qw2 = k0, (1+ 2(/M)Sxa)w2-2(r/M)*Sx)

15 Qw2 = (1 2(/M)Sxa)*

_ $k(2(r/M)*Sxy/(1+ 2(r/M)Sx2),w2) - 2(r/M)*Sxy
Corollary (C6
orolary (©8) | | o w2exi = -2(¢/M)Sxy TK-2o(1+2(r/M)Sr2)

(c) Application of ¢-calculus (and the formula used in boxes)

Fig. 6. Application of ¢-calculus on hyperparameter optimizations, showing the treatment of loops and
branches.

This part has demonstrated the applications of ¢-calculus to several concrete examples. We will
present the general use of ¢-calculus in the overall algorithm of coarsening in the next section.

Proc. ACM Program. Lang., Vol. 5, No. OOPSLA, Article 130. Publication date: October 2021.

130:14 X. Shen et al.

5 SOIIDENTIFICATION

With ¢-calculus removing the barriers of control flow for coarsening, a segment of interest (SOI)—
that is, the segment of code for symbolic differentiation—of a program can be much larger than a
basic block. A larger SOI often offers more opportunities for optimizations, but it is not always
better due to a tradeoff caused by two factors.

The first is "expression swell". As aforementioned, "expression swell" refers to the phenomenon
that the derivative often has a much larger (in the worst case, quadratically larger) representation
than the original function has [Cor 1988]. As a result, a very long expression can cause large
memory usage and long running time of symbolic engines.

The second factor is the tension between coarsening and computation reuse. In coarsened
differentiation, without a careful design, some computation reuse opportunities could get lost due
to computation reordering caused by coarsening transformations, a phenomenon we call reuse
deprivation.

Deprivation Example. The impact of reuse deprivation can be seen on x40 and x4, in the
CartPole example in Figure 2. As Figure 2(c) shows, they are both computed from x;.1 ;. So poten-
tially, if d(x;42,0/d(a;) has been computed, d(x;+1.1)/d(a;) could be known and could be reused in
computing d(x;.21/d(a;). Coarsening the computations from a; and X; (i.e., [xt0, X£.1, Xz,2, X .3]) to
Xt+2,0, however, deprives that reuse opportunity. The coarsening result has been shown in Equa-
tion 3.1, in which the holders of intermediate results, such as x;.1,1, disappear. The differentiation
over a; is shown in Equation 3.2, which has no d(x;411)/d(a;) or the derivatives of any other
intermediate variables over a;. As a result, when we need to compute the derivative of x;,,; over
a;, we cannot reuse those intermediate derivatives.

The example illustrates a tension between reuse and coarsening. The larger is the coarsening
granularity, the more opportunities there are for the enabled symbolic differentiation and opti-
mization to take effect, but at the same time, it could incur deprivation of computation reuse
opportunities.

What adds subtly to the relation is that reuse deprivation does not always lead to fewer reuse
opportunities. Some reuse deprivations transform the reuse opportunities to another form. For
instance, suppose that we have a way to get a closed form for the entire computation from X; to
L. All reuses, including x;111 for x;420 and x4421, turn into explicit sub-expressions in the closed
form of L. There can hence be reuse opportunities exposed between them in the differentiation of
the closed-form expression. The condition for such a transformation of reuse to occur is that the
closed-form expression must subsume both parties that contain the reusable computations.

A single solution, reuse-aware SOI identification, addresses both factors. Reuse-aware SOI identi-
fication refers to an algorithm that solves the following optimization problem:

DEFINITION 2. Optimal SOI segmentation problem: Let G be a series of computations, | be the
upper limit of the allowed sizes of an SOIL P be the set of valid partitions of G, that is, for any partition
S in P, no element in S is larger than l. The problem is to find the optimal partition S* € P such that
the total running time is minimized, that is,

YQ € P,ad(S") + Z compute(dif (s)) < ad(Q) + Z compute(dif (q)),

seS* q€Q
where compute(dif (x)) is the amount of computation involved in running the symbolically differen-
tiated code segment for code x, and ad(X) is the cost of the remaining AD differentiation of X after

symbolic differentiation.

Proc. ACM Program. Lang., Vol. 5, No. OOPSLA, Article 130. Publication date: October 2021.

Coarsening Optimization for Differentiable Programming 130:15

The upper bound of SOI size [in the problem description ensures that the symbolic engine works
well even in the presence of the "expression swell" effects. The problem description indicates three
factors relevant to SOI definitions.

1) The cost ad(X). This cost is incurred at the boundaries of SOIs. Symbolic differentiation of an
SOI computes only the derivatives of the active output variables of this SOI on the active input
variables of this SOI. These derivatives have to be connected into a chain by AD to compute the
derivatives of the ultimate active output variables on the ultimate active input variables. As a result,
the more SOIs there are, the more AD overhead is there, and the larger is ad(X). In the extreme case
where each operation is an SOI, ad(X) would equal to the cost taken by the default AD without
coarsening. So this factor calls for larger SOIs.

2) Computation simplifications. The cost), cx compute(dif (x)) is smaller if more computations
are simplified. As two cancellable computations falling into two separate SOIs are not going to get
cancelled by the symbolic engine, maximization of simplified computations also calls for larger
SOls.

3) Computation reuse. Maximizing computation reuse helps reduce the cost)., cx compute(dif (x))
as well. Unlike computation simplification, computation reuse exists both within and across SOIs.
Exploiting reuse within an SOI happens in the default symbolic optimization and code optimization
(e.g., common subexpression elimination (CSE) [Aho et al. 2006]). Reuse across SOIs is the natural
result of the chain rules of differentiation, as shown by the potential reuse of d(xs+11)/d(a;) in
computing d(x;420)/d(a;) and d(x¢421)/d(ar) in Figure 2. In general, if y is an active output vari-
able of both SOI, and SOI}, and it is also an active input variable of SOI,, then the derivative of the
ultimate active output z on y (dz/dy) can be used in computing the derivatives of z on the active
inputs of both SOI, and SOI,,. Besides saving computations, reuses are also helpful for mitigating
the “expression swell" problem as they split a long expression into shorter ones as noted in some
previous work [Laue 2019; Wang et al. 2018]. Because expanding SOIs could lose inter-SOI reuses
as the deprivation example has shown, this factor suggests that simply maximizing SOIs to the
upper limit / cannot always give the best SOIs.

Finding the optimal SOI segmentation is difficult. For an SSA representation with N instructions,
assuming every instruction can be put into an SOI, the number of possible partitions is between
IN/I and IV, where, [is the upper limit of the allowed size of an SOI. The reason is that the number
of SOIs is between N /I and N, while the size of an SOI has [possibilities in the lower-bound case
and up to [possibilities in the upper-bound case. Besides the exponential space, it would require
detailed performance and overhead modeling, which is hard to be precise at static compile time.

