
COMPILING WITH CONTINUATIONS

COMPILING WITH

CONTINUATIONS

ANDREW W. APPEL

Department of Computer Science, Princeton University

CAMBRIDGE UNIVERSITY PRESS

Cambridge

New York Port Chester Melbourne Sydney

CAMBRIDGE UNIVERSITY PRESS

Cambridge, New York, Melbourne, Madrid, Cape Town, Singapore, São Paulo

Cambridge University Press

The Edinburgh Building, Cambridge CB2 2RU, UK

Published in the United States of America by Cambridge University Press, New York

www.cambridge.org

Information on this title: www.cambridge.org/9780521416955

© Cambridge University Press 1992

This publication is in copyright. Subject to statutory exception

and to the provisions of relevant collective licensing agreements,

no reproduction of any part may take place without

the written permission of Cambridge University Press.

First published 1992

This digitally printed first paperback version (with corrections) 2006

A catalogue record for this publication is available from the British Library

Library of Congress Cataloguing in Publication data

Appel, Andrew W., 1960-

Compiling with continuations / Andrew W. Appel.

p. cm.

Includes bibliographical references.

ISBN 0-521-41695-7

1. Compilers (Computer programs) 2. Standard ML of New Jersey.

I. Title.

QA76.76.C65A67 1992

005.4´53–dc20 91-26651

CIP

ISBN-13 978-0-521-41695-5 hardback

ISBN-10 0-521-41695-7 hardback

ISBN-13 978-0-521-03311-4 paperback

ISBN-10 0-521-03311-X paperback

Cambridge University Press has no responsibility for the persistence or

accuracy of URLs for external or third-party Internet websites referred to

in this publication, and does not guarantee that any content on such websites

is, or will remain, accurate or appropriate.

CONTENTS

Acknowledgments ix

1 Overview 1
1.1 Continuation-passing style . 1
1.2 Advantages of CPS . 4
1.3 What is ML? . 6
1.4 Compiler organization . 9

2 Continuation-passing style 11
2.1 The CPS datatype . 11
2.2 Functions that escape . 16
2.3 Scope rules . 17
2.4 Closure conversion . 18
2.5 Spilling . 21

3 Semantics of the CPS 23

4 ML-specific optimizations 37
4.1 Data representation . 37
4.2 Pattern matching . 43
4.3 Equality . 45
4.4 Unboxed updates . 46
4.5 The mini-ML sublanguage . 46
4.6 Exception declarations . 49
4.7 The lambda language . 50
4.8 The module system . 52

5 Conversion into CPS 55
5.1 Variables and constants . 55
5.2 Records and selection . 56
5.3 Primitive arithmetic operators . 57
5.4 Function calls . 59
5.5 Mutually recursive functions . 60
5.6 Data constructors . 60
5.7 Case statements . 61

v

vi CONTENTS

5.8 Exception handling . 63
5.9 Call with current continuation . 64

6 Optimization of the CPS 67
6.1 Constant folding and β-contraction 68
6.2 Eta reduction and uncurrying . 76
6.3 Cascading optimizations . 78
6.4 Implementation . 80

7 Beta expansion 83
7.1 When to do in-line expansion . 87
7.2 Estimating the savings . 89
7.3 Runaway expansion . 92

8 Hoisting 93
8.1 Merging FIX definitions . 93
8.2 Rules for hoisting . 95
8.3 Hoisting optimizations . 96

9 Common subexpressions 99

10 Closure conversion 103
10.1 A simple example . 104
10.2 A bigger example . 106
10.3 Closure-passing style . 109
10.4 The closure-conversion algorithm 109
10.5 Closure representation . 112
10.6 Callee-save registers . 114
10.7 Callee-save continuation closures 119
10.8 Stack allocation of closures . 122
10.9 Lifting function definitions to top level 124

11 Register spilling 125
11.1 Rearranging the expression . 128
11.2 The spilling algorithm . 128

12 Space complexity 133
12.1 Axioms for analyzing space . 136
12.2 Preserving space complexity . 137
12.3 Closure representations . 142
12.4 When to initiate garbage collection 144

13 The abstract machine 147
13.1 Compilation units . 147
13.2 Interface with the garbage collector 148
13.3 Position-independent code . 150

CONTENTS vii

13.4 Special-purpose registers . 151

13.5 Pseudo-operations . 154

13.6 Instructions of the continuation machine 155

13.7 Register assignment . 158

13.8 Branch prediction . 160

13.9 Generation of abstract-machine instructions 161

13.10 Integer arithmetic . 161

13.11 Unboxed floating-point values . 162

14 Machine-code generation 165

14.1 Translation for the VAX . 165

14.1.1 Span-dependent instructions 167

14.2 Translation for the MC68020 . 168

14.3 Translation for the MIPS and SPARC 169

14.3.1 PC-relative addressing . 170

14.3.2 Instruction scheduling . 170

14.3.3 Anti-aliasing . 171

14.3.4 Alternating temporaries . 173

14.4 An example . 174

15 Performance evaluation 179

15.1 Hardware . 181

15.2 Measurements of individual optimizations 183

15.3 Tuning the parameters . 187

15.4 More about caches . 187

15.5 Compile time . 198

15.6 Comparison with other compilers 200

15.7 Conclusions . 201

16 The runtime system 205

16.1 Efficiency of garbage collection . 205

16.2 Breadth-first copying . 206

16.3 Generational garbage collection . 207

16.4 Runtime data formats . 210

16.5 Big bags of pages . 211

16.6 Asynchronous interrupts . 212

17 Parallel programming 215

17.1 Coroutines and semaphores . 216

17.2 Better programming models . 219

17.3 Multiple processors . 220

17.4 Multiprocessor garbage collection 221

viii CONTENTS

18 Future directions 223
18.1 Control dependencies . 223
18.2 Type information . 225
18.3 Loop optimizations . 225
18.4 Garbage collection . 227
18.5 Static single-assignment form . 228
18.6 State threading . 228

A Introduction to ML 229
A.1 Expressions . 231
A.2 Patterns . 233
A.3 Declarations . 235
A.4 Some examples . 236

B Semantics of the CPS 239

C Obtaining Standard ML of New Jersey 245

D Readings

249Bibliography

Index 25

247

6

ACKNOWLEDGMENTS

The compiler described in this book—Standard ML of New Jersey—is the
work of many people. David B. MacQueen and I began the work in 1986; we
intended to spend about one year making a Standard ML front end as a tool for
further research. David did most of the work on the type checker and module
system; we worked together on the parser, abstract syntax, static environment
mechanism, and semantic analysis. My interest has been in dynamic semantics,
intermediate representations, optimization, code generation, and runtime system.

Of course, we’ve ended up spending more than five years on the implementation,
as the scope of project has become much more ambitious: a complete, robust,
efficient, portable programming environment for Standard ML. We could not have
done it without the help we’ve received from many talented people. In alphabetical
order:

Bruce F. Duba helped improve the pattern-match compiler, the CPS constant-
folding phase, the in-line expansion phase, the spill phase, and numerous other
parts of the compiler. He also helped to design the call with current continuation
mechanism.

Adam T. Dingle implemented the Emacs mode for the debugger.
Lal George taught the code generator about floating-point registers and made

floating-point performance respectable. He also fixed several difficult bugs intro-
duced by me and others.

Trevor Jim helped design the CPS representation, and implemented the
match compiler and the closure-conversion phase, the original library of floating-
point functions, and the original assembly-language implementation of external
primitive functions.

James S. Mattson implemented the first version of the lexical-analyzer gen-
erator used in constructing the compiler.

James W. O’Toole implemented the NS32032 code generator.
Norman Ramsey implemented the MIPS code generator.
John H. Reppy contributed many improvements and rewrites of the run-

time system. He implemented the signal-handling mechanism, improved the call
with current continuation mechanism, designed the current mechanism for calls to
C functions, implemented the sophisticated new garbage collector, and generally
made the runtime system more robust. He also implemented the SPARC code
generator.

Nick Rothwell helped implement the separate compilation mechanism.

ix

x Acknowledgments

Zhong Shao implemented common-subexpression elimination, as well as the
callee-save convention that uses multiple-register continuations for faster procedure
calls.

David R. Tarditi improved the lexical-analyzer generator and implemented
the parser generator used to build parts of the front end; he helped in implementing
the type-reconstruction algorithm used by the debugger; and he implemented the
ML-to-C translator with Anurag Acharya and Peter Lee.

Mads Tofte helped implement the separate compilation mechanism.
Andrew P. Tolmach implemented the SML/NJ debugger. He also rewrote

static environments (symbol tables) in a more functional style.
Peter Weinberger implemented the first version of the copying garbage col-

lector.
Finally, I would like to thank those who gave me helpful comments on early

drafts of this book: Ron Cytron, Mary Fernandez, Lal George, Peter Lee, Greg
Morrisett, Zhong Shao, David Tarditi, and Andrew Tolmach.

CHAPTER ONE

OVERVIEW

ML is a strict higher-order functional programming language with statically checked
polymorphic types, garbage collection, and a complete formally defined semantics.
Standard ML of New Jersey is an optimizing compiler and runtime system for
ML. The intermediate representation that SML/NJ uses for optimization and code
generation—continuation-passing style—is applicable to the compilation of many
modern programming languages, not just ML. This book is about compiling with
continuation-passing style.

Prior knowledge of ML is helpful, but not necessary, to read this book. Since the
Standard ML of New Jersey compiler is itself written in ML, we use ML notation
for many of the examples. But will we use only a simple subset of the language for
illustrations, and we will explain the notation as we go along. Readers completely
unfamiliar with ML should refer to the introduction in Appendix A.

1.1 Continuation-passing style

The beauty of FORTRAN—and the reason it was an improvement over assembly
language—is that it relieves the programmer of the obligation to make up names
for intermediate results. For example, we write x = (a + b) ∗ (c + d) instead of the
assembly language:

r1 ← a + b
r2 ← c + d
x← r1 × r2

The simple, one-line expression is easier to read and understand than the three-
line assembly program; the names r1 and r2 don’t really aid our understanding.
Furthermore, the assembly program spells out explicitly the order of evaluation:
a + b is computed before c + d; this is something we did not really need to know.

The λ-calculus gives us these same advantages for functional values as well.
We can write f(λx.x + 1) instead of (as in Pascal):

function g(x: integer): integer;

begin g := x+1 end;

. . . f(g) . . .

1

2 Chapter 1. Overview

Here, Pascal forces us to give a name (g) to this function; the name (and the
consequent verbosity of the definition) may not help us understand what’s going
on. The λ-calculus also frees us from needing to know too much about order of
evaluation, even across function-call boundaries.

These conveniences are quite appropriate for humans writing programs. But
in fact, they may be just the wrong thing for compilers manipulating programs.
A compiler might like to give a distinct name to every intermediate value of the
program, so it can use these names for table lookups, manipulating sets of values,
register allocation, scheduling, and so on.

Continuation-passing style (CPS) is a program notation that makes every as-
pect of control flow and data flow explicit. It also has the advantage that it’s closely
related to Church’s λ-calculus, which has a well-defined and well-understood mean-
ing.

We can illustrate CPS informally with an example. Start with a source program

fun prodprimes(n) =

if n=1

then 1

else if isprime(n) then n*prodprimes(n-1)

else prodprimes(n-1)

This is an ML program that computes the product of all primes less than or equal
to a positive integer n. The keyword fun introduces a function definition; the
expression on the right-hand side of the equal sign is the body of the function.
The if-then-else and arithmetic expression notation should be familiar to most
readers.

Now, there are several points in the control flow of this program that deserve
names. For example, when the function isprime is called, it will be passed a return
address. It is helpful to name this return address—let’s call it k. And isprime

will return a Boolean value—call it b. The first call to prodprimes (in the then

clause of the second if) will return to a point j with an integer p, but the second
call to prodprimes (in the else clause) will return to a point h with an integer
q. The first computation of n− 1 will be put in a temporary variable m, and the
second one in a variable i, and so on.

We should also mention that the function prodprimes, when it is called, is
handed a return address; we can call that c and treat it as one of the arguments
(formal parameters) of the function. Then we can use c when it is time to leave
the function.

We can express all of this using continuations. A continuation is a function that
expresses “what to do next;” for example, we can say that prodprimes is given a
continuation c as one of its arguments, and when prodprimes has computed its
result a it will continue by applying c to a. Thus, returning from a function looks
just like a function call!

The following program is a continuation-passing-style version of the program,
written in ML. For those unfamiliar with ML, it will help to explain that let

declaration in expression end declares some local value (a function, an integer,

1.1. Continuation-passing style 3

etc.) whose scope includes the expression; the result of the let is just that of the
expression. A fun declaration declares a function (with formal parameters) and a
val declaration (in this simple example) binds a variable to a value.

fun prodprimes(n,c) =

if n=1

then c(1)

else let fun k(b) =

if b=true

then let fun j(p)=

let val a=n*p

in c(a)

end

val m=n-1

in prodprimes(m,j)

end

else let fun h(q)=c(q)

val i=n-1

in prodprimes(i,h)

end

in isprime(n,k)

end

Observe that all the control points c, k, j, h discussed above are just continua-
tion functions, and all the data labels b, p, a, m, q, i are just variables. In order to
use continuation-passing style, we didn’t have to change our notation very much;
we just used a restricted form of the existing language. A full explanation of CPS
will be given in Chapters 2 and 3.

The CPS representation is easy for optimizing compilers to manipulate and
transform. For example, we would like to perform tail-recursion elimination: If a
function f calls a function g as the very last thing it does, then instead of passing
g a return address within f , it could pass to g the return address that f was given
by f ’s caller. Then, when g returned, it would return directly to the caller of f .

If we look at the original version of prodprimes, we find that one of the calls
is tail recursive (the last recursive call to prodprimes). In the CPS version of the
program, this is manifested in the fact that the continuation function h is trivial:
h(q) = c(q). Now, whenever we have a function h that just calls another function
c with the same argument, we can say that h is equivalent to c; and we might as
well use c wherever h is referred to. So we can perform this simple transformation

let fun h(q)=c(q)

val i=n-1

in prodprimes(i,h)

end

→
let val i=n-1

in prodprimes(i,c)

end

and now we have accomplished tail-recursion elimination in a clean way.

4 Chapter 1. Overview

1.2 Advantages of CPS

There are many reasons to use continuation-passing style as a framework for
compiling and optimization. In this discussion we will compare it to several
alternatives:1

λ The lambda calculus (without explicit continuations); this might seem like
an appropriate language for reasoning about languages (such as ML and
Scheme) that are “based on λ-calculus.”

QUAD Register transfers, or “quadruples,” that correspond (approximately) to
the instructions of a very simple von Neumann machine.

PDG Program-dependence graphs, that can represent both control flow and data-
flow without intertwining them more than necessary.

SSA Static single-assignment form [34], which is particularly designed for the effi-
cient implementation of certain dataflow algorithms. In SSA, each variable is
assigned exactly once; when control paths merge, explicit transfer functions
are used to maintain the illusion of single assignment. SSA and CPS are
similar in important ways, since CPS also has a kind of single-assignment
property.

These intermediate representations are designed to facilitate different transfor-
mations. Let us consider several different kinds of optimizations, and see how easy
they are to perform with each of these representations.

In-line expansion
CPS
�

λ
�

QUAD
�

PDG
�

SSA
�

The λ-calculus has variable-binding and scope rules particularly designed for β-
reduction, or in-line expansion of functions: The body of a function is substituted
for the function call, and the actual parameters of the function are substituted for
the formal parameters.

But there is a problem with using λ-calculus to express the behavior of strict
call-by-value languages (such as ML, Pascal, Lisp, Scheme, Smalltalk, etc.). In the
programming language, the parameters of a function are supposed to be evaluated
before the evaluation of the body begins; but in λ-calculus this is not necessary.
The usual method of β-reduction for λ-calculus will just put a copy of the actual
parameter at each location where the formal parameter had appeared in the body.
This means:

• A program that was supposed to infinite loop (when interpreted strictly)
may now terminate.

1Readers unfamiliar with the literature on compiler optimization might want to skip this
section.

1.2. Advantages of CPS 5

• An actual parameter that was evaluated once in the original program may
now be evaluated several times (if the formal parameter is used several times
in the original program).

• In a language with side effects (ML, Pascal, Lisp, etc.), the side effects of the
actual parameter may now occur after some of the side effects in the body
of the function, or may not occur at all, or may occur more than once.

It is just as easy in CPS to express substitution, but CPS has none of the
problems listed in the previous paragraph. All actual parameters to functions are
variables or constants, never nontrivial subexpressions. Thus the substitution of
actuals for formals (and the consequent “moving” of the actual parameters into
the body of the function) can’t cause a problem.

As for the other representations—QUAD, PDG, SSA—they are primarily con-
cerned with the representation of individual function bodies, not with optimiza-
tions across function boundaries. It is still possible to do in-line expansion with
these frameworks, if additional mechanisms are added to represent function pa-
rameters and calling sequences; but the problems of termination, and out-of-order
evaluation of side-effects, must still be solved.

Closure representations
CPS
�

λ
�

QUAD
�

PDG
�

SSA
�

In languages with “block structure” or “nested functions”—such as Pascal, Scheme,
ML—a function f may be nested inside a function g, which itself may be nested
inside another function h. Then f may access its own formal parameters and local
variables, but it may also access the formals and locals of g and h. One of the
tasks of the compiler is to implement this access efficiently. Since the λ-calculus
and CPS also have functions with nested scope, it is easier for the compiler to
manipulate these functions and their representations in computing efficient access
methods for nonlocal variables. The other three representations, since they are
primarily concerned with control and dataflow within individual functions, cannot
address this problem very easily.

Dataflow analysis
CPS
−

λ
�

QUAD
−

PDG
−

SSA
�

Dataflow analysis involves the static propagation of values (more precisely, of
compile-time tokens standing for runtime values) around a flow graph. It answers
questions such as “does this definition of a variable reach that use of the variable?”
which is useful when doing certain optimizations. Since the continuation-passing-
style representation of a program contains a fairly faithful representation of the
control-flow graph, dataflow analysis is as easy in cps as it is in more traditional
representations such as QUADruples.

Static single-assignment form is designed to make forward dataflow analysis
particularly efficient, since it is easy to identify the definition that reaches any
use of a variable—each variable is defined (assigned) exactly once. Continuation-
passing style has a property very much like single assignment, as we will discuss

6 Chapter 1. Overview

later. On the other hand, λ-calculus does not appear to be well suited for dataflow
analysis.

Register allocation
CPS
�

λ
�

QUAD
�

PDG
−

SSA
�

In allocating variables of the program to registers on a machine, it is useful to
have a notation that can conveniently represent the lifetime—the creation and
destruction—of values. This liveness analysis is really a kind of dataflow analysis,
and so the observations of the previous paragraph apply equally well here. We
note in particular that in certain phases of our CPS-based compiler, the variables
of a CPS-expression correspond very closely to the registers of the target machine.

Vectorizing
CPS
−

λ
�

QUAD
−

PDG
�

SSA
−

Program-dependence graphs are particularly designed for such optimizations as
the synthesis of vector instructions out of ordinary loops. Such optimizations are
still possible in other representations, but may in the end require auxiliary data
structures that accomplish much of what is done by PDGs.

Instruction scheduling
CPS
−

λ
�

QUAD
−

PDG
−

SSA
−

Modern, highly pipelined computers require instruction scheduling at the very back
end of the compiler to avoid pipeline interlocks at runtime. Instruction scheduling
requires the manipulation of individual instructions with detailed knowledge of
their sizes, timings, and resource requirements. The representations described in
this chapter are probably a bit too abstract for use in the scheduling phase of a
compiler.

Conclusion

The intermediate representations described here have many similarities. Static
single-assignment form is just a restricted form of quadruples. Continuation-
passing style is a restricted form of λ-calculus. And in fact, there are many simi-
larities between SSA and CPS, since CPS variables have a single-binding property.
With continuations, we get both the clean substitution operations of λ-calculus
and the dataflow and register analyses appropriate for von Neumann machines.

1.3 What is ML?

This book will demonstrate the use of continuations for compilation and optimiza-
tion in a real compiler. Our compiler—Standard ML of New Jersey—compiles
ML; but continuation-passing style is not tied in any way to ML, and has been
used in compilers for several languages [52].

1.3. What is ML? 7

The programming language ML was originally developed in the late 1970s
as the Meta-Language of the Edinburgh Logic for Computable Functions (LCF)
theorem-proving system [42]. In the early 1980s it was recognized as a useful
language in its own right (even for people who don’t want to prove theorems) and
a stand-alone ML system was implemented [26]. Since then, the Standard ML
language has been defined [64], a formal semantics has been written [65], several
compilers have become available [13, 63], and several hundred programmers at
scores of locations are actively using the language.

ML has several advantages as a practical programming language:

• ML is strict—arguments to a function are evaluated before the function call,
as in Pascal, C, Lisp, and Scheme but not as in Miranda or Haskell, which
are lazy.

• It has higher-order functions, meaning that a function can be passed as an
argument and returned as the result of another function—as in Scheme, C,
and Haskell, but not Pascal and Lisp. But unlike C, ML has nested functions
(so do Scheme and Haskell), which make the higher-order functions much
more useful.

• It has parametric polymorphic types, meaning that a function can be applied
to arguments of several different types as long as it does exactly the same
thing to the argument regardless of the type. Lisp, Scheme, and Haskell
also have parametic polymorphism, but Pascal and C do not. Parametric
polymorphism is different from overloading, with which a function can be
applied to arguments of different types only if a different implementation of
the function is written for each type.

• Types are statically checked at compile time, so there is no need for runtime
type checking (and many bugs may be found before running the program).
Other statically checked languages are Pascal, C, Ada, and Haskell; dy-
namically type-checked (at runtime) languages include Lisp, Scheme, and
Smalltalk. But ML (like Haskell) has type inference, which relieves the pro-
grammer of writing down most type declarations; in Pascal, C, Ada, and
other languages descended from Algol the programmer must declare explic-
itly the type of each variable.

• ML has garbage collection, which automatically reclaims unreachable pieces
of storage; this is typical of functional languages such as Scheme and Haskell,
but Lisp and Smalltalk also have garbage collection; Pascal, C, and Ada
usually do not.

• Variable bindings are statically determined; as in Pascal, C, and Scheme the
variable declaration corresponding to any particular use can be determined
by lexical scope in the program text. This is in contrast to Smalltalk, which
has dynamic binding for functions (“dynamic method lookup”).

8 Chapter 1. Overview

• ML has side effects: input/output, and reference variables with assignment
and update. In this respect it is like most languages (such as Pascal, C,
Smalltalk, Lisp, and Scheme), but differs from purely functional languages
like Haskell. In ML, however, the updateable variables and data structures
are constrained and statically identifiable by the compile-time type system.
In a typical program, the vast majority of variables and data structures are
not updateable.

• ML has a formally defined semantics [65] that is complete in the sense that
each legal program has a deterministic result, and all illegal programs are
recognizable as such by a compiler. This is in contrast to Ada, for which
formal semantics have been written but are not complete, in the sense that
some “erroneous” programs must be accepted by compilers; Pascal, which
is recognized to have certain “ambiguities and insecurities” [95]; and C, in
which it is very easy for programmers to trash arbitrary parts of the runtime
environment by careless use of pointers. Lisp and Scheme are not too bad
in this respect; in principle, “erroneous” programs are detected either at
compile time or at runtime, though certain things (such as order of evaluation
of arguments) are left unspecified [69].

From this summary we see that the problems and language features that our
compiler must address have much in common with those addressed by other com-
pilers. But there are several ways in which compilers for “modern” languages like
ML must differ from compilers for “traditional” languages like C.

The higher-order functions of ML (Scheme, Smalltalk, etc.) require the com-
piler to introduce runtime data structures to represent the free variables of these
functions. And because the lifetimes of these “closures” are not always deter-
minable at compile time, some form of garbage collection is required.

The presence of garbage collection requires that all runtime data structures
be in a format that the collector can understand; the machine registers and other
temporaries used by the compiled code must also be accessible and understandable
to the collector.

Since a “functional” programming style is encouraged—in which old data is
rarely updated, but instead new data is produced—the garbage collector must be
particularly efficient. In some older Lisp systems, and in some Algol descendents
with garbage collection, much less load is placed on the collector because new
objects are less frequently allocated.

Most control flow is indicated by source-language function calls (instead of
built-in constructs like while and repeat). So function calls—especially tail-
recursive ones—must have very low overhead.

There is no “macro” facility. Macros in C and Lisp are often used for in-line
expansion of frequently executed code fragments. A good compiler for a macro-
free language should do some in-line expansion of functions—a much safer way to
provide this kind of efficiency.

A unique feature of ML, shared by no other commonly used language, is that
most data structures are immutable once created. That is, once a variable—or a

1.4. Compiler organization 9

list cell, or a record on the heap—is created and initialized, it cannot be modified.
Of course, a local variable of a function will be instantiated each time the func-
tion is invoked, with a different value each time; list cells on the heap eventually
become garbage (because no local variable points to them anymore) as new cells
are created. But the fact that list cells can’t be modified means that the aliasing
problem becomes trivial. In compiling a conventional language, the statements

a← #1(p); #1(q)← b

(where #1(x) means the first field of the record that x points to) can’t be exchanged,
because p and q might be aliased—might point to the same object. Similarly,

a← #1(p); b← f(x)

can’t be exchanged unless a great deal is known about the behavior of f .
In ML, mutable variables and data structures—those that can be modified

(stored into) after their creation—have a different static type than immutable ones.
That is, they are distinguished by the type-checking phase of the compiler. In a
typical program, the vast majority of variables and data structures are immutable.
Thus, the aliasing problem mostly disappears: If p is an immutable variable (as
is usually the case), the fetch from p commutes with just about anything. Our
compiler exploits this property in several ways.

Lazy languages such as Haskell have immutable variables in principle, but in
fact the update of a variable to replace a thunk by an evaluated result looks very
much like a mutation to some parts of the compiler and runtime system.

Finally, the fact that ML has a rather abstract formal semantics is quite useful
in some ways. Any optimization or change in the representation that leads to the
same computable function is legal. In C, on the other hand, there is no formal
semantics. Even allowing that there is a reasonably good informal understanding
of what a C program is supposed to do, this “semantics” is tied to low-level machine
representations. And there are many C programs that “break the rules” and are
still expected to work in any “reasonable” compiler. In this situation, the compiler
has limited freedom to transform the program.

1.4 Compiler organization

Standard ML of New Jersey [13] is a compiler for ML written in ML. It is a
multipass compiler which transforms a source program into a machine-language
program in a series of phases:

1. Lexical analysis, parsing, type checking, and producing an annotated ab-
stract syntax tree.

2. Translation into a simple, λ-calculus-like representation (described in Chap-
ter 4).

3. Conversion into continuation-passing style (CPS, described in Chapter 5).

10 Chapter 1. Overview

4. Optimization of the CPS expression, producing a “better” CPS expression
(Chapters 6–9).

5. Closure conversion, producing a CPS expression in which each function is
closed, i.e., has no free variables (Chapter 10).

6. Elimination of nested scopes, producing a CPS expression with one global
set of mutually recursive, nonnested function definitions (Chapter 10).

7. “Register spilling,” producing a CPS expression in which no subexpression
has more than n free variables, where n is related to the number of registers
on the target machine (Chapter 11).

8. Generation of target-machine “assembly-language” instructions—in abstract,
not textual form (Chapter 13).

9. Instruction scheduling, jump-size optimization, backpatching, and the gen-
eration of target-machine instructions (Chapter 14).

The rest of this book is organized very much like the compiler, except that the
first phase—which is specific to the ML language—is not described. In fact, this
“front-end” part of the compiler is much larger than the back-end phases covered
in the book. But our focus here is the use of continuations for optimization and
code generation, not how to compile ML.

CHAPTER TWO

CONTINUATION-PASSING STYLE

The first compilers that used continuation-passing style (CPS) as an intermediate
language [83, 54] represented the CPS using Scheme [69] notation—in those com-
pilers, a CPS expression was just a Scheme program satisfying certain syntactic
properties. In the Standard ML of New Jersey compiler (and in this book) we use
a more specialized representation. An ML datatype represents CPS expression
trees; the syntax of the datatype itself automatically assures most of the syntactic
properties that were just conventions in the Scheme approach. Also, we ensure
that every function has a name; we have a syntactic operator for defining mutu-
ally recursive functions, instead of just an “external” fixed point function; and we
have n-tuple operators that make modeling record and closures more convenient.

This chapter introduces the concrete CPS data structure used as the intermedi-
ate representation for programs, and informally sketches how continuation-passing
style works.

An important property of well-formed CPS expressions is that the arguments
to a function (or a primitive operator such as +) are always atomic (variables or
constants); a function application can never be an argument of another application.
This is because the CPS language is meant to model the program executed by a
von Neumann machine, which likes to do just one thing at a time, with all the
arguments to an operation ready-at-hand in registers.

2.1 The CPS datatype

We express such restrictions directly in an ML datatype cexp (continuation ex-
pression), as shown in figure 2.1. For those unfamiliar with ML, we explain that
the datatype keyword defines a “disjoint-union” or “variant-record” type (see
also Appendix A). In this case, each value of type cexp is “tagged” as a RECORD,
SELECT, OFFSET, and so on. If the tag (called a constructor) is SELECT, then there
are also four fields of type integer, value, var, and cexp; and so on.

Each continuation expression takes zero or more atomic arguments, binds zero
or more results, and continues via zero or more continuation expressions. For
example integer addition of variables a and b yielding c, continuing with the eval-
uation of expression e, is written as

11

12 Chapter 2. Continuation-passing style

signature CPS = sig

eqtype var

datatype value = VAR of var

| LABEL of var

| INT of int

| REAL of string

| STRING of string

datatype accesspath = OFFp of int

| SELp of int * accesspath

datatype primop =

* | + | - | div | ~

| ieql | ineq | < | <= | > | >= | rangechk

| ! | subscript | ordof

| := | unboxedassign | update | unboxedupdate | store

| makeref | makerefunboxed | alength | slength

| gethdlr | sethdlr

| boxed

| fadd | fsub | fdiv | fmul

| feql | fneq | fge | fgt | fle | flt

| rshift | lshift | orb | andb | xorb | notb

datatype cexp =

RECORD of (value * accesspath) list * var * cexp

| SELECT of int * value * var * cexp

| OFFSET of int * value * var * cexp

| APP of value * value list

| FIX of (var * var list * cexp) list * cexp

| SWITCH of value * cexp list

| PRIMOP of primop * value list * var list * cexp list

end

Figure 2.1. The CPS data type.

2.1. The CPS datatype 13

PRIMOP(+, [VAR a, VAR b], [c], [e])

(For ML novices: The square brackets denote a list, and VAR is just a constructor
of the user-defined value datatype. So the second argument to PRIMOP is just a list
of two values, the third argument is a list of one var, etc. Also, + is an identifier
just like a or PRIMOP; usually it is bound to a function that adds its arguments but
here we have rebound it as a datatype constructor that takes no arguments. The
entire ML expression PRIMOP(...) simply builds a data structure that represents
a continuation expression that a compiler might want to manipulate.)

The arguments to CPS operations are atomic in the sense that they may be
variables or constants, but not subexpressions. This is the essence of continuation-
passing style; instead of writing e = (a + 1) ∗ (3 + c) one must make up names for
all the subexpressions, yielding

u = a + 1, v = 3 + c, e = u ∗ v

Using the CPS datatype one would write

PRIMOP(+, [VAR a, INT 1], [u],
[PRIMOP(+, [INT 3, VAR c], [v],
[PRIMOP(∗, [VAR u, VAR v], [e], [M])])])

where we assume that the continuation expression M makes some use of the vari-
able e.

The datatype value is the union of all the different kinds of atomic arguments
that can be provided to the CPS operators. Each argument can be a variable
(VAR), an integer constant (INT), a string constant (STRING), or a floating-point
constant (REAL). The use of LABEL will be explained in Section 2.4.

