
RETROSPECTIVE:

Higher-order control-flow analysis in retrospect:
Lessons learned, lessons abandoned

Olin Shivers
College of Computing

Georgia Institute of Technology
Atlanta, Georgia, USA

shivers@cc.gatech.edu

Introduction

A tremendous amount of work has been carried out in the general
area of program analysis of higher-order languages, both before
and after the publication of “Control-flow analysis in Scheme” in
PLDI. In the space allowed here, I could never hope to tie my 1988
paper properly into this daunting canon of research. So, instead, I
will focus on summarising some major directions that were pursued
afterwards, and (more significantly) some elements of the paper’s
message that, to me, seem to have been abandoned.

Extensions and limitations

“Control-flow analysis in Scheme” introduced the notion of 0CFA
and thek-CFA hierarchy (though the general idea of control-flow
analysis for functional languages has multiple precedents [8]). It
did not take long to discover that the basic analysis, for anyk > 0,
was intractably slow for large programs. In the ensuing years, re-
searchers have expended a great deal of effort deriving clever ways
to tame the cost of the analysis. Three examples from this vein of
work are:

• Wright and Jagannathan [21] exploited the “hint” of type
polymorphism to restrict or focus the polyvariance of the
analysis to cases where its greater discrimination would be
more likely to pay off.

• Heintze and McAllester developed an algorithm that exploits
static type information to implement an on-demand analysis
[7], providing gains in sparse applications where a program-
manipulation system asks relatively few control-flow ques-
tions of the program being analysed.

• Ashley used Cousot’s notion of a “widening” lattice operator
to coarsen the analysis for speedups [2].

Other researchers developed general frameworks for expressing
CFA in the higher-order setting. Here, theur-framework is the
Cousots’ non-standard abstract interpretation [3, 4], which I used
in later work. The Nielsons were also instrumental in formalising a
general framework for CFA; the textPrinciples of Program Analy-
sis [13], written with Hankin, summarises much of this work.

However, despite all this work on formalising CFA and speeding
it up, I have been disappointed in the dearth of work extending its
power. “Control-flow analysis in Scheme” delineates a fundamen-
tal barrier beyond which the wholek-CFA framework cannot go,

20 Years of the ACM/SIGPLAN Conference on Programming Language
Design and Implementation (1979-1999): A Selection,2003.
Copyright 2003 ACM 1-58113-623-4 ...$5.00.

which I called the “environment problem:” some analyses are ren-
dered unsound by the inevitable folding of the infinite set of precise
environments down to a tractably finite set.

I provided a solution to this problem, which I called “reflow anal-
ysis,” in my subsequent doctoral dissertation [17]. This is a thread
that has not been picked up—a lesson abandoned. Reflow analysis
needs more investigation. It has not been given, in my dissertation
or elsewhere, the kind of detailed formalisation that 0CFA enjoys
today. This is a pity, since there are interesting program analyses
and optimisations that require this kind of extra power.

CPS as an intermediate representation

It was fundamental to my development of control-flow analysis to
use an intermediate representation based on continuation-passing
style (CPS). This continued a line of work originating with Steele’s
seminal Rabbit compiler [18], and continuing through Orbit [11],
Kelsey’s transformational compiler TC [9], and SML/NJ, whose
development was led by Appel and MacQueen [1]. Kelsey subse-
quently pointed out that the SSA revolution in the traditional com-
piler community was essentially CPS in another guise [10].

The use of CPS drastically simplified my analyses by replacing
the full gamut of control constructs—iteration, branching, function
call, function return, sequencing, and non-local transfers—with a
single mechanism, the tail-recursive procedure call. In CPS, the
entire control-flow problem reduces simply to discovering which
call sites invoke which lambdas.

In the early 90’s, however, a series of influential papers by Sabry,
et al. [15, 6] made the case for abandoning CPS in favor of alter-
nate, “direct-style” intermediate representations, such as A-normal
form. These representations have now become standard practice.

In 2002, then, CPS would appear to be a lesson abandoned. I
would argue that the use of CPS remains a boon to program anal-
ysis. Not only does CPS provide a uniform representation of con-
trol structure, it also packages upevaluation contextinto a familiar
form: lambda. A functional-program analysis system already has
powerful machinery for reasoning about lambdas; the CPS trans-
form allows this machinery to be employed to reason about context,
as well. Without CPS, separate contextual analyses and transforms
must be also implemented—redundantly, in my view.

In the fourteen years that have passed since the publication of
“Control-flow analysis in Scheme,” I have seen many developments
of k-CFA variants done in a direct-style setting. They are all, to
my eye, needlessly complicated by the profusion of control points
and control mechanisms made necessary by direct style—harder to
develop, harder to understand.



Denotational and operational semantics

When I formalised 0CFA in subsequent work, I did so as a non-
standard abstract semantics using a denotational approach. Why
not use operational semantics, which more naturally exposes the
intermediate states of the abstract machine for collection? The rea-
son is not profound: denotational semantics was what I knew, and
I had access, as a graduate student at CMU, to a vast pool of local
expertise on the subject.

At almost the exact same time that I was developingk-CFA us-
ing denotational semantics, Deutsch, for example, was attacking
pointer analyses in higher-order languages—an extremely difficult
and complex problem—with great success using an operational for-
malisation [5]. As another example, Wand and his students have
done CFA-based analyses and transforms in the operational setting
[19].