It is however important for a viable solution to take all these factors into consideration. Figure 7(a)
outlines our designed algorithm. For a given function f, for each of its active variable s that outlives
f, the algorithm gets its def-use chain, which captures all the definitions in f that lead to the value
of s. It then builds a def-use region tree out of all the definitions on the def-use chain. Def-use region
tree is a data structure inspired by the classic code region hierarchy in compilers [Aho et al. 2006].
Traditionally, a code region is defined as a collection of nodes N and edges E such that (i) a header
node h in N dominates all other nodes in the collection; (ii) if p is in N, then m must be in N if m
reaches p without going through A; (iii) E includes all edges between nodes in N, except for those
that enter k. In the code region hierarchy of a program, each code region is represented by a node
in the hierarchy subsumed under the nodes that represent its enclosing code regions. Def-use region
tree has two major differences from code region hierarchy: (i) only relevant variable definitions
are considered; (ii) every loop-exit ¢ function is put as part of the region of the associated loop.
The second property is for convenience in the derivation of symbolic expressions for loops. As an
example, Figure 7(b) shows the def-use region tree of all the definitions on the def-use chain of err

Proc. ACM Program. Lang., Vol. 5, No. OOPSLA, Article 130. Publication date: October 2021.

130:16 X. Shen et al.

L: the upper limit of the size of an SOI @ @
f: a function in SSA

S: the set of active sink variables in f
SOI: the placeholder of all SOls of f

. SOl ={} (b)
. foreachsin$S

1
2

3. C =f.getDefUseChain(s) @

4. T =f.getRegionTree(C) \

5. W: a worklist with all nodes in T added in ._,._,

6. bottom-up order @ e g z
7.

8

while (W.notEmpty)

. n = W.removeANode()
9. if (n.hasLargeChildren())
10. n.markLarge()
11. n.mergeSomeChildren() 1,2 L3, 7, L4, 23 L7, 28, 32
12. SOl.add(all small children in n) 12, L5 - L8 -

13. next; 16, éO, LG

14. e = n.getSymbExp() / \
15. if (e.size > L) \

6. n.markLarge() [3,7] [c412,18] [16,20] 5
17. if (n.isLeaf()) / \

18. newNodes = n.splitOnReuses()

19. W.addToFront(elements in newNodes) L4,12

(a) (c)

Fig. 7. (a) Algorithm of reuse-aware identification of SOIs for coarsening. (b) The def-use chain of errin the
example shown in Figure 6(b) with r as the active input; inactive inputs (x, y, M) are omitted. (c) The def-use
region tree for err in Figure 6(b); each element in a box is a line number in Figure 6(b); solid (green) boxes
stand for loops.

in Figure 6(b); each element in the boxes is a line number in Figure 6(b). The three solid (green)
boxes are the three loops. The three loop-exit ¢ functions (Lines L5, L6, L8 in Figure 6(b)) are put
together with the three loops respectively.

The SOI identification algorithm then traverses the region tree in a bottom-up order, as outlined
in Figure 7(a). For each node, if it has no large child node (i.e., exceeding the SOI size limit), its
symbolic expression is derived through the ¢-calculus. If the size of the derived expression exceeds
the SOI size limit, that node is marked as a large node, and if it is a leaf node, it is split into two
smaller nodes; the splitting point is chosen to be the variable that is contained in that node and has
the largest number of references (and hence reuses) in f. The two new nodes created by the split
are added to the front of worklist. If the current node has large children, there is no need to go up
further in the def-use region tree as the upper nodes can only become even larger. In that case, the
algorithm examines the immediate children of this node, merge consecutive small children nodes
(up to the SOI size limit); after that, it puts each of the children nodes smaller than the limit as an
SOL The algorithm continues until worklist becomes empty. The size limit L can be empirically
selected based on the machine and the symbolic engine.

The algorithm follows the principle of maximizing the size of SOIs within the SOI size limit
while respecting reuses when it is necessary to split a def-use chain into multiple SOIs.

6 IMPLEMENTATION

We implement the coarsening optimization on an in-house AD tool named DiffKt. The tool was
developed for Kotlin, a cross-platform, statically typed, general-purpose programming language
with type inference. The tool itself is also written in Kotlin. We choose it as the basis mainly because
of its availability and the statically typed nature of Kotlin which offers conveniences for static
code analysis and transformations. But as a general optimization technique, coarsening can be

Proc. ACM Program. Lang., Vol. 5, No. OOPSLA, Article 130. Publication date: October 2021.

Coarsening Optimization for Differentiable Programming 130:17

Original code with AD Transformed code after coarsening
fun cubeTransformed|) {
fun cube({ val x = Tensor(5f).asVar()
val x = Tensor(5f).asVar() val y = Tensor(3f).asVar()
val y = Tensor(3f).asVar() valw=x-2f*"y
valw=x-2f*y valv=y"x-x

valv=y*x-x
M val z=(w*w*w - v *v *v).setintermediateAdjoints(

sequenceOf (

Transformation

valzt=w*w*w wtow *2f,
valzZ2=v*v*v sol vtov*-2f
valz=271-22 :|)
z.backward())

} z.backward()

Fig. 8. An example showing how the coarsened results are integrated into the original program. The original
primal code (left) is transformed to a form (right) such that the calculations of z in the SOI are put into one
expression, and an adjoint is appended to that expression, which, at runtime, makes the AD take its content
as the shortcuts for calculating the derivatives of z on the two active variables of the SOI, w and v. The results
are used by the default AD in differentiating the rest of the code (i.e., from w and v to x and y.

potentially applied to many other AD tools; for some (e.g., Python AD tools), it may need to be
done dynamically.

DiffKt was developed and optimized by 10+ engineers in industry in over a year. It supports
both CPU and GPU, with high-performance native math/DNN libraries for Tensor computations.
The tool is planned to open source in the near future. A systematic benchmarking of the tool over
other AD tools is yet to be done, but preliminary measurements show that it outperforms PyTorch
AD [Paszke et al. 2017] by over 10X on scalar-intensive cases (e.g., HookeanSpring in Section 7),
and achieves comparable speeds on common deep learning models where pre-existing libraries are
called for gradients calculations of the standard DNN layers under the hood of both of them. (As
PyTorch AD and the Kotlin AD tool are in different programming languages, the comparison is
only to give readers a sense about the industrial quality of the default tool.)

Similar to many other AD tools (e.g., PyTorch [Paszke et al. 2017], JAX [Bradbury et al. 2018]),
DiffKt is a library-based implementation, enabling AD through operator overloading via a generic
class Tensor. Implemented in 250K lines of code, it supports backward AD and includes a Tensor
typing module as well.