Although the mathematical expression (a + 1) ∗ (3 + c) makes no assump-
tion about whether a + 1 or 3 + c is to be evaluated first, any translation into
continuation-passing style must choose one or the other. In the example above,
a + 1 is to be evaluated first. This is another essential feature of CPS: many deci-
sions about control flow are made during the conversion from the source language
into CPS. These decisions are not irreversible, however—an optimizer could, after
some analysis, determine that the continuation expression could be rearranged to
evaluate 3 + c first.

Continuations express control flow very naturally. The “integer greater than”
comparison operator takes two integer arguments (constants or variables), pro-
duces no result, and continues using one of two continuation expressions. For
example, “if a > b then F else G” can be expressed as

PRIMOP(>, [VAR a, VAR b], [], [F, G])

where F and G are continuation expressions.
Multiway branches (i.e., indexed jumps) are expressed using the SWITCH oper-

ator: the expression
SWITCH(VAR i, [E0, E1, E3, E4])

14 Chapter 2. Continuation-passing style

continues as E0, E1, . . . depending on whether i has the value 0, 1, . . .; there may
be an arbitrary number of continuation expressions in the list. If the runtime value
of i is negative, or greater than or equal to the number of elements in the list, the
evaluation is erroneous.

Continuation expressions may build records (n-tuples) on the heap, and may
select fields of records. The expression

RECORD([(VAR a, OFFp 0), (INT 2, OFFp 0), (VAR c, OFFp 0)], w, E)

makes a three-word record initialized to (a, 2, c) and binds its address to w, con-
tinuing with E. The meaning of the access paths (OFFp 0) will be explained later.
Note that any object on the heap created with RECORD is immutable and may not
later be assigned into or modified in any way.

The expression SELECT(i, v, w, E) fetches the ith field of record v and binds
the result to w, continuing with E. If the ith field doesn’t exist, the expression is
meaningless. Fields are numbered starting from 0.

A variable in the CPS language may point at a record value; but it may also
point into the middle of the record. The OFFSET primitive allows a pointer to be
adjusted; if variable v points at the jth field of a record (where possibly j = 0),
then OFFSET(i, v, w, E) makes w point to the (j + i)th field and continues with E.
The constant i may be negative, but j + i must be nonnegative.

Mutually recursive functions are defined using the FIX operator. The expres-
sion

FIX([(f1, [v11, v12, ..., v1m1
], B1),

(f2, [v21, v22, ..., v2m2
], B2),

· · ·
(fn, [vn1, vn2, ..., vnmn

], Bn)],
E)

defines zero or more functions fi that can be called from the expression E or from
each other’s bodies Bj . The formal parameters of each function fi are the variables

vik. The effect of evaluating FIX(�f, E) is just to define the functions in the list �f
and then to evaluate E, which (usually) calls one or more of the fi by means of
the APP operator, or passes one of the fi as an argument to another function, or
stores some of the fi in a data structure.

All function calls in continuation-passing style are “tail” calls; that is, they
do not return to the calling function. This can be seen from the form of the APP

continuation expression, which does not have any continuation expression as a
subexpression. Unlike SELECT(3, v, w, SELECT(2, w, z, E)), which fetches the third
field of v, continues by fetching the second field of the result, and then continues
by evaluating E, the expression APP(f, [a1, a2, ..., ak]) calls the function f and then
does nothing at all. That is, the body of f is evaluated with the actual parameters
ai substituted for the formal parameters of f .

The function f will have formal parameters and a body bound to it by a FIX

declaration. Of course, since functions may be passed as parameters and stored
into data structures (they are “first-class”), the variable f may in fact be bound as

2.1. The CPS datatype 15

a formal parameter of a statically enclosing function, or as the result of a SELECT

operation, and so on. However, the value to which f refers must have originally
been created by a FIX operator.

Of course, in most programming languages, a function is allowed to return
to its caller! But recall the example of Section 1.1, in which one of the calls to
prodprimes could return directly to its caller’s caller. This was because whatever
value the call to prodprimes(n-1) returned, it was returned directly as the result
of prodprimes(n). If all function calls were like this, then no function would return
until the very end of the program execution, when all functions would return; there
wouldn’t need to be a runtime stack of return addresses (and local variables, etc.)
indicating “where to return to.”

In a continuation-passing-style compiler, all function calls must be translated
into such “tail” calls. This is accomplished by introducing continuation functions:
A continuation expresses the “rest” of the computation after the called function
was to have returned. Continuation functions are bound by ordinary FIX operators
and passed as arguments to functions; the algorithm for introducing them will be
explained in Chapter 5.

A simple example will serve to illustrate. Suppose we have a source-language
program

let fun f(x) = 2*x+1

in f(a+b)*f(c+d)

end

This might be (mostly) converted into continuation-passing style as follows:

let fun f(x,k) = k(2*x+1)

fun k1(i) = let fun k2(j) = r(i*j)

in f(c+d, k2)

end

in f(a+b, k1)

end

where r is the “rest” of the computation, to which the original program fragment
was to have returned its answer. Now, since every function call in this (converted)
program is the last thing that the enclosing function does, it may readily be trans-
lated into the CPS language:

FIX([(f, [x,k], PRIMOP(*, [INT 2, VAR x], [u], [

PRIMOP(+, [VAR u, INT 1], [v], [

APP(VAR k, [VAR v])])])),

(k1, [i], FIX([(k2, [j],

PRIMOP(*, [VAR i, VAR j], [w], [

APP(VAR r, [VAR w])]))],

PRIMOP(+, [VAR c, VAR d], [m], [

APP(VAR f, [VAR m, VAR k2])])))],

PRIMOP(+, [VAR a, VAR b], [n], [

APP(VAR f, [VAR n, VAR k1])]))

16 Chapter 2. Continuation-passing style

The functions k1 and k2 are called continuations. They express the “rest of the
computation” after the two function calls to f (respectively). The function f is
written so that instead of returning in the ordinary way, it calls its continuation
argument k. This has the effect of evaluating the “rest of the computation,” just as
a function in an ordinary programming language would return in order to evaluate
the rest of the computation.

When an “ordinary” function returns, it often produces a “return value” as
well. The return value in continuation-passing style is simply an argument to the
continuation function, captured—in the example above—by the variables i and j
in the continuations k1 and k2.

2.2 Functions that escape

Consider the following two programs:

let fun f(a,b,c) = a+c let fun g(a,b,c) = a+c

in f(1,2,3) in (g, g(1,2,3))

end end

The function f is used only locally, but the function g is both used locally and
exported to the outside; we say that g escapes but f does not.

Now, we can do a simple program transformation to remove the unused argu-
ment b from f , as long as we also modify all the places where f is called:

let fun f(a,c) = a+c

in f(1,3)

end

But it’s not easy to do so for g, since we don’t know all the places g is called.
Since g might be held in a data structure and extracted at arbitrary points in the
program; or worse, might be exported and used in some other “compilation unit”
about which we know nothing at all, its representation (as a function that takes a
triple, not a pair) must not be changed.

When using CPS to compile a particular programming language, we may want
to make some restrictions on the behavior of escaping functions. We will take
ML as an example here; other programming languages might have quite different
restrictions. Functions that do not escape (such as f above) need no restrictions,
since at any call site where it might be useful to analyze their behavior, the function
body can be easily found syntactically.

In ML, all functions take exactly one argument. The effect of multiple ar-
guments can be achieved by passing an n-tuple as the argument; the pattern
matching of n-tuples makes this syntactically convenient. In the example above,
the functions f and g are actually one-argument functions that take 3-tuples as
arguments.

2.3. Scope rules 17

Now, when ML is converted into continuation-passing style, each one-argument
user-defined function now becomes a two-argument function: The additional ar-
gument is a continuation function. The continuation functions themselves are just
one-argument functions.

So, in the translation of ML, we have the following rules about escaping func-
tions:

• Every escaping function has either one argument or two arguments.

• The second argument of a two-argument escaping function (a user function)
is always a one-argument escaping function (a continuation).

• The current exception handler1 (set using the sethdlr primop) is always a
one-argument escaping function—a continuation.

Since the straightforward conversion of ML into CPS establishes these invari-
ants, we might want the optimizer to make use of them in reasoning about the
behavior of escaping functions. Since the escaping functions might be from some
other compilation unit, we cannot derive this information by examining their func-
tion bodies. However, we can arrange for the optimizer to preserve the invariants
in all compilation units.

For functions that can take several arguments (as most languages allow), we
could make similar conventions; it is still true of those languages that there are user
functions and continuations. On the other hand, for Prolog—where each predicate
might take two continuations—we would make quite a different convention.

2.3 Scope rules

The results produced by CPS operators are bound to variables with lexical scope.
No variable can be bound in more than one place within a continuation expression,
and no variable can be mentioned outside its syntactic scope. The scope rules for
CPS are simple and straightforward:

• In the expression PRIMOP(p, vl, [w], [e1, e2, ...]) the scope of w is
the expressions e1, e2,

• In the expression RECORD(vl, w, e) the scope of w is just the expression e.

• In SELECT(i,v,w,e) or OFFSET(i,v,w,e), the scope of w is just e.

• In FIX([(v,[w1, w2, ...], b)], e) the scope of wi is just b, and the
scope of v includes exactly b and e. This generalizes for a mutually recursive

1The exception mechanism of the ML language will be mentioned from time to time, and
its translation and optimization described. Readers unfamiliar with ML exceptions may safely
ignore these mentions, as they are not central to the subject of this book.

18 Chapter 2. Continuation-passing style

function definition: In the expression

FIX([(f1, [v11, v12, ..., v1m1
], B1),

(f2, [v21, v22, ..., v2m2
], B2),

· · ·
(fn, [vn1, vn2, ..., vnmn

], Bn)],
E)

the scope of each fi includes all of the Bj and E; the scope of vij is just Bi.

• The operators APP, SWITCH, and some instances of PRIMOP (in the case where
the third argument is empty) do not bind variables, and thus need no scope
rule.

Each use of a variable (in a value) must be within the scope of its binding. Once
a variable is bound, it retains the same value within its entire scope and cannot
be reassigned. Of course, a piece of CPS code may be executed many times (for
example, if it is the body of a function called more than once); a variable binding
executed many times may bind a different value each time.

2.4 Closure conversion

The reason to use CPS as a compiler intermediate representation is that it is quite
close to the instruction set of a von Neumann computer. Most CPS operators
(such as PRIMOP(+,...)) correspond closely to machine instructions. However,
the notion of function definition is more primitive on a von Neumann machine than
in the CPS. CPS functions (like those in λ-calculus or, for that matter, Pascal)
can have “free variables”: expressions can refer to variables defined outside the
innermost-enclosing function. For example, the function k2 on page 15 refers to
the variable j defined as an argument of k2, but also to the variable i which is
defined outside of k2. We say that j is a bound variable of k2 and i is a free variable
of k2. Of course, every variable is bound somewhere; i is a bound variable of k1.

Now, a “von Neumann” machine represents a function just by an address in
the machine-code. Such an address cannot describe the current values of the free
variables of the function. (It’s not necessary to describe values of bound variables
of the function, since those won’t even acquire values until the function is called.)
The usual way to represent functions with free variables is by a closure [57]: a pair
of machine-code pointer and free-variable information. For example, in a situation
where k1 has been called with argument i = 7, we might represent k2 by the record
(L2, 7), where L2 is the address of the machine code for k2, and 7 is the value of i
in this instantiation of k2.

We represent closure records explicitly in the CPS language. The translation
of a program in CPS, into another CPS program in which none of the functions
have free variables, is called “closure conversion.” Every function will be given
an extra argument, which will be a closure record. The first field of the closure
record will be a pointer to the function itself; the other fields will be the values

2.4. Closure conversion 19

of free variables of the function. When the “function” is passed as an argument
to another function, or stored into data structure, it is actually the closure that
will be passed or stored. Then, when another function needs to call the closure, it
performs the following steps:

1. To call a closure f , first extract the function pointer f ′ from the first field of
f .

2. Then APPly the function f ′, passing the closure f as the first argument (and
the other arguments afterwards).

It is important that the caller of f need not know the format of the closure record,
or even how large it is. The only thing the caller needs to know is how to extract
the function (machine-code) pointer. The function f ′ itself will know where to find
the free variables in the closure record.

We will use the example from page 15 (with functions f , k1, and k2) to illus-
trate, using ML notation instead of CPS (for brevity):

let fun f’(f’’, x, k) = let val k’ = #1(k)

in k’(k,2*x+1)

end

val f = (f’)

fun k1’(k1’’, i) = let fun k2’(k2’’, j) =

let val r’ = #1(r)

in r’(r,#2(k2’’)+j)

end

val k2 = (k2’, i)

in f’(f, #2(k1’’) + #3(k1’’), k2)

end

val k1 = (k1’,c,d,f)

in f’(f, a+b, k1)

end

(This fragment doesn’t quite type check in ML, but it’s not intended to.) The
function f doesn’t have any free variables, so its closure is trivial: a one-element
record containing the function “code.” But the function k1 had three free variables
c, d, and f ; its closure is a four-element record containing those free variables as
well as k1

′, which is a new version of k1 that expects a closure as the first argument.
The important thing is that, in each closure, the “closed” function is the first field,
so another function in a different context does not need to know about the format
of the closure in order to call it. This is evident in the call to r; the closure r may
have several fields, but to call it all that is necessary is to extract the first field and
pass the closure itself as one of the arguments. (The notation #1 in ML selects the
first field of an n-tuple.) Thus, f ′ receives its closure in argument f ′′, k′

1 receives
its closure in k′′

1 , and k′
2 in k′′

2 .
We have taken the shortcut of referring directly to f ′ in the two calls to that

function, rather than extracting it from f .

20 Chapter 2. Continuation-passing style

The input to the closure-conversion phase of the compiler is a CPS expression
that obeys the scope rules described in the previous section. The output is also a
CPS expression, but one that obeys an additional rule: none of the functions have
free variables.

More precisely, the only free variables in the body of a function g are:

• Formal parameters of the function g;

• Names of functions—those appearing as the first element of a (function,
formals,body) triple in a FIX.

In the implementation on a von Neumann machine, the function names (i.e.,
machine-code addresses of functions) are really constants. They may appear free
in other functions without requiring a closure to locate them. In the output of
the closure-conversion phase, we will use LABEL instead of VAR to refer to such
variables in the CPS notation, to indicate that they are essentially constants; and
we will not consider them to be “free variables.”

So we can say that the CPS after closure conversion obeys the following free-
variable rule:

In a mutually recursive function definition, the expression

FIX([(f1, [v11, v12, ..., v1m1
], B1),

(f2, [v21, v22, ..., v2m2
], B2),

· · ·
(fn, [vn1, vn2, ..., vnmn

], Bn)],
E)

the free variables of Bi can include only vik and all of the fj. Furthermore,
all references to the fj (and only references to variables defined as functions by
FIX operators) will use the LABEL constructor instead of VAR.

The primary reason for using LABEL is to make the computation of free-variable
sets for register allocation easier; from the code generator’s point of view, a VAR

occupies a register and a LABEL does not.

Now that no function has any nontrivial free variable, there is no need for
functions to be nested; we can define all the functions in one top-level FIX. The
entire compilation unit now has the form:

FIX([(f1, [v11, v12, ..., v1m1
], B1),

(f2, [v21, v22, ..., v2m2
], B2),

· · ·
(fn, [vn1, vn2, ..., vnmn

], Bn)],
E)

where none of the Bi or E contain a FIX operator. To simplify even further, we

2.5. Spilling 21

can take the free variables of E and make them into formal parameters, yielding

FIX([(f0, [v01, v02, ..., v0m0
], E),

(f1, [v11, v12, ..., v1m1
], B1),

(f2, [v21, v22, ..., v2m2
], B2),

· · ·
(fn, [vn1, vn2, ..., vnmn

], Bn)],
APP(VAR f0, [VAR v01, VAR v02, ..., VAR v0m0

])])

Later phases of the compiler can be concerned only with a set of triples of the
form (fi, �vi, Bi), and need not process the final APP expression because it’s trivial
and contains nothing of interest.

A full description of our closure-conversion algorithm is in Chapter 10. How-
ever, it is worthwhile to give a formal definition of the free variables of an expres-
sion. We use the auxiliary function fvl which yields the set of variables used in a
list of values:

fvl(nil) = φ
fvl((VAR v)::l) = {v} ∪ fvl(l)

fvl((LABEL v)::l) = fvl(l)
fvl((INT i)::l) = fvl(l)

fvl((REAL r)::l) = fvl(l)
fvl((STRING s)::l) = fvl(l)

Now, the computation of free variables is quite straightforward:

fv(APP(v, la)) = fvl(v::la)
fv(SWITCH(v, [C1, C2, . . .])) = fvl[v] ∪

⋃
i fv(Ci)

fv(RECORD([(v1, p1), (v2, p2), . . .], w, E)) = fvl[v1, v2, . . .] ∪ fv(E)− {w}
fv(SELECT(i, v, w, E)) = fvl[v] ∪ fv(E) − {w}
fv(OFFSET(i, v, w, E)) = fvl[v] ∪ fv(E) − {w}

fv(PRIMOP(p, la, [w1, . . .], [C1, . . .])) = fvl(la) ∪
⋃
i

fv(Ci) −
⋃
j

{wj}

fv(FIX([(f1, [w11, . . . , w1m1
], B1),

· · ·
(fn, [wn1, . . . , wnmn

], Bn),], E)) =
(fv(E) ∪

⋃
i(fv(Bi)−

⋃mi

j=1{wij})) −
⋃

i{fi}

2.5 Spilling

The use of variables in the CPS language resembles in many ways the use of
registers on a von Neumann machine. Arithmetic operators take their operands in
variables (registers), and produce their results in variables (registers); the SELECT

(memory fetch) takes a variable (register) and a constant offset, and fetches into
a variable (register), and so on.

22 Chapter 2. Continuation-passing style

However, von Neumann machines have only a fixed number of registers, and
CPS expressions can have an arbitrary number of variables. To correct this mis-
match, we will map many CPS variables onto the the same register. But two
CPS variables can be implemented by the same register only if they are not both
simultaneously “live,” that is, if only one of them is required by the rest of the
computation. A (statically) live variable in traditional dataflow analysis [1] is ex-
actly the same as a free variable in the CPS: a variable used in a continuation
expression but not bound in it. This analogy is easy to prove: Simply note that
the free-variable function defined above is the same as the dataflow algorithm for
computing liveness of variables in a directed acyclic graph.

The finite-register rule for the CPS is this:
For compilation to a machine with k registers, no subexpression of

the CPS may have more than k free variables.
After the closure phase, the spill phase rewrites the CPS to satisfy this rule.

Certain other phases are also limited by variants of the finite-register rule: Even
prior to the spill phase,

For compilation to a machine with k registers, no function of the
CPS may have more than k formal parameters.

A full description of the spill phase is in Chapter 11.

CHAPTER THREE

SEMANTICS OF THE CPS

The meaning of CPS expressions can be given via a simple denotational semantics.
The complete semantics is given in Appendix B; here we follow the structure of
the semantic definition for a more informal discussion. Those readers uncomfort-
able with denotational semantics would do well to read the text of this chapter
and skip the “semantics” in this font. All variants of the CPS—no matter
which subset of the scope rules, free-variable rules, and language-dependent rules
has been applied—follow this semantics.

What follows is a straightforward continuation semantics written in Standard
ML. It will be helpful if the reader is familiar with continuation semantics (see,
e.g., Stoy [84], Gordon [43], or Schmidt [77]), and with ML (see, e.g., Milner [65],
Reade [68], or Paulson [67]).

By presenting a formal semantics for our CPS representation, we hope to make
the transformations presented in later chapters independently verifiable by the
reader, though we will rarely present formal proofs.

functor CPSsemantics(

structure CPS: CPS

The semantics is written as a functor in Standard ML.1 It takes (pro forma) a
CPS structure (see figure 2.1) as an argument, along with:

val minint: int val maxint: int

val minreal: real val maxreal: real

We don’t expect the low-level machine architecture—for which the CPS is a
model—to have infinite-precision arithmetic. There must be some maximum and
minimum representable integer and real.

val string2real: string -> real

The CPS language represents real (floating-point) numbers as string literals,
just as they might have been written in the source program (e.g., “0.0”). We as-
sume that there is some way of translating them into machine representation. The

1Readers unfamiliar with the ML module system (structures and functors) may simply ignore
this line of the semantics; or refer to Section 4.8 where a summary of ML modules is given.

23

24 Chapter 3. Semantics of the CPS

practical reason for expressing reals as strings (at this phase of the compilation) is
to make the CPS language independent of any particular machine representation—
accurate cross compilation is much easier this way. A disadvantage of this repre-
sentation is that constant folding of real-valued expressions becomes very difficult.

eqtype loc

val nextloc: loc -> loc

As is typical in a denotational semantics, operations that have side effects on
memory are represented by means of a “store.” Each store value can be thought
as a mapping from locations (addresses) to denotable values. The type loc of
locations, and a function to generate new locations, is a parameter to the semantics.
It must be a type on which the equality of values is testable (an eqtype).

val arbitrarily: ’a * ’a -> ’a

Some things cannot be predicted by the semantics. To model this unpredictabil-
ity, the expression arbitrarily(a, b) evaluates either to a or to b. It is used only in
conjunction with pointer comparison; see Section 3 on equality testing.

type answer

As is traditional in a continuation semantics, we have a type “answer” standing
for the result of the entire execution of the program. We don’t really need to know
anything about the structure of this type.

datatype dvalue = RECORD of dvalue list * int

| INT of int

| REAL of real

| FUNC of dvalue list ->

(loc*(loc->dvalue)*(loc->int))->

answer

| STRING of string

| BYTEARRAY of loc list

| ARRAY of loc list

| UARRAY of loc list

These are the denotable values of the semantics. These values may be bound
to variables, passed as parameters, and stored in data structures. In an implemen-
tation, the denotable values are just those that can be held in one machine word
(as pointers into the heap or as single-precision integers).

A denotable value can be a RECORD containing a list of denotable values. It
is possible to point into the middle of a record, not just at the beginning, so the
denotable value for records also has an integer indicating the offset into the record.

A denotable value can be an integer (INT) or a REAL. One might expect the
implementation to represent integers “unboxed” (not on the heap, but in a single

25

machine word in place of a pointer); the same might even be true of reals, if
pointers are large enough or floating-point values are small enough.

ARRAY values are represented using the store, so their contents can be modified
after they are created. An array of length n is represented in the semantics as an
arbitrary list of locations, though presumably in an implementation the locations
will be consecutive. Note that records are not kept in the store, and thus record
values are “pure” and cannot be modified once created. There are two kinds of
arrays: ARRAYs can contain arbitrary denotable values, and UARRAYs can contain
only integers.

A denotable value can be a STRING of characters or a BYTEARRAY. The same
operations apply to strings and byte arrays, except that byte arrays can be stored
into (modified) and strings cannot. The elements of strings and byte arrays must
be small (byte-sized) integers, in contrast to the elements of UARRAYs, which can
be larger (word-sized) integers, and elements of ARRAYs, which can be of any type
(including integer).

Finally, a function value (FUNC) takes a list of actual parameters and a store,
and continues the computation to yield an answer. The store (whose type is
(loc*(loc->dvalue)*(loc->int))) has three components: the next unused lo-
cation, a mapping from locations to denotable values, and a mapping from loca-
tions to integers. Why are there two mappings? We have broken the store into
two parts: one part that can hold arbitrary values, and another part that can hold
only integers. This turns out to make the task of a generational garbage collector
much easier, as we will explain in Section 16.3.

val handler_ref : loc

val overflow_exn : dvalue

val div_exn : dvalue

The store has a special location in which the “current exception handler” is
kept. This is a continuation function which is called in order to “raise” an excep-
tion. Also, there are two “special” exceptions, for arithmetic overflow and dividing
by zero. These are special in that the “machine” can raise them directly: In an
implementation, that means that the runtime system must know where these ex-
ception values are, so on an overflow interrupt the runtime system can raise the
exception.

) :

sig val eval: CPS.var list * CPS.cexp ->

dvalue list ->

(loc*(loc->dvalue)*(loc->int)) ->

answer

end =

struct

Forgive the typography here! The closing parenthesis indicates that we have
come to the end of the functor arguments, the sig...end describes the signature

26 Chapter 3. Semantics of the CPS

of the result structure produced by this functor (a single function eval), and the
word struct indicates the beginning of the functor body.

The eval function takes a list of CPS variables, a continuation expression, a
list of denotable values, and a store. It yields the “answer” obtained by evaluating
the cexp in an environment where the variables are bound to the values, respec-
tively. This allows a form of “linkage” from one “compilation unit” to another;
the “externals” of a continuation expression are represented by a specified set of
variables, with corresponding values.

Here begins the body of the semantics:

type store = loc * (loc -> dvalue) * (loc -> int)

fun fetch ((_,f,_): store) (l: loc) = f l

fun upd ((n,f,g):store, l: loc, v: dvalue) =

(n, fn i => if i=l then v else f i, g)

fun fetchi ((_,_,g): store) (l: loc) = g l

fun updi ((n,f,g):store, l: loc, v: int) =

(n, f, fn i => if i=l then v else g i)

It’s convenient to have functions for elementary manipulation of stores: one
for fetching a value from a location in the value store; one for updating a location
with a new value (producing, of course, an entirely new store); one for fetching an
integer from a location in the integer store; and one for updating the integer store.

exception Undefined

In the CPS language it is possible to write syntactically correct but meaningless
programs. The semantics will fail to yield a denotation for such programs.

We might also want to treat this semantics as an ML program that could serve
as an interpreter for the CPS language. For erroneous programs, the interpreter
will raise an ML exception: either Undefined (declared here) or one of the pre-
defined exceptions Bind, Match, or Nth. This is not to be confused with a CPS
program invoking a CPS exception handler.

fun eq(RECORD(a,i),RECORD(b,j)) =

arbitrarily(i=j andalso eqlist(a,b), false)

| eq(INT i, INT j) = i=j

| eq(REAL a, REAL b) = arbitrarily(a=b, false)

| eq(STRING a, STRING b) = arbitrarily(a=b, false)

| eq(BYTEARRAY nil, BYTEARRAY nil) = true

| eq(BYTEARRAY(a::_), BYTEARRAY(b::_)) = a=b

| eq(ARRAY nil, ARRAY nil) = true

| eq(ARRAY(a::_), ARRAY(b::_)) = a=b

| eq(UARRAY nil, UARRAY nil) = true

| eq(UARRAY(a::_), UARRAY(b::_)) = a=b

| eq(FUNC a, FUNC b) = raise Undefined

| eq(_,_) = false

27

and eqlist(a::al, b::bl) = eq(a,b) andalso eqlist(al,bl)

| eqlist(nil, nil) = true

This function is explained in detail in Appendix A.4.
Records and strings in the CPS language are “pure values,” and cannot reliably

be compared using “pointer equality.” For example, the record (4,5) is meant to be
indistinguishable from the record (4,5) even if the latter was created at a different
time than the former. This means that the implementation is permitted to use
“hash-consing” to put both records at the same address; or, on the other hand,
a garbage collector might take a record to which there are several pointers, and
make each pointer point to its own copy.

The “eq” test here—intended to represent pointer-equality comparison—denotes
the places where pointers arbitrarily may or may not be equal. For example, test-
ing the equality of two arrays must accurately determine whether they start at the
same location; testing the equality of two integers must also be accurate. But, in
order to accommodate implementations as described in the previous paragraph,
testing the equality of two records is permitted to be “conservative”: If the two
records are unequal, eq will return false, but if they are equal, eq might return
true or false. The three kinds of comparisons for which different pointers can point
to equivalent values are records, reals (which might be represented by pointers to
double-precision values), and strings.

This version of the “eq” test distinguishes all pointers from all integers. Thus, in
an implementation it is necessary that pointers have a different bit representation
from integers. To avoid this requirement, we might want to say that only “small”
integers can be distinguished from pointers (see Section 4.1). In this case, we
would insert the following clauses just before the last clause for eq:

| eq(INT i, _) = arbitrarily(false, i<0 orelse i>255)

| eq(_, INT i) = arbitrarily(false, i<0 orelse i>255)

The number 255 is arbitrary, and indicates (in an implementation) that we won’t
put heap objects in the first 255 bytes of the machine’s memory.

fun do_raise exn s =

let val FUNC f = fetch s handler_ref in f [exn] s end

fun overflow(n: unit->int, c: dvalue list -> store -> answer) =

if (n() >= minint andalso n() <= maxint)

handle Overflow=> false

then c [INT(n())]

else do_raise overflow_exn

fun overflowr(n,c) =

if (n() >= minreal andalso n() <= maxreal)

handle Overflow => false

then c [REAL(n())]

else do_raise overflow_exn

28 Chapter 3. Semantics of the CPS

Some of the integer and floating-point arithmetic operators can produce an
“overflow,” that is, a result not representable because it’s out of range. The
overflow function evaluates a number n, turns it into a dvalue list, and hands
it to its continuation argument c; but if it overflows, then it raises an exception
instead.

The line “handle Overflow => false” is there just in case it is desired to
execute this semantics in an ML system with finite-precision integers. The word
Overflow refers to the overflow exception of the meta-language, and should not be
confused with overflow_exn, which is the overflow exception of the CPS.

To raise an exception exn, do_raise first extracts the current exception handler
from the store (at location handler_ref), and then applies it to exn and the
current store.

The function evalprim, below, evaluates a PRIMOP applied to arguments. The
function takes three arguments: a primitive operator, a list of dvalue arguments,
and a list of possible continuations. Then it produces a list of result values (possibly
empty, depending on the operator), and selects one of the continuations to apply
to the result list; this yields a store->answer function. Of course, the list of
continuations will have more than one element only in the case that the primop is
a “conditional branch” of some sort.

fun evalprim (CPS.+ : CPS.primop,

[INT i, INT j]: dvalue list,

[c]: (dvalue list -> store -> answer) list) =

overflow(fn()=>i+j, c)

So, to add two integers, one simply calculates i+ j, and if it does not overflow,
applies c to the result. Since the evalprim function does not have a clause that
matches the application of CPS.+ to noninteger values, such an application would
be undefined and would result in the semantics failing to produce a denotation.

| evalprim (CPS.-,[INT i, INT j],[c]) =

overflow(fn()=>i-j, c)

| evalprim (CPS. *,[INT i, INT j],[c]) =

overflow(fn()=>i*j, c)

| evalprim (CPS.div,[INT i, INT 0],[c]) =

do_raise div_exn

| evalprim (CPS.div,[INT i, INT j],[c]) =

overflow(fn()=>i div j, c)

Integer subtraction, multiplication, and division are similar; for division by zero
it is necessary to raise the divide exception.

| evalprim (CPS.~,[INT i],[c]) = overflow(fn()=>0-i, c)

Integer negation is like subtraction from zero; note that there is only one dvalue
argument. It is possible for integer negation to overflow, for example, on a two’s
complement machine where the most negative integer has a larger absolute value
than any positive integer.