For a CPS language, a collecting semantics in a denotational
framework is not greatly different from a big-step operational se-
mantics, so the choice of approach is not that critical. A small-step
semantics, however, does have distinct technical differences that
are worth considering.

Weaving the strands together

There are many analytic tools we can use to reason about programs:
data-flow analyses, type systems, semantics, both precise and ab-
stract, and proof systems to reason about them. 0CFA occupies
one point in this complex space; it is able to tell particular kinds of
stories about a particular kind of program behaviour.

Perhaps the most exciting development in the program-analysis
field in recent years is the emergence of a coherent structure relat-
ing these different approaches. As Palsberg [14] and the Church
group [20] have shown, control flow can be captured with flow
types and type analyses. Types themselves merge into full-blown
verification logics by way of the Curry-Howard isomorphism; this
shows up practically in the proof systems used in proof-carrying
code [12]. Data-flow analyses can be seen simply as particular
proof-generating strategies; Schmidt has connected them to tem-
poral logics and operational semantics via abstract interpretation
[16].

References

[1] Andrew W. Appel. Compiling with Continuations.
Cambridge University Press, 1992.

[2] J. Michael Ashley and R. Kent Dybvig. A practical and
flexible flow analysis for higher-order languages.ACM
Transactions on Programming Languages and Systems
20(4), pages 845–868, July 1988.

[3] Patrick Cousot and Radhia Cousot. Abstract interpretation: a
unified lattice model for static analysis of programs by
construction or approximation of fixpoints. InConference
Record of the Fourth ACM Symposium on Principles of
Programming Languages, pages 238–252, 1977.

[4] Patrick Cousot and Radhia Cousot. Systematic design of
program analysis frameworks. InConference Record of the
Sixth Annual ACM Symposium on Principles of
Programming Languages, pages 269–282, 1979.

[5] Alain Deutsch. On determining lifetime and aliasing of
dynamically allocated data in higher-order functional
specifications (extended version). Research Report
LIX/RR/90/11, LIX, Ecole Polytechnique, 91128 Palaiseau
Cedex, France.

[6] Cormac Flanagan, Amr Sabry, Bruce Duba, and Matthias
Felleisen. The essence of compiling with continuations. In

Proceedings of the ACM SIGPLAN Conference on
Programming Language Design and Implementation,
237–247, 1993.

[7] Nevin Heintze and David McAllester. Linear-time
subtransitive control flow analysis. InProceedings of the
ACM SIGPLAN Conference on Programming Language
Design and Implementation, 1997.

[8] Neil D. Jones. Flow analysis of lambda expressions. In
Automata Languages and Programming, volume 115, pages
114–128, Lecture Notes in Computer Science,
Springer-Verlag, 1981.

[9] Richard A. Kelsey.Compilation by Program
Transformation.Ph.D. dissertation, Yale University, May
1989. Research Report 702, Department of Computer
Science.

[10] Richard A. Kelsey. A correspondence between
continuation-passing style and static single assignment form.
In Proceedings of the ACM SIGPLAN Workshop on
Intermediate Representations, SIGPLAN Notices30(3),
pages 13–22, 1995.

[11] David Kranz. ORBIT: An Optimizing Compiler for Scheme.
Ph.D. dissertation, Yale University, February 1988. Research
Report 632, Department of Computer Science.

[12] George Necula and Peter Lee. Safe kernel extensions
without run-time checking. InProceedings of the Second
Symposium on Operating Systems Design and
Implementation(OSDI’96), pages 229–243, 1996.

[13] Flemming Nielson, Hanne Riis Nielson, and Chris Hankin.
Principles of Program Analysis.Springer, 1999.

[14] Jens Palsberg and Patrick M. O’Keefe. A type system
equivalent to flow analysis.ACM Transactions on
Programming Languages and Systems, 17(4), pages
576–599, July 1995.

[15] Amr Sabry and Matthias Felleisen. Is continuation passing
useful for data-flow analysis? InProceedings of the ACM
SIGPLAN Conference on Programming Language Design
and Implementation, pages 1–12, 1994.

[16] David Schmidt. Data-flow analysis is model checking of
abstract interpretations. InProceedings of the 25th ACM
Symposium on Principles of Programming Languages
(POPL ’97), pages 38–48, 1998.

[17] Olin Shivers.Control-Flow Analysis of Higher-Order
Languages.Ph.D. dissertation, Carnegie Mellon University,
May 1991. Technical Report CMU-CS-91-145, School of
Computer Science.

[18] Guy L. Steele Jr.RABBIT : A Compiler forSCHEME.
Technical Report 474, MIT AI Lab, May 1978.

[19] Mitchell Wand and Igor Siveroni. Constraint systems for
useless variable elimination. InProceedings of the 26th
ACM Symposium on Principles of Programming Languages,
pages 291–302, 1999.

[20] J. B. Wells, Allyn Dimock, Robert Muller, and Franklyn
Turbak. A calculus for polymorphic and polyvariant flow
types. Journal of Functional Programming. (To appear.)

[21] Andrew K. Wright and Suresh Jagannathan. Polymorphic
splitting: An effective polyvariant flow analysis.ACM
Transactions on Programming Languages and Systems
20(1), pages 166–207, January 1998.