As with other Automatic Differentiation (AD) tools (e.g., Zygote [Innes 2020]), DiffKt also allows
the use of adjoints for custom differentiation. For a given expression e, if a custom differentiation of
e is provided, the AD process will automatically invoke it rather than conduct the default operation-
by-operation differentiation. The differentiations of the SOIs generated by coarsening are integrated
into the original program as custom adjoints. An example is shown in Figure 8. The coarsening
results form the content of the adjoint, which is associated with the coarsened primal expression
through the call "setIntermediateAdjoints". If coarsening produces code for differentiating the entire
primal code, the compiler simply replaces the calls of the corresponding backward function with
the generated code; if the compiler in addition determines that the primal results are used in the
program only for getting the derivatives, the compiler removes the invocations of the primal code.

Our implementation of coarsening on DiffKt is based on a Kotlin compiler. Our experiments
focus on first-order backward AD, but it is worth noting that coarsening, as a way to offer shortcuts
in AD, can in principle help higher-order differentiation and forward or mixed-direction AD as well.
In addition to the ¢-calculus and the SOI identification as presented earlier, our implementation
also includes loop unrolling and the use of the primal computation results in the generated adjoint

Proc. ACM Program. Lang., Vol. 5, No. OOPSLA, Article 130. Publication date: October 2021.

130:18 X. Shen et al.

functions when possible. As a side benefit of coarsening, our implementation of coarsening optimizes
the primal in addition to the differentiation: After getting the closed form of the primal computation,
it applies symbolic optimization to the primal and regenerates the code; an example is shown in
the BGDHyperOpt benchmark in Section 7.2. In the case where only differentiation is needed and
the entire primal can be symbolically differentiated, the optimizer removes the primal from the
program when possible—an optimization elusive to existing AD. In the current implementation, for
proof of concept, we use a symbolic engine extended from Sympy [sym [n.d.]], an open-source
symbolic manipulation tool.

Like many other compiler-based optimizations that change the order of computations, coarsening
could affect the numerical precision. A convenience offered by coarsening is that measures to
avoid numerical unstableness can be seamlessly integrated into the code generation in coarsening.
The code generator is equipped with the patterns for dealing with common numerically unstable
expressions. Before it generates the code for a symbolic expression, it examines it to identify the
numerical unstable expressions through pattern matching, and generates the code corresponding
to their numerically stable forms. For expression log(1 + e™*#), for example, as the code generator
finds out that the expression matches one of the patterns in its unstable list, log(1 + "), it generates
the code to discern the value of the exponent, as illustrated as follows (MAXEXP is set to 40 in our
implementation):

temp0 = -xf
temp1 = (temp0 > MAXEXP)? MAXEXP : log(1+e!¢™?)

When the expression operates on tensors, the generated code uses masking functions (like where
in PyTorch) for efficiency. A concrete example of numerically stable code generation in coarsening
is the HMC benchmark detailed in Section 7.2.

7 EVALUATION

To evaluate the efficacy of the proposed techniques, we test coarsening on six applications in 18
total configurations on two different machines. Backward AD is used. The results show that the
optimization improves the differentiation speed by 1.03-27X%, and the whole application execution
speed by 1.08-11X.

7.1 Methodology

Benchmarks. There are no common benchmark suites designed for evaluating AD. We collected
six applications from several domains where AD is important, and implemented them in Kotlin
with the Kotlin AD library. Table 1 lists the set of benchmarks used in the experiments. These
benchmarks come from several domains, from physical simulation to statistical sampling, deep
reinforcement learning, gaming, and meta learning. They also show a range of code complexities,
with BGDHyperOpt featuring control flow complexities as Figure 6 has shown, Brachist. featuring
a case where primal computation could be potentially removed, CartPole featuring a combination
of matrix-based Deep Neural Network and scalar-based environment simulations, HMC featur-
ing potential value overflow incurred by exponential computations, HookeanSpring featuring a
sequence of regular vector operations, and QWOP featuring a long function with many small loops
and if-else statements. For each benchmark, we include three configurations as listed in the right
column of Table 1, which will be explained later in the discussion of the results of each application.
We repeat the performance measurements multiple times and report both the mean and standard
deviation of the timing results. Kotlin runs on Java virtual machines. For both the baseline and the
optimized versions, the JRE went through a warm-up phase before timing starts to get the stable
performance.

Proc. ACM Program. Lang., Vol. 5, No. OOPSLA, Article 130. Publication date: October 2021.

Coarsening Optimization for Differentiable Programming 130:19

Table 1. Benchmarks and Configurations

Name Domain Description Configs
BGDHyperOpt | Meta- Optimizing the learning rate 1 | 200 data records
Learning of batch gradient descent 2 | 1000 data records
based linear regression 3 | 2000 data records
Brachist. Math. Brachistochrone curve 1 | 200 data points
Physics calculation 2 | 400 data points
3 | 1000 data points
CartPole Deep Training a CartPole system 1 | an update every 6 steps
Reinforcement 2 | an update every 8 steps
Learning 3 | an update every 10 steps
HMC Statistic Hamiltonian Monte Carlo 1 | 100 one-dim records
Sampling Sampling for logistic 2 | 1000 two-dim records
for Prob. Prog. regression 3 | 800 three-dim records
HookeanSpring | Physical Simulating the dynamics of a 1 | 10 vertices
Simulation Hookean Springs system 2 | 20 vertices
3 | 40 vertices
QWOP Gaming An avatar learns walking 1 | light-weight figure
via motion optimization 2 | medium-weight figure
3 | heavy-weight figure

Table 2. Machines

Machine | Configuration

devServer | Intel(R) Xeon(R) Gold 6138 40-core CPU 2.00GHz, 250GB, CentOS Stream 8, Kotlin 1.4.20-M1, Java
HotSpot 64-Bit Server VM, Java 1.8.0_192

Macbook | MacBook Pro, 2.4GHz 8-core Intel Core i9, 32GB 2667MHz DDR4, MacOS Catalina (v. 10.15.7), Kotlin
1.4.20-M1, Graalvm 20.3.0, Java 11.0.9

Machines. Because in practical scenarios, those AD-based applications may run on both servers
and personal computers/laptops, we have measured the performance of the applications on both
kinds of machines. Table 2 provides the machine details.

7.2 Results

In this part, we first present an overview of the performance, and then provide detailed discussions
on each benchmark.

Table 3 reports the overall performance, where "baseline" represents executions of the default
Kotlin AD tool and "opt" represents executions after coarsening is applied. The "Differentiation
Time" column reports the time taken by differentiation in one iteration of each benchmark, while
the "Overall Time" column reports the overall time of an iteration. We make two observations.

(1) Coarsening brings 1.03-27x speedups to the differentiation of the benchmarks, and 1.08-
11x speedups to the overall execution. In most cases, the overall speedups are smaller than the
differentiation speedups as there are some parts of the computation in the programs outside the
part of the code targeted by the coarsening optimization (i.e., the part involved in differentiation).
Exceptions are Brachist. and HookeanSpring; it is because in those two original programs, the
only purpose of the primal computations are to let the AD to compute the gradients. Because
coarsening generates code that can directly computes the gradients, the optimization removes the
primal computations completely; the overall time is hence shortened even more than the time
savings on the differentiation. (A side observation is that in all cases, the laptop runs faster than
the server, probably due to its faster CPUs and the use of a more recent version of Java Runtime.)