29

| evalprim (CPS.<,[INT i,INT j],[t,f]) =

if i<j then t[] else f[]

| evalprim (CPS.<=,[INT i,INT j],[t,f]) =

if j<i then f[] else t[]

| evalprim (CPS.>,[INT i,INT j],[t,f]) =

if j<i then t[] else f[]

| evalprim (CPS.>=,[INT i,INT j],[t,f]) =

if i<j then f[] else t[]

The inequality operators <, <=, >, and >= apply only to integers. Depending on
the result of the test, one of the two continuations t or f is applied to the (empty)
result list.

| evalprim (CPS.ieql,[a,b],[t,f]) =

if eq(a,b) then t[] else f[]

| evalprim (CPS.ineq,[a,b],[t,f]) =

if eq(a,b) then f[] else t[]

The primop ieql stands for “integer equality”, but this is clearly a misnomer
since the eq function tests many types. It is intended that the implementation
just compare the two machine words a and b for integer equality; if a and b are
pointers this turns out to be pointer equality.

| evalprim (CPS.rangechk, [INT i, INT j],[t,f]) =

if j<0

then if i<0

then if i<j then t[] else f[]

else t[]

else if i<0

then f[] else if i<j then t[]

else f[]

This complicated-looking operator is simply “unsigned comparison.” When
two’s complement is used to represent negative numbers, and j is nonnegative, the
test 0 ≤ i < j can be most efficiently accomplished using an unsigned comparison
operator. The rangechk is just “unsigned less than;” the nested if statements
here just express unsigned comparison using signed operators. When j < 0, the
unsigned comparison is not useful for anything reasonable, but its semantics can
be expressed nonetheless.

| evalprim (CPS.boxed, [INT _],[t,f]) = f[]

| evalprim (CPS.boxed, [RECORD _],[t,f]) = t[]

| evalprim (CPS.boxed, [STRING _],[t,f]) = t[]

| evalprim (CPS.boxed, [ARRAY _],[t,f]) = t[]

| evalprim (CPS.boxed, [UARRAY _],[t,f]) = t[]

| evalprim (CPS.boxed, [BYTEARRAY _],[t,f]) =t[]

| evalprim (CPS.boxed, [FUNC _],[t,f]) = t[]

30 Chapter 3. Semantics of the CPS

The boxed predicate returns true if a value is “boxed” (represented as a
pointer), and false if unboxed. An implementation might ensure that pointers
have a bit-pattern unlike nonpointers, so this operator is a simple bit-test or com-
parison. The use of boxed in implementing ML is mainly for determining which
data constructor has been applied to a value; see Section 4.1.

If we want to say that only small integers can be distinguished from pointers,
we would replace the first clause for boxed by:

| evalprim (CPS.boxed, [INT i],[t,f]) =

if i<0 orelse i>255

then arbitrarily(t[],f[]) else f[]

The reasons for wanting to do this are explained in Section 4.1.

| evalprim (CPS.!, [a],[c]) =

evalprim(CPS.subscript, [a, INT 0],[c])

| evalprim (CPS.subscript, [ARRAY a, INT n],[c]) =

(fn s => c [fetch s (nth(a,n))] s)

| evalprim (CPS.subscript, [UARRAY a, INT n],[c]) =

(fn s => c [INT(fetchi s (nth(a,n)))] s)

| evalprim (CPS.subscript, [RECORD(a,i), INT j],[c]) =

c [nth(a,i+j)]

The subscript operator can be used to fetch elements of either arrays or records,
though record fields are usually fetched using SELECT. It would be cleaner, in fact,
to use different operators for indexing mutable and immutable objects. In any
case, subscript on arrays selects the nth location of the array, and then fetches at
that location in the store. The result is used as an argument to the continuation
c. The operator ! is equivalent to subscript at index 0. On records, subscript
does not need to refer to the store; but it does need to take care to adjust the
index j by the offset i. In an implementation, a nonzero i just indicates that the
record pointer is pointing into the middle of the record, so subscript is just an add
followed by a fetch (with a left shift necessary on byte-addressible machines).

There is no bounds checking on the subscript operator; a fetch out of bounds is
erroneous and fails to yield a denotation. However, it is expected that a compiler
(for a safe language such as ML) will put in explicit bounds checks using integer
comparison and the array length operator (alength) described below.

The function nth just returns the nth element of a list, counting from zero.
If n < 0 or n ≥ length(l), then nth(l, n) raises the Nth exception, indicating a
semantically undefined CPS expression.

| evalprim (CPS.ordof, [STRING a, INT i],[c]) =

c [INT(String.ordof(a,i))]

| evalprim (CPS.ordof, [BYTEARRAY a, INT i],[c]) =

(fn s => c [INT(fetchi s(nth(a,i)))] s)

31

The operator ordof subscripts strings and byte arrays just as subscript op-
erates on arrays and records. The implementation will probably represent strings
as contiguous sequences of characters, and in fact byte arrays have the same rep-
resentation. However, strings are treated as constants, since (for example) they
might be literals in the machine-language program.

| evalprim (CPS.:=, [a, v],[c]) =

evalprim(CPS.update, [a, INT 0, v], [c])

| evalprim (CPS.update, [ARRAY a, INT n, v],[c]) =

(fn s => c [] (upd(s,nth(a,n),v)))

| evalprim (CPS.update, [UARRAY a, INT n, INT v],[c]) =

(fn s => c [] (updi(s,nth(a,n),v)))

The assignment operator := is equivalent to update at index zero. To perform
an update, the nth location in the array is updated in the store, producing a
new store that is passed (along with a pro forma empty list of arguments) to the
continuation c. As with subscript, no bounds checking is done. Updating of a
UARRAY with an integer value is similar; it is erroneous to update a UARRAY with a
noninteger value.

| evalprim (CPS.unboxedassign, [a, v], [c]) =

evalprim(CPS.unboxedupdate, [a, INT 0, v], [c])

| evalprim (CPS.unboxedupdate,

[ARRAY a, INT n, INT v],[c]) =

(fn s => c [] (upd(s,nth(a,n), INT v)))

| evalprim (CPS.unboxedupdate,

[UARRAY a, INT n, INT v],[c]) =

(fn s => c [] (updi(s,nth(a,n),v)))

In some implementations, a generational garbage collector will want to know
about all stores of pointers into older generation arrays (this will be explained fully
in Section 16.3). Because of this bookkeeping, such store operations may be more
expensive to implement. However, in many cases the compiler knows that the value
being stored is not a pointer; for example, the value may be of an always-unboxed
type such as int, or it might be an unboxed constant of a sometimes-unboxed type.
In such cases, the compiler can use the cheaper unboxedassign or unboxedupdate
operators, which are semantically identical to := and update, respectively, except
that they apply only to integer values.

| evalprim (CPS.store,

[BYTEARRAY a, INT i, INT v],[c]) =

if v < 0 orelse v >= 256

then raise Undefined

else (fn s => c [] (updi(s,nth(a,i),v)))

The store operator is the equivalent for byte arrays of the update operator
for arrays. Strings cannot be stored into. Strings and byte arrays can hold only
“one-byte” values (integers between 0 and 255).

32 Chapter 3. Semantics of the CPS

| evalprim (CPS.makeref, [v],[c]) = (fn (l,f,g) =>

c [ARRAY[l]] (upd((nextloc l, f,g),l,v)))

| evalprim (CPS.makerefunboxed, [INT v],[c]) = (fn (l,f,g) =>

c [UARRAY[l]] (updi((nextloc l, f,g),l,v)))

An array of length one (called a “ref” in ML) can be allocated using the makeref
operator. Larger arrays cannot be allocated in the CPS language; it is expected
that the implementation will provide an external function (part of the runtime
system, for example) to do this. Such functions can be made accessible to CPS
programs by means of the dvalue arguments to the eval function.

The makerefunboxed operator makes a reference that will contain only integer
values; this is useful when a generational garbage collector is used. Note that
either := or unboxedassign can be used with either kind of reference, as long as
unboxedassign is used only to store integer values (of possibly not-always-boxed
types), and “unboxed” references contain only integer values.

| evalprim (CPS.alength, [ARRAY a], [c]) =

c [INT(List.length a)]

| evalprim (CPS.alength, [UARRAY a], [c]) =

c [INT(List.length a)]

| evalprim (CPS.slength, [BYTEARRAY a], [c]) =

c [INT(List.length a)]

| evalprim (CPS.slength, [STRING a], [c]) =

c [INT(String.size a)]

The alength function can extract the length (number of elements) of an array;
slength does the same for strings and byte arrays. Note that the length of an
array is fixed, even though the values of its elements are mutable in the store.

| evalprim (CPS.gethdlr, [], [c]) =

(fn s => c [fetch s handler_ref] s)

| evalprim (CPS.sethdlr, [h], [c]) =

(fn s => c [] (upd(s,handler_ref,h)))

The operator gethdlr returns the current exception handler (extracting it
from the store), and sethdlr updates the store with a new exception handler.
The implementation can choose to implement the exception handler in a register
instead of memory, since the location handler_ref is not used in a very general
way in this semantics.

| evalprim (CPS.fadd, [REAL a, REAL b],[c]) =

overflowr(fn()=>a+b, c)

| evalprim (CPS.fsub, [REAL a, REAL b],[c]) =

overflowr(fn()=>a-b, c)

| evalprim (CPS.fmul, [REAL a, REAL b],[c]) =

overflowr(fn()=>a*b, c)

33

| evalprim (CPS.fdiv, [REAL a, REAL 0.0],[c]) =

do_raise div_exn

| evalprim (CPS.fdiv, [REAL a, REAL b],[c]) =

overflowr(fn()=>a/b, c)

| evalprim (CPS.feql, [REAL a, REAL b],[t,f]) =

if a=b then t[] else f[]

| evalprim (CPS.fneq, [REAL a, REAL b],[t,f]) =

if a=b then f[] else t[]

| evalprim (CPS.flt,[REAL i,REAL j],[t,f]) =

if i<j then t[] else f[]

| evalprim (CPS.fle,[REAL i,REAL j],[t,f]) =

if j<i then f[] else t[]

| evalprim (CPS.fgt,[REAL i,REAL j],[t,f]) =

if j<i then t[] else f[]

| evalprim (CPS.fge,[REAL i,REAL j],[t,f]) =

if i<j then f[] else t[]

The floating-point arithmetic and comparison operators are similar to those for
integers.

type env = CPS.var -> dvalue

The rest of the semantics uses the notion of an “environment”: a mapping from
CPS variables to denotable values. CPS operators that bind a result to a variable
will do so by augmenting an environment. CPS operators that take variables as
arguments will extract values for those variables from the environment.

fun V env (CPS.INT i) = INT i

| V env (CPS.REAL r) = REAL(string2real r)

| V env (CPS.STRING s) = STRING s

| V env (CPS.VAR v) = env v

| V env (CPS.LABEL v) = env v

The function V is used to turn a CPS value into a denotable value. For con-
stants, it’s quite straightforward; variables (and labels, which are equivalent in this
semantics) must be looked up in the environment.

fun bind(env:env, v:CPS.var, d) =

fn w => if v=w then d else env w

fun bindn(env, v::vl, d::dl) = bindn(bind(env,v,d),vl,dl)

| bindn(env, nil, nil) = env

The bind function just performs an update on an environment, producing a
new environment. To bind several values to several variables, bindn is used.

34 Chapter 3. Semantics of the CPS

fun F (x, CPS.OFFp 0) = x

| F (RECORD(l,i), CPS.OFFp j) = RECORD(l,i+j)

| F (RECORD(l,i), CPS.SELp(j,p)) = F(nth(l,i+j), p)

A record field in the CPS language is written as a value and an “access path.”
The access path is just a chain of selections terminated by an offset. For example,
the record field expression (v,SELp(3,SELp(1, OFFp 2))) indicates that the third
field of v is to be fetched, then the first field of the result is to be fetched, the result
of that is to be offset by two words without a fetch, and the result of that is what
goes into the new record. The need for this is explained in Chapter 11.

The access path OFFp 0 has no effect on the field value; it is the only path that
can be applied to non-record values (such as integers, reals, an so on).

The function E is used to take the denotation of a CPS expression. Such a
denotation has the type env->store->answer, and there are just seven cases:

fun E (CPS.SELECT(i,v,w,e)) env =

let val RECORD(l,j) = V env v

in E e (bind(env,w,nth(l,i+j)))

end

| E (CPS.OFFSET(i,v,w,e)) env =

let val RECORD(l,j) = V env v

in E e (bind(env,w,RECORD(l,i+j)))

end

To evaluate a SELECT, the value v is first extracted from the environment; it
must be a record, or the expression is undefined. Then, the index i is added to the
offset j and the corresponding element of the record is bound to the variable w in
a new environment. This new environment is then used as the argument in the
evaluation of the subexpression e. The evaluation of OFFSET is similar, except that
after the index and the offset are added, no field is selected; instead, the record
with a new offset is bound to w.

| E (CPS.APP(f,vl)) env =

let val FUNC g = V env f

in g (map (V env) vl)

end

Function application is quite simple: The variable f must stand for some func-
tion g. The arguments vl are all extracted from the environment, and g is applied
to the list of resulting values. Note that no environment is passed to g; this is an
indication that the CPS language has lexical (static), not dynamic scope.

For ML novices, we note here that the map function takes a function (in this
case, V env and a list (in this case, vl), and returns a new list whose elements are
obtained by applying the function to each of the elements of the list (in this case,
the result of looking up each of the values of vl in the environment).

35

| E (CPS.RECORD(vl,w,e)) env =

E e (bind(env,w,

RECORD(map (fn (x,p) =>

F(V env x, p)) vl, 0)))

To make a record, it is first necessary to extract all the fields from the envi-
ronment (V env x); then, the selects and offset (SELp and OFFp) implicit in the
access path p for each field are evaluated by the function F. Then, a RECORD is
made with offset 0 and bound to w.

| E (CPS.SWITCH(v,el)) env =

let val INT i = V env v

in E (nth(el,i)) env

end

Switch expressions are quite simple: v is evaluated to get an integer i, and then
the ith continuation is evaluated. It should be noticed that every continuation
expression continues with the evaluation of exactly one continuation. For RECORD,
SELECT, and OFFSET this is obvious syntactically; for a SWITCH or PRIMOP that may
have several syntactic continuation expressions as arguments, it is enforced by the
semantics; for APP the continuation expression may be found “hidden” in the body
of the applied function f .

| E (CPS.PRIMOP(p,vl,wl,el)) env =

evalprim(p,

map (V env) vl,

map (fn e => fn al =>

E e (bindn(env,wl,al)))

el)

To evaluate a primitive operator, it is first necessary to extract all the atomic
arguments from the environment (map (V env) vl). Then the cexp arguments
are all converted to functions of type dvalue list -> store -> answer. The
list of atomic arguments and the list of continuations are handed (along with the
operator p) to the evalprim function, which performs the appropriate operation
and then selects one of the continuations to hand the result to.

| E (CPS.FIX(fl,e)) env =

let fun h r1 (f,vl,b) =

FUNC(fn al => E b (bindn(g r1,vl,al)))

and g r = bindn(r, map #1 fl, map (h r) fl)

in E e (g env)

end

The definition of mutually recursive functions is a bit complicated. In essence,
we just evaluate the expression e in the augmented environment g(env). The func-
tion g takes an environment r as an argument and returns r augmented by binding
all the function names (map #1 fl) to the function bodies (map (h r) fl).

36 Chapter 3. Semantics of the CPS

The function h defines an individual function; it takes an environment r1 and a
function definition (f,vl,b), where f is the function name, vl is the list of formal
parameters, and b is the function body. The result is a function (fn al => ...)
that takes a list of actual parameters al, and augments r1 in two ways: First it
applies g to redefine all the (mutually recursive) functions in fl, and then it binds
the actual parameters to the formal parameters. The resulting environment is then
used to evaluate the body b.

The functions g and h are mutually recursive; we use a recursion in the seman-
tics to implement the mutual recursion of the CPS functions.

Note that the number of actual parameters must be the same as the number
of formal parameters, or else bindn will not be defined. There are no functions in
our CPS with a variable number of arguments.

val env0 = fn x => raise Undefined

fun eval (vl,e) dl = E e (bindn(env0,vl,dl))

end

Finally, the function eval takes a variable list, a value list, and an continuation
expression; binds the values to the variables in the empty environment; and then
returns the denotation of the expression in the resulting environment.

CHAPTER FOUR

ML-SPECIFIC OPTIMIZATIONS

In a compiler using continuation-passing style, most optimizations (partial evalua-
tion, dataflow, register allocation, etc.) should be done in the CPS representation.
However, some representation decisions are best done at a level closer to the source
language. Here we describe several optimizations, specific to ML, that are done be-
fore conversion into continuation-passing style. Most of them are related to static
types, which is why they are most naturally done before the types are stripped off
during the conversion into CPS.

4.1 Data representation

Standard ML has record types that are essentially Cartesian products of other
types (like records in Pascal or structs in C, except that their fields may not be
modified after the record is created), and datatypes that are disjoint sums (like
variant records in Pascal or unions in C).

A record type is a set of named fields, each of a given (possibly polymorphic)
type. For example, the type

type t = {name: string, number: int}

contains values such as {name="Sam",number=5}; the order in which the fields are
written down is immaterial (this value is the same as {number=5,name="Sam"}).

Since types in ML can be polymorphic, type t is also an instantiation of the
type constructor

type ’a r = {name: string, number: ’a}

so t = int r. Similarly, type s = real r is a record type of which each element
contains a string a real number. (ML novices should note that the parameter of a
type constructor is put before the constructor, not after!)

Since an ML program can only access a record field in a context where the
names of all the fields are known, the implementation can represent records as
simple n-tuples. We choose in our implementation to number the fields in alpha-
betical order starting at zero, so (in this case) name is field 0, and number is field
1. The alphabetization is necessary because the field names might occur in any

37

38 Chapter 4. ML-specific optimizations

order in expressions where the record type is used. Presumably, the fields will all
be contiguous in storage.

However, because ML is a polymorphic language, the (ground) types of all the
fields are not necessarily known. For example, the function printname

fun printname {name=s, number=n} = output(std_out, s)

has type α r → unit , that is, a function from α r (for any α) to unit, which is
just a placeholder for functions that don’t return any interesting result (like void

in the C language). But this means that the type of n is not known at compile
time! The solution to this problem is to make all record fields the same size—for
example, one word each. Every ML object will be represented in exactly one word;
of course, that word may be a pointer to some data structure in memory.

Polymorphism is not unique to ML. Lisp, Scheme, Prolog, and other languages
also have variables whose complete types are not known until runtime. When it
is necessary to manipulate these values (e.g. to make lists of them), they must all
have the same size—in most implementations, one word.

So, a record of n fields will be represented using n contiguous words in memory.
ML also has a tuple type, which is like a record type with unlabeled fields; the
type int*bool*int contains values such as (4,true,7), and is represented in an
implementation just like a three-element record.

A disjoint union type, called a “datatype” in ML, is represented in the source
language by a set of constructors that may be applied to values, for example,

type posint = int (* positive integers *)

datatype money = COIN of posint | BILL of posint

| CHECK of {amount:real, from: string}

datatype color = RED | BLUE | GREEN | YELLOW

datatype ’a list = nil | :: of ’a * ’a list

datatype register = REG of int

datatype tree = LEAF of int | TREE of tree * tree

datatype xxx = M | N | P of int list

datatype yyy = W of int * int | X of real * real * real

datatype gen = A | B | C | D of int | E of real

| F of gen * gen | G of int * int * gen

A value of type money is either a “coin” with an integer value, a “bill” with an
integer value, or a “check” with a value that consists of a real number and a string.
A program can examine a piece of money to see which constructor has been applied,
and can extract the associated value carried by the constructor. This is done using
a “pattern match” in ML:

val evaluate = (* calculate value of a piece of money *)

fn COIN c => c

| BILL b => b * 100

| CHECK{amount=r, from="Joe Deadbeat"} = floor(r*50)

| CHECK{amount=r, from=f} = floor(r*100)

4.1. Data representation 39

Some constructors (such as RED, BLUE, nil, A, etc.) do not carry values. Thus,
the datatype color is like an enumeration type in Pascal.

How are constructors to be represented in memory? The most straightforward
way is to say that each value of a datatype is represented as a two-word value,
with the constructor (represented as a small integer) in one word, and the carried
value (if any) in the other word. However, there are several improvements that
can be made. First, datatypes with only one constructor (such as the register

type above) can be represented completely transparently; the representation can
be exactly the same as the representation of the carried value. Such datatypes are
used in ML mainly to assist in catching type errors (in this case, for example, the
mistake of using an integer as a register number).

It is possible to make more specialized representations for datatypes [26]. We
might make the assumption:

Assumption 1: At runtime, pointers can be distinguished from small integers.
This might be true if, for example, no pointer pointed into the first 256 bytes of
memory, or if the low-order bit of each word is used as a tag to distinguish pointers
from integers.

Using this assumption, we can say that all “constant” constructors (those that
don’t carry values) are represented as small integers, whereas value-carrying con-
structors are still represented as two-word records with the (small-integer) tag in
one of the words and the value in the other. This makes the representation of con-
stant constructors much more efficient, as they won’t require allocation of memory
on the heap.

Also, datatypes with only one value-carrying constructor don’t need the tag
in their record. For example, the datatype xxx has three constructors, but only
one is not a constant. Therefore, if a value of type xxx is a pointer, it must be
an application of the P constructor. The pointer will point to a single-word record
containg the value of type int list. Note that the value of type P needs the extra
indirection; it can’t be an int list directly, since lists are not always pointers—
sometimes they are nil. And the value nil has the same representation as the
constructor M of the xxx datatype. Thus, we need the indirection so values with
the P constructor will always be boxed, and distinguishable from M and N.

Datatypes with only one value-carrying constructor applied to an always-boxed
value don’t even need the extra indirection. A boxed value is simply one represented
as a pointer; an unboxed value is represented as an integer (or other nonpointer).
Consider the type ’a list: Since the :: (pronounced cons) constructor is always
applied to a record, the value it carries is always a pointer. Since the nil value is
represented as a small integer, we know that :: values can always be distinguished
from nil values. Thus, we can represent 5::nil as a record containing 5 and nil,
without any extra indirection.

More specialization is possible. Consider:

Assumption 2: All pointers can be distinguished from all integers. This might
be true if one bit of each word is used as a tag to distinguish pointers from integers.
The boxed predicate of the CPS language performs exactly this test. Of course,
this assumption might be unpalatable for several reasons. It makes the represen-

40 Chapter 4. ML-specific optimizations

tation of “big” (arbitrary precision) integers more difficult, since those are usually
represented by pointers to some complicated representation. Also, it uses up one
bit of precision in the representation of integers, which can be a great inconve-
nience. Usually, Assumption 2 is required by the garbage collector anyway. But it
is possible to make a collector for ML that does not need any runtime tags on data,
even to distinguish pointers from integers [5]. Therefore, we might prefer to have
full 32-bit integers, and no overhead to tag and untag integers when performing
arithmetic; in this case, Assumption 2 would not be valid.

Using Assumption 2, we can specialize the representation of datatypes such as
tree above. Any LEAF value can be represented by the integer that the constructor
is “carrying,” and any TREE value can be represented by the two-word record. Then
no “extra” indirections are required in either case.

If we are willing to presume the existence of lots of runtime tags, we can make
more assumptions:

Assumption 3: Two-element records can be distinguished from three-element
records, and so forth. This is easy enough with a record descriptor at the beginning
of each record (or built into the record pointer itself). But the use of Assumption
3 may unduly constrain the implementation of the runtime system. In particular,
it makes the use of a BIBOP (“BIg Bag Of Pages”) scheme more difficult. With
such an arrangement, objects of the same type are grouped together on a page,
and there is just one descriptor for each page—this saves the space required by
descriptors on each object. But then, if the compiler generates pattern-matching
code that must distinguish between different types of records, the compiled code
must use the BIBOP descriptor table. This is inefficient and clumsy.

Using this assumption, we can specialize the implementation of type yyy; since
the value carried by constructor X can be distinguished from the value carried by
Y, we don’t need any extra bits or words for the constructors themselves.

There are many variants on Assumption 3, for example,
Assumption 4: Secords of different sizes, strings, integers, reals, and arrays are all
distinguishable at runtime. This has the same sorts of disadvantages as assump-
tion 3.

Then the type gen can have the following representation:

• Constructors A, B, and C will be represented as the integers 0, 1, and 2.

• The value D(i) will be represented as a one-word record containing i (to
distinguish it from the constant constructors).

• The constructors E, F, and G will be represented transparently, since the
values they carry can all be distinguished.

For languages like Lisp that have runtime type checking, Assumption 4 (or some-
thing even stronger) is required. Because ML has compile-time type checking, it is
not necessary to distinguish all the different types at runtime—these assumptions
merely allow more efficient data constructor representations.

Assumption 5: The type posint will be enforced by the compiler to contain
only positive integers.

4.1. Data representation 41

Then the datatype money can be represented without any extra indirection:
Coins will be represented as negative integers, bills as positive integers, and checks
as records.

Clearly, we are proceeding ad absurdem with these assumptions. We can use
arbitrarily complicated encodings of constructors, with diminishing returns in the
representations of datatypes. But there is a problem with many of these representa-
tions in Standard ML: Types can be abstract, so the details of their representation
are not known at compile time. Consider:

datatype (’a,’b) t = A of ’a | B of ’b

type u = (int, real*real) t

In this case, the type constructor t can be applied to any pair of types, so
the representation of A and B cannot be specialized. On the other hand, the
representation of u might be specialized, since its values are all of known type.
However, any function applicable to values of type t can also be applied to values
of type u, so the representation must be the same, or conversion must take place.

Things get worse. Consider the functor:

functor F(S: sig type ’a t

datatype ’a list = nil | :: of ’a t

end

) = struct . . . end

applied to the structure

structure A =

struct datatype ’a list = nil | :: of ’a * ’a list

type ’a t = ’a * ’a list

end

Now, the functor F must assume nothing about the structure of t, and must
therefore use an extra indirection in the representation of :: to ensure that it is
boxed. On the other hand, structure A makes use of Assumption 1 to avoid the
extra indirection. Since the modules F and A can be compiled separately, there is
no perfect solution to this problem.

If functors in ML behaved like the “generic” modules of Ada, this problem
would not exist: It is expected of an Ada implementation that each application
of a “generic” will generate new code specialized to the particular argument. But
in ML the intent of the designers was that machine-code generation (and type
checking, etc.) needs to be done only once for each functor, and is independent of
the actual parameter to the functor.

In the implementation of Standard ML of New Jersey, we wished to avoid
the functor problem, and we wanted to avoid too many constraints on the runtime
system. On the other hand, we felt it was unacceptable to have extra indirections in
the list datatype. Therefore, we rely only on Assumption 1 in the representation
of datatype constructors (though we use Assumption 2 elsewhere in the compiler),

42 Chapter 4. ML-specific optimizations

and we assume types are boxed only when they are records explicitly written down
in the datatype declaration, for example,

datatype a = A | B of int * int

type pair = int * int

datatype c = D | E of pair

The datatype a will be represented without extra indirections, but c will use ex-
tra indirections. This makes functor mismatches very rare, though it does not
completely eliminate them; we detect this problem at functor application time,
however, and print an error message for the user.

There is one last twist to constructor representation. Standard ML has an exn
datatype to represent exceptions that can be raised (by the raise operator) and
handled (by handle). This datatype has an unbounded number of “exception con-
structors,” some of which carry values and some of which are “constant.” Clearly,
we cannot associate small integer tags with each one, since there are so many of
them. We have chosen to represent the exn type as a pair of words, where one word
is the carried value (if any) and the other word is the tag—just as for ordinary
value-carrying constructors. This will be true even for “constant” constructors;
for them the “value word” will just be zero.

To represent the tag, any type with an unbounded number of values and that
admits equality (to test the identity of a constructor) will do. We have chosen to
use “string ref” instead of integer type for this purpose, since the string is useful
to hold the name of the exception for error reporting by the runtime system (as
in “Uncaught exception Match,” when the Match exception is propagated to top
level).

In summary, we have discussed several different kinds of constructor represen-
tation:

Tagged: A two-word record; one word is the value and one word is a small-integer
tag. The value-carrying constructors in any one datatype are numbered
contiguously starting at zero.

Constant: An unboxed integer representing a constant data constructor. The
constant constructors for any one datatype are numbered contiguously start-
ing at zero.

Transparent: A value-carrying constructor in a datatype with only one construc-
tor need not be represented at all; c(v) will have the same representation as
v.

TransB: Transparent boxed: A value-carrying constructor which is known to be
applied to an always-boxed type, in a datatype with no other value-carrying
constructors, can be transparent (if Assumption 1 is used).

TransU: Transparent unboxed: A value-carrying constructor which is known to
be applied to an always-unboxed type, if there are no constant constructors
in the datatype and all other constructors are boxed, can be transparent (if

4.2. Pattern matching 43

Assumption 2 is used). We have chosen not to use this representation at
present in Standard ML of New Jersey.

Variable: A value-carrying exception constructor, as described above.

VariableC: An exception constructor without an argument, as described above.

As each datatype is defined, the compiler analyzes the constructors and types
to choose a representation for each constructor.

4.2 Pattern matching

One important and nontrivial job of the ML-specific part of the compiler is to
select optimal comparison sequences for the compilation of pattern-matching. A
match in ML is a sequence of pattern–expression pairs, called rules. When a match
is applied to an argument, the argument is matched against the patterns, and the
first rule with a matching pattern is selected and its expression is evaluated. A
pattern is either a constant, which must match the argument exactly; a variable,
which matches any argument (and is bound to it for the purposes of evaluating the
expression); a tuple of patterns, which matches a corresponding tuple argument
whose components match the components of the pattern tuple; or a constructor
applied to a pattern, which matches an argument built using that constructor if
the rest of the pattern matches.

As an example, consider the case statement:

case a

of (false, nil) => nil

| (true, w) => w

| (false, x::nil) => x::x::nil

| (false, y::z) => z

The argument (false, 4::nil) matches the third pattern, whereas the argu-
ment (true, 4::nil) matches the second pattern.

One could imagine a naive compilation of matches just by testing the rules in
turn as called for by the semantics. Our approach is to transform a sequence of
patterns into a decision tree [19]. Each internal node of the decision tree corre-
sponds to a test, and each branch is labeled with one of the possible results of
the test and with a list of the patterns that remain potential candidates in that
case. It is then straightforward to translate the decision tree into code for pattern
matching. During the construction of the decision tree it is also easy to determine
whether the pattern set is “exhaustive,” meaning that every possible argument
value matches at least one pattern, and whether there are any “redundant” pat-
terns that only match arguments covered by previous rules. Nonexhaustive and
redundant patterns result in warning messages by the compiler.

Our goal in constructing the decision tree is simply to minimize the total num-
ber of test nodes. This minimizes the size of the generated code and also generally

44 Chapter 4. ML-specific optimizations

reduces the number of tests performed on value terms. However, finding the deci-
sion tree with the minimum number of nodes is an NP-complete problem [19]; so
a set of efficient heuristics is used that in practice produces an optimal decision
tree in almost all cases.

In the example above, testing the first component of the pair for truth or
falsity suffices to distinguish the second rule from the others; then testing the
second component to see whether it is :: or nil distinguishes the first rule from
the last two; one more test suffices to separate the last two rules. Thus, in just
two or three tests, the appropriate rule can be selected; instead of two or three
tests per rule that the naive algorithm would use.

The result of the decision-tree algorithm for pattern matches is a sequence of
multiway branches, each testing which constructor is attached to a given value.
For example, the case expression

case mygen

of (true, A) => a

| (false, B) => b

| (true, E x) => e(x)

| (false, F(x,y)) => f(x)

| (true, G(1,_,x)) => f(x)

| (false, _) => c

| (_, G(2,_,_)) => c

| _ => d

might be compiled by the “match compiler” in one of several different ways. For
example, the Boolean could be tested first, followed by tests of the gen constructor
(defined on page 38) lower in the tree; or the gen constructor could be tested
first as follows (written in ML, though the compiler actually uses a much simpler
intermediate representation):

let val (i,j) = mygen

in case j

of A => (case i of true => a | false => c)

| B => (case i of true => d | false => b)

| E x => (case i of true => e(x) | false => c)

| F(x,y) => (case i of true => d | false => f(x))

| G(z,y,x) => (case i of true => (case z of 1 => f(x)

| 2 => c

| _ => d)

| false => c)

| _ => (case i of true => d | false => c)

end

Now, each case expression tests only one datatype to see which constructor has
been applied (Boolean and integer values are like “constant” constructors).

4.3. Equality 45

4.3 Equality

In Standard ML a programmer may compare two values for equality if they are of
the same type, and the type is not a function type or a data type that contains
function types. The equality is structural: two lists containing equal values are
considered equal. However, two references (mutable cells) are considered equal
only if they are the same cell (i.e., at the same address). This simplifies the testing
of structural equality, as cycles need not be considered—every cycle in an ML data
structure goes through a ref.

Equality may be tested even if the types are not fully known, for example,

fun member(x, a::rest) = x=a orelse member(x,rest)

| member(x, nil) = false

This is a polymorphic function (type α × α list → bool), and the type of x
cannot be known at compile time. The type checking rules will enforce, however,
that α cannot be a function type or a data structure containing function types.

In some cases, however, the type is known:

fun f(x:tree, y:tree, z:tree) = x=y orelse y=z

fun g(i) = if i=0 then j else i

(using the tree datatype shown on page 38).
When the type of the equality test is known (i.e., is a ground type, not contain-

ing any type variables), then the compiler can generate special-purpose functions
to implement each instance of equality. For example, we automatically generate a
function such as the following to implement the equal sign in x=y above:

fun eqtree(LEAF i, LEAF j) = Integer.=(i,j)

| eqtree(TREE(a,b), TREE(c,d)) =

eqtree(a,c) andalso eqtree(b,d)

| eqtree _ = false

and for the test i=0 in g(i) we just use the integer equality primitive. In gen-
eral, the automatically generated functions are mutually recursive, to follow the
structure of mutually recursive datatypes.

When the type of the equality test is not known, we must rely on runtime tags.
In particular, it is necessary to make use of Assumption 4 (page 40), that the size
of each object can be determined at runtime. This is the only place in the imple-
mentation of ML where this assumption is necessary; even the garbage collector
could in principle learn the sizes and types of objects from a static description of
the compile-time type system [5]. It is conceivable that the representation of each
and every “equality type” could contain within it an equality predicate, but this
would be quite expensive [92].

How is the size of an object to be determined at runtime? There is no PRIMOP

in the CPS language, for example, that tells the size of a record; this is to allow
an implementation’s runtime system some freedom in representation decisions. A
simple runtime system might put a descriptor word before every record; a fancier

46 Chapter 4. ML-specific optimizations

system might use a “big bag of pages” (BIBOP) scheme to use just one descriptor
for a large collection of similar records.

To implement “polymorphic equality,” we assume that the runtime system
provides an externally defined function that tells the number of fields of a record;
this is accessed using the linkage convention described in Chapter 3. Then we
can write an ML function that recursively compares the structure of two values,
returning false if there is any difference. The pointer-equality test (ieql) is used
as a shortcut at each level of recursion; when pointer equality fails on any object,
structural equality is tried. In fact, this shortcut is also used in the case of known
types—we generate a test for object identity in the special-case code for each
datatype—but for clarity this was not shown in the eqtree function above.

Interpreting tags of polymorphic objects is significantly less efficient than using
the specially compiled functions that are used for known types.

In summary: Polymorphic equality is no fun at all.

4.4 Unboxed updates

As mentioned in Chapter 3 and explained more fully in Section 16.3, it is helpful
for the compiler to identify those ref cells and arrays that can hold only unboxed
(nonpointer) objects, and to identify those assignment (:=) and update operations
that are guaranteed to store unboxed objects (even if into a ref cell that might
also hold boxed values). The ML type system helps to identify such ref creations
and updates, and thus it is helpful to mark them prior to CPS conversion, which
will strip off the type annotations. Because of type abstractions in ML, there
will be some ref cells that the compiler can’t determine the “boxity” of, and in
this case we settle for a conservative approximation, using the general-purpose
ref-creation or update operators that can handle either boxed or unboxed values.
The result of this analysis will be to replace some of the := operators in the
program by unboxedassign, some of the makeref operators (that create ref cells)
by makerefunboxed, and some of the update operators by unboxedupdate.

4.5 The mini-ML sublanguage

We now describe a “mini-ML” language, into which Standard ML programs can
be translated. The translation will simplify the program significantly, and will
incorporate all of the optimizations described earlier in this chapter.

Mini-ML is an untyped language; however, any mini-ML program could in
principle be embedded in a parametric-polymorphic (second-order) lambda calcu-
lus [75]. Mini-ML programs can’t be type checked as ML programs for two reasons:
Mini-ML has no let expressions, and the parametric modules of ML (functors)
are encoded as ordinary functions of mini-ML.

The datatypes of mini-ML are a subset of Standard ML’s:

• integers, reals, and strings;

4.5. The mini-ML sublanguage 47

• datatypes with constructors, as in Standard ML;

• n-tuples, for n ≥ 0;

• mutable arrays;

• single-argument, single-result functions.

The other ML datatypes can be translated into these. Records with named fields
can be translated into n-tuples, with the loss of the distinction between different
record types of arity n. But this translation is done after ML type checking, so
the loss of some type information is not harmful.

The expressions of mini-ML are a subset of Standard ML’s:

• variables;

• integer, real, and string literals;

• application of data constructors;

• removal of data constructors (see below);

• very simple case expressions (see below);

• n-tuple creation;

• selection of fields from n-tuples;

• function application, which is strict (as in ML)—the argument of a function
is evaluated before substitution for the bound variable;

• function definition using λ (or fn in ML syntax), where each function binds
a single variable (not a pattern as in ML);

• mutually recursive function definition using let val rec;

• primitive arithmetic and comparison operators;

• operators for manipulating references and arrays;

• simple exception handling (see below).

Significant components of Standard ML that are lacking in mini-ML are pattern
matching, abstract types, and the module system (structures and functors). All
of these are expressed using the simpler primitives of mini-ML.

The mini-ML case expression takes one argument—an element of a datatype—
and determines which constructor has been applied. Each case rule must be an
expression of the form c or c _, where c is a constant or value-carrying construc-
tor, respectively; the final rule can be a wildcard (_). Case expressions can range
over integer, real, and string types as well, just as in Standard ML.

Note that case expressions do not bind variables in mini-ML, as they do in
ML. Once it has been determined (using a case expression) that a datatype value

48 Chapter 4. ML-specific optimizations

has been made using a certain constructor, the carried value (for a nonconstant
constructor) may be accessed by stripping off the constructor (by deconstructing,
or projecting). For each value-carrying constructor c there will be a deconstructor
deconc with the semantics

decon_c(e) = case e of c x => x | _ => error

for any expression e. Clearly, deconc must only be used in a context where it is
guaranteed to work, for example, in the right-hand side of a case rule that has
tested for the constructor c.

Section 4.2 shows how ML case expressions can be simplified to test only one
datatype value at a time; now, using deconstructors, we show (for the example of
Section 4.2) how variable-binding is handled:

let val (i,j) = mygen

in case j

of A => (case i of true => a | false => c)

| B => (case i of true => d | false => b)

| E _ => (fn x => (case i of true => e(x) | false => c))

(decon_E j)

| F _ => (fn (x,y) =>

(case i of true => d | false => f(x)))

(decon_F j)

| G _ => (fn (z,y,x) =>

(case i of true => (case z of 1 => f(x)

| 2 => c

| _ => d)

| false => c))

(decon_G j)

| _ => (case i of true => d | false => c)

end

In each case rule that matches a value-carrying constructor c, the carried value
is extracted from the constructed object j by a projection operator deconc. Since
mini-ML does not have let expressions, we use a λ (fn) applied to an argument.
Strictly speaking, mini-ML does not have multiargument λs either, so we must use
the selection operator to implement them:

fn (x,y,z) => M

for variables x, y, z and expression M becomes

fn xyz => (fn x => (fn y => (fn z => M)

(#3 xyz))

(#2 xyz))

(#1 xyz)

4.6. Exception declarations 49

where #i is the operator to select the ith field of an n-tuple.
In Standard ML, the ref operator that creates a mutable reference to the store

is treated as a constructor; a use of ref in an expression creates a ref cell, and a
use of ref in a pattern extracts the contents. Mutation of the contents is done by
the assignment operator (:=). In mini-ML we abandon the fiction that ref is a
constructor, and two new primitive functions are introduced: makeref(x) to create
a ref and initialize it to x, and the fetch operator (written with an exclamation
point !) to extract the contents. The assignment operator is unchanged.

Exception handling is simpler in mini-ML than in Standard ML. An exception
handler in ML is a pattern match on the exn (exception) type; in mini-ML a
handler is just a function taking an exn as an argument. Decision trees are used
to simplify exception pattern matches just as for fn and case expressions.

4.6 Exception declarations

Mini-ML contains no special syntax for declaring exceptions. Each exception

declaration of Standard ML is turned into a val declaration of mini-ML. The
declarations

exception E of int

exception C

exception D = J

are translated into

val E = ref "E"

val C = ((), ref "C")

val D = J

We choose a string ref for the representation of exception constructors for three
reasons:

• We need some type which can cheaply be compared for equality; ref cells
can be compared “by reference,” which is as cheaply as any type can be
tested.

• We need to be able to make new values conveniently; if we used integers
there would have to be some central counter to specify which numbers have
been used.

• It is convenient to extract the name of an exception, as a diagnostic, when
it is raised all the way to the top level.

In each case, the string ref behaves like the integer tag of an ordinary value-
carrying constructor. But unlike those constructors, the boxity test cannot distin-
guish constant from value-carrying constructors, since a string ref is boxed. So
the value-carrying constructors are represented as string refs that will be used as

50 Chapter 4. ML-specific optimizations

tags (in two-element records) when applied to values; and the constant construc-
tors are two-element records with the string-ref tag in the second element, and a
placeholder in the first element.

4.7 The lambda language

In the Standard ML of New Jersey compiler, mini-ML is encoded into a concrete
data structure called the lambda language (figure 4.1). The datatype conrep is
used to specify constructor representations, and is explained in Section 4.1. All of
the previous discussion of mini-ML applies to the lambda language. A “lambda
expression” lexp can be:

• a variable (VAR);

• a lambda function (FN);

• a “val rec” declaration (FIX) that recursively binds several function names
(var list) to several lambda functions (lexp list) in the scope of an ex-
pression;

• a SELECT(i,e) expression of the lambda language that selects the ith field
of an evaluated expression e (fields in the lambda language are numbered
starting at zero, instead of starting at one as in ML);

• a SWITCH expression that detects which constant or constructor (from the
(con*lexp) list) was used to build a datatype value, and then evaluates
the resulting expression. The lexp option is the default case, to be used
if none of the constructors on the list matches. For matches where all the
constructors of the datatype are used, the lexp option may be NONE. The
conrep list field of the SWITCH specifies all the legal constructors of the
datatype; this is useful in optimizing the code generated for the SWITCH.
For switches over integer, real, string, and exception types (i.e., all but the
“ordinary” datatypes), this list is nil;

• a data constructor—constant or value-carrying—applied to an argument
(CON). In the constant case, the argument is merely pro forma;

• a data value-carrying constructor removed from an argument (DECON);

• the RAISE-ing of an exception;

• the evaluation of an expression in the scope of an exception HANDLEr;

• a primitive operator (PRIM).

The lambda language is not really a lambda calculus: It is a call-by-value
langauge with an implied state. The side effects are hidden in the primops, which
are roughly the same as those of the CPS language and include such things as
assignment (:=) to the store.

4.7. The lambda language 51

datatype ’a option = NONE | SOME of ’a

eqtype var (* = int *)

datatype accesspath = OFFp of int | SELp of int * accesspath

datatype conrep = UNDECIDED

| TAGGED of int

| CONSTANT of int

| TRANSPARENT

| TRANSU

| TRANSB

| REF

| VARIABLE of var * accesspath

| VARIABLEc of var * accesspath

datatype con = DATAcon of conrep

| INTcon of int

| REALcon of string

| STRINGcon of string

datatype lexp

= VAR of var

| FN of var * lexp

| FIX of var list * lexp list * lexp

| APP of lexp * lexp

| INT of int

| REAL of string

| STRING of string

| SWITCH of lexp * conrep list * (con * lexp) list * lexp option

| CON of conrep * lexp

| DECON of conrep * lexp

| RECORD of lexp list

| SELECT of int * lexp

| RAISE of lexp

| HANDLE of lexp * lexp

| PRIM of primop

Figure 4.1. The lambda language.

52 Chapter 4. ML-specific optimizations

The primops of the lambda language include some that are not in the CPS
primop set, including callcc (call with current continuation) and throw (throw
to a continuation) [37]. When these are converted into CPS (see Chapter 5), they
are expressed using the FIX and APP operators of the CPS language.

4.8 The module system

Standard ML has a module system to facilitate the structuring of large ML pro-
grams and to support separate compilation and generic library units. Figure 4.2
shows the syntax of the module system. An ordinary (unparametrized) module is

decl → ordinary ML val or type declaration, etc.

decl → structure name = strexp

decl → structure name : signature = strexp

decl → functor name(name:signature) = strexp

decl → functor name(name:signature) : signature = strexp

decl → signature name = signature

strexp → struct decl end

strexp → name

strexp → name(strexp)

signature → sig specifications end

signature → name

Figure 4.2. Syntax of the ML module system (simplified).

called a structure. Any set of core ML declarations (such as val, fun, type, or
datatype declarations) can be bracketed by struct...end and made into a struc-
ture S. Thereafter, in the scope of the declaration of S, names i, j, k from those
declarations can be accessed using qualified identifiers S.i, S.j, S.k.

If it is desired to export only some of the names from a module, a signature can
be used in the structure declaration to restrict visibility of names and to constrain
the types of exported values.

A parametrized module is called a functor, and takes a structure as an ar-
gument. The “type” of the formal parameter structure must be specified using a
signature, and the “type” of the result structure can optionally be specified using a
signature. Functors and signatures cannot be nested inside structures or functors.

Figure 4.3 shows an example of the use of structures and signatures. The
signature STACK is implemented in two different ways, by structures Stack1 and
Stack2. The structure User uses some of the primitives of structure Stack1. The
functor F uses stacks, but doesn’t care which implementation is used; it can be

4.8. The module system 53

applied to any structure that matches the STACK signature. The structure T is an
application of F to the Stack2 structure.

The definition of Stack1 doesn’t specify—as Stack2 does—that it must match
the STACK signature, but it does have all the right fields and can be used anywhere
a STACK is required (e.g., as an argument to F). Similarly, the definition of Stack2
would have been just as adequate without the signature constraint.

To translate structures and functors into mini-ML, we will use RECORDs. The
representation of Stack1 will be a five-element record containing the values Empty,
push, top, pop, and empty in that order. We don’t need to represent types (such
as stack), because they are compile-time entities that don’t have runtime mani-
festations.

When elements of structures are accessed from outside (e.g., Stack1.push in
the User structure), this is translated as a selection from the structure record (e.g.,
SELECT(1,VAR Stack1)).

Now, if the structures Stack1 and User are compiled one at a time, the interface
between them is quite simple. The Stack1 module is a single value (which happens
to be a record), the names of interface files have been compiled into record offsets,
and the link-loader need not be concerned with the internals of modules.

On the other hand, if the two modules are compiled together, the CPS optimizer
(as will be described) can quite easily evaluate the SELECT at compile time, so the
User function can apply push just as efficiently as it could have had structures not
been used.

When a signature constrains a structure definition, this can have some ef-
fect on the representation of the structure. For example, the representation of
any structure matching the STACK signature must be a five-element record empty,
Empty, push, top, pop, in that order. Therefore, if this signature is applied to the
Stack1 structure, the fields must be reordered. Furthermore, when STACK con-
strains Stack2, the value extra will not be represented in the interface record. It
will still be evaluated, but its result will be discarded.

Furthermore, the name push inside Stack2 refers to a data constructor, but in
the signature it is an ordinary function. Thus, the record built for Stack2 must
have a function push that simply applies the data constructor. In general, the
application of a signature to a structure may result in “thinning,” meaning that
some fields may be discarded, some constructors will turn into ordinary values,
and the fields may be rearranged.

Functors in the module system are translated into ordinary functions in mini-
ML. Thus F will just be a function that takes a structure (record) as an argument,
and returns another structure (record) as a result.

This translation means that the mini-ML language given to the back end of
the compiler contains no special notation for the ML module system. All of the
complexities of the module system are handled statically or translated into the
RECORD, SELECT, and FN operators of mini-ML. This is a great convenience, not
only for the optimizer but also for the Standard ML of New Jersey link-loader and
runtime system.

54 Chapter 4. ML-specific optimizations

signature STACK =

sig type ’a stack

exception Empty

val empty : ’a stack

val push: ’a * ’a stack -> ’a stack

val top : ’a stack -> ’a

val pop : ’a stack -> ’a stack

end

structure Stack1 =

struct type ’a stack = ’a list

exception Empty

fun push(a,s) = a::s

fun top(a::rest) = a | top(nil) = raise Empty

fun pop(a::rest) = rest | pop(nil) = raise Empty

val empty = nil

end

structure Stack2 : STACK =

struct datatype ’a stack = empty | push of ’a * ’a stack

val extra = print "hello"

exception Empty = Match

fun top(push(a,rest)) = a

fun pop(push(a,rest)) = rest

end

structure User =

struct val j = Stack1.push(7,Stack1.empty)

end

functor F(S : STACK) = struct . . . S.empty . . . end

structure T = F(Stack2)

Figure 4.3. An example of ML modules.

CHAPTER FIVE

CONVERSION INTO CPS

After the language-specific optimizations and representation decisions have been
made, the program being compiled is converted into continuation-passing style.
This is done by a recursive traversal over the source-language abstract syntax
tree; in Standard ML of New Jersey, we traverse the lambda-language expression
that’s a simplified version of the abstract syntax tree.

The conversion function F takes two arguments: a lambda-language expression
E and a “continuation” function c of type value → cexp. The result is a contin-
uation expression: the original lambda expresson, converted to CPS and nested
inside the continuation expression (cexp) produced by c.

The function c is not a continuation expression of the target language (CPS);
nor is it a continuation of the metalanguage in the sense of call with current
continuation. Rather, it is a continuation in a more informal sense: It is simply
a function passed as an argument to F that is applied by F to the translation of
the argument E.

5.1 Variables and constants

To CPS convert a variable v, one just hands it off to the contination:

F(L.VAR v, c) = c(VAR v)

Note that we use the same representation—named var in figures 2.1 and 4.1—
for variables of the lambda language and variables of the CPS language. This is not
necessary, but it reduces the amount of verbiage required in the implementation
of F . Also note that the operators of the lambda language are prefixed by “L.”
in this chapter to distinguish them from CPS operators.

Conversion of a numeric constant is just like conversion of a variable:

F(L.REAL r, c) = c(REAL r)

F(L.INT i, c) = c(INT i)

We have chosen to represent each single-character string as an unboxed in-
teger (the ASCII character code), and empty or multiple-character strings using

55

56 Chapter 5. Conversion into CPS

a pointer (i.e., a CPS STRING object). The utility of this dual representation is
debatable; it saves space and time for single-character strings at the expense of
continual checks to see which representation has been used on operands. This dual
representation is in no way imposed by the CPS language or runtime system; it is
simply a choice we made in representing ML programs. In any case, the conversion
into CPS is not too difficult:

F(L.STRING s, c) = c(if size(s) = 1 then INT(ord(s)) else STRING s)

5.2 Records and selection

Building records, and selecting from them, is reasonably straightforward. We take
care not to produce empty (zero-length) records, as the runtime system does not
like them; instead we represent an empty record as an integer zero:

F(L.RECORD nil, c) = c(INT 0)

F(L.RECORD �A, c) = Fl(�A, λ�a.RECORD(map(λv.(v, OFFp 0)) �a, x, c(VAR x)))

In the nontrivial case, �A is a list of lambda-expressions. The auxiliary function
Fl converts this list, binding their results to a list �a of CPS variables. The function
λ�a... produces a RECORD cexp that Fl puts inside the cexp produced by Fl(�A, ...)
that binds the variables �a; therefore, the RECORD in the equation above will be in
the scope of all of its arguments. A new variable x is created here; it is formally
bound by the RECORD operator to hold the newly created record, and then is passed
to c. We use boldface to indicate CPS variables newly introduced into expressions.
Note that the variables �a are not newly introduced at this time; instead, they are
created in the recursive call to F and passed as arguments into the meta-variable
�a—a subtle point that may or may not be helpful to the reader. By meta-variable
we mean a variable of the compiler, and not of the compiled code.

The definition of Fl is

Fl(�A, c) = let g(E::�R, �w) = F(E, λv.g(�R, v::�w))
g(nil, �w) = c(reverse �w)

in g(�A, nil)

Each expression in the list �A is converted in turn by a call to F ; then the contin-
uation (λv...) converts the remainder of the expressions. When all the expressions
have been converted, the list �w of variables holds all the results (note that �w has
been accumulated backwards and needs to be reversed). Now the original list
continuation c can be applied to this list of variables.

To select from a record is quite easy:

F(L.SELECT(i, E), c) = F(E, λv.SELECT(i, v,w, c(VAR w)))

To evaluate a selection from an expression E, first the expression must be evaluated
(by a call to F) and then the CPS SELECT operator can be applied. One can

5.3. Primitive arithmetic operators 57

use the word “evaluate” anywhere in place of “convert;” this often helps in the
visualization of what will happen when the program is run.

As above, w is a newly invented variable not appearing elsewhere; it holds the
newly fetched value.

At this point an example may be helpful. We show the translation of an ML
expression (4,#1(m)). This translates into lambda language as

L.RECORD[L.INT 4, L.SELECT(0, L.VAR m)]

(recall that record fields are numbered starting at #1 in ML but starting at 0 in
the lambda language and CPS). Then, we apply F to this, in a context c0:

F(L.RECORD[L.INT 4, L.SELECT(0, L.VAR m)], c0) =
Fl([L.INT 4, L.SELECT(0, L.VAR m)],

λ�a.RECORD(map(λv.(v, OFFp 0)) �a, x, c0(VAR x)))

Now, let c1 = λ�a . . . (. . . x)) in the expression above, and we have:

Fl([L.INT 4, L.SELECT(0, L.VAR m)], c1) =
gc1

([L.INT 4, L.SELECT(0, L.VAR m)], nil) =
F(L.INT 4, λv.gc1

([L.SELECT(0, L.VAR m)], [v])) =
(λv.gc1

([L.SELECT(0, L.VAR m)], [v])) (INT 4) =
gc1

([L.SELECT(0, L.VAR m)], [INT 4]) =
F(L.SELECT(0, L.VAR m), λv.gc1

(nil, v :: [INT 4])) =
F(L.VAR m, λu.SELECT(0,u, w, gc1

(nil, [VAR w, INT 4]))) =
SELECT(i, VAR m, w, gc1

(nil, [VAR w, INT 4])) =
SELECT(i, VAR m, w, c1([INT 4, VAR w])) =
SELECT(i, VAR m, w,

RECORD([(INT 4, OFFp 0), (VAR w, OFFp 0)], x, c0(VAR x)))

Notice that u and v are not variables of the CPS like m and w. The meta-variable
v is bound to the CPS constant INT 4, and u is bound to the CPS variable VAR m.

5.3 Primitive arithmetic operators

The primitive operators (primops) can be classified into categories based on the
number of results they return, and whether they branch. There are approximately
four such categories:

1. Operators that take n arguments, return one result, and continue in only
one way. These include all the arithmetic operators such integer add, integer
negate, floating multiply, as well as operators like fetch from ref cell.

2. Operators that take n arguments, return no result, and continue in only one
way. These operators—ref assignment, array update, set current exception
handler—are executed only for their side effect on the store.

58 Chapter 5. Conversion into CPS

3. Operators that take n arguments, return no result, and continue in one of
two ways. These are the conditional branches: integer greater than, floating
less than, is boxed?, and so on.

4. Unusual operators that require special translation, such as call with current
continuation.

Each category is converted into continuation-passing style in one of two ways,
depending on whether the operator takes one argument or more than one. This
is because Standard ML (and mini-ML) represent multiple-argument functions by
passing (pro forma) a single argument that’s an n-tuple of the actual arguments.
When there is just one actual argument, however, the n-tuple is omitted. Here’s
the case for a one-argument arithmetic primop:

F(L.APP(L.PRIM i, E), c) = F(E, λv.PRIMOP(i, [v], [w], [c(VAR w)]))

where, as usual, the bold-faced variable w is a new, distinct variable.
When a lambda-language primop is found in some other context (i.e., not

directly applied to an argument), an inverse η-reduction can be performed in the
lambda language to make it match the pattern above:

L.PRIM i → L.FN(x, L.APP(L.PRIM i, L.VAR x))

When an n-argument primop (n > 1) is found applied to a record, the conver-
sion is simple:

F(L.APP(L.PRIM i, L.RECORD �A), c) = Fl(�A, λ�a.PRIMOP(i,�a, [w], [c(VAR w)]))

Here �A is the list of n argument expressions and �a is the list of variables holding
the results of evaluating those expressions.

If an n-argument primop is found applied to something other than a record,
then a simple transformation is useful in the lambda language; for readability, we
will express the transformation in the source language instead:

p(E)→ let val (v1, v2, ..., vn) = E in p(v1, v2, ..., vn) end

Of course, in lambda language the let and the pattern match are expressed via
FN, APP, and SELECT operators.

For primops that return no result, the conversion algorithm F just passes a
placeholder (0) to the continuation c:

F(L.APP(L.PRIM i, E), c) = F(E, λv.PRIMOP(i, [v], [], [c(INT 0)]))

The INT 0 placeholder is likely to be eliminated in the optimization of the CPS
expression after the conversion is completed, in most contexts.

For no-result primops that take several arguments, or that are in need of an
inverse η-reduction, the same transformations apply as for arithmetic primops

5.4. Function calls 59

that return a result. The assignment (:=) and update primops are examples of
this kind.

We now consider the branching primops. In ML (and in mini-ML), the com-
parison operators such as > and = return a Boolean result; the Boolean type is
simply a datatype with two constant constructors, false and true. The repre-
sentations of these constructors are the integers 0 and 1. In the CPS language,
however, the comparison primops return no result; instead, they take one of two
different continuations. We address this slight semantic gap by making the two
different continuations pass 1 and 0, respectively, to the original continuation.

We start with the one-argument case (e.g., boxed(x)) that tests whether x is
represented as a pointer. A naive approach is:

F(L.APP(L.PRIM i, E), c) = F(E, λv.PRIMOP(i, [v], [], [c(INT 1), c(INT 0)]))

This is not quite right, since the application of c (a metalanguage function that
constructs a CPS expression) to two different arguments will lead to two different
copies of the same CPS code. This leads to a possibly exponential blowup of the
code size. What we must do is call c only once: We define a CPS function whose
body contains the expression c, and then write two applications of that function

F(L.APP(L.PRIM i, E), c) =
F(E, λv.FIX([(k, [x], c(VAR x))], PRIMOP(i, [v], [], [APP(VAR k, INT 1),

APP(VAR k, INT 0)])))

For multiple-argument comparison operators, and for operators needing inverse
η-reduction, the transformations are similar to those for the arithmetic operators.

The conversion of the primops callcc (call with current continuation) and
throw (invoke a continuation) is discussed in Section 5.9.

5.4 Function calls

A single function definition in the lambda language translates into a single function
definition in the CPS language. However, the CPS function takes one additional
argument: the continuation k to invoke upon function exit. The application of
this continuation function to the result of the lambda function is made explicit:

F(L.FN(v, E), c) = FIX([(f , [v,k],F(E, λz.APP(VAR k, [z])))], c(VAR f))

The function is given a name f, and takes the (original) argument v along with a
continuation argument k. The body of f is given by converting E so when E is
finished, it will bind its result to some variable z (or will produce some constant
z) and then apply k to that. Finally, we apply c to f to hand the function off to
the context that expects it.

To translate a lambda language function call, a continuation function r (for
the “return address”) must be defined. The lambda function F and the lambda

60 Chapter 5. Conversion into CPS

argument E must both be evaluated (f and e will refer to these values). Then a
CPS-language APP applies the function f to the argument e and continuation r.

F(L.APP(F, E), c) =
FIX([(r, [x], c(VAR x))],F(F, λf.F(E, λe.APP(f, [e, VAR r]))))

5.5 Mutually recursive functions

Both the lambda language and the CPS language have constructs for defining a
set of mutually recursive functions visible in some limited scope, so the conversion
is not difficult:

F(L.FIX(�h,�b, E), c) = FIX(g(�h,�b), F(E, c))

where the function g is applied to the list of function names and the list of function
bodies:

g(h1::�h, L.FN(v, B)::�b) = (h1, [v,w],F(B, λz.APP(VARw, [z])))::g(�h,�b)
g(nil, nil) = nil

5.6 Data constructors

The lambda language has an operator for the application of a data constructor;
the CPS language has no such operator. In the translation, we rewrite constructor
applications using the RECORDs (etc.) of the lambda language, and then translate
those into CPS. Since the representation of each constructor has already been
decided, this is quite simple:

F(L.CON(CONSTANT i, E), c) = F(L.INT i, c)

F(L.CON(TAGGED i, E), c) = F(L.RECORD[E, L.INT i], c)

F(L.CON(TRANSPARENT, E), c) = F(E, c)

F(L.CON(TRANSB, E), c) = F(E, c)

F(L.CON(TRANSU, E), c) = F(E, c)

A constant constructor is represented just as an integer. A tagged constructor is
a two-element record; arbitrarily, the tag comes second and the value comes first.
Transparent constructors (of three flavors) have no effect on the expression they
are applied to.

The variable-tagged constructors, used for the exception type, have a slightly
more complicated representation. Instead of a constant integer tag, the tag is
found by traversing a path of SELECTs rooted at a variable. This is to model the
situation in which an exception defined in some other ML module is applied to an
argument; to extract the exception constructor from another module may require

5.7. Case statements 61

a chain of selections. The chain (v, p) is expressed using the CPS path notation
(SELp and OFFp), which can be used directly in the CPS-converted expression:

F(L.CON(VARIABLE(v, p), E), c) =
F(E, λw.RECORD([(w, OFFp 0), (v, p)], x, c(VAR x)))

Finally, the “constant” exception constructors—those that in ML are not ap-
plied to an argument—must have a very similar representation to the tagged ex-
ception constructors. They must, in fact, be applied to a pro forma argument
using a two-element record. This is unlike the constant constructors of ordinary
datatypes; the source of the difference is that the ordinary constant constructors
are small integers, distinguishable from the boxed records used for the application
of tagged constructors. However, for exception constructors, the constant con-
structors themselves are already pointers (they’re string refs), and could not be
easily distinguished from the two-element records.

Even so, there is a choice about when to create the two-element record; is it
done when the exception constructor is declared, or when it is applied? Since every
application of the constructor would lead to an operationally equivalent record, it is
more efficient to create the record at declaration time. Thus, to “apply” a constant
exception constructor (to an irrelevant placeholder argument), one simply grabs
the already-existing two-element record:

F(L.CON(VARIABLEc(v, p), E), c) =
RECORD([(v, p)],w, SELECT(0,w,x, c(VAR x)))

The reason for building a RECORD and then immediately selecting from it is merely
pro forma; the path notation (v, p) is easy to translate into CPS as a record
field, and the RECORD and SELECT will be quickly optimized away by the CPS
optimization phase.

It is also necessary to explain how the lambda-language deconstruction oper-
ators (DECON) are converted into CPS. This is quite simple; for ordinary tagged
constructors we just fetch the first element (recall that the tag is the second ele-
ment), and for transparent constructors we do nothing at all:

F(L.DECON(TAGGED(i), E), c) = F(L.SELECT(0, E), c)

F(L.DECON(TRANSPARENT, E), c) = F(E, c)

F(L.DECON(TRANSB, E), c) = F(E, c)

F(L.DECON(TRANSU, E), c) = F(E, c)

F(L.DECON(VARIABLE, E), c) = F(L.SELECT(0, E), c)

Of course, L.DECON cannot be applied to values constructed with the “constant”
constructors CONSTANT and VARIABLEc.