Proc. ACM Program. Lang., Vol. 5, No. OOPSLA, Article 130. Publication date: October 2021.

130:20 X. Shen et al.

Table 3. Experimental Results: Time per iteration and Speedups

Differentiation Time(ms) Overall Time(ms)
Machine Benchmark Config baseline opt speedup baseline opt speedup
devServer | BGDHyperOpt 1 5.44+ 6% 0.20+ 1% 27.44X 10.44+ 5% | 1.22+ 2% 8.52X

5.22+ 8% 0.20+ 2% 26.18X 10.12+ 7% 1.21+ 2% 8.37X
5.37+ 6% 0.20+ 2% 26.82X 10.36+ 6% 1.21+ 2% 8.56X

Branchist. 0.04+ 3% 0.04+ 7% 1.10X 0.09+ 3% 0.04+ 7% 2.51X
0.19+ 36% | 0.15+ 1% 1.22X 0.32+ 34% | 0.15+ 1% 2.08X
0.55+ 2% 0.39+ 4% 1.41X 0.69+ 2% 0.39+ 4% 1.79X

CartPole 52.15+ 4% | 46.86% 1% 1.11X 55.06+ 4% | 49.38+ 1% 1.12X
15.69+ 1% | 1451+ 1% 1.08X 16.99+ 1% | 15.65+ 1% 1.09X
15.77€ 2% | 14.06+ 2% 1.12X 17.07+ 2% | 16.24% 2% 1.05X

HMC 2.89+ 5% 0.67+ 2% 4.29X 3.26+ 5% 0.94+ 3% 3.46X
4.55+ 1% 1.59+ 4% 2.86X 5.17+ 1% 2.11%+ 4% 2.45X

5.58+ 7% 2.19+ 5% 2.54X 6.35+ 7% 2.79% 5% 2.27X

HookeanSpring 0.10+ 4% 0.01+ 2% 6.62X 0.16+ 5% 0.01+ 2% 11.02X
0.11+ 8% 0.03+ 2% 4.09X 0.18+ 8% 0.03+ 2% 6.72X

0.23+ 12% | 0.05%+ 13% 4.52X 0.38+ 10% | 0.05+ 13% 7.53X

QWOP 1.97+ 6% 1.46% 4% 1.35X 3.89+ 4% 2.76x 3% 1.41X

25.71x 5% | 17.81% 6% 1.44X 44.50+ 3% | 29.61+ 4% 1.50X
3217+ 5% | 21.20% 6% 1.52X 56.86+ 3% | 36.37+ 4% 1.56X
3.59+ 4% 0.14+ 2% 25.15X 7.23+ 4% 0.86+ 2% 8.41X
3.59+ 3% 0.15% 6% 23.43X 7.31+ 3% 0.91+ 4% 8.06X
3.66+ 4% 0.15+ 3% 24.23X 7.41+ 3% 0.91+ 4% 8.18X

macBook | BGDHyperOpt

Branchist. 0.04+ 18% | 0.04% 12% 1.03X 0.10+ 14% | 0.04% 12% 2.38X
0.13+ 4% | 0.12+ 2% 1.08X 0.23+ 4% | 0.12+ 2% 1.91X
0.44+ 2% 0.31%£ 5% 1.42X 0.55+ 2% 0.31+ 5% 1.80X

CartPole 29.46+ 3% | 26.42+ 2% 1.12X 31.16+ 3% | 27.92+ 2% 1.12X
9.43+ 2% 8.76x 0% 1.08X 11.89+ 2% | 11.03+ 1% 1.08X
9.06+ 0% | 8.35%1% 1.09X 12.14+ 1% | 11.25% 0% 1.08X

HMC 2.60+ 1% 0.59+ 2% 4.42X 2.90+ 1% 0.82+ 2% 3.56X
3.88+ 1% 1.24+ 1% 3.13X 437+ 1% 1.64+ 1% 2.67X

430+ 1% 1.61+ 1% 2.67X 485+ 1% 2.06x 0% 2.35X

HookeanSpring 0.08+ 8% 0.01+ 7% 5.72X 0.14+ 8% 0.01+ 7% 9.84X
0.09+ 11% | 0.02+ 2% 4.17X 0.15+ 8% | 0.02+ 2% 7.13X

0.10+ 2% | 0.04+ 4% 2.46X 0.17+ 2% | 0.04+ 4% 4.09X

QWOP 1.57+3% | 1.16+2% 1.35X 3.60+ 4% | 2.45% 2% 1.47X

20.53+ 2% | 14.70+ 2% 1.40X 40.43+ 2% | 26.46+ 2% 1.53X
24.69+ 2% | 16.81+ 1% 1.47X 50.01+ 2% | 31.89%+ 1% 1.57X

W N =W N WD =WDN =WN =[WDN FR[WDN RWDN = WN =WN =W =W

(2) Coarsening is consistently beneficial; it saves the execution time across benchmarks, con-

figurations, and machines. The main reasons for the time savings are three: (i) the savings of the
operator overloading overhead of AD, which comes from object boxing and memory allocations;
(ii) the simplifications of the computations thanks to the large-scoped symbolic differentiation
and optimizations; (iii) the removal of unnecessary primal computations. We next elaborate these
benefits through in-depth examinations of each of the benchmarks.
BGDHyperOpt. BGDHyperOpt is a meta-learning program and has been introduced in Example
III in Section 4.4 and Figure 6. Meta-learning entails inspecting and optimizing a machine learning
process, which has recently drawing lots of interest. This program tries to optimize learning rates
through gradient descent. The three configurations correspond to three different sets of inputs.

The SOI in this program is the entire function that computes the learning error as shown in
Figure 6(a). There are nine ¢ functions in the SOL Despite the control complexities, coarsening
is able to get the closed-form expression for the entire gradient computation and apply symbolic

Proc. ACM Program. Lang., Vol. 5, No. OOPSLA, Article 130. Publication date: October 2021.

Coarsening Optimization for Differentiable Programming 130:21

differentiation on it, giving more than 23x differentiation speedups in all cases. The primal cannot
be removed because the generated differentiation code must use the trip-counts of the while loop
in the primal. As a result, the overall speedup is about 8x. Meanwhile, coarsening saves over 70%
of memory allocations because many of the data allocations in the default AD are for holding
intermediate data objects which are no longer needed after coarsening.