5.7 Case statements

Generating code for case statements is made easier by the fact that much of the
heavy lifting has already been done by the “match compiler,” as described in

62 Chapter 5. Conversion into CPS

sections 4.2 and 4.5. What’s left is the simple SWITCH operator of the lambda
language, which takes an expression to be evaluated and a list of constructor–
expression pairs, with the expression to be evaluated if the corresponding con-
structor matches.

There is also an optional default case, for use if none of the constructors
matches. If the default is not present, then it is erroneous for none of the ex-
plicit cases to match. This is unlike Standard ML, in which a system-defined
“Match” exception is raised if none of the cases is matched; in the lambda lan-
guage, a default case that explicitly raises this exception must be written into the
SWITCH expression on any nonexhaustive match.

Finally, for datatypes with a finite number of constructors, the SWITCH operator
has an argument that lists all the possible constructor representations in the type;
this facilitates the generation of good code by eliminating useless tests (i.e., range-
checks that can’t possibly be violated).

The translation of lambda-language SWITCHes to CPS is not completely trivial.
First, it is necessary (for datatypes that have both boxed and unboxed construc-
tors) to test the argument for “boxity.” Then, for the unboxed case we must test
an integer value against several integer constants; for the boxed case (if there is
more than one boxed constructor) we have the same situation after fetching the
tag word from the two-element record.

There are several ways that a value may be compared with several integers to
see which one it is (and which continuation to execute). A chain of compare-and-
branches may be used; this is equivalent to linear search. A binary search may be
used by comparing against the median integer in the range, recursively. Finally, a
jump table can be used to find the right continuation in constant time.

If there are just a few cases, then a linear search works fine; if there are many
cases and they are sparsely distributed among the range of possible values that an
integer can take on, then a binary search works best; and if there are many values
densely distributed, then a jump table works best.

These three methods may be combined judiciously [20]: Each “clump” of
densely distributed cases will have its own jump table; then a binary search will
be used to decide which clump the test value is in. Tiny clumps (e.g., fewer than
five cases) will use linear search.

We have implemented this technique. Perhaps it is overkill, since most datatypes
do not have too many constructors; but we did not want programs with large
datatypes (or large case statements on integer values) to suffer. Such programs
are often generated, for example, by parser generators and other programs that
produce source code as output.

There are four “special” datatypes with infinite numbers of constructors: the
integer, real, string, and exception types. Each merits some discussion.

Switch expressions on integers can be handled using the same tree of indexed
jumps as is used for ordinary data constructors.

Switch expressions on real numbers cannot make use of indexed jumps, but a
binary decision tree is certainly possible to ensure a logarithmic-time (in the num-
ber of cases) resolution. At present, though, Standard ML of New Jersey eschews

5.8. Exception handling 63

any interpretation of floating-point literals until final machine-code generation, so
cross compilation can be completely accurate. Therefore we use a simple (and
potentially slow) linear search for pattern matches on reals.

Since we represent single-character strings unboxed and all other strings boxed,
the first thing that a switch on strings has to do is test the argument for boxity.
The unboxed cases are handled (efficiently) as if they were integers; the boxed cases
are then handled (expensively) by a linear search with calls to an ML-coded string
equality function. In principle, the boxed cases could use a decision tree based
on individual characters, or on string length, but we have not bothered. Finally,
exception constructors have tag values that are not known at compile time, so no
precomputation of a decision tree is possible. A linear search of ref-cell pointer
comparisons is used.

5.8 Exception handling

The lambda-language primitives for exception handling are RAISE, which evaluates
an expression of type exn and then raises that exception; and HANDLE which eval-
uates its first argument, and if an exception occurs it applies the second argument
to that exception. The second argument is an expression of type exn→ A, where
A is the type of the first argument.

There are at least two ways that exception handlers of this kind could be imple-
mented. We have chosen to have a distinguished location in the store, containing
the current exception handler; each exception handler is just a continuation taking
an exn argument. A HANDLE just installs a new exception handler upon entry, and
re-installs the previous handler upon exit. A RAISE just passes its argument to
the current handler. The primitive operators necessary for this method are get-
handler and set-handler. A minor variant of this scheme would be to use the fetch
and assignment operators on this location, but we have chosen special operators to
give the implementation more freedom to make the implementation of exception
handlers different from that of ordinary refs. In particular, a machine register can
be used to hold the current exception-handler continuation.

The other method of doing exception handling is to give every function in the
CPS an extra argument: the current exception handler. A function could leave
the current handler untouched, and pass it to every function that it calls, or it
could “install” a new one by passing a different handler to functions that it calls.
This method is at least as efficient as the store-based method, since arguments
left untouched typically require (in the implementation) no instructions to pass to
another function; and the implementation might be able to optimize more easily
the manipulation of handlers.

However, there is a serious problem with the “extra-argument” approach. The
arithmetic operators on a typical machine automatically raise a signal on overflow
(or division by zero). The runtime system would like to be able to handle this
signal by raising an ML exception. To do so, the runtime system must be able
to find the exception handler. By having a known location for the handler, we

64 Chapter 5. Conversion into CPS

enable the runtime system to find it. If the handler were just a function argument,
then transformations on the program might hide the handler in a place the runtime
system couldn’t understand, or alter its representation, or in-line expand it entirely.

So the translation of HANDLE must first save the old handler h. Then it makes a
continuation k corresponding to the context of the entire handle expression. Then
it makes and installs a new exception handler n. Finally, the first operand A of
the handle expression is executed, with a continuation that re-installs h and then
invokes k.

The new handler n, if invoked, first re-installs h and then evaluates the second
operand B of the HANDLE expression, continuing with k.

F(L.HANDLE(A, B), c) =
PRIMOP(gethdlr, [], [h],
FIX([(k, [x], c(VAR x)),

(n, [e], PRIMOP(sethdlr, [VAR h], [], [
F(B, λf.APP(f, [VAR e, VAR k]))]))],

PRIMOP(sethdlr, [VAR n], [],
[F(A, λv.PRIMOP(sethdlr, [VAR h], [], [APP(VAR k, [v])]))])))

Raising an exception is much simpler:

F(L.RAISE E, c) = F(E, λw.PRIMOP(gethdlr, [], [h], [APP(VAR h, [w])]))

We first evaluate the exception value E, yielding a value referred to by meta-
variable w. Then the current handler h is extracted and applied to w.

5.9 Call with current continuation

Standard ML of New Jersey has a set of primitives [37] to allow programs to
manipulate their continuations directly:

type ’a cont

val callcc : (’a cont -> ’a) -> ’a

val throw : ’a cont -> ’a -> ’b

The continuation of an expression is an abstraction of what the system will do
with the value of the expression. For example, in the expression

if a orelse b then foo() else goo()

the continuation of the expression a orelse b can be described in words as “if
the value is true then compute foo() otherwise compute goo() and then continue
in the context of the if expression.” Usually the continuation of an expression is
implicit; however, the primitive callcc allows the programmer to capture and use
these continuations.

The callcc (call-with-current-continuation) operator takes a function as an
argument and applies it to the current continuation. The continuation of an ex-
pression of type α has type α cont and is a first-class object. To capture the
continuation of a orelse b described above, one would write:

5.9. Call with current continuation 65

if callcc(fn k => a orelse b) then foo() else goo

Here the continuation of the callcc application is captured by being bound to
k, but it is not used. Because the continuation is not used the predicate tested
by if is the result of the expression a orelse b. To use the continuation k it
must be invoked with some argument; then the computation would continue as if
that value were the result of the callcc application. This is called throwing the
continuation a value; it is performed by applying throw to the continuation and
the value.

if callcc(fn k => (throw k false) orelse b) then foo() else goo()

Here, when the continuation k is thrown the value false, orelse b is simply ig-
nored, the callcc application returns false, and goo() is then evaluated.

The type returned by a throw expression is unconstrained like that of a raise

expression and for the same reason: Neither of these expressions ever return.
One of the less interesting uses of callcc is as an alternative to exception

handlers. For example,

exception Prod

fun prod l = let fun loop [] = 1

| loop(0::r) = raise Prod

| loop(a::r) = a * loop r

in loop l handle Prod => 0

end

can be written with callcc as follows:

fun prod l = callcc(fn exit =>

let fun loop [] = 1

| loop(0::r) = throw exit 0

| loop(a::r) = a * loop r

in loop l

end)

But continuations are more general than exception handlers and can be used to
implement sophisticated control structures. Chapter 17 discusses this further.

A naive (but explicatory) approach to the implementation of callcc just grabs
the continuation in the obvious way:

Fnaive(L.APP(L.PRIM L.callcc, F), c) =
FIX([(k, [x], c(VAR x))], F(F, λv.APP(v, [VAR k, VAR k])))

Fnaive(L.APP(L.PRIM L.throw, E), c) =
F(E, λk.FIX([(f , [x, j], APP(k, [VAR x]))], c(VAR f)))

The context c of a callcc expression is abstracted as a function k(x) that just
evaluates the continuation expression c(x). Then the argument F of the callcc

66 Chapter 5. Conversion into CPS

is applied to (k,k). The first k is the “argument” of F and the second is the
“continuation” of F ; thus, if F simply returns then k will be the continuation, and
if F throws to its argument then k will also be the continuation. The interesting
uses of callcc involve F saving k in a data structure, or passing it to another
function.

Then throw E A just evaluates E into a continuation-variable k, and applies
k to the evaluated A. The FIX in this definition is merely to express the curried
throw operator of ML.

The naive approach is not quite right, because we want each continuation to
inherit the exception handler of its creator, not the handler of its invoker. With
proper manipulation of handlers, callcc is translated thus:

F(L.APP(L.PRIM L.callcc, F), c) =
PRIMOP(gethdlr, [], [h], [
FIX([(k, [x], c(VAR x)),

(k′, [x′], PRIMOP(sethdlr, [VAR h], [], [APP(VAR k, [VAR x])]))],
F(F, λv.APP(v, [VAR k′, VAR k])))])

F(L.APP(L.PRIM L.throw, E), c) = Fnaive(L.APP(L.PRIM L.throw, E), c)

Note that the throw operator doesn’t have to know about the exception-handler
manipulation, in this formulation. The reason for making two separate functions k
and k′ is that if f simply returns (calls its continuation) directly, there is no need to
reset the exception handler after it returns—any function in the lambda language
is guaranteed to leave the handler as it found it. By letting k be essentially the
same as c, we enable callcc to be tail recursive in many cases where k′ would not
lead to tail calls.

Another way to save the exception handler would be to represent each reified
continuation (that is, each continuation saved by callcc) as a pair of underlying
continuations: one for normal invocation and one for the exception handler. Then
throw would have to install the exception handler before invoking the normal
continuation. This has the disadvantage that there would be an extra record
creation on each callcc, but it has the putative advantage that one could make
a function

handler_of : ’a cont -> exn cont

that extracts the exception handler of any reified continuation.
However, handler_of is not a good thing to have around. In the presence

of signal handlers that can grab the current continuation at any time [72], that
means that any exception could be raised in any program fragment. This impairs
the ability of the optimizing compiler, or of the human reader of the program, to
reason about control flow.

CHAPTER SIX

OPTIMIZATION OF THE CPS

After conversion from mini-ML (the lambda language) into continuation-passing
style, the program being compiled is in need of three kinds of work:

1. The CPS program is very inefficient, and the application of many simple
transformations (such as β-reduction, constant folding, argument expansion)
will lead to a smaller, more efficient CPS program with the same semantics.

2. The representations of functions (FIXes) are not exactly as a von Neumann
machine would like them, since functions are nested with lexical scope. A
rewrite of the CPS can unnest all functions and simplify the environments
of variable bindings.

3. The CPS must eventually be translated into machine code.

These three jobs will be split into separate phases, called CPS optimization,
closure introduction, and abstract machine-code generation, respectively. There are
also other phases between the ones mentioned here, as summarized in Section 1.4.
This chapter covers the CPS optimization: rewriting a CPS expression to produce
a more efficient representation of the same computable function.

Many different kinds of optimizations are performed, and each pass over the
expression performs some subset of the optimizations. Each time an optimization
is performed (e.g., the constant folding of the expression 5 + 7 within the larger
expression 3+(5+7)), some other optimization might be enabled on the next pass
(e.g., constant folding of the resultant 3 + 12).

Each pass performs many optimizations in parallel, so it is necessary that the
different optimizations performed in each pass do not interfere with each other.
We have grouped the different transformations into five separate groups, so each
group contains noninterfering optimizations:

1. Constant folding, function-argument expansion, β-contraction of functions
called only once, and other “contractions;”

2. β-expansion, that is, the β-reduction of functions called more than once;

3. η-reduction and uncurrying;

67

68 Chapter 6. Optimization of the CPS

4. Hoisting, that is, the interchange of bindings to reduce or expand the scope
of individual definitions;

5. Common subexpression elimination.

Each round of the optimizer might involve one pass of each of these five groups of
optimizations. These optimization rounds are repeated until no more transforma-
tions (more strictly speaking, until few transformations) are accomplished in each
round—a normal form is reached.

Unfortunately, optimization is a tricky business. We cannot hope to (automat-
ically) achieve the optimal representation of a general computable function—the
problem is Turing complete. Any optimizer of which we require termination on
all inputs (that is, we don’t want it to execute the user’s infinite loops at compile
time—just at runtime!) must of necessity be just a batch of heuristics; there can
be no “algorithm.” We can have “algorithms” only for small pieces of the prob-
lem; for example, once a (presumably suboptimal) representation of the program
is found, we can “optimally” allocate registers for it, if we’re lucky.

Thus, the emphasis here is on finding small, correct transformations of the
program that will probably improve its efficiency (run time or program size, or
both). We can then measure the improvement on “typical,” “realistic” programs.
And we can measure the cost— how much compile time does each optimization
take? We will be less concerned with such things as (for example) the Church–
Rosser property: Does the optimizer produce the same CPS output regardless
of the order it performs its optimizations? Probably not. A more interesting
question: Is the result of executing the CPS invariant under the optimization? We
hope so.

We now describe the individual optimizations, and give a sketch of the algo-
rithms and data structures used in performing them.

6.1 Constant folding and β-contraction

The “constant-folding” phase of the optimizer performs a large number of transfor-
mations that improve both the size and speed of the program. These include the
elimination of arithmetic operators when both arguments are constants, but more
important are the elimination of selections from “known” records, and the in-line
expansion (β-reduction) of functions called only once. Also, parameter passing
in calls to known functions is streamlined. Each of these optimizations merits
separate discussion.

Beta contraction: When a variable f is statically bound as a function in
a FIX declaration, and that variable is then applied to arguments, a β-reduction
can take place: The body of the function can replace the APP expression, with the
actual parameters substituted for the formals of the function. Since the (entire)
continuation expression obeys the rule of unique bindings, that is, each variable
is bound in only once place, there is no danger of “variable capture” that might

6.1. Constant folding and β-contraction 69

occur in ordinary λ-calculus. Thus, if we have the expression

FIX([. . . , (f,�v, B), . . .], . . . APP(f,�a) . . .)

where �v are the formal parameters of the function f , and �a are the actual param-
eters of a call to f , we can replace the function call (APP) with the body B of f ,
in which we substitute �a, respectively, for �v:

FIX([. . . , (f,�v, B), . . .], . . . B{�v �→ �a} . . .)

The notation B{�v �→ �a}means the expression B with each occurrence of vi replaced
by the corresponding ai.

However, if f contains internal variable bindings (as it is likely to do), this will
violate the unique-binding rule. One solution is to α-convert B, that is, rename
all the bound variables of B. This solution will be resorted to in the β-expansion
phase (which does β-reduction of functions called more than once). But here we
have a much simpler solution: If we do β-reduction only on functions called just
once, then we can delete the function definition at the same time as we expand
the body, thus preserving the unique-binding rule:

FIX([. . . , . . .], . . . B{�v �→ �a} . . .)

.
To clean up after this transformation, it is useful to remove any FIX that binds

no functions:
FIX([], A) → A

.
We will define β-contraction as β-reduction of functions called just once, and

β-expansion as β-reduction of functions called more than once. (Functions called
not at all can be “reduced” as a special case of dead-variable elimination.) It is not
just for simplicity of implementation that we avoid β-expansion in this phase. To
“reduce” a function called more than once means copying its body; if the body is
large, then this a “reduction” only in name. Since we want the “constant-folding”
phase to consist only of optimizations that improve the size and speed of the
program, we will perform only β-contraction in this phase.

Selection from known records: When a variable r is statically bound
by a RECORD operator, and r is the operand of a SELECT operator, then we can
eliminate the selection entirely, and substitute the nth field of the record for r.
Since the operands of the RECORD must all be atomic—variables or constants—the
substitution of one of these operands for every occurrence of r cannot cause the
duplication of any operation, so the program size is guaranteed to go down.

It must be noted, however, that this optimization may cause the number of
free variables of an expression to go up, making register allocation more difficult
or causing spills. Spills will be handled in a much later phase, and we will ignore
the effect of register allocation in our claim that program size and speed are always
improved by the select optimization.

70 Chapter 6. Optimization of the CPS

Dead-variable elimination: If a variable is bound by an operator that
cannot raise an exception or modify the store, and is never used, then its binding
may be removed. For example:

FIX([. . . , (f,�v, B), . . .], A) → FIX([. . . , . . .], A) f not free anywhere

RECORD(�a, v, A) → A v �∈ fv(A)

This optimization can be applied to a variable that is the result of a RECORD,
SELECT, FIX, or PRIMOP, except for arithmetic operators that can raise exceptions.
These are ~, +, -, *, div, fadd, fsub, fmul, fdiv. In principle, operators that
modify the store should not be eliminated, but it happens that none of them binds
a variable, so this is a nonissue.

There may be cases where an arithmetic operator is known not to raise an
exception (e.g., division by a constant other than −1), and in this case the dead
variable may be eliminated.

We have chosen to be conservative in reducing the exception-raising operators
just so the CPS optimization phase will be completely transparent to the program-
mer. One of the nice attributes of Standard ML is that it is completely defined,
that is, any program accepted by the compiler has a deterministic semantics; we
would like to preserve that attribute. (Of course, we may add less-deterministic
functions for such things as input/output, but the programmer knows where to
expect this nondeterminism.)

Argument flattening: In ML, every function has exactly one argument;
where the effect of n arguments is desired, the programmer may pass an n-tuple.
The pattern matching of arguments in ML makes it convenient to receive an n-
tuple into formal parameters, as in

let fun f(a,b,c) = a+b+c

in . . . f(x,y,z) . . .

end

In the CPS language, the syntactic sugar of pattern matching is stripped away,
and we have:

FIX([(f, [t,k], SELECT(0,VAR t, a,

SELECT(1,VAR t, b,

SELECT(2,VAR t, c,

PRIMOP(+,[VAR a, VAR b], [e],

PRIMOP(+,[VAR e, VAR c], [g],

APP(VAR k,[VAR g])))))))],

. . .

RECORD([(VAR x,OFFp0),(VAR y,OFFp0),(VAR z,OFFp0)], r,

APP(VAR f,[VAR r, VAR k1]))

. . .)

Records (n-tuples) are constructed on the heap in the implementation, and it
is clearly undesirable to heap allocate an argument record for each function call.

6.1. Constant folding and β-contraction 71

Furthermore, the CPS language allows for multiargument functions. Therefore,
we would like to “flatten” the structured arguments of functions such as f (this
also applies to nested tuples like h((a,b),(c,d)), etc.). In understanding the
motivation for this optimization, it may be helpful to realize that all arguments
to functions will be passed in machine registers, once the CPS is translated to
machine instructions.

To flatten the arguments of a function, we must change the function definition
and each of the applications of the function. Therefore, we can do this only for
known functions; we can’t flatten the arguments of escaping functions because we
don’t know all the call sites.

The “conservative” version of this optimization is as follows: When a known
function f uses an argument t only as the operand of SELECT operations, and in all
the calls the actual parameters corresponding to t are variables bound by RECORD

operators, and the records all have the same number n of fields, then the parameter
t can be replaced by n parameters ti, the SELECTions in f ’s body can be replaced
by the appropriate tj , and the actual parameters can be replaced by the record
fields.

Thus for the example of the known function f(a,b,c) we have:

FIX([(f, [a,b,c,k], PRIMOP(+,[VAR a, VAR b], [e],

PRIMOP(+,[VAR e, VAR c], [g],

APP(VAR k,[VAR g]))))],

. . .

APP(VAR f,[VAR x, VAR y, VAR z, VAR k1])

. . .)

This version of argument flattening applies only when all the calls to f pass an
explicitly created n-tuple. But consider this case:

fun f(i,j) = if i=0 then j else f(i-1,j+j)

fun h(t) = f(t)+4

One of the calls to f (the recursive one) passes an explicit tuple, but the other
does not. This case often comes up when an escaping function of a pair introduced
by inverse η-reduction (see Section 6.2) calls the known function of the pair.

We might like to rewrite this program so the recursive call (which is probably
executed more often than the nonrecursive call) has flattened arguments. To do
this, we need to add explicit select operators on the nonrecursive call, to extract
two arguments from the tuple t:

fun h(t) = f(#1 t, #2 t) + 4

That’s not difficult to do, but consider the next example:

fun g(i,t) = if i=0 then #1(t) + #2(t) else 5

g(0,(2,8)) + g(1,7)

72 Chapter 6. Optimization of the CPS

This doesn’t type check in Standard ML: If the argument i of g is 0, then the
argument t is a pair of integers, but if the i is nonzero, then t is an integer. But
even though this is not a legal source program, it illustrates the state of affairs
after a few rounds of optimization: The CPS is not a typed language, and the
argument i is probably the type tag of a data constructor.

In this case, it is not at all a good idea to flatten the argument t and insert
selection operators at the calls to g. In that case, we would get:

fun g(i,a,b) = if i=0 then a+b else #1(t) + #2(t) else 5

g(0,2,8) + g(1,#1(7)+#2(7))

The construct #1(7), representing the selection of the first field of the integer 7,
is not only illegal, but is likely to crash the program at runtime.

So, to make a more “liberal” version of argument flattening, we must be careful.
One way to be careful is to have some approximate type information in the CPS
language; see Section 18.2. Another way is to avoid flattening arguments—such as
t above—that we are not sure about. More precisely:

When a known function f uses an argument t only as the operand of SELECT
operations, then let n be the highest field number that is selected from t. If field
n is selected from t on all paths inside f (from the root to the leaves, which
are APP nodes), then the parameter t can be replaced by n parameters ti, the
SELECTions in f ’s body can be replaced by the appropriate tj , and in each call to
f the corresponding actual parameter a can be replaced by n different SELECTions
from a.

Recall that all arguments to functions are passed in machine registers. Since
argument flattening increases the number of arguments to functions, we might end
up with a function that has more arguments than our machine has registers, a
contradiction. Therefore, we will make the number of registers a parameter of the
CPS optimization functor; a candidate for argument-flattening will be rejected if
it would have too many arguments after flattening. On an N register machine no
function will have more than N arguments (but see Section 13.4 for a more precise
bound).

Dropping unused arguments: If a known function f has an argument
a that is not used in the body of f , then a can be removed, along with the
corresponding actual parameters in all the calls to f . This is just a slightly more
complicated case of dead-variable elimination.

A more sophisticated version of dead-argument elimination—which we have
not implemented—also proves variables “useless” by inductions around loops[80].
For example, the variable i in the following program is “useless”:

fun f(i,j,x) = if j=0 then x else f(i+1,j-1,x*x)

Unfortunately, this is a bad example, because i + 1 might overflow! Unless we can
prove that i < maxint, the computation of i+1 may have some noticeable effect on
the program, and i is not truly useless. This limits the useless-variable elimination

6.1. Constant folding and β-contraction 73

to those variables to which side-effecting operators (including exception-raising
operators) are not applied.

Constant folding of SWITCH: If a SWITCH expression has a constant argument
i, then it may be replaced by its ith continuation argument.

Record optimizations: The CPS language allows record fields to be not
just variables or constants, but also variables with selection paths attached. This
allows, for example, the expression

SELECT(7, VAR a, x,

SELECT(3, VAR x, y,

RECORD([...,(y, OFFp 0),...], ...)))

to be rewritten as

RECORD([...,(a, SELp(7,SELp(3,OFFp 0))),...], ...)

Why is this desirable? It does not reduce the number of fetches that are done at
runtime; the implementation of SELp is just the same as the implementation of
SELECT. However, register usage improves significantly. It is not unusual to have
a record with many fields, each of which is calculated by selecting from the same
variable (or some small set of variables). If the selections are done before the
record is created, every field must be held in registers simultaneously. By using
the selection paths inside the records, the value of one field can be fetched and
disposed of before the next field is started.

This is particularly important for large records. In fact, some records have more
fields than the machine has registers! The translation of Standard ML structures
and functors often leads to large records. After the CPS has been through its
last transformation, it will be necessary that each CPS variable corresponds to
one machine register. If a large RECORD expression needed all of its arguments in
registers simultaneously, this would be impossible. Thus we see the need for the
path notation in the fields of records. (See also Chapter 11, which describes the
spill phase of the compiler.)

So, the record-path optimization is: If a variable w is bound by SELECTing field
i from variable v, and (w,p) is used as the field of a RECORD (where p is a path),
then the record field is rewritten as (v, SELp(i, p)). If there are no other uses of w,
of course, the original SELECT will then be removed by dead-variable elimination.

Arithmetic constant folding: When an arithmetic operator is applied to
constant arguments, the operation can be removed and the (constant) result of
the operation can be substituted for the variable bound by the operation. If the
particular constant arguments will lead to a runtime exception (e.g., an overflow),
the operation should not be eliminated, of course. The following kinds of constant
expressions are folded (we use boldface to denote compile-time constants):

• boxed(INT i, t, f) → f ; the boxity test on an unboxed value yields false
(“applies the false continuation”).

• boxed(STRING s, t, f) → t; all strings are boxed.

74 Chapter 6. Optimization of the CPS

• boxed(VAR v, t, f) → t, when v is bound by a RECORD operation.

• 1× x → x, and x× 1 → x.

• 0× x → 0, and x× 0 → 0.

• i× j → ij, provided ij is representable.

• x div 1 → x.

• x div y → (x/y), provided x/y is representable.

• 0 + x → x, and x + 0 → x.

• x+y → (x+y) (here the informal notation is a bit inadequate!), provided
the result is representable.

• x− 0 → x.

• x− y → (x− y) provided the result is representable.

• ~i → − i.

• slength(STRING s) → |s|.

• ordof(STRING s, INT i) → si.

Folding of comparison operators: The numeric comparison operators can
also be folded. There are two kinds of simplifications possible on an expression
that compares a and b, branching to c or d depending on which is greater:

PRIMOP(>, [a, b], [], , [c, d])

If both a and b are integer constants, then expression c or d can be substituted
for the PRIMOP depending on whether a > b. Similarly, if a is the minimum integer
or b is the maximum integer, d can be chosen. There may be range information; if,
for example, b is the result of taking the length of an array and a is the integer 0,
then the comparison must yield false (d can be chosen). One can go to great lengths
to maintain range information using dataflow analysis or subtyping, though we do
not do much of this.

On the other hand, it could be that nothing useful is known about a and
b, but c and d are the same (modulo α-conversion, that is, renaming of bound
variables). In this case c (or d) can be substituted for the PRIMOP expression, and
the comparsion is unnecessary.

Analysis of operations on the store: In principle, an assignment into the
store followed by a fetch from the same location can be analyzed, eliminating the
fetch. But it is not clear that this kind of optimization is worthwhile. After all, in
a mostly functional programming style encouraged by ML, most of the variables
on which such analysis would be fruitful—in a conventional compiler— are likely
to be “functional,” nonstore variables. Potentially more important, there may in

6.1. Constant folding and β-contraction 75

the future be parallel implementations in which sequential store analysis is not
guaranteed to be accurate. Thus, we eschew such optimizations.

Exception-handler shortcuts: If a gethdlr operation occurs in the “scope”
of a sethdlr, that is,

PRIMOP(sethdlr, [v], [], [(. . . PRIMOP(gethdlr, [], [w], [B]) . . .)])

with no intervening sethdlr, then B{w �→ v} can be substituted for the gethdlr.
In fact, this is just a specialization of the fetch-after-store optimization described
in the previous paragraph. Why is it “permissible” to make this optimization
when we are refraining from optimizing the more general case of fetch and store
operations? The answer lies in the distinguished nature of the current-exception-
handler location in the semantics of the CPS. We have more control over the
exception-handler location than over most locations; in particular, we are willing to
guarantee that each thread in a multithreaded system will have its own exception-
handler location, and will not be able to alter the other threads’ handlers.

Another optimization on exception handlers is that if there are two successive
sethdlr operations (perhaps with other intervening instructions) that install the
same handler, the later one can be eliminated. Also, if a sethdlr is “dead” (there
is no gethdlr or exception-raising arithmetic operator before the next sethdlr),
it can be removed; although we do not implement this optimization at present.

Boolean idiom simplification: In Standard ML, the result of a comparison
(etc.) is a member of bool , an ordinary two-constructor datatype. Just as in any
programming language where a “Boolean” value is just a piece of data, there is a
slight mismatch between the conditional jump provided by the machine and the
operator in the programming language. To implement a > b, we must (in the
CPS language, or on a typical machine) do a conditional branch to store either
a 0 or 1 into a register; to add insult to injury, the next thing that’s typically
done is a conditional branch on the resulting value. Thus, the expression if a >
b then E1 else E2 translates into:

FIX([(c, [z], PRIMOP(ineq, [VAR z, INT 0], [], [E1, E2]))],
PRIMOP(>, [a, b], [], [APP(c, [INT1]), APP(c, [INT0])]))

We would like this to reduce to

PRIMOP(>, [a, b], [], [E1, E2])

This reduction can be done by in-line expansion (β-expansion) of the function c.
However, the body of c (the expressions E1 and E2) might be quite large, and
the “ordinary” β-expander is wary about expanding large functions; consider the
result:

PRIMOP(>, [a, b], [], [
PRIMOP(ineq, [INT 1, INT 0], [], [E1, E2]),
PRIMOP(ineq, [INT 0, INT 0], [], [E′

1, E′
2])])

Now there are two copies of E1 and E2. Of course, we know that by further
constant folding of the ineq operators, half of these expressions will fall away. But

76 Chapter 6. Optimization of the CPS

the β-expander doesn’t know that, and we have chosen not to add this kind of
heuristic to the expansion phase. Instead, we will recognize this idiom specially,
and treat it as a kind of β-contraction of the function c.

6.2 Eta reduction and uncurrying

In lambda calculus the transformation λx.M(x) → M can be used, providing
x is not free in M . This is called η-reduction. In continuation-passing style, the
expression M must be quite simple if it is applied to arguments, so we have the
following transformation:

FIX([. . . , (f, [x1, x2, . . .], APP(g, [x1, x2, . . .])), . . .], B) →
FIX([. . . , . . .], B{f �→ g})

provided that f �∈ {x1, x2, . . .}. This just means that we can use g everywhere that
f was referred to previously, and we can drop the definition of f entirely.

As described in Section 2.2, some functions escape—their call sites cannot
be predicted at compile time. On the other hand, some functions are known—
all their call sites are known at compile time. Known functions can be called
more efficiently, since specialized parameter-passing mechanisms can be devised
for them. But what about a function that both escapes and has some known
call sites? It is not possible to specialize the parameter-passing mechanism of an
escaping function, yet we would like the known sites to be able to call the function
efficiently. The solution is to split an escaping function f into two functions f and
f ′. The function f will simply call f ′, and f ′ will be a known function. This is just
an inverse η-reduction, and an early phase of the CPS optimizer will “eta split”
every function in this way.