We did an ablation study to examine the benefits from the @-calculus. In the study, we apply
coarsening without ¢-calculus; symbolic differentiation is hence applied to only the inner-most loop
(which is written as a single Tensor statement) and the code after the while loop. The differentiation
speedups drop from 23-27X to 8-9x:

devServer macBook
Config 1 2 3 1 2 3

Speedup(X) w/o ¢-calculus | 8.46 | 7.80 | 8.08 | 9.24 | 934 | 9.39

Speedup(X) w/ ¢-calculus | 27.44 | 26.18 | 26.82 | 25.15 | 23.43 | 24.23

It can be seen that the larger scope of optimizations enabled by ¢-calculus boosts the speedups by a
factor of three. Its effects are multi-fold: (i) It allows a complete removal of the boxing overhead of
the Tensor data structure from the differentiation process, whereas without ¢-calculus, as only part
of the differentiation is symbolically done, Tensors have to be used so that the operator overloading
can still work, which is what the remaining part of the AD depends on. (ii) It exposes large-scoped
loop-invariant calculations, for both the primal and the differentiation. Symbolic transformation and
analysis of Lines 6-7 in Figure 6(a) can show that the loop involves the calculations of }; x[i] = y[i]
and }}; x[i] = x[i]; when the analysis scope spans across the entire while loop via ¢-calculus, the
optimization can easily recognize that the two summations repeat in every iteration of the while
loop and can be hoisted out of the while loop. Similar phenomena are in the differentiation. Neither
the default optimizers in the Java Runtime underlying Kotlin or the coarsening without ¢-calculus
can recognize and take advantage of that. (iii) It saves the remaining AD overhead that the version
by coarsening without @-calculus has to suffer.

Brachist. This program calculates the Brachistochrone curve (i.e., curve of fastest descent), which
is the one lying on the plane between a point A and a lower point B (called anchor points),
where B is not directly below A, on which a bead slides frictionlessly under the influence of a
uniform gravitational field to a given end point in the shortest time. In each iteration, the program
computes the time taken by the bead to slide down the slope by summing the time it takes for
each section of the current curve, and then gets the gradient of every section over the total time.
The three configurations correspond to the number of sections that the target curve is regarded to
be composed of. This is a relatively easy case, but it demonstrates an important scenario where
coarsening can remove the entire primal computation. The entire primal code to compute the time
taken to slide down the slope is identified as the SOI. With coarsening, the AD tool can symbolically
differentiate the entire computation. Because the program only needs the gradients to update the
curve in each iteration, it can now forego the computation of the total time as the gradients can be
directly computed. Therefore the coarsening optimization removes the entire primal computation,
making the program’s overall speedups even more than the speedups on the gradients calculations.
As Table 3 shows, the speedups on the differentiation part is modest (due to the simplicity and
regularity of the code), but the end-to-end executions get more significant speedups (e.g., 1.8-2.38%
versus 1.03-1.42X on macBook). The overall speedups are more pronounced on the smaller inputs
because the primal computation weights more in those runs.

CartPole. CartPole is a deep reinforcement learning program as already introduced in Section 3.
The three configurations corresponding to the number of exploration steps observed before learner
updates the model parameters. It shows the least speedups among all the benchmarks, not because

Proc. ACM Program. Lang., Vol. 5, No. OOPSLA, Article 130. Publication date: October 2021.

130:22 X. Shen et al.

(a) HMC sampling in a space ([hmc [n.d.]])

(b) HookeanSpring ([Rojas et al. 2019]) (c) QWOP

Fig. 9. Illustrations of several benchmarks.

coarsening is not effective, but because the small portion of the optimized code weighs in the overall
program. Recall in Figure 2, the primal computation of CartPole contains two parts, the Neural
Networks(NN) and the environment update. As CartPole uses a simple simulation environment, the
environment update part weighs only about 15% of the primal time, with the rest dominated by the
NN. As the NN has a standard structure and the default gradient calculation is through a manually
written highly polished vendor library rather than the AD, the SOI is the second part, which updates
the environment. There are five ¢ functions in the SOL The speedups on the differentiation of the
environment update part are actually significant:

devServer macBook
Config 1 2 3 1 2 3
Speedup(X) on differentiating theen- | 2.68 | 2.63 | 3.19 | 3.01 | 2.73 | 3.21
vironment update part

In cases where reinforcement learning is applied to more complex environments, the speedups on
the end-to-end execution by coarsening are expected to be more substantial.

HMC. HMC stands for Hamiltonian Monte Carlo. It is one of the main algorithms in Probabilistic
Programming or Statistics for finding out posterior distributions of random variables through a
carefully designed Monte Carlo sampling process [nea 2011], as illustrated in Figure 9(a).

We first gives a conceptual view of HMC. The core sampling function in HMC takes in two
functions as part of the arguments: function "U" and function "grad_U". The former does the primal
computation and the latter computes the derivative of "U". HMC calls them many times on different
values, more often on "grad_U" than on "U". In this benchmark, HMC is used for logistic regression.
Logistic regression is a classic method for classification. HMC is used to estimate the posterior
distribution of the parameters in the logistic regression model. Its "U" function is as follows:

Up) = FTX"(y - 1) - 1], oy - 2
= y—1,) — 1, [log(1+e")]

20125

where, f§ are the parameters in logistic regression, X and y are the input and response data (train-
ing data), 02 is a hyperparameter (1000). All are vectors except that X is a matrix. The three
configurations correspond to three different training data sets.

Proc. ACM Program. Lang., Vol. 5, No. OOPSLA, Article 130. Publication date: October 2021.

Coarsening Optimization for Differentiable Programming 130:23

A feature of HMC is that when it needs the gradient on some values, it often cares about the
gradients but not the actual primal value. It does call the primal function at some places, but on
values different from those needed for the calculation of the gradients.

But in the default implementation on AD, anytime gradient is needed, the primal is called because
of the inherent requirement for AD to work as we have described in Section 2. Coarsening takes
the entire primal function "U" as the SOI, and there are one two-level nested loop and another two
single-level loops in the code with one of them containing an if-else statement. Coarsening is able
to symbolically differentiate it and generate the entire "grad_U" function. It hence can save many
primal computations. Overall, the speedups are 2.3-3.6X.

One special note on HMC is that the exponential term e™*# can easily result in value overflow;

special treatments must be given to large exponents (e.g., using —X 8 to approximate log(1 + e X/
if =X f exceeds 80). The default AD-based tool uses a masking function to deal with that (similar to
"where" in PyTorch). Without the masking scheme, an alternative would be to wrap each element
in —Xf in a Tensor to discern their following uses; which creates huge runtime overhead, making
the program run about 25X slower. Without the dependence on Tensor or operator overloading,
coarsening is not subject to the problem; when it generates the code, it directly generates the
appropriate code for the cases where the exponential value is large.
HookeanSpring. HookeanSpring is a physical simulation program. It simulates mass-spring
systems as illustrated in Figure 9 [Rojas et al. 2019]. It demonstrates the transitions of physics-based
states as energy minimization procedures. The program keeps optimizing the vertex positions of
a spring system to find some configuration that minimizes the total elastic energy. Every spring
has some preferred rest length and they naturally tend to recover their rest shapes over time. Each
optimization step uses the gradients of the spring vertex locations regarding to the system energy.
The three configurations correspond to three sizes of the spring system in terms of the number
of spring vertices. Coarsening is able to take the entire energy calculation of the Spring system
as the SOI and symbolically differentiate it. As a result, the primal computation which computes
the system energy can be completely removed. The speedups are 4-11x. The program even runs
faster than the original primal computation alone; the following table shows the times taken in one
iteration of the simulation and the relative speedups (median values of repeated measurements are
used):

devServer macBook
Config 1 2 3 1 2 3
Original primal only(us) | 49.19 | 51.92 | 114.20 | 43.37 | 47.01 | 52.58
Exec. after coarsening(us) | 14.49 | 26.76 | 51.49 | 14.46 | 21.61 | 41.17
Speedups(X) 339 | 1.94 2.22 3.00 | 2.18 | 1.28

This result is significant because there has been a common perception that a program would
take a lot more time to run if automatic differentiation is added into it. For example, a previous
work considers 2.4-4X slowdown after adding automatic differentiation as already close to the
optimal [Hog 2014]. This coarsening result shows that with coarsening, after adding automatic
differentiation, a program can even run several times faster.

QWOP. QWOP is an avatar motion optimization program. It trains a virtual stick figure to run as
far as possible by providing a schedule for how much each muscle should be extended, as illustrated
in Figure 9(c). The three configurations correspond to three configurations of the mass of the body
parts of the stick figure. The special aspect about this program is that its core part is a 225-line
function with 13 loops and many if-else statements. After loop unrolling, the function becomes
1117-line long. Coarsening can successfully deal with the function, getting two SOIs, and achieving
1.17-1.51% overall speedups.

Proc. ACM Program. Lang., Vol. 5, No. OOPSLA, Article 130. Publication date: October 2021.

130:24 X. Shen et al.

7.3 Potential on Other AD Tools

Coarsening is a general optimization for AD. To check its potential benefits to AD tools beyond
DiffKt, we examined the performance of the benchmark BGDHyperOpt on three other AD tools:
JAX [Bradbury et al. 2018] for Python, Zygote [Innes 2020] for Julia, and Adept [Hog 2014] for C++.

For each of the three AD tools, we have two versions of the benchmark BGDHyperOpt: (i) the
baseline version which uses the default AD offered by the tool; (ii) the coarsened version optimized
by coarsening. The latter was written based on the results from our symbolic engine. Table 4 reports
the speedups of the coarsened versions over the baseline counterparts. Please note that the JAX
baseline version already uses its JIT (the JIT gives 1.3-1.47X speedups over the default version that
uses no JIT). The execution times were measured on the Macbook after warm-ups. The speedups
are 66X-335X, even greater than on DiffKt, indicating the potential of coarsening as a general AD
optimization technique.

Table 4. Speedups of the coarsened version over the baseline version on BGDHhyperOpt

AD Tool (Language) Input Size
1000 2000
JAX (Python) [Bradbury et al. 2018] | 87.4X | 335.1X
Zygote (Julia) [Innes 2020] 150X | 90.8X
Adept (C++) [Hog 2014] 66X | 96.2X

8 DISCUSSIONS

The study has demonstrated the significant benefits of coarsening on the Kotlin AD tool on first-
order backward AD, the most popular kind of AD. It is easy to see that the technique can help other
types of AD implementations (e.g., forward or mixed directions and higher-order differentiation)
as the outcome of coarsening can always be used as a shortcut on the AD chains.

Our exploration of coarsening is at the static compilation time. The technique is potentially
applicable at runtime as well, which could be especially meaningful for languages (e.g., Python) that
are difficult for static time analysis and transformations. In that case, runtime profiling could be
useful, and extra care (e.g., hot paths based selective optimizations) may be necessary to minimize
the time overhead of symbolic manipulations.

The current coarsening optimization applies to both regular and irregular loops as mentioned
before. But there is code with unstructured control flows where it is even unclear what the loop is
(e.g., code formed by go-to statements in certain languages). In those cases, the SOIs could be set to
the sections within the branches that form the unstructured control flows.

With coarsening, the compilation time does not have noticeable changes except for the time
taken by the symbolic engine in doing symbolic differentiation and other symbolic manipulations.
As mentioned, as a proof of concept, the current implementation uses an extended Sympy for that.
Written in Python, Sympy is not the most efficient symbolic engine. For the benchmarks in the
experiment, it takes up to a minute to do symbolic differentiation.

Coarsening is based on the SSA form of a program. When a program has assignments to arrays,
array SSA [Knobe and Sarkar 1998] would be necessary to discern the different ranges of data
elements in an array when they are treated differently in the program. The representation and
corresponding analysis are more complicated than on the basic SSA form. We found that for AD
programs written in Tensor-based AD libraries, in most cases, array SSA is not necessary. It is
because in those programs, if there are large arrays, operations on them are typically written as
Tensor operations (e.g., C = A + B for Loop: c[i] = a[il*b[i]) without explicit references to

Proc. ACM Program. Lang., Vol. 5, No. OOPSLA, Article 130. Publication date: October 2021.

Coarsening Optimization for Differentiable Programming 130:25

individual array elements; for such representations, the standard SSA still applies. Even if sometimes
a part of the array elements are treated differently from others, Tensor operations still suffice via
Tensor masking operations (e.g., the HMC case). In the cases where individual array elements are
used and updated differently, those arrays are usually short and are used in small loops; loop
unrolling and scalar conversion can easily turn the code into a form amenable for the standard
SSA. Nonetheless, integration of array SSA with coarsening could still be useful especially for AD
tools without Tensor-like abstractions.

9 RELATED WORK

There is a large body of work on efficient AD. Optimizations range from checkpointing [Dauvergne
and Hascoet 2006] to edge/vertex eliminations on computation graphs [Dixon 1991], combination
of forward and backward differentiation [Baydin et al. 2018], loop transformations [Shaikhha et al.
2019], and so on. A recent work [Sherman et al. 2021] proposes a differentiable programming
language to deliver a semantics for higher-order functions, higher-order derivatives, and Lipschitz
but non-differentiable functions. Some of the relevant studies have been mentioned in earlier
sections, and more on AD for machine learning can be seen in recent surveys [Baydin et al. 2018;
Margossian 2019; van Merriénboer et al. 2018]. Coarsening can be regarded as an optimization
complementary to those existing AD optimizations: They can be used together, with coarsening
offering shortcuts and the other optimizations improving the remaining AD operations.

There are many tools capable of doing symbolic differentiation. Examples include the Calculus
module in Julia [cal [n.d.]], SageMath [sag [n.d.]], KotlinGrad [Considine et al. 2019], and Acumen
which maps from analytical models to simulation codes via symbolic differentiation [Zhu et al.
2010]. None of them have addressed the complexities from control flow on symbolic differentiation,
or the systematic integration of symbolic differentiation with AD. The existing symbolic engines
can differentiate only expressions not programs. For cases with simple control flows where the
problem of interest involves only several conditional cases, the user could enumerate those cases
and use the existing symbolic engines to differentiate them each. That practice does not apply to
code with loops or many branches. The ¢-calculus in this work offers a solution to the complexity.