FIX([. . . , (f, [x1, x2, . . .], M), . . .], B) →
FIX([. . . , (f, [x′

1, x
′
2, . . .], APP(f

′, [x′
1, x

′
2, . . .])), (f

′, [x1, x2, . . .], M), . . .], B)

Later, β-reductions will ensure that all of the known call sites actually call f ′.
It may seem pointless to perform both η-reducation and inverse η-reduction.

However, there may be a cascade of several η-reductions that repeatedly rename
f1 to f2, f2 to f3, and so on, followed by just one inverse η-reduction.

It might seem that typical programmers don’t often write functions— suscepti-
ble to η-reduction—that just call other functions with the same arguments. How-
ever, the match compiler and the CPS converter are so clumsy that they introduce
many opportunities for reductions.

Another useful transformation is uncurrying. A function f = λx.λy.B is said
to be curried because it accumulates its arguments x and y one at a time; on the
other hand, g = λ(x, y).B is uncurried.

Uncurried known functions that pass tuples of arguments are optimized by the
argument-flattening rule (page 70) of the constant-folding phase of the optimizer.
It is useful to identify curried functions and uncurry them in the η-phase so that
argument expansion can be applied to them later. The transformation is:

6.2. Eta reduction and uncurrying 77

FIX([. . . , (f, [x1, x2, . . . , c], FIX([(g, [b, k], A)], APP(VAR c, [VAR g]))), . . .], B)
→ FIX([. . . ,

(f, [x′
1, x

′
2, . . . , c

′],
FIX([(g′, [b′, k′], APP(VAR f ′, [VAR x′

1, VAR x′
2, . . . ,

VAR c′, VAR g′, VAR b′, VAR k′]))],
APP(VAR c′, [VAR g′]))),

(f ′, [x1, x2, . . . , c, g, b, k], A),
. . .],

B)

Let us examine this transformation in the context of an ordinary ML function
that gets compiled into continuation-passing style:

fun f(x) = let fun g(b) = x+b in g end

or, more concisely, fun f x b = x+b.
Now, let us imagine that there are several calls of the form f i j in the pro-

gram. We would like to optimize those calls so they don’t have to build a new
function g on the application f(i). One good way to simplify f i j is just to insert
i+ j in place of it—this is just β-reduction! The only reason we might conceivably
want to avoid β-reduction is if there are several calls to f , and if the body of g is
large; because in this case we would not want to duplicate the body several times.

Here, the body of g is quite small: It is the expression x + b. For pedagogical
purposes, we will imagine that this x+ b is quite a large expression, so β-reduction
is not desirable.

The continuation-passing-style representation of f (in ML notation) is

fun f(x,c) = let fun g(b,k) = k(x+b) in c(g) end

The uncurrying transformation turns this into

fun f(x’,c’) = let fun g’(b’,k’) = f’(x’,c’,g’,b’,k’)

in c’(g’)

end

and f’(x,c,g,b,k) = k(x+b)

Later, other transformations will remove the useless arguments to g′, so what
remains is

fun f(x’,c’) = let fun g’(b’,k’) = f’(x’,b’,k’)

in c’(g’)

end

and f’(x,b,k) = k(x+b)

Consider the size of the body of f . Now it is quite small: It is just the function
definition of g′, which is of constant size regardless of the size of the original body
of g. So this expression can get β-reduced wherever f is applied to an argument.

78 Chapter 6. Optimization of the CPS

(See Chapter 7 for a fuller discussion of the criteria for in-line expansion of function
calls.)

The expression f i j, in continuation-passing style, is

let fun c1(g1) = g1(j,c0) in f(i,c1) end

After β-reduction, it becomes:

let fun c1(g1) = g1(j,c0)

in let fun g’(b’,k’)=f’(i,b’,k’) in c1(g’) end

end

Now the local function c1 is called exactly once and doesn’t escape, so it can be
β-reduced:

let fun g’(b’,k’)=f’(i,b’,k’) in g’(j,c0) end

Similarly, g′ is called exactly once and doesn’t escape, so it will be β-reduced:

f’(i,j,c0)

Voila! The function call has been uncurried.
This seems like a complicated set of transformations. It is important to re-

alize that only the first transformation (described in the more formal notation
above) is necessary to define “uncurrying.” The other transformations—defined
more formally in Section 6.1— are quite general purpose, and just “clean up” the
optimization.

6.3 Cascading optimizations

Very often the result of doing one constant fold or β-contraction is an expression in
which another constant fold is newly possible. It might be desirable to accomplish
all of the transformations in one pass over the program, but this may not be
possible. Certainly, in the general case of the λ-calculus, a program cannot be
reduced to normal form in one pass. What we have is not the general case, since
the only β-redexes we reduce are the functions applied just once.

Let us examine the possibility of a simple one-pass, top-down or bottom-up
method. Consider the expression

PRIMOP(+, [INT 1, INT 2], [x], [PRIMOP(+, [VAR x, INT 5], [y], [B])])

which sums the integers 1, 2, and 5. We assume that x is not free in B.
Clearly a simple bottom-up method cannot do much with the inner expression

PRIMOP(+, [VAR x, INT 5], [y], [B])

since nothing is known about x. We will have better success with a top-down
rewrite that considers the outer expression

PRIMOP(+, [INT 1, INT 2], [x], [C])

6.3. Cascading optimizations 79

and yields C{x �→ 3}, and then

PRIMOP(+, [INT 3, INT 5], [y], [B])

which yields B{x �→ 3, y �→ 8}.
So the simple-minded top-down approach works better than the simple-minded

bottom-up approach: In this way, continuation-passing style is unlike ordinary
expression trees, in which the bottom-up approach is more natural. Of course, the
CPS is indeed the result of traversing the original expression tree in a bottom-
up fashion! The top-down traversal of the CPS corresponds closely to the way
machine code is generated for it, and to the way CPS is “meant” to be evaluated.

On the other hand, consider dead-variable analysis. Assume that x and y are
not free in B within the expression

SELECT(2, VAR a, x, SELECT(4, VAR x, y, B))

Then the inner SELECT can be removed, since y is dead. Now, x is dead and the
outer SELECT can be removed, leaving just the expression B. But this is bottom-up!
And a top-down approach could not work easily; x cannot be removed before y. Of
course, this is not surprising; in conventional dataflow optimizers[1], dead-variable
analysis is done “backwards” along control-flow edges.

Clearly, a completely top-down pass can do all the arithmetic constant folding,
and a completely bottom-up pass can cascade the dead-variable elimination. Now,
consider the expression

SELECT(2, VAR r, a,
PRIMOP(−, [INT 3, INT 3], [z], [
PRIMOP(∗, [VAR z, VAR a], [x], [B])]))

The variable a is live until a constant folding is done that yields z = 0 and therefore
x = 0. Assuming a is not free in B, then a is now dead and the SELECT can
be removed. This demonstrates that dead-variable elimination is dependent on
constant folding. It is also possible to make examples using only RECORDs and
SELECTs, if the multiplication-by-zero optimization seems too contrived.

On the other hand, consider

FIX([(f, [x, c], PRIMOP(+, [VAR x, VAR x], [y], [APP(VAR c, [VAR y])]))],
RECORD([(VAR f, OFFp 0)], r,
APP(VAR f, [INT 4])))

In this expression, the function f cannot be β-contracted because it is used in more
than one place. But after dead-variable analysis removes the record r, then f can
be contracted and the constant folding of x+x can take place. This demonstrates
that constant folding is dependent on dead-variable analysis.

The interdependence of these kinds of optimizations, some of which cascade
naturally from the bottom up and others that cascade top down, makes an algo-
rithm that operates in a constant number of passes unlikely. We have chosen a

80 Chapter 6. Optimization of the CPS

multipass approach that, in each pass, makes as many transformations as is con-
venient. We keep repeating the contraction passes until no more contractions are
obtained. (In fact, to avoid pursuing diminishing returns, we usually adjust the
compiler to stop after any pass that finds fewer than 15 contractions.)

The contractions performed in the β-contraction and constant-folding pass do
not lead to η-redexes, so it is unnecessary to include η-reduction in the cycle
of repetitive contractions; one pass of η-reduction suffices before commencing β-
contraction. However, β-contractions can lead to redexes of the “uncurry” opti-
mization. We have found that exactly two passes of β-contraction are necessary
before the η phase (which also performs uncurrying), in order to uncover all the
uncurry redexes (see figure 15.7).

6.4 Implementation

Each pass of the contraction phase is preceded by a data-gathering pass that
collects information about the definition and use of each variable. The usage
information of interest are the following quantities: used, the number of times a
variable is referred to (not including its definition); and escapes, the number of
times a variable is passed as an argument or stored in a record (etc.).

Useful facts about the definition of each variable are stored, but the kinds of
facts depend on the kind of definition:

• For functions, we record the formal parameters (a variable list) and the body
(a continuation expression). We also record the “arity” of each call; that is,
whether any of the actual parameters are in fact RECORDs, and the size of
those records. We also note any conditions that prevent the β-contraction
of the function; these will be discussed below.

• For records, we remember the components (fields) of the record; this is a list
of value× accesspath pairs.

• For variables bound by SELECTs, we record the variable denoting the record
selected from, and the integer offset.

• For variables bound as formal parameters of functions, we record the highest
field number guaranted to be selected (if any) on all paths. This is for the
“liberal” function-argument flattening, as discussed in Section 6.1.

• For variables bound by integer arithmetic primops, we record upper and lower
bounds for the possible range of values. This helps to fold some comparisons,
though we do a very primitive job at present.

• For other variables (e.g., variables bound by other primops, free variables of
the entire expression, etc.) we record nothing.

There are several conditions that can prevent a function application from being
contracted in this phase. The simplest is that a function used in more than one

6.4. Implementation 81

place cannot be contracted because that would require copying the body; such
copying is reserved for the β-expansion optimizer.

Another situation is related to the inverse-η optimization described in Sec-
tion 6.2. When the inverse η-reduction has just been performed, splitting a func-
tion f(x, y) = B into two functions f(x′, y′) = f ′(x′, y′) and f ′(x, y) = B, the
function f ′ is used in exactly one place. But we don’t want a β-contraction to oc-
cur here, as that will just undo the inverse-η transformation before anything useful
has come of it. (The useful consequences of the inverse-η are that the applications
of f to arguments will be replaced by applications of f ′.) To prevent this harmful
β-contraction, whenever there is an escaping function f whose body is just the
application of another function f ′, we mark f ′ as irreducible. (Of course, we can
perform contractions within the body of f ′; irreducible just means that we won’t
reduce applications of f ′.)

Similarly, the uncurrying optimization leads to a situation containing a function
whose reduction would defeat the purpose of the optimization. To avoid this, in
any situation such as

FIX(f, [a, c], FIX([(h, [b, k], B)], APP(VAR c, [VAR h])))

where the body B is just a chain of selections followed by the application of a
known function g, we mark g as irreducible.

It is a simple matter to collect all of this information by a single pass over the
program. Then the actual transformation pass is just a tree traversal that goes
top down and then bottom up; we illustrate with an example—the (simplified)
fragment of the reduce function that optimizes the SELECT operator:

reduce(SELECT(i,v,w,e)) =

if not(used w) then (click(); reduce e)

else case (get(rename v))

of {info=RECinfo vl,...} =>

(click();

newname(w,rename(nth(vl,i)));

reduce e)

| _ => SELECT(i, rename v, w, reduce e)

This is not quite right, because it pretends that record fields are simple values
(without accesspaths), but it illustrates the important points. The newname func-
tion binds a variable to a value; any occurrence of that variable is to be replaced
by the value. (In this case, w is to be replaced by the ith field of the record.)
The calls to rename are just looking up variables to see if they have been bound
to values (constants or other variables) by previous calls to newname. The click

function records the fact that an optimizing transformation has been found; this
will help decide whether another pass of the constant folder is worthwhile.

Two different optimizations are applied here. The first one (if not (used w))
tests whether the variable w is dead, in which case the SELECT can be dropped
entirely and replaced by e. The second tests whether v is bound directly by a

82 Chapter 6. Optimization of the CPS

RECORD operator, in which case the ith value used in making the record can be
used directly. If neither optimization applies, then the SELECT is preserved intact;
but in any case, the subexpression e must be reduced.

So there is a top-down component of the algorithm that renames variables, and
a bottom-up component that rebuilds the transformed expression tree.

The η-phase (which performs η-reduction, inverse η-reduction, and uncurrying)
is separate from the constant-folding phase (which performs β-contractions, dead-
variable elimination, and so on). This is because the different kinds of variable-
renaming that take place in the two different phases interact in a complicated way
that was a source of many bugs when they were combined into one pass. For the
inverse-η phase, it is not necessary to gather information in a pre-pass, since the
η-redexes are self-contained and independent of context. In this phase, as in the
constant-folding phase, a rename function—implemented using a hash table—is
used to perform variable substitutions.

CHAPTER SEVEN

BETA EXPANSION

In-line expansion of functions—substitution of function bodies for function calls,
otherwise known as β-reduction—is a useful but dangerous optimization. Because
each expansion makes a copy of the function body, the size of the program can
grow with each transformation. Although each in-line expansion makes the pro-
gram faster—in principle—by reducing the number of function calls executed, a
larger program in a finite-size memory may actually run slower than a smaller
program that does more operations, because it may incur more page faults or
cache misses. Furthermore, in-line expansion of recursive programs can increase
the program size infinitely—in effect, “executing” the program at compile time; or
worse, “optimizing” parts of the program that might never be executed (because
of control-flow decisions dependent on runtime input).

On the other hand, in-line expansion is most useful indeed. Many constant-
folding optimizations are expressed in terms of static binding: “if a variable r,
bound by a RECORD operator, is the operand of a SELECT,” and so on. It is often
the case that a variable r1 is bound in one function, passed as an argument to
a formal parameter r2, where it is used in an interesting way. There must be
some way for the compiler to connect r1 with r2. Ordinary dataflow analysis is
usually inadequate, because the formal parameter r2 will be associated with many
different actual parameters from the several calls to the function. The interesting
information about r1 is not likely to be valid for all the other variables bound to
r2 by function calls. What is necessary is a specialization of the function body
for this call site, so r2 is equivalent to r1. The simplest way to achieve this is by
in-line expansion, or β-reduction of the CPS.

To see the utility of β-reduction, consider an example. A general-purpose list-
mapping utility, count, takes a predicate p and a list l as (curried) arguments, and
counts the number of elements of l that satisfy p. We wish to count the number
of zeros in a list of integers:

fun count p = let fun f (a::r) = if p a then 1+f(r) else f r

| f nil = 0

in f

end

fun curry f x y = f(x,y)

val countzeros = count (curry (fn (w,z)=> w=z) 0)

83

84 Chapter 7. Beta expansion

This program is explained in detail in Section A.4.
In continuation-passing style, it looks roughly like this:

fun count(p,c) =

let fun f(l,k) =

case l

of (a::r) =>

let fun j b = if b=true

then let fun h n = k(1+n)

in f(r,h)

end

else f(r,k)

in p(a,j)

end

| nil => k(0)

in c(f)

end

fun curry (f,d) =

let fun e(x,g) =

let fun m(y,q) =

let val s = (x,y)

in f(s,q)

end

in g(m)

end

in d(e)

end

let fun eq(w,z) = if ieql(#1 w, #2 w)

then z(true)

else z(false)

in curry(eq, fn u => u(0, fn v => count(v, c0)))

end

This may look verbose; but, in fact, the direct output of the CPS conversion
algorithm is even more verbose. All the optimizations short of β-expansion have
already been done, reducing the expression to its present state (we are assuming
that count and curry are referred to from other places besides the one shown
here, or else a β-contraction could have been done).

Note that the = function must return a Boolean result as the argument of its
continuation; this Boolean is then tested inside the count function. This is exactly
the kind of idiom recognized and optimized by the constant folder, if only the entire
idiom were inside the same function. As it is, since there may be other calls to
count, the optimizer can’t be sure that p always refers to =.

Now let us do a β-expansion of the application of curry:

85

fun count(p,c) = let . . . end

fun curry (f,d) = let . . . end

let fun eq(w,z) = if ieql(#1 w, #2 w) then z(true)

else z(false)

fun e(x,g) = let fun m(y,q) = let val s = (x,y)

in eq(s,q)

end

in g(m)

end

in (fn u => u(0, fn v => count(v, c0))) (e)

end

Now there are several β-contractions (β-reductions of functions called only once,
which are guaranteed not to expand the program size) that can be performed.
Then the SELECT operators (#1 and #2) can be constant-folded inside m. Here is
the result:

fun count(p,c) = let . . . end

fun curry (f,d) = let . . . end

let fun m(y,q) = if ieql(0,y) then q(true) else q(false)

in count(m, c0)

end

At this point we are stuck again, unless we perform a β-expansion of the call
to count:

let fun m(y,q) = if ieql(0,y) then q(true) else q(false)

in let fun f(l,k) =

case l

of (a::r) => let fun j b =

if b=true

then let fun h n = k(1+n)

in f(r,h)

end

else f(r,k)

in m(a,j)

end

| nil => k(0)

in c0(f)

end

end

86 Chapter 7. Beta expansion

Now there are several contractions and constant folds that can be performed:

let fun f(l,k) =

case l

of (a::r) => if ieql(0, a)

then let fun h n = k(1+n)

in f(r,h)

end

else f(r,k)

| nil => k(0)

in c0(f)

end

The resulting program is much more efficient than the original one. Most of the
memory traffic has disappeared; continuation closures need not be constructed, 2-
tuple arguments need not be boxed, Booleans need not be represented in registers,
and so on. All of these are optimizations across procedure boundaries that become
intraprocedural after the β-expansion.

On the other hand, consider the recursive call to f in the following program:

fun f(i,s,k) =

if i < Array.length(a)

then f(i+1, s + (a sub i), k)

else k(s)

An in-line expansion of this function call is just “loop unrolling”:

fun f(i,s,k) =

if i < Array.length(a)

then let val i’ = i+1

val s’ = s + (a sub i)

in if i’ < Array.length(a)

then f(i’+1, s’ + (a sub i’), k)

else s’

end

else k(s)

Now, when i + 1 < length(a), the function f will examine the next element
without jumping back to the “top” of the loop. There is not much to be gained by
this transformation: The jump instruction itself is not extremely costly; perhaps
(on an exposed-pipeline machine) the calculation of ai and s + ai can be executed
in parallel with testing i′ < length(a). On the other hand, there are many cases
where a little bit of loop unrolling gives more substantial benefits than in this
example. What we need is a general heuristic for deciding about expansion.

7.1. When to do in-line expansion 87

7.1 When to do in-line expansion

It is unwise to use every possible opportunity for in-line expansion, since this
can lead to nontermination of the compiler. For example, expanding the call to
f in the program above leads to a new call to f , which can then be expanded,
ad infinitum. We need an objective criterion for deciding which expansions to
do; actually performing the expansion itself is the easy part, requiring just some
variable substitution and renaming.

Unfortunately, no computable criterion will lead to optimal results. We can
define an optimal sequence of β-reductions as the one that leads to the smallest
β-equivalent program, or the one that leads to the fastest β-equivalent program
under a certain size. But optimizing programs subject to these criteria is easily
seen to be equivalent to the halting problem. Consider

(λx.0)(B)

where B is a possibly terminating calculation in a strict lambda calculus. The
smallest β-equivalent program is either 0 or (λx.xx)(λx.xx), depending on whether
B halts, and to determine the answer requires solving the halting problem for B.

Our approach—which must be taken by any “optimizing” compiler— is to find
a good, but suboptimal, program in a reasonable length of time. To this end, we
have some heuristics that are all embellishments of a simple rule.

Simple rule: If the body of a function f is smaller than the overhead required
for a function call, then f may be in-line expanded with no danger of increasing
the program size.

This rule is obviously reasonable: If each transformation makes the program
smaller, then no sequence of transformations can expand the size of the program
unduly. And this rule, suitably modified, will prove quite useful. But it is inter-
esting to note that it is almost vacuous, as written. In an “ordinary” compiler, a
procedure call has a lot of overhead: storing the arguments into the stack frame,
saving registers, generating a return address, jumping to the procedure; inside the
called procedure, fetching the arguments, storing the result, fetching the return
address, jumping to the return point. But in the CPS language, the procedure call
itself is nothing more than a jump with arguments; all notions of return address
are encoded into the continuation, which is just one of the arguments. And the
arguments themselves are passed in registers; good register targeting by the final
code generator can ensure that the arguments are already in the right registers by
the time of the call. So the “overhead” of a procedure call is just a jump instruc-
tion. Since the body of f must have an APP node in it (i.e., a jump instruction),
there is no function f satisfying the premise of the rule.

However, the simple rule expresses the intuition behind the heuristics we use,
so the reader is asked to suspend disbelief and imagine that a function call has
some nontrivial expense.

Now, after a function f is expanded, its formal parameters have been replaced
by actual parameters, some of which may be constants. The constant folder will

88 Chapter 7. Beta expansion

go to work on these variables, contracting the body of f . For example,

FIX([(f, [x, y], PRIMOP(>, [x, INT 0], [], [B, C]))], . . .
. . . APP(VAR f , [INT 5, VAR c]) . . .)

After f is β-reduced, INT 5 will be substituted for x, leading to a contraction of the
comparison that shrinks the body of f by perhaps more than half. Here’s another
example:

FIX([(h, [x, y], SELECT(0, x, w, B))], . . .
. . . RECORD([(VAR a, OFFp0), . . .], r,

APP(VAR h, [VAR r, VAR c])) . . .)

In this case, after r is substituted for x, then the SELECT can be folded, with a
substituted for w in B. Better yet, if this is the only remaining use of r, then the
RECORD itself will disappear.

We can modify the simple rule to take into account the shrinkage of the in-
line-expanded function:

Unattainable rule: If the body of f , after expansion, will shrink by further
optimizations to be smaller than the overhead required for a function call, then f
may be in-line expanded.

This is unattainable, of course, because we cannot predict (using a computable
function) whether future reductions will sufficiently shrink f . But we can estimate,
and this is our approach.

It is useful to introduce the notion of a nontrivial definition and a nontrivial
use. A binding (definition) of a variable is nontrivial if there is some constant-
folding optimization that can contract variables similarly bound. Informally, a
nontrivial definition is one that tells us something concrete about the structure of
the variable; so a formal parameter of a function tells us nothing, and is trivial,
but a variable bound as the result of a RECORD operation tells us the sources of the
components of that record, so is nontrivial.

Trivial definitions include: formal parameters of functions; variables bound by
SELECT and OFFSET operators; variables bound as the result of the primops !,
subscript, ordof, alength, slength, gethdlr, *, +, -, div, ~, fadd, fsub, fdiv,
and fmul.

Nontrivial definitions include: the names of functions bound by FIX operators,
and variables bound by RECORD operators.

One might wish to consider variables bound by makeref to be nontrivial, if one
were optimizing operations on the store. Also, some of the arithmetic operations
might be considered to bind nontrivial results, to the extent that the properties of
the results can be analyzed at compile time.

A nontrivial use of a variable x is one which might lead to constant folding
if x has a nontrivial definition. Variables used nontrivally are: arguments of the
SELECT, OFFSET, and SWITCH operators; the function applied by an APP; arguments
of the arithmetic primops *, +, ~, -, div, fadd, fsub, fdiv, fmul; arguments of
the primops alength, slength, boxed; and arguments of the integer and real
comparison primops.

7.2. Estimating the savings 89

Trivial uses are those that just store into data structures or pass as parameters:
arguments of RECORD, actual parameters of APP, the argument of makeref or :=,
and so on.

A value in the CPS language is either a variable or a constant. We define a
value to be nontrivial if it is a constant or a nontrivial variable.

We can use these concepts to estimate the effect of β-reducing a call to a
function f . If there are actual parameters of the call that are nontrivial; and the
corresponding formal parameters have nontrivial uses within f , then there is likely
to be some constant folding within the expanded body of f .

The amount of constant folding likely depends on the nature of the nontrivial
definitions and uses. For example, if the definition is an integer constant, and
the use is a comparison against another constant, then a large chunk of code (one
branch of the comparison) will drop away. On the other hand, if the use is a
comparison against another variable, then no shrinkage will occur—though the
function body will be “more ripe” for future contraction. If the definition is by a
RECORD operator, and the use is a SELECT, then one operation can quite predictably
be removed; but perhaps that will have been the last use of the record, which can
now be removed by dead-variable elimination, or perhaps the selected value can
participate in further constant folding.

Thus, it’s complicated to predict exactly how much shrinkage we can expect
from the matching of nontrivial definitions to nontrivial uses. But by computability
theory, we knew in advance that accurate predictions are impossible. We can
simply improve the heuristics.

7.2 Estimating the savings

Our more refined heuristic uses the notion of the savings S that might be obtained
from a particular match of nontrivial argument a to nontrivial formal parameter
p. S is measured in units of “operations,” where we count a SELECT or an add as
one operation, the creation of a record of size n as n + 2 operations, and so on.
Operations are meant to correspond roughly to RISC-machine instructions.

We can measure the size of a function body in operations as follows:

O(RECORD(�v, w, B)) = |�v|+2+O(B), because each of the fields of the record must
be stored, and there are a couple of instructions of overhead in record creation.

O(SELECT(v, w, B)) = 1 +O(B)

O(OFFSET(v, w, B)) = 1 +O(B)

O(APP(f,�a)) = 1 + |�a|, because the arguments must be marshaled into the
right registers before the call. In fact, the arguments are likely to be in the right
registers already; but on the other hand, the closure-introduction phase may add
more arguments to hold free variables of the function. So it’s not easy to predict
the cost of a function application.

O(FIX([(f1, v1, B1), (f2, v2, B2), . . .], E) =
∑

(O(Bi) + 1) + O(E). The cost
of entering a function is independent of the number of arguments it has, since

90 Chapter 7. Beta expansion

arguments are passed in registers; but each function is likely to appear in a closure
(if it is not a known function), requiring an operation for closure building. In
general, we will not try to take account of the cost incurred for representing free
variables in closures.

O(SWITCH(v, [B1, B2, . . .])) = 4 +
∑

(O(Bi) + 1). A few instructions are required
to set up the indexed jump; the jump table contains one address per case.

O(PRIMOP(p,�v, �w, [c1, c2, . . .])) = |�v|+ |�w|+
∑
O(ci); a crude estimate of the cost

of a primop is to add up the number of arguments and results. It would seem
that an integer add would not require three instructions; but the implementation
is likely to have to strip tags from arguments and/or add tags to results. In any
case, this is an approximation.

Given this notion of size, we can estimate the savings S of a particular match
of an actual parameter a with a formal parameter p when expanding a function f :

• If a is a function that escapes just once (at the current call, of course),
and p does not escape (it is just applied to arguments, if anything), then
six operations are saved. This is because an expansion of f will cause a to
escape no longer. Escaping functions (after the inverse η-reductions) are just
calls to corresponding known functions; when the last call to a is replaced
by a call to the known function (via another in-line expansion), then the
definition of a can disappear. The size of a simple function such as a that
just calls another function is about six operations.

• If a is a record and p is used in n different SELECT operations, then n oper-
ations are saved.

• If a is a record that escapes just once (at the current call), and p does not
escape, then the saving is the size (number of fields) of a plus two; because
after expansion, SELECT optimizations will cause a to become dead, and the
record creation won’t be necessary. (A record “escapes” if any operation
other than SELECT is applied to it, e.g., if it’s passed as an argument to a
function, put in another record, etc.)

• If a is an integer constant, and p is the argument of a SWITCH (with n
possible continuations ci) or comparison against a constant (with n = 2
continuations), then the saving is k + ((n − 1)/n)(

∑
O(ci)); that is, all but

one of the continuations will drop away and so will the cost of doing the
indexed jump (k = 4) or comparison (k = 2).

• If a is a numeric constant, and p is a two-argument primop with one argument
constant, or p is a one-argument primop, then the saving is the size of the
primop (number of arguments plus number of results).

• If a is a numeric constant, and p is a two-argument primop with the other
argument nonconstant, then the saving is the size of the primop discounted

7.2. Estimating the savings 91

by a factor of 0.25. The factor is somewhat arbitrary, and expresses the like-
lihood that the other argument will eventually become constant and enable
future folding. Similar discounting (of a much bigger potential savings) is
done for comparisons against nonconstant arguments.

If more than one of these savings applies to an actual–formal pair, the savings
are cumulative.

There is another opportunity for savings: if a function f is called in just one
place, then the definition of f can be eliminated after the call is expanded. Of
course, such functions are expanded by our “constant-folding” phase, not by the
β-expansion phase. But what about a function called in just two or three places?
If that function gets expanded in all the places it is called, then the definition will
go away. So, in estimating the savings for expanding a particular function, we
should take into account the probability that all the calls will be expanded. The
fewer calls there are to a function f , the more willing we should be to do in-line
expansion.

Suppose we are considering the expansion of f(�a). Let b be the size of the
body of f , let S be the estimated savings for this call to f (i.e., the predicted
shrinkage of the body using the criterion above), and let k be the cost of the APP

node that we are considering expanding. Then the program as a whole will grow
by b−S−k if this node is expanded. But if we consider that there are only m calls
to the function and that the body will go away if we expand them all, then we
can pretend that 1/m of the body will disappear for each call, so the cost becomes
b− S − k − b/m.

Our estimate of the savings is mostly conservative; we are counting savings that
will predictably happen right away. But the result of doing one β-expansion might
be a cascade of further optimizations that is difficult to predict. So we can err on
the optimistic side by adding a “fudge factor”: We will perform a β-expansion even
if it appears to have a positive net cost, or, in particular, if b−S − k− b/m < C
for some constant C. We can then fine-tune C experimentally to see what value
leads to best results.

The savings estimate is not invariant under β-contraction and constant folding,
and the estimate is quite speculative. For this reason, we perform as much β-
contraction and constant folding as possible before trying any β-expansion. There
may be several passes of the constant folder—until few or no more constant fold-
ings can be found—and then a pass of hoisting (see Chapter 8), a pass of common-
subexpression elimination (see Chapter 9), and a pass of expansion. This will
lead to more redexes for the constant folder; we will perform several more passes
of constant folding until quiescence is reached, and then another pass of the ex-
pander, and so on. We call each sequence—of several passes of contraction (until
quiescence) followed by a pass of expansion—a “round” of optimization.

92 Chapter 7. Beta expansion

7.3 Runaway expansion

With luck, after several rounds of optimization, the β-expansion phase will find
no more optimizations to do. The heuristics that estimate future contraction
attempt to prevent, for the most part, any runaway expansion. However, since
the estimates of constant folding within an expanded function are not completely
accurate, there are programs for which infinite expansion will result. For example,
a recursive function f might, according to the estimate, be worth expanding; but
then in each expanded version there is another call worth expanding.

It is essential that a compiler must terminate on all inputs: on legal inputs
with a correctly translated program and on illegal inputs with an appropriate error
message. Since the front end of our compiler detects all errors before conversion
into continuation-passing style, we expect the CPS optimizer to terminate in every
case with a continuation expression equivalent to the input. We don’t require that
the output expression be optimal in any sense, or even that it be more efficient
than the input (though these qualities are to be hoped for as much as possible).

Therefore, we adjust the heuristics in two ways to guarantee termination. First,
we make the expander very reluctant to β-expand any function application within
the body of another expansion. That is, if we replace APP(f,�a) by the body B of
f (with appropriate substitutions), we should be more reluctant to expand other
applications within the new copy of B.

We can formalize this as follows: Let n be the nesting level of β-expansion,
with all APP nodes in the program at the beginning of the expand phase having
n = 0, the APP nodes in the expressions substituted for depth-zero nodes having
n = 1, and so on. We introduce a constant D and introduce it into the formula
for evaluating the “goodness” of a β-expansion:

b− S − k − b/m < C − nD

Thus, applications at depth zero are evaluated by the original formula, but at high
depth an expansion must look astonishingly good to satisfy the criterion.

There are two justifications for this “fudge factor.” The first is that it will work:
At sufficiently high depth nh it will become impossible to satisfy the criterion, and
the number of possible redexes at depth less than nh is bounded. (Note that nh

is not constant but depends on the input program.) The second justification is
that after one expansion, it is really worth doing some contractions to improve the
accuracy of the estimation function.

The parameter D guarantees that each round of β-expansion will terminate.
But it could be that each round of β-expansion finds something to do, which leads
to another round of optimization, ad infinitum. To solve this problem we introduce
another fudge factor E; let r be the number of rounds so far (with the first round
having r = 0); then the new criterion is

b− S − k − b/m < C − nD − rE

After enough rounds, r will become sufficiently high that the criterion will be
difficult (and after more rounds, impossible) to satisfy.

CHAPTER EIGHT

HOISTING

Often it is useful to narrow or broaden the scope of a variable in the continuation-
passing-style representation. Narrowing the scope of a variable means moving its
definition “down” in the CPS expression, nesting it deeper within the scopes of
variables bound by other operators. Broadening the scope of a variable means
moving the operator that defines it “up” in the CPS expression, or “hoisting” it.
We will call all of these scope-changing transformations “hoisting.”

These transformations are useful because they can reduce the dynamic fre-
quency of execution of an operation. For example, if an operation is within a loop
(or a function executed many times), hoisting it up can move it outside the loop
(or the function) so it is executed only once. Or, if an operation produces a value
that’s used only inside one branch of a conditional, hoisting it down inside that
branch will avoid executing the operation when the other branch is taken.

8.1 Merging FIX definitions

There is another use for hoisting transformations. Recall that closures—the data
structures that implement functions with their free variables—are represented with
the closed function in the first slot of a record and the free variables in the other
slots. We can play an interesting trick with this representation if two functions
have the same free variables. Consider the functions f and g in this example:

fun h(a,b) = let fun f(x,y) = x*a+y*b

fun g(i) = i+a+b

in . . .

end

The “ordinary” representation of f and g would be as two separate closures:

fun h(a,b) = let fun f’((f’’,a,b),x,y) = x*a+y*b

val f = (f’,a,b)

fun g’((f’’,a,b),i) = i+a+b

val g = (g’,a,b)

in . . .

end

93

94 Chapter 8. Hoisting

Since the functions f and g have a compatible set of free variables, they can share
a closure, as follows:

fun h(a,b) = let fun f’((f’’,g’’,a,b),x,y) = x*a+y*b

fun g’((g’’,a,b),i) = i+a+b

val f = (f’,g’,a,b)

val g = f+1

in . . .

end

This abuse of notation is meant to indicate that the value g is derived by offsetting
the pointer f by one word. The variables f ′′ and g′′ are just the “code pointers”
(closed functions) for f and g; the record (g′′, a, b) is the same object as (f ′′, g′′, a, b)
but seen starting at the second field. The variable g is implemented as a pointer
into the middle of the f record. From the point of view of any caller of g, the
closed function g′ is obtained by fetching at location g, just as with an ordinary
closure.

Closure sharing saves time (for building closures) and space, and will be dis-
cussed in much more detail in Chapter 10. For the moment, we just consider
the conditions required for closure sharing. A closure c for a function f can be
constructed at the point in the CPS program where the function definition FIX

is encountered. More generally, the closure can be constructed in any scope in
which all the free variables of f are defined. If the free variables are all defined
much earlier than the place where f is defined, then the definition of f (the closure
creation) could be hoisted upward to that point.

On the other hand, if a function f is defined early and not used until a much
more deeply nested scope, the function definition could be “hoisted downward”
toward the point of first use.

Two functions can share the same closure if there is any scope before the first
use of either in which all of their free variables are defined. Clearly this is the
case for functions in the same set of mutually recursive functions (in the same FIX

of the CPS language). (For reasons to be explained in Chapter 10, the names of
functions defined in the same FIX need not count as free variables.) So we will
say that functions defined by the same FIX will definitely share a closure, and
functions not defined by the same FIX will not; and one of the jobs of the hoist
phase is to bring functions into the same FIX.

To return to the example above, we could write f and g as mutually recursive
(using an and in ML instead of another fun), even though they don’t actually have
any recursive calls:

fun h(a,b) =

let fun f(x,y) = x*a+y*b

and g(i) = i+a+b

in . . .

end

Now f and g are guaranteed to share a closure, since they are in the same FIX.

8.2. Rules for hoisting 95

In summary, each occurrence of a FIX operator in the CPS language may create
a closure; if different FIXes can be merged together, the number of closure creations
will be reduced; the criterion for merging FIXES is a simple free-variable analysis.

One complication involves the known functions, which do not usually require
a closure. Any FIX that contains only known functions will not require a closure,
unless the functions have so many free variables that they won’t fit in registers.
Thus, the cost of elaborating such a FIX is zero. Thus, our hoist phase sometimes
finds it useful to split a FIX into two or more sets of mutually recursive functions
(though there can be no mutual recursion between the different sets). This is
for the following reason: It may be that all the escaping functions (that require
closures) can be hoisted up or hoisted down to merge with other FIXes; but perhaps
some of the known functions cannot (because of scope rules involving their free
variables). In this case, splitting the FIX allows the closure-requiring escaping
functions to be merged with other closures, leaving only the known functions in a
FIX that requires no closure at all.

8.2 Rules for hoisting

Given that the goal of the hoist phase is to move CPS operators up or down in the
expression tree to minimize the dynamic frequency of execution, or to minimize
the number of distinct FIX definitions, what are the rules that must be followed?
When is it appropriate to move one operator above another? The rules for hoisting
can be expressed in terms of free variables of subexpressions.

We start with something simple:

SELECT(i1, v1, w1, SELECT(i2, v2, w2, E))→

SELECT(i2, v2, w2, SELECT(i1, v1, w1, E))

if w1 �= v2

That is, we can interchange the two SELECT operators as long as the second one
does not use the value produced by the first. Note, however, that if w1 = v2 then
the right-hand expression violates the scope rules for the CPS given in Section 2.3.
So we can summarize this rule by saying that two different SELECT operators may
be interchanged as long as that does not cause scope rules to be violated.

Indeed, this is the situation for any pair of “purely functional” operators (those
that don’t change or examine the store, or raise exceptions). Let each of op1(E)
and op2(E) be any of the following:

SELECT(i, v, w, E)
OFFSET(i, v, w, E)
PRIMOP(p,�v, �w, [E]), p ∈ {alength, slength}
PRIMOP(p,�v, �w, [E, F]), p any comparison operator
PRIMOP(p,�v, �w, [F, E]), p any comparison operator
SWITCH(p,�v, �w, [F1, . . . , E, . . . , Fn])

FIX(�f, E)
FIX([(f1, v1, B1), . . . , (fi, vi, E), . . . , (fn, vn, Bn)], F)

96 Chapter 8. Hoisting

Then op1(op2(E)) → op2(op1(E)), provided that scope rules are not thereby
violated.

Furthermore, purely functional operators may be exchanged with “impure”
operators:

PRIMOP(p,�v, �w, [op1(E)])→ op1(PRIMOP(p,�v, �w, [E]))

op1(PRIMOP(p,�v, �w, [E]))→ PRIMOP(p,�v, �w, [op1(E)])

for any primop p, provided that scope rules are not violated.
Finally, function-definition sets can be merged together, again providing that

scope rules are not violated. Let H be the list of mutually recursive function
definitions (g1, �w1, C1), . . . , (gn, �wn, Cn). Then the transformations are:

FIX([(f1, �v1, B1), . . . , (fn, �vn, Bn)], FIX([H], E))→

FIX([(f1, �v1, B1), . . . , (fn, �vn, Bn),H], E)

FIX([(f1, �v1, B1), . . . , (fi, vi, FIX([H], D)), . . . , (fn, �vn, Bn)], E)→

FIX([(f1, �v1, B1), . . . , (fi, vi, D), . . . , (fn, �vn, Bn),H], E)

Scope violations are not difficult to check. Assuming the the left-hand side of
a rewrite rule does not violate scope rules, the right-hand-side expression can be
checked by a constant number of free-variable-set operations. For example, the
last transformation described is legal provided that vi �∈ fv(Cj) for all j. Clearly,
it is necessary to know what the free variables of each subexpression are; and as
transformations are performed in the hoist phase, the free-variable information
must be kept current. In fact, maintaining free-variable sets is the most tedious
part of the implementation of this phase.

8.3 Hoisting optimizations

Given these ground rules, which hoisting transformations actually improve the
code? We have taken a conservative approach: An operator will be hoisted (down
or up) only when the transformation is guaranteed to reduce execution time.

For operators other than FIXes, we will attempt to push the operator inside of
a SWITCH or branching PRIMOP. That is, in an expression

op1(op2(op3(op4(· · · (SWITCH(v, [C1, . . . , Ci, . . . , Cn])) · · ·))))

if the scope rules will allow, we will push op1 inside the ith branch of the SWITCH

or comparison, resulting in

op2(op3(op4(· · · (SWITCH(v, [C1, . . . ,op1(Ci), . . . , Cn])) · · ·)))

8.3. Hoisting optimizations 97

The resulting program will be faster whenever the ith branch is not taken, and
will be no slower when it is taken. This ignores issues of instruction scheduling,
an optimization performed in a later phase (Section 14.3.2), which might render
the preceding sentence untrue.

If op1 can modify the store, then this optimization is impermissible. Obviously,
an assignment operation (:= or update) must be evaluated no matter which branch
is taken, if the program so specifies. But the same is true of arithmetic operators!
Consider the program

let val j = i*i

in if x then j else i

end handle Overflow => 0

This program will return 0 if i2 > maxint; otherwise it will return i if x = false or
i2 if x = true. If the optimizer rewrites the program as

(if x then i*i else i)

handle Overflow => 0

then its behavior will be different. We are careful to avoid doing any optimization
that changes the behavior of the program.

Perhaps it would be a good idea to hoist variables out of function bodies, that
is,

FIX([(f1, �v1, B1), . . . , (fi, vi,op1(E)), . . . , (fn, �vn, Bn)], F)→

op1(FIX([(f1, �v1, B1), . . . , (fi, vi, E), . . . , (fn, �vn, Bn)], F))

provided that scope rules allowed. If fi is evaluated more than once, on average,
then this optimization will probably save time (unless fi gains another free variable,
which must be fetched from the closure; but we will ignore this effect). But we
can have no guarantee of fi’s evaluation, so we have not made such optimizations.
Thus, loop-invariant operations are in general not hoisted because the loops are
not known to execute for at least one iteration. However, in-line expansion and
common-subexpression elimination may partially solve that problem, as will be
discussed in Chapter 9.

Finally, we will hoist FIX operators up or down as necessary to merge with
other FIXes, thus saving on closure creation. We take a greedy approach: We
consider expressions bottom up, and for each FIX we first attempt to push it down
to join another FIX (or go inside one branch of a conditional); if that fails, we pull
the FIX up as far as its scope will allow, hoping that it will eventually merge with
a FIX at an outer scope.

CHAPTER NINE

COMMON SUBEXPRESSIONS

When the same computation is performed twice in the execution of a program, the
second computation can be eliminated and the result of the first used instead. This
is called “common-subexpression elimination.” Of course, to implement this as an
optimization it must be possible to identify statically a sequence of operations with
a repeated computation.

We will say that if an operator op2 binds a variable v2 within the scope of a
variable v1 bound by operator op1, and we can calculate at compile time that v2

will always have the same value as v1, then we can eliminate op2 and substitute
v1 everywhere for v2. Thus, our version of common-subexpression elimination
(CSE) requires that the eliminated expression must be lexically dominated by an
equivalent expression.

As an example, consider the ML expression

val z = a*b*c+a*b*c

This will be translated into CPS as

PRIMOP(*,[VAR a, VAR b], [u], [

PRIMOP(*, [VAR u, VAR c], [v], [

PRIMOP(*, [VAR a, VAR b], [w], [

PRIMOP(*, [VAR w, VAR c], [x], [

PRIMOP(+, [VAR v, VAR x], [z], [...

Now, the operator PRIMOP(*,[VAR a, VAR b],[w]...) is in the scope of the vari-
able u that is bound by an identical computation. So that operator can be removed,
and uses of w can be replaced by u:

PRIMOP(*,[VAR a, VAR b], [u], [

PRIMOP(*, [VAR u, VAR c], [v], [

PRIMOP(*, [VAR u, VAR c], [x], [

PRIMOP(+, [VAR v, VAR x], [z], [...

Now, of course, the binding of x is redundant, and x can be replaced by uses of v:

PRIMOP(*,[VAR a, VAR b], [u], [

PRIMOP(*, [VAR u, VAR c], [v], [

PRIMOP(+, [VAR v, VAR v], [z], [...

99

100 Chapter 9. Common subexpressions

An eminently satisfactory result!
According to the scope rules for CPS, if a variable w contains a FIX operator

in its scope, then the bodies of the functions defined by the FIX are also in the
scope of w. This means that common subexpression elimination can take place
across function boundaries:

SELECT(i,v,w,

. . .

FIX([(f,[a,c], SELECT(i,v,u,B))],E)

The selection of the ith field from v is performed outside the function f , then
repeated within it. The inner SELECT can be removed, and w substituted for u
within B. This means that each time f is called (from E or recursively from B),
there will be some savings. We ignore the fact that w might have to be fetched
from the closure of f , which is just as expensive as the SELECT just eliminated! Of
course, if f is a known function, there will be no such expense, unless the extra
value w in registers causes a spill.

Our scope rule for CSE optimizations is a bit restrictive. Sometimes there are
common subexpressions, neither of which dominates the other:

SWITCH(VAR v, [

PRIMOP(+, [VAR a, VAR b], x, A),

B,

PRIMOP(+, [VAR a, VAR b], y, C)])

Here the operation a + b is performed in two different branches of the SWITCH. We
might like to lift the PRIMOP above the SWITCH, and use the result both in A and
C. However, there are two problems with this (as described in the discussion of
hoisting, in Chapter 8):

1. This will waste time if the branch B is taken most often; and

2. The add might overflow, yielding an erroneous result if B would have been
taken.

Of course, problem 2 is not an issue for “pure” operators such as SELECT and
RECORD.

However, consider the following example:

FIX([(f, [a,c], PRIMOP(+, [VAR x, VAR y], [z], [

PRIMOP(+, [VAR z, VAR a], [u], [

APP(VAR c, [VAR u])])]))],

PRIMOP(+, [VAR x, VAR y], [w], [

APP(VAR f, [VAR w, VAR k])]))

There are two copies of the addition x+y, and neither is in the scope of the other.
However, the add that binds w can quite legitimately be hoisted above the FIX:

101

PRIMOP(+, [VAR x, VAR y], [w], [

FIX([(f, [a,c], PRIMOP(+, [VAR x, VAR y], [z], [

PRIMOP(+, [VAR z, VAR a], [u], [

APP(VAR c, [VAR u])])]))],

APP(VAR f, [VAR w, VAR k]))])

This is permissible because any control path that leads to the FIX will inevitably
lead to the first instruction of its body; so, since scope rules permit in this case,
we can hoist the instruction from the body of the FIX to just above it. (The only
way that this would be prohibited by scope rules is if the instruction in question
referred to one of the functions defined by the FIX.)

Now, the binding of z is within the scope of w, so a CSE optimization is
possible:

PRIMOP(+, [VAR x, VAR y], [w], [

FIX([(f, [a,c], PRIMOP(+, [VAR w, VAR a], [u], [

APP(VAR c, [VAR u])]))],

APP(VAR f, [VAR w, VAR k]))])

To see the power of this kind of optimization, we consider loop-invariant hoist-
ing: that is, taking a computation within a loop that computes the same value
each time, and moving it above the loop so it executes only once. We take the
loop

let fun loop(0,s) = s

| loop(i,s) = loop(i-1,a+b+s)

in loop(n,0)

end

This translates (with some optimization) into CPS as:

FIX([(loop, [i, s, c],

PRIMOP(ieql, [VAR i, INT 0], [

APP(VAR c, [VAR s]),

PRIMOP(-, [VAR i, INT 1], [j], [

PRIMOP(+, [VAR a, VAR b], [x], [

PRIMOP(+, [VAR x, VAR s], [y], [

APP(VAR loop, [VAR j, VAR y, VAR c]

)])])])]))],

APP(VAR loop, [VAR n, INT 0, VAR k]))

We would like to hoist the loop-invariant computation a + b, but we can’t be sure
that n > 0, so this transformation is not possible. However, the β-expansion phase
is likely to unroll the first iteration of the loop:

102 Chapter 9. Common subexpressions

FIX([(loop, [i, s, c],

PRIMOP(ieql, [VAR i, INT 0], [

APP(VAR c, [VAR s]),

PRIMOP(-, [VAR i, INT 1], [j], [

PRIMOP(+, [VAR a, VAR b], [x], [

PRIMOP(+, [VAR x, VAR s], [y], [

APP(VAR loop, [VAR j, VAR y, VAR c])])])])]))],

PRIMOP(ieql, [VAR n, INT 0], [

APP(VAR k, [INT 0]),

PRIMOP(-, [VAR n, INT 1], [j’], [

PRIMOP(+, [VAR a, VAR b], [x’], [

PRIMOP(+, [VAR x’, INT 0], [y’], [

APP(VAR loop, [VAR j’, VAR y’, VAR k])])])])]))

Now, several operations—including the comparison—can be hoisted above the FIX;
also the addition x + 0 can be simplified:

PRIMOP(ieql, [VAR n, INT 0], [

APP(VAR k, [INT 0]),

PRIMOP(-, [VAR n, INT 1], [j’], [

PRIMOP(+, [VAR a, VAR b], [x’], [

FIX([(loop, [i, s, c],

PRIMOP(ieql, [VAR i, INT 0], [

APP(VAR c, [VAR s]),

PRIMOP(-, [VAR i, INT 1], [j], [

PRIMOP(+, [VAR a, VAR b], [x], [

PRIMOP(+, [VAR x, VAR s], [y], [

APP(VAR loop, [VAR j, VAR y, VAR c])])])])]))],

APP(VAR loop, [VAR j’, VAR x’, VAR k]))])])])

Finally, the binding of x is in the scope of x′, so a CSE optimization can be
performed:

PRIMOP(ieql, [VAR n, INT 0], [

APP(VAR k, [INT 0]),

PRIMOP(-, [VAR n, INT 1], [j’], [

PRIMOP(+, [VAR a, VAR b], [x’], [

FIX([(loop, [i, s, c],

PRIMOP(ieql, [VAR i, INT 0], [

APP(VAR c, [VAR s]),

PRIMOP(-, [VAR i, INT 1], [j], [

PRIMOP(+, [VAR x’, VAR s], [y], [

APP(VAR loop, [VAR j, VAR y, VAR c])])])]))],

APP(VAR loop, [VAR j’, VAR x’, VAR k]))])])])

Thus the loop-invariant computation a+ b has been safely hoisted out of the loop.
The interesting thing is that none of the individual transformations—β-expansion,
code hoisting, CSE elimination— know anything about loops!

CHAPTER TEN

CLOSURE CONVERSION

Continuation-passing style is meant to approximate the operation of a von Neu-
mann computer; each operator of the former corresponds to one (or at most a few)
instructions of the latter. Selecting the ith field of a record in the CPS is like a
fetch with constant offset on a computer, and so on.

A “function” in machine language is just an address in the executable program,
perhaps with some convention about which registers hold the parameters—very
much like a “jump with arguments.” The notion of function in the CPS is almost
the same: The structure of CPS expressions is that an APP is the last thing a
function does; the result of an APP is always the result of its parent expression.
Thus the APP is also a “jump with arguments.” If a “return” from a procedure (in
the usual sense) is desired, then a continuation function must be made: One of
the arguments to the called function will itself be a function c; the called function
is expected to call c with its result.

However, the function definitions of continuation-passing style are a bit more
powerful than those of conventional computers. FIX definitions in CPS have nested
static scope; if the function f is statically nested inside the function g, then f can
refer to the variables of g. The notion of a function as a machine-code address does
not provide for free variables. The problem is solved in Algol-like languages by the
method of access links, meaning that the activation for the function f contains a
pointer to the activation record for g. Furthermore, if it is desired to pass f as an
argument to another function (that need not be statically nested within g), then
a pair comprising the machine-code address for f and the activation record for g
is passed.

Such a pair is called a closure, though there are other ways to represent closures.
A function with free variables is said to be open; a closure is a data structure
containing both the machine code address of an open function, and bindings for
all the free variables of that function. The machine-code implementation of the
function knows to find the values of free variables in the closure data structure.

When the function f can be returned as the result of g, or stored into a data
structure and invoked after g returns, then the variables in the activation record
of g may now be used after g has returned. This means that activation records
can no longer be stored on a stack, but must instead be allocated on a heap. The
idea of heap-allocated closures to implement higher-order functions dates back to

103

104 Chapter 10. Closure conversion

the Landin’s implementation of a strict λ-calculus in the early 1960’s [57].
In many implementations, the notion of closure is divorced from that of activa-

tion record , so activation records may still be stack allocated whereas closures are
heap allocated and do not point into the stack. Instead, copies of the free variables
of a function f are put into f ’s closure, which therefore does not need to point
to any activation record. To make copies of variables, it must be that the vari-
ables are immutable (i.e., cannot be modified after they are created); otherwise,
assignments to one copy would not be seen by users of the other copies. In ML, of
course, this is the case; Section 10.5 discusses how this approach works for other
languages.

In a compiler that uses continuation-passing style, it is usual to dispense en-
tirely with the notion of activation record, and use closures exclusively. The context
of the currently executing function is held in registers; and in CPS, there is never
any other function context “suspended” and still live. Instead, there is the “closure
of the continuation function.”

10.1 A simple example

Let us consider the simplest possible example: a curried addition function.

val add = fn x => fn y => x+y

The closure for add is trivial, since add has no free variables; there is just a “code
pointer” for the function:

�add � � machine code for λx.λy.x + y

Now, when add is applied to the argument 5

val g = add 5

the closure for fn y => x+y must provide the free variable x:

x

�

5

g � � machine code for λy.x + y

When g is applied to the argument 10, the function fn y => x+y executes
with y bound to 10. But the closure pointer must also be accessible to the func-
tion while it executes, so the value x can be fetched when needed. The caller of
fn y => x+y must provide this closure pointer. Now, the caller may have been
passed fn y => x+y as an argument, in which case all it gets is the closure pointer.
To invoke the function, the code pointer is fetched out of the closure, the argument

10.1. A simple example 105

10 is provided, and the closure pointer is put in a “standard” place. But the caller
does not need to know the format of the closure, or how many free variables there
are, or what their values are.

We will represent closure creation and closure access explicitly in the CPS
notation; we will call this closure-passing style. Let us first translate the add
example into continuation-passing style:

fun add(x, k) = let val g(y, c) = c(x+y)

in k(g)

end

Now, for closure-passing style, each function will be passed its own closure in
addition to its other arguments. To pass a function as an argument (or store it
into a data structure), one passes the closure only. To invoke such a closure c, one
fetches the first field f and applies f to its arguments including c. To construct a
closure for a function g, one makes a record containing a modified version of g and
all the free variables of g. To extract a free variable from a closure, one simply
uses SELECT. Here’s the add example:

fun add’(add’’, x, k) = let val g’(g’’, y, c) =

let val x’ = #1(c)

val c’ = #0(c)

in c’(c,x’+y)

end

val g = (g’,x)

val k’ = #0(k)

in k’(k,g)

end

When add is invoked, its first argument will be a closure pointer add’’. Since add

has no free variables, it has no use for a closure; but the caller of add had no way
of knowing this. The other arguments are an integer x and a continuation closure
k. The first thing it does is define a closed function g’, and then a closure record g

containing g’ and the value x. When g is invoked from some other context, what
will happen is that g’ will be entered with its formal parameter g’’ bound to the
closure g.

An example of a closure call is the invocation of k. The closed function (“code
pointer”) k’ is fetched from the zeroth field of k; the other fields of k might
contain free variables but we don’t know or care about them. Then we pass to k’

the closure k and the argument g.

Once g’ is invoked, it fetches the free variable x from its closure by #1(c).
Note that the format of g’s closure must be known by the creator of the closure
(val g=(g’,x)) and by the implementation of g’ itself. But the creation of the
closure can always take place right after the definition of the function.

After this closure-passing transformation, it will be the case that no function
has free variables; clearly this is the case with add’ and g’ in our example.

106 Chapter 10. Closure conversion

10.2 A bigger example

fun h(x) = x * w

fun f(g,y) = g(y) + h(z)

val i = (f,1)

let fun m(n) = n+t

val p = f(m,1)

in ...p+m(e)...

end

Figure 10.1. An example: ML source code.

For the remainder of this chapter, we will discuss closure representations in the
context of a somewhat larger example, shown in figure 10.1. The escaping function
f calls a known function h and also calls its argument g, which of course escapes.
In our example, the actual parameter m in the call to f corresponds to the formal
parameter g.

Figure 10.2 shows the translation of this program into continuation-passing
style. We will use an informal ML notation here, as the cexp datatype notation
would get too cumbersome. Note that in ML, a multiple-argument function such
as f is really considered to take a single n-tuple argument, so g and y are really
just fields of some variable arg.

Now, the function m is passed as an argument to f ; the function k is passed to
h, and so on. Each of these functions has free variables (t is a free variable of m,
a and c are free variables of k, etc.). The implementation must represent k using
some data structure that contains the machine code for computing a+b (etc.) and
also contains the values for a and c.

When g is called from within f , the machine-code pointer must be extracted
from the closure, arguments y and j must be put in registers, and the jump (i.e.,
to m) must be made. But m must also be able to access its closure; so it is
important that the closure pointer g (e.g., m) be placed in a standard register
before the jump—in effect, the closure pointer is an extra argument to the function.
Then m can extract free variables through this pointer. The format of the free
variables in the closure need not be standardized: The creator of the closure (at
fun m(n,r)...) and the code that extracts free variables (at n+t) need to know
the format, but the caller (at g(y,j)) need not know where they are, or indeed how
many there are. However, the location of the code pointer within the closure must
be standardized so the caller can find it and jump to it. A typical representation
puts the code pointer at field 0 of the closure record, and the free variables at
other offsets from the closure pointer, perhaps in a linked list of closures.

10.2. A bigger example 107

fun h(x,d) = let val t1 = x * w

in d(t1)

end

fun f(arg,c) =

let val g = #0(arg)

val y = #1(arg)

fun j(a) =

let fun k(b) =

let val t2 = a+b

in c(t2)

end

in h(z,k)

end

in g(y,j)

end

val i = (f,1)

let fun m(n,r) =

let val q = n+t

in r(q)

end

fun s(p) = ...p...m...e...

val u = (m,1)

in f(u,s)

end

Figure 10.2. An example: CPS code.

Notice that h is never passed as an argument; it appears in the expression
h(z, k) in function position. Since we know all the call sites, we can choose the
representation of h more freely; for example, we could require all the callers to
pass the free variable w as an extra argument, so no closure at all is required.

In general, escaping functions must be compiled using a standard closure mech-
anism; known functions can use cheaper, more specialized representations [83].

One interesting trick [54, 13] is to let several functions share a single closure.
The functions m and s might ordinarily be represented like this:

e

�

�s � � machine code for s

� � � machine code for m

t
m�

��

108 Chapter 10. Closure conversion

The closure for m has the value for the free variable t; the closure for s has free
variables m and e.

Now consider this data structure:

e

t

�

�

s �

m �

� machine code for s

� machine code for m

The value s is really a pointer to the middle of the closure record! The caller
of s does not know this, however, and when it extracts what it thinks is field 0,
it gets (correctly) the code pointer for s. Of course, the machine-code functions
m and s must know the closure format; in particular, s derives the closure value
m by subtracting from its own closure pointer, without a fetch! (This is the use
of the mysterious OFFSET primitive of the CPS.) Since there is some overhead for
record creation—creating a record of size n costs Bn + C operations, for some B
and C—the closure-sharing trick is quite useful; in this case there is a savings of
B + C per instance of m/s.

The data structure shown here is built by the lines

val m = (m’,s’,t,e)

val s = offset(m,1)

of figure 10.3.
Closure sharing is particularly useful with mutually recursive functions. Con-

sider two such functions f and g. In a representation without closure sharing, the
closure f must contain the closure g as a free variable, and vice versa. This is
therefore a cyclic data structure, which is inconvenient to construct at runtime.

In the Standard ML of New Jersey compiler, we will perform closure sharing
exactly on functions defined by the same FIX operator. Thus, nonnested mutually
recursive functions will share a closure. Functions with compatible free-variable
sets (such as m and s in our example) that do not appear in the same FIX will not
share a closure. However, the hoist phase will bring such functions into the same
FIX, so in our example they would appear as

fun m(n,r) =

let val q = n+t

in r(q)

end

and s(p) = ...p...m...e...

where the and in our source-language notation indicates that they are pro forma
mutually recursive. In summary, the way that the CPS optimization phase com-
municates to the closure-introduction phase about what functions should share
closures is by grouping them into the same “mutually recursive” definition.

10.3. Closure-passing style 109

10.3 Closure-passing style

Some compilers [83, 26, 54] perform these closure analyses as part of their trans-
lation from lambda calculus or continuation-passing style into machine code. But
the representation of closures is not at all machine dependent; furthermore, closure
representations can get quite complicated, and it is useful to have a clean notation
in which to express them [52, 11]. Therefore, we separate closure introduction from
machine-code generation, and we use CPS notation to express closure creation and
use. The reader should note that representing closures as explicit records does not
require the use of continuations; it has been done in compilers based on ordinary
lambda calculus [32].

Our example—as transformed into closure-passing style—is shown in figure 10.3
After closure conversion, the function k is now a closure record; k′ is a func-

tion without free variables, which can thus be represented as just a machine-code
pointer; the formal parameter k′′ will be bound to k by any caller.

The function h is known, so does not need a closure; however, its free variable
w must be passed as an extra argument w′; this in turn means that w is a free
variable of f . If f is known, w would become an extra argument; but since f
escapes, w goes into its closure.

10.4 The closure-conversion algorithm

The closure-conversion algorithm must produce a CPS-expression in which no
function defined by any FIX operator has free variables other than the names of
functions defined by all the FIXes.

We first describe closure conversion with single-variable continuations, that
is, without the callee-saves convention described in Section 10.6. These are the
strategies that will be employed:

• Functions that escape will require a closure of a standard form; the function
pointer (the variable defined by the FIX operator for the closed function) will
be at field 0 of the closure, and free variables, or pointers to other records and
closures containing free variables, will be at other fields of the closure. The
closure itself will be passed as the first argument to the escaping function.

• All the functions defined in the same FIX will share a closure.

• A known function will not, in general, require a closure; instead, its free
variables will be passed as extra arguments to the function. This means
that any function g that calls a known function f will effectively have its
free-variable set augmented by the free variables of f .

• No function may have more than N arguments, where N is the number
of registers on the target machine (but see Section 13.4 for a more precise
bound). This means that if a known function has a arguments and b free
variables, and a + b > N , then the free variables cannot all be passed as

110 Chapter 10. Closure conversion

fun h(x,d,w’) = let

let val t1 = x*w’ fun m’(m’’,n,r) =

val d’ = #0(d) let

in d’(d,t1) val t = #2(m’’)

end val q = n+t

val r’ = #0(r)

fun f’(f’’,arg,c) = in r’(r,q)

let end

val g = #0(arg)

val y = #1(arg) fun s’(s’’,p) =

let

fun j’(j’’,a)= val e=#2(s’’)

let val m=offset(s’’,-1)

fun k’(k’’,b)= in ...p...m...e...

let end

val a = #1(k’’)

val t2 = a+b val m = (m’,s’,t,e)

val c’’=#2(k’’) val s = offset(m,1)

val c’= #0(c’’) val u = (m,1)

in c’(c’’,t2) in f’(f,u,s)

end end

val c’’’= #1(j’’)

val k = (k’,a,c’’’)

val z’ = #2(j’’)

val w’’ = #3(j’’)

in h(z’,k,w’’)

end

val w = #2(f’’)

val z = #1(f’’)

val j = (j’,c,z,w)

val g’ = #0(g)

in g’(g,y,j)

end

val f = (f’,z,w)

val i = (f,1)

Figure 10.3. Closure-passing style.