Several recent studies have challenged the common criticisms of “expression swell” of symbolic
differentiation [Laue 2019; Wang et al. 2018]. Even though the arguments may differ in form, the
main points are similar: If placeholders are used to store intermediate differentiation results for
reuses, the problem can be largely alleviated. The design of our reuse-aware SOI identification in
coarsening is based on a similar insight, but provides a systematic way to deal with the tradeoff
between reuse and the granularity of symbolic differentiation.

Expression templates have been used in both forward and backward AD implementations to
reduce runtime space and time overhead[Sag 2017; Aubert et al. 2001; Phipps and Pawlowski 2012].
In Adept, for instance, during the primal computations, the algorithm records backward operations
onto a stack. Its use of expression templates in C++ helps avoid invocations of virtual function
calls at runtime, and hence reduces the amount of objects needed to allocate to hold intermediate
results. Differentiation happens however still at each individual operation. There is no symbolic
differentiation or symbolic simplifications or optimizations in a large scope. Moreover, as with
all other operator overloading based AD, these solutions also require primal computations to be
executed before gradients can be computed. As a result, the highly optimized implementations
are still 2.4-4X slower than the original algorithm (without gradients calculations) [Hog 2014].
Coarsening optimization, in comparison, harnesses large-scope optimization opportunities, and
can sometimes forego the primal computations completely, yielding even a higher speed than the
original algorithm has as Section 7 has shown.

Proc. ACM Program. Lang., Vol. 5, No. OOPSLA, Article 130. Publication date: October 2021.

130:26 X. Shen et al.

Since it was first proposed in late 1980s [Cytron et al. 1989], SSA has been widely adopted in
program representations in compilers. Gated SSA (GSA) proposes to explicitly specify the conditions
in the ¢ functions, and introduces notations to distinguish loop entry, loop exit, and normal ¢-
functions [Ottenstein et al. 1990], which share some similarities with part of the ¢-notations in this
work. The loop notations in ¢-calculus is inspired by the notations in Glore [Ding and Shen 2017],
a work that detects large-scoped loop invariants. In 1990s and early 2000s, there were a number
of papers on recognizing and substituting inductive variables in loops based on SSA through
symbolic analysis [Tu and Padua 1995]. An example is the symbolic analysis based on Chains
of Recurrences [van Engelen 2001; van Engelen et al. 2004]. The purpose is to convert the array
subscripts in a loop into a form ready for parallelization-oriented dependence analysis. For symbolic
differentiation, what is needed is not only symbolic treatment to inductive variables but derivations
of the closed-form expressions for all the computations that are related with the active variables,
hence the need for the ¢-calculus. As a type of standard IR, SSA is also the IR leveraged in recent
AD compilers, such as the Zygote for Julia [Innes 2018, 2020], which is a pure AD tool without
systematic integration of symbolic differentiation.

Besides symbolic and algorithmic differentiation, there is another approach called numerical
differentiation, which uses finite difference approximations. But because it is inaccurate and scales
poorly for gradients, it is rarely used for machine learning where gradients with respect to millions
of parameters are common.

10 CONCLUSION

This paper has presented coarsening, a novel optimization that expands the scope of symbolic
differentiation and systematically integrates symbolic differentiation with AD. It builds on two key
innovations: the ¢-calculus and the reuse-aware SOI identification. The @-calculus offers the first
mechanism that allows symbolic differentiation to apply on code with complicated control flow,
while the reuse-aware SOI identification provides an algorithm to deal with the tension between
computation reuse and coarsening. Experiments on several AD tools and various settings demon-
strate that coarsening is an effective optimization for AD. It can remove the overloading overhead
in AD and at the same time harness the benefits of symbolic optimizations and differentiation,
yielding several times to two orders of magnitude speedups.

REFERENCES

[n.d.]. Calculus package for Julia. Available at https://github.com/JuliaMath/Calculus.jl.

[n.d.]. HMC Explained. Available at https://arogozhnikov.github.io/2016/12/19/markov_chain_monte_carlo.html.

[n.d.]. SageMath. Available at https://www.sagemath.org/.

[n.d.]. Sympy software. https://www.sympy.org/en/index.html.

1988. Fast reverse-mode automatic differentiation using expression templates in C++. Perspectives in Computing 19 (1988).
Source of expression swell.

2011. Handbook of Markov Chain Monte Carlo. (May 2011). https://doi.org/10.1201/b10905

2014. Fast reverse-mode automatic differentiation using expression templates in C++. Trans. Math. Software 40, 26 (2014).
Issue 4. ADEPT AD tool in C++.

2017. High-Performance Derivative Computations using CoDiPack. Trans. Math. Software 45 (2017). Issue 4. CoDiPack.

A.V. Aho, M. S. Lam, R. Sethi, and]J. D. Ullman. 2006. Compilers: Principles, Techniques, and Tools (2nd ed.). Addison Wesley.

P. Aubert, N. Di Cesare, and O. Pironneau. 2001. Automatic differentiation in C++ using expression templates ~ and
application to a flow control problem. Comput. Vis. Sci. 3 (2001), 197-208.

Atilim Giines Baydin, Barak A. Pearlmutter, Alexey Andreyevich Radul, and Jeffrey Mark Siskind. 2018. Automatic
differentiation in machine learning: a survey. The Journal of Machine Learning Research 18, 1 (2018).

James Bradbury, Roy Frostig, Peter Hawkins, Matthew James Johnson, Chris Leary, Dougal Maclaurin, George Necula,
Adam Paszke, Jake VanderPlas, Skye Wanderman-Milne, and Qiao Zhang. 2018. JAX: composable transformations of
Python+NumPy programs. https://jax.readthedocs.io/.

Proc. ACM Program. Lang., Vol. 5, No. OOPSLA, Article 130. Publication date: October 2021.

https://github.com/JuliaMath/Calculus.jl
https://arogozhnikov.github.io/2016/12/19/markov_chain_monte_carlo.html
https://www.sagemath.org/
https://doi.org/10.1201/b10905

Coarsening Optimization for Differentiable Programming 130:27

Breandan Considine, Michalis Famelis, and Liam Paull. 2019. KotlinV: A Shape-Safe eDSL for Differentiable Programming.
https://github.com/breandan/kotlingrad.

Ron Cytron, Jeanne Ferrante, Barry K. Rosen, Mark N. Wegman, and F. Kenneth Zadeck. 1989. An efficient method of
computing static single assignment form. In Proceedings of the 16th ACM SIGPLAN-SIGACT symposium on Principles of
programming languages. 25-35.

B. Dauvergne and L. Hascoet. 2006. The Data-Flow Equations of Checkpointing in Reverse Automatic Differentiation.
Lecture Notes in Computer Science 3994 (2006).

Y. Ding and X. Shen. 2017. GLORE: Generalized Loop Redundancy Elimination upon LER-Notation. In Proceedings of
OOPSLA at The ACM SIGPLAN conference on Systems, Programming, Languages and Applications: Software for Humanity
(SPLASH).

L. C. Dixon. 1991. Use of automatic differentiation for calculating Hessians and Newton steps. Automatic Differentiation of
Algorithms: Theory, Implementation, and Application (1991), 114-125.

Michael Innes. 2018. Don’t Unroll Adjoint: Differentiating SSA-Form Programs. CoRR abs/1810.07951 (2018). arXiv:1810.07951
http://arxiv.org/abs/1810.07951

Michael J Innes. 2020. Sense & Sensitivities: The Path to General-Purpose Algorithmic Differentiation. In Proceedings of the
3rd MLSys Conference. https://fluxml.ai/Zygote.jl/latest/.

Kathleen B Knobe and Vivek Sarkar. 1998. Array SSA form and its use in parallelization. In Proceedings of the 25th ACM
SIGPLAN-SIGACT symposium on Principles of programming languages.

Séren Laue. 2019. On the Equivalence of Forward Mode Automatic Differentiation and Symbolic Differentiation. CoRR
abs/1904.02990 (2019). arXiv:1904.02990 http://arxiv.org/abs/1904.02990

Dougal Maclaurin. 2016. Modeling, Inference and Optimization with Composable Differentiable Procedures. Ph.D. Dissertation.
Harvard University.

Charles C. Margossian. 2019. A review of automatic differentiation and its efficient implementation. WIREs Data Mining
and Knowledge Discovery 9, 4 (Mar 2019). https://doi.org/10.1002/widm.1305

Karl J. Ottenstein, Robert A. Ballance, and Arthur B. MacCabe. 1990. The program dependence web: a representation
supporting control-, data-, and demand-driven interpretation of imperative languages. In ACM SIGPLAN 1990 conference
on Programming language design and implementation. 257-271.

Adam Paszke, Sam Gross, Soumith Chintala, Gregory Chanan, Edward Yang, Zachary DeVito, Zeming Lin, Alban Desmaison,
Luca Antiga, and Adam Lerer. 2017. Automatic differentiation in PyTorch. In Proceedings of NIPS 2017 Workshop Autodiff-

Eric Phipps and Roger Pawlowski. 2012. Efficient Expression Templates for Operator Overloading-BasedAutomatic
Differentiation. In Recent Advances in Algorithmic Differentiation, Shaun Forth, Paul Hovland, Eric Phipps, Jean Utke, and
Andrea Walther (Eds.). Springer Berlin Heidelberg, Berlin, Heidelberg, 309-319.

Junior Rojas, Stelian Coros, and Ladislav Kavan. 2019. Deep reinforcement learning for 2D soft body locomotion. In NeurIPS
Workshop on Machine Learning for Creativity and Design 3.0.

Amir Shaikhha, Andrew Fitzgibbon, Dimitrios Vytiniotis, and Simon Peyton Jones. 2019. Efficient Differentiable Programming
in a Functional Array-Processing Language. Proc. ACM Program. Lang. 3, ICFP, Article 97 (July 2019), 30 pages. https:
//doi.org/10.1145/3341701

Benjamin Sherman, Jesse Michel, and Michael Carbin. 2021. Computable Semantics for Differentiable Programming
with Higher-Order Functions and Datatypes. In Proceedings of the ACM SIGPLAN-SIGACT symposium on Principles of
programming languages.

Nazanin Tehrani, Nimar S. Arora, Yucen Lily Li, Kinjal Divesh Shah, David Noursi, Michael Tingley, Narjes Torabi, Sepehr
Masouleh, Eric Lippert, and Erik Meijer. 2020. Bean Machine: A Declarative Probabilistic Programming Language For
Efficient Programmable Inference. In Proceedings of the 10th International Conference on Probabilistic Graphical Models.

Peng Tu and David Padua. 1995. Gated SSA-based demand-driven symbolic analysis for parallelizing compilers. In Proceedings
of the 9th International Conference on Supercomputing. 414-423.

Robert A. van Engelen. 2001. A method for recognizing and substitutions of generalized inductive variables through Chains
of recurrences (CRs). In Proceedings of the International Conference on Compiler Constructions.

Robert A. van Engelen, J. Birch, Y. Shou, B. Walsh, and Kyle A. Gallivan. 2004. A Unified Framework for Nonlinear
Dependence Testing and Symbolic Analysis. In Proceedings of the International Conference on Supercomputing.

Bart van Merriénboer, Olivier Breuleux, Arnaud Bergeron, and Pascal Lamblin. 2018. Automatic differentiation in ML: Where
we are and where we should be going. CoRR abs/1810.11530 (2018). arXiv:1810.11530 http://arxiv.org/abs/1810.11530

Fei Wang, Xilun Wu, Grégory M. Essertel, James M. Decker, and Tiark Rompf. 2018. Demystifying Differentiable
Programming: Shift/Reset the Penultimate Backpropagator. CoRR abs/1803.10228 (2018). arXiv:1803.10228 http:
//arxiv.org/abs/1803.10228

Yun Zhu, Edwin Westbrook, Jun Inoue, Alexandre Chapoutot, Cherif Salama, Marisa Peralta, Travis Martin, Walid Taha,
Robert Cartwright, Aaron Ames, and Raktim Bhattacharya. 2010. Mathematical equations as executable models of
mechanical systems. In Proceedings of International Conference on Cyber-Physical Systems.

Proc. ACM Program. Lang., Vol. 5, No. OOPSLA, Article 130. Publication date: October 2021.

https://arxiv.org/abs/1810.07951
http://arxiv.org/abs/1810.07951
https://arxiv.org/abs/1904.02990
http://arxiv.org/abs/1904.02990
https://doi.org/10.1002/widm.1305
https://doi.org/10.1145/3341701
https://doi.org/10.1145/3341701
https://arxiv.org/abs/1810.11530
http://arxiv.org/abs/1810.11530
https://arxiv.org/abs/1803.10228
http://arxiv.org/abs/1803.10228
http://arxiv.org/abs/1803.10228

	Abstract
	1 Introduction
	2 Background and Terminology
	3 Overview of Coarsening Optimization
	4 Addressing Control Flow: -Calculus
	4.1 Background on SSA and Functions
	4.2 Notations in -Calculus
	4.3 Formulae in -Calculus
	4.4 Examples

	5 SOI Identification
	6 Implementation
	7 Evaluation
	7.1 Methodology
	7.2 Results
	7.3 Potential on Other AD Tools

	8 Discussions
	9 Related Work
	10 Conclusion
	References