10.4. The closure-conversion algorithm 111

extra arguments. Instead, a closure will be made, and passed as a single
extra argument. This closure need not contain a function pointer (i.e., the
name of the closed function defined by the FIX operator), since all the callers
will know which function to pass the closure to.

• If a known function f calls an escaping function g defined in the same FIX, or
calls a known function h in the same FIX that requires a closure, then f will
use the same closure as g or h instead of having its free variables passed as
extra arguments. This is because a closure is required for that FIX anyway,
so it costs little for f to share that closure. As described above, the closure
need not contain the function pointer for f .

There are at least two kinds of circularity here. First consider the known
functions f , g, and h, where f calls g and g calls h. Then the free-variable set of
g must be augmented by the free variables of h, and the free variables of f must
be augmented by those of g (including the ones from h). But what if h calls f?

Fortunately, this circularity converges quite simply; in fact, the analysis is
exactly the same as “live-variable” dataflow analysis [1] in a conventional compiler.
There is a close correspondence between free variables in the CPS and statically
live variables in the flowgraph of a conventional compiler. We may write the
dataflow equations as follows: Let the initial free variables of f be V0(f), let E(f)
be the set of functions applied in the body of f , and let K be the set of known
functions in the program. We desire a minimal mapping V such that

V0(f) ∪

⎛
⎝ ⋃

g∈E(f)∩K

V(g)

⎞
⎠ ⊂ V(f)

One way to calculate V given V0 is to iterate, that is, repeatedly calculate Vi

using

Vi(f) = Vi−1(f) ∪

⎛
⎝ ⋃

g∈E(f)∩K

Vi−1(g)

⎞
⎠

When Vi(f) = Vi−1(f) for all f , then Vi = V , and the iteration is finished.
Since each iteration where Vi(f) �= Vi−1(f) must add at least one variable to at
least one known function’s set, the number of iterations is bounded by the number
of variables times the number of functions. In practice, the fixed point is usually
found much sooner. A fuller description of this technique may be found in almost
any book on dataflow optimization [1].

There is another kind of circularity. Consider known functions f, g, h such that
f calls g and g calls h. The free variables of f are augmented by those of g, and
then g’s are augmented by h’s; in the next iteration f ’s will be augmented again.
But suppose that f has by now acquired more free variables than the machine
has registers, so it needs a closure. And then suppose in the next iteration that
g acquires so many free variables that it too needs a closure. Since g will use a

112 Chapter 10. Closure conversion

closure, the free variables of f no longer need to include those of g; this means
that f might not need a closure.

Rather than try and solve this problem optimally, we will use an approximation:
Let Ci be the set of functions that seem to require a closure in iteration i; this
includes all escaping functions and some known functions. We will say that Ci ⊂
Ci+1; that is, if f seems at any point in the iteration to require a closure, then we
will never reverse that decision.

If f calls any function defined in the same FIX that requires the closure, we
will make f use the closure. Let F(f) be the set of functions defined by the same
FIX as f ; let N be the number of registers on the target machine.

Vi(f) = Vi−1(f) ∪

⎛
⎝ ⋃

g∈E(f)−Ci−1

Vi−1(g)

⎞
⎠

Ci = Ci−1 ∪ {f | N < |Vi−1(f)|} ∪ {f | Ci−1 ∩ E(f) ∩ F(f) �= φ}

This simple algorithm determines which functions require a closure.

10.5 Closure representation

Once it is decided whether a function must have closures, there remains the ques-
tion of how its free variables are to be arranged in the closure record. There are
two fundamental approaches, which we shall call flat and linked:

• A flat closure representing the free variables vi of a function f is a single
record containing each of the values vi. In addition, for an escaping function,
the closure record contains the function pointer.

• A linked closure for a function f statically nested inside a function g is a
record containing the free variables of f that are not free in g (e.g., that
are bound by g), and also containing a pointer to the closure for g. For an
escaping function, of course, the function pointer for f will also be present,
occupying the zeroth field.

The method of linked closures is very much like the method of static links (also
called access links) [1] in implementations of block-structured languages such as
Algol or Pascal. The variables free in f but not free in g are a subset of the
parameters and local variables of g; so the closure for f is very much like the
activation record of g.

Why might one method be preferable over the other?

• With the flat method, the same variable may appear in several different
closures. In a language where variables may be modified after their creation,
this will lead to incorrect results, as the modification of one copy of the
variable will not be seen by holders of the other copy. Fortunately, variables

10.5. Closure representation 113

in ML are immutable, so this is not an issue. And in other languages, it is
usually possible to tell statically which variables cannot be modified after
creation. The mutable variables can then be put in memory (in “cells”) [52],
and pointers to these variables can be copied freely.

• The linked method may lead to smaller closures than the flat method; if a
function has many free variables that are also free in the enclosing function,
then all of these variables take up just one word in the closure. This leads
to faster closure creation, and perhaps faster garbage collection.

• The flat method has faster access time, since the value of any free variable of
the currently executing function can be obtained with just one fetch. With
the linked method, the access time of a variable is proportional (at worst) to
the level of static nesting of the executing function.

• The flat method remembers a parsimonious set of values. With the linked
method, there is the danger that a large data structure, which will never
again be used, will be pointed to by an outer function. Consider:

fun f(x) = let val y = very_large_object

fun g(z) = let fun h(w) = w+x+z

in j(y); h

end

in g(3)

end

Using flat closures, a closure for h is of size 3—one word for the function
pointer and one word each for x and z. Using linked closures, each h closure
is also of size 3—one word for the function pointer, one word for z, and one
word for the pointer to a closure for g. But unfortunately, the closure for g
contains a pointer to a huge data structure y, which is quite useless to h. As
long as h is live, y cannot be reclaimed, as it could if flat closures were used.
This is a serious disadvantage of linked closures; see Chapter 12.

There are many variations on flat and linked closures [12]:

• Linked as necessary: Like linked, except that the link (the pointer to the
enclosing closure) is omitted if it is not necessary. This will be the case if none
of the function’s free variables are free in the statically enclosing function.

• Grouped functions: Several functions can share a closure, as described on
page 107.

• Optimally linked: When a closure is created, there may be several other
closures in scope that together contain many of the desired variable bindings.
The compiler can take advantage of this, and represent the new closure as
a record of pointers to the minimal set of other closures that will cover the
set of free variables. A variant of this, in which we minimize the product

114 Chapter 10. Closure conversion

of closure size times maximum link depth, is provably NP-complete. Note
that the “optimality” takes no account of the space-reclamation problems
mentioned above.

• Skip lists: In linked closures, each closure could include a link not only to
the immediately enclosing function, but to a closure several levels up. By
clever arrangement of these extra links, we could guarantee that no more
than log n fetches are required to access a variable n nesting levels up. This
would increase the size of each closure by approximately 1 pointer.

• Path compression: In any strategy using links, there may be a link to a
closure f from which we need only one element x. Instead of including f in
the new closure, we could include x directly. This costs no extra space, but
now each reference to x will be faster, at the expense of an extra fetch when
we construct the closure.

• Heuristic path compression: Flat closures economize on access time at
the expense of closure-building time; linked closures economize on closure size
at the expense of access time. Heuristic path compression is a compromise
between these two approaches. A value is copied into each scope where it
is directly used, but other free variables—those free in a given function only
because they are free in internally nested functions—must be accessed by
static links.

Clearly, there is an infinite variety of closure-representation strategies.

10.6 Callee-save registers

The original function f made two subroutine calls, to g and h. Neither of these was
a tail call, so each call requires a continuation to be made, respectively, j and k.
Each continuation requires a closure. Thus the implementation of f requires the
construction of two closures of size 3 and 4, for a total cost of 7B + 2C, assuming
B instructions are required to store each word, and there are C instructions of
overhead for each record creation. It would be nice if j and k could use the
closure-sharing trick, but they cannot: The variable a is free in k but bound by
j, so it cannot yet exist when the closure for j is made but must exist when k is
created.

A conventional compiler on a conventional machine will often use registers
to hold local variables and temporaries (e.g., internal nodes of expression trees).
When one procedure calls another, both procedures may use the same registers
for different purposes, and there must be some convention for saving the registers
and restoring them. For example, it could be that the calling procedure (the
“caller”) must assume that the procedure it calls (the “callee”) may put any values
in registers without preserving the original values; therefore the caller must save
registers (copy them into memory) before the call, and restore them (copy them
from memory) after the call. This is a “caller-saves” convention. On the other

10.6. Callee-save registers 115

hand, it could be that the callee is responsible for leaving registers exactly as
it found them; therefore, if the callee wants to use some registers for temporary
values, it must save them prior to use and restore them before returning. This is
a “callee-saves” convention.

Which approach is preferable? Consider temporaries that hold the internal
nodes of expression-tree evaluation. Since most procedure calls occur outside of
expression trees, the registers that hold these temporaries are “idle” at the time
of a procedure call—the caller does not care if their contents are lost. Therefore,
a caller-saves convention is best for such registers.

On the other hand, consider a small “leaf” procedure—one that does not call
other procedures, and which uses very few registers before returning. If the caller
wanted to preserve several local (register) variables across the call, then under a
caller-save convention they would have to be written to memory before the call
and read from memory afterward, even though the leaf procedure does not modify
them. In this case, a callee-saves convention seems best, since any registers not
used by a leaf procedure are can be considered “automatically” callee-saved.

The main advantage of callee-saved registers is for procedures that make two
or more calls (either statically or dynamically, e.g., a single call within a loop
counts as more than one call). If a register is to be preserved across the call, then
a caller-saves convention would save it and restore it at each call; a callee-saves
convention will avoid the save and restore if the callee does not happen to use the
register.

In practice, compiler writers have opted to have some of each. The Berkeley
C compiler for the VAX, for example, uses six caller-saves and six callee-saves
registers (in addition to four special-purpose registers such as the stack pointer,
frame pointer, etc.). With a mixed caller/callee-saves convention like this, variables
not needed after the call can be put in caller-saves registers and not saved at all;
leaf procedures can use caller-saves registers to the extent possible.

Consider again the example of figure 10.1: The function f calls two other
functions, g and h. When f calls g it saves all the registers it might need after
the call in the closure j. This is clearly like a caller-saves convention. It might be
nice to have some callee-saves registers where values could be stored; the trick is
to express this kind of convention in continuation-passing style.

What we will do is to give every function n extra arguments. We will require
that each “user” (noncontinuation) function f must pass these arguments to its
continuation c, when f (or some function that f calls) eventually calls c. Thus,
these extra arguments will behave like callee-saves registers.

Another way to look at our new callee-saves convention is that each user func-
tion will be passed a continuation, as before, but now a continuation is represented
using n + 1 actual parameters. One of these parameters will be the code pointer;
the others will be free variables of the continuation. Let us consider the function
f from our previous example, letting n = 3:

fun f(w’’,g,y,z,c0,c1,c2,c3) =

let . . . c0(v,c1,c2,c3) . . . end

116 Chapter 10. Closure conversion

fun h(x,d0,w’,d1,d2,d3) = let t1 = x*w’

in d0(t1,d1,d2,d3)

end

fun f’(f’’,arg,c0,c1,c2,c3) =

let val g = #0(arg)

val y = #1(arg)

fun j0(a,j1,j2,j3) =

let val z’ = #3(j1)

in h(z’,k0,j2,j1,a,j3)

end

and k0(b,k1,k2,k3) =

let val t2 = k2+b

val c0’ = #0(k1)

val c1’ = #1(k1)

val c2’ = #2(k1)

in c0’(t2,c1’,c2’,k3)

end

val w = #2(f’’)

val z = #1(f’’)

val u = (c0,c1,c2,z)

val g’ = #0(g)

in g’(g,y,j0,u,w,c3)

end

Figure 10.4. Using three callee-saves registers.

Instead of a single continuation argument c, now f gets four arguments c0,
c1, c2, c3, of which c0 is the machine-code pointer. When f eventually “returns”
(actually, it is k that calls the continuation function c), the variables c1, c2, c3 are
passed as extra arguments to c0, along with the “result” v of the computation.
Thus, the caller of f can put values into the arguments c1, c2, c3 that it will need
after f returns; it need not put those values into a closure record in memory, with
the expense of fetch and store instructions.

This is the entire essence of our callee-saves representation. What remains is
our method for organizing the closure-conversion algorithm to make use of this
convention to best advantage. The main advantage is enhanced closure-sharing.

Figure 10.4 shows our new representation for f and h. Now the value w—
needed by h—is passed as an argument (in a register) to g, from there to j0
(where it’s called j2), and then to h, without ever being stored into a closure. The
variable a is passed from j0 to h and then to k0 in a register, so now k and j can
share a closure u. Note that some of the variables passed as callee-save arguments

10.6. Callee-save registers 117

are ordinary variables (such as w and a), and some are closure-records (such as u);
the compiler has great flexibility in using one or more of the callee-save registers
to pass closure records if necessary.

What we have achieved is that the functions j and k now share a closure, for a
cost of 4B + C instead of 7B + 2C. The fact that a is free in k and bound in j is
no longer a problem, since a is passed from j to k in a callee-save argument (k2).

Actually we can do even better than above. Since z and w are also free variables
of function f , continuations j and k can directly grab the closure f ′′ so we only
need build a closure with c0, c1, and c2. Thus our cost is only 3B + C:

fun f’(f’’,arg,c0,c1,c2,c3)

let

val u = (c0,c1,c2)

val g’= #0(g)

in g’(g,y,j0,u,f’’,c3)

end

In general, the new representation for continuations will save time and space
when one function makes two or more nontail calls. In the CPS representation,
the continuations for these calls will be nested. The callee-saves convention allows
the continuation functions to be unnested and to share a closure. Since all contin-
uation functions are nested in some other user functions, the new representation
for continuations can take advantage of the closure of the enclosing user functions
if they happen to have some free variables in common, thus decreasing the cost of
closure-record constructions.

This optimization depends on the fact that most noncontinuation functions
take a continuation argument, that each escaping function is either a “standard”
user function or a “standard” continuation, etc. These assumptions are defined in
Section 2.2.

However, this mechanism will not work if we have first-class continuations such
as those introduced by callcc and exceptions. A continuation may be put into
a record, registered as an exception handler, stored into some reference cell, or
passed as a “noncontinuation” argument of an escaping user function. In the CPS
code before closure conversion, we say a continuation variable is well behaved if all
of its occurrences appear at the following positions:

• the second argument of escaping user functions;

• any argument of known functions;

• in function position, such as g in g(y).

All continuation variables that are not well behaved are called strange continuation
variables. In the example in figure 10.2, all continuation variables are well behaved.

To make our new schemes work correctly, we’ll eliminate all strange contin-
uation variables by transforming them into well-behaved continuation variables.
First by using a classical dataflow algorithm we can easily identify all continuation
variables. Then for every strange occurrence v as in

118 Chapter 10. Closure conversion

1. val r = (...,v,...), where v is put in a record;

2. k(v) , where an escaping continuation function k is applied to v;

3. f(v,k) , where an escaping user function f is applied to (v, k);

4. sethdlr(v) , where sethdlr is the primop that registers v as an exception
handler;

we define a new function u as fun u(x,c) = v(x) and substitute u for v, that is,

1. let fun u(x,c) = v(x)

in val r = (...,u,...) end;

2. let fun u(x,c) = v(x) in k(u) end ;

3. let fun u(x,c) = v(x) in f(u,k) end;

4. let fun u(x,c) = v(x) in sethdlr(u) end;

so v is now well behaved and u is just treated as an escaping user function.
For every strange occurrence v in

A. val v = #i(r);

B. fun k(v) = ... , where k is an escaping continuation function;

C. fun f(v,k) = ... , where f is an escaping user function;

D. val v = gethdlr() , where gethdlr is the primop that grabs the current
exception handler;

we substitute v by u and redefine v as a well-behaved continuation function by
fun v(x) = u(x,0), that is,

A. val u = #i(r); fun v(x) = u(x,0) ;

B. fun k(u) = let fun v(x) = u(x,0) in ...;

C. fun f(u,k) = let fun v(x) = u(x,0) in ...;

D. val u = gethdlr(); fun v(x) = u(x,0) .

Here since the second argument of u will never be used, we simply supply it to be
0. So v is well-behaved at these occurrences.

We can use similar methods to make all known functions have at most one
continuation argument. Thus we obtain well-formed CPS expressions that satisfy
the following conventions:

• All escaping user functions will have two arguments, the first one is the
standard noncontinuation argument and the second is always a well-behaved
continuation variable.

10.7. Callee-save continuation closures 119

• All escaping continuation functions have only one, noncontinuation, argu-
ment.

• Each known function has an arbitrary number of arguments but at most one
of them is a continuation variable.

The well-formed CPS expression will be fed into the closure-conversion phase.

Now that we know all continuation variables can only appear at certain places,
we can simply use K actual parameters to represent each one as long as this
number is consistent throughout the whole program.

10.7 Callee-save continuation closures

To call a function, the actual parameters of the call must be put in registers first.
Known functions’ free variables can all be treated as part of the actual parameters
since their call sites are all known (there is one exception, if the number of free
variables is bigger than the number of registers available in the target machine
then we have to spill part of them into closures). We can do such transformations
at compile time.

The behavior of an escaping user function is not known at compile time. Be-
cause it might be put into and extracted from records (and manipulated in other
ways), we can only use one single value (i.e., the closure) to represent both the code
pointer of the function and all its free variables. There are many ways to structure
the closure record, as discussed earlier in the chapter. For escaping continuation
functions, their call sites are not all known but they must be well behaved in the
sense defined in the previous section.

We can now add a fixed number of parameters to each continuation-function
definition. The continuation-function closure now is represented by one code
pointer plus n extra variables (n must be same throughout the program but could
be arbitrary from 1 to the maximum number of registers available in the target
machine). These n extra variables behave just like the callee-save registers. We
denote them as r1, r2, . . . , rn.

Now every escaping continuation function will have n+2 arguments and every
escaping user function will have n + 3 arguments (one is the closure record for the
function itself, one is the original (source-language) argument, and n+1 represent
the continuation). All escaping functions use the same calling conventions: A
fixed set of n + 1 registers will thus correspond to those n + 1 parameters for
continuations.

These techniques will let two nested continuation functions such as j and k in
figure 10.2 share a closure. However, we should be more careful when we deal with
a continuation function that is not nested within any other continuation functions.
For the source program fun f(g,x,y) = g(x)+y we have the CPS code

120 Chapter 10. Closure conversion

fun f(arg,c) = let val g = #0(arg)

val x = #1(arg)

val y = #2(arg)

fun k(t) = let val u = t+y

in c(u)

end

in g(x,k)

end

If we use our new representations for continuations, it will be (suppose n = 3)

fun f(f’,arg,c0,c1,c2,c3) =

let . . .

fun k0(t,k1,k2,k3) =

let val u = t+y

. . .

in c0(u,c1,c2,c3)

end

. . .

in g(x,k0,?,?,?)

end

The set of free variables for the continuation k0 is {c0, c1, c2, c3, y}. There are only
three callee-save arguments, so we need a closure; but this closure will occupy one
of the callee-save arguments. So two variables can go in callee-save arguments and
three must go into the closure; though it seems that it doesn’t matter which three.
But this is not true. Remember we are using the same set of callee-save registers
so c1 and k1, c2 and k2, c3 and k3 will be mapped to registers r1,r2,r3. If we put
c1, c2, c3 into closures,

fun f(f’,arg,c0,c1,c2,c3) =

let . . .

fun k0(t,k1,k2,k3) =

let val u = t+k3

val c1’ = #0(k1)

val c2’ = #1(k1)

val c3’ = #2(k1)

in k2(u,c1’,c2’,c3’)

end

val k1’ = (c1,c2,c3)

in g(g’,x,k0,k1’,c0,y)

end

there will be a lot of extra callee-save register shuffling. Now c0 and y have to
be moved into those callee-save register r2 and r3 which originally held c2 and c3.
However, if we use a more conservative approach by putting c0, c1, and y into
closures then this shuffling could be eliminated:

10.7. Callee-save continuation closures 121

fun f(f’,arg,c0,c1,c2,c3) =

let . . .

fun k0(t,k1,k2,k3) =

let val y = #1(k1)

val u = t+y

val c0’ = #0(k1)

val c1’ = #2(k1)

in c0’(u,c1’,k2,k3)

end

val k1’ = (c0,y,c1)

in g(g’,x,k0,k1’,c2,c3)

end

Note that c2, c3 stay in r2, r3 throughout.
The previous strategy is called “conservative” because we’ll at least not get

worse performance than the old closure representation on those continuations that
are not nested within another continuation. However, we don’t get too much
benefit on those nested continuation functions either. In the example in figure 10.2,
continuation k is nested inside the continuation j . The set of free variables for j is
{c0, c1, c2, c3, w, z} and the set of free variables for k is {c0, c1, c2, c3, a}. Intuitively
we want to put w and z in the callee-save registers because they are no longer
needed when we try to set up the callee-save registers for k. If w and z are put
into the closure made for j, we have to build another closure record k2′ for k:

fun f’(f’’,arg,c0,c1,c2,c3) =

let . . .

fun j0(a,j1,j2,j3) =

let val z’ = #3(j1)

val w’ = #2(j1)

val k2’ = (a,j2)

in h(z’,k0,w’,j1,k2’,j3)

end

and k0(b,k1,k2,k3) =

let val t2 = k2+b

val c0’ = #0(k1)

val c1’ = #1(k1)

val c2’ = #2(k1)

in c0’(t2,c1’,c2’,k3)

end

. . .

val u = (c0,c1,w,z)

val g’ = #0(g)

in g’(g,y,j0,u,c2,c3)

end

Therefore before we decide which free variables will be put into the closure record
of the continuation function (such as j), we’ll look through the free variable set of

122 Chapter 10. Closure conversion

all continuation functions nested inside. Outer continuation functions (such as j)
are called earlier than inner ones (such as k). So we can simply compare their free-
variable sets and put those variables that are free in outer functions but not free
in inner ones (such as w,z) into callee-save registers. In cases where such variables
don’t exist, we could use either the conservative approach or a more aggressive
method.

Clearly there are many variations on this “callee-saves” closure idea, just as
there are many variants for closure representation. In fact, the callee-saves tech-
nique is really just a way of putting the first level of the representation of contin-
uation closures in registers instead of memory; the rest of the representation can
be flat, linked, or anything in between.

10.8 Stack allocation of closures

Some closures have an extent predictable at compile time; that is, the compiler can
determine when the last reference to a closure will disappear, and can explicitly
deallocate the closure [83]. If the closure is allocated on the heap, in a system
with copying garbage collection, then there is no advantage to deallocating it;
deallocation of arbitrary records leads to fragmentation, which is otherwise avoided
by a copying (compacting) collector. However, if the lifetimes of certain closures
(and perhaps other records as well) are nested in a simple way, then those closures
can be allocated on a stack. And if stack allocation/deallocation is much faster
than heap allocation with garbage collection, then this is a good optimization to
perform.

We will first assume that continuations do not share closures, and that call
with current continuation is not permitted. Now, any continuation closure can be
de-allocated as soon as it is first invoked (applied to arguments); no continuation
is ever invoked more than once. Furthermore, the most recent continuation-closure
created will be the first one invoked (and deallocated); this means that continuation
closures can be allocated on a stack.

Furthermore, some user-function (noncontinuation) closures can also be allo-
cated on the same stack. Consider a nonescaping function f :

FIX(g, [x, k], . . .
FIX([(f,�v, B)], . . .

. . . APP(VAR f, �a) . . . APP(VAR f, �b) . . . APP(VAR k, [VAR r]) . . .))

The closure for k will be at the top of the stack when g is entered. Then the closure
for f can be pushed on the stack. Then f can be invoked a few times; eventually
the continuation k is about to be invoked. Just at that point, it is clear that f can
never again be called; for we are leaving its static scope and it does not escape.
Thus f can be popped from the stack just before k is invoked; after k is entered
it can pop itself from the stack.

The condition that f does not escape is stronger than necessary. In fact, it is
sufficient that f does not escape upward . We say that a function escapes downward

10.8. Stack allocation of closures 123

if it is passed as an argument to another user function, and it escapes upward if it is
returned as the result of a function (i.e., passed as an argument of a continuation)
or if it is stored into a data structure (record or ref cell). These properties are
transitive: If f is passed into formal parameter j of function h, and j escapes
upward then f is considered to escape upward.

We can use static dataflow analysis to approximate these properties. If f
is passed as an argument to a known function, we can propagate the escaping
properties backward from the properties of that function. If f is passed as an
argument to a function variable, then we know nothing about the function that
will be bound to this variable and we must assume the worst—that f escapes
upward.

Now, any function f that escapes downward, or does not escape, may be stack-
allocated. By the time we leave the static scope of f all functions into which it
has downward escaped will have returned, and the f will never again be used.

It is interesting to note that all functions in Pascal programs escape down-
ward (or don’t escape); therefore, this analysis will successfully stack allocate all
closures, rendering the heap necessary only for records explicitly created by the
programmer. Thus, a continuation-based Pascal compiler need not rely on a gar-
bage collector [52].

Let us now revisit the two assumptions made earlier. If two functions share
a closure, it is still not difficult for the compiler to determine when the closure
should be deallocated; the details are straightforward to work out.

But call with current continuation (callcc) causes big problems. Now, any
continuation or downward-escaping function may have an arbitrary extent. Con-
sider this program:

fun f(x) = callcc(fn k => (g := k; x))

which translates into (simplified):

FIX([(f,[x,k], PRIMOP(:=, [VAR g, VAR k],[],[

APP(VAR k, [VAR x])]))],

. . .)

Now suppose there are several continuations on the stack, and f is called. The
topmost continuation k on the stack will be saved in a global reference variable, and
then invoked. Normally, the invocation of a continuation causes it to be popped
from the stack; but now there is still a reference to it!

If a stack is used, then callcc must have a more complicated implementation
that moves the entire contents of the stack into the heap. The deallocations—
generated by the compiler—of these closures must somehow be disabled. This
means that not only are things much more complicated, but the cost of callcc
is proportional to the height of the stack, instead of constant-time as it is in the
stackless version.

To ameliorate this problem, one might copy the stack into the heap whenever
it reaches some not-too-large size. Then the time taken by any callcc is bounded

124 Chapter 10. Closure conversion

by this size. There are many variations on this theme [47], but they all complicate
the runtime system in one way or another.

It is not at all clear that stack allocation is worthwhile. Garbage collection
need not be particularly expensive (see Chapter 16.1), so the difference in cost
between stack allocation and heap allocation is not large. Furthermore, it turns
out that the very same downward-escaping closures that can be stack allocated
are exactly the ones for which the callee-save-register optimizations reduce the
number of separate heap allocations. For these reasons, we do not use a stack in
the implementation of Standard ML of New Jersey; and we still get very efficient
performance.

10.9 Lifting function definitions to top level

Since functions no longer contain free variables after closure conversion, their def-
initions may be lifted to top level. The result is a program that is just one large
FIX definition, containing no internal FIX operators. Furthermore, all references
to variables defined as functions by these FIX operators will be via the LABEL

constructor, not the VAR constructor that is used for other variables (e.g., formal
parameters of functions, results of RECORD, SELECT, and PRIMOP). This is mainly
to simplify the free-variable analysis in the spill and code-generation phases, since
LABELs don’t need to be considered as “free” variables for most purposes.

CHAPTER ELEVEN

REGISTER SPILLING

Variables in the CPS language are intended to correspond to registers of the target
machine. This is only approximately true in the phases before closure conversion,
because many of the CPS variables are free variables that are really contained
in closures; thus, these CPS variables correspond to memory locations. But after
closure conversion, free variables are rewritten so that they are explicitly extracted
from closures. Also, both the CPS optimization (constant folding and β-expansion)
and the closure-conversion phase are careful never to produce any function that
has more arguments than the machine has registers.

Inside a function body, however, there are variable bindings and variable uses—
most of the CPS operators bind variables and take variables as arguments. Thus,
at any point within a function the number of free variables may be more or less
than the number of arguments to the function. Of course, at the root (“top”) of
the function body, the set of free variables is a subset of the formal parameters;
this is a consequence of closure conversion. In all cases, we are not considering
the names of functions defined by FIX operators (and referred to by the LABEL

constructor) as “variables,” since these are effectively constant addresses in the
machine-language program, they do not need to occupy registers.

The spill phase of the CPS compiler comes after closure conversion; its job is
to produce a CPS program obeying the rule that every subexpression has fewer
than N free variables, where N is the number of registers on the target machine.
In Section 13.4 it will be shown that this rule guarantees that a register can easily
be found in which to generate each newly bound value. The name of the phase
is chosen by analogy with conventional compilers, which “spill” the contents of
registers into the stack frame (memory) when they run out of registers.

How is the bounded-register invariant accomplished? Just as in a conventional
compiler, we must generate code that writes values from registers into memory,
and fetches them back when needed. However, we do not have a “stack frame” in
which it is convenient to write them. Instead, our only way of writing values to
memory is to create records on the heap (we could also write to the mutable store,
but we prefer to avoid the mutable store whenever possible).

So, when we accumulate N live (free) variables, we can create a record con-
taining some or all of them; now we need only one variable to hold the pointer
to this record. All the uses of these variables may be replaced with new variables

125

126 Chapter 11. Register spilling

fetched (SELECTed) from the spill record; this means that the variables stored in
the record are no longer live (free in the subexpression).

A conventional register-spilling algorithm[1] has a bit more flexibility, since
registers may be spilled individually into the stack frame. In principle, this flex-
ibility leads to faster programs. However, on modern machines (that have many
registers) spills do not occur often enough for the details of the spilling algorithm
to matter much.

An example will help to illustrate. Let N = 5 (the maximum allowable number
of free variables). The following expression selects several values from the record a
and adds them together. To the left of each line is shown the set of free variables
of the subexpression beginning at that line:

am SELECT(0, VAR a, b,

abm SELECT(1, VAR a, c,

abcm SELECT(2, VAR a, d,

abcdm SELECT(3, VAR a, e,

abcdem SELECT(4, VAR a, f,

abcdefm SELECT(5, VAR a, g,

bcdefgm PRIMOP(+, [VAR b, VAR c], [h], [

defghm PRIMOP(+, [VAR d, VAR e], [i], [

fghim PRIMOP(+, [VAR f, VAR g], [j], [

hijm PRIMOP(+, [VAR h, VAR i], [k], [

jkm PRIMOP(+, [VAR k, VAR j], [l], [

lm APP(VAR m, [VAR l])])])])])])))))))

After the fourth line, the number of free variables is more than N , which is
impermissible. Thus, we will create a “spill record” after the third line, and fetch
values from it as needed:

am SELECT(0, VAR a, b,

abm SELECT(1, VAR a, c,

abcm SELECT(2, VAR a, d,

abcdm RECORD([(VAR a, OFFp 0), (VAR b, OFFp 0),

(VAR c, OFFp 0), (VAR d, OFFp 0),

(VAR m, OFFp 0)], r,

abr SELECT(3, VAR a, e,

aber SELECT(4, VAR a, f,

abefr SELECT(5, VAR a, g,

befgr SELECT(2, VAR r, c’,

bcefgr PRIMOP(+, [VAR b, VAR c’], [h], [

efghr SELECT(3, VAR r, d’,

defgh PRIMOP(+, [VAR d’, VAR e], [i], [

fghir PRIMOP(+, [VAR f, VAR g], [j], [

hijr PRIMOP(+, [VAR h, VAR i], [k], [

jkr PRIMOP(+, [VAR k, VAR j], [l], [

lr SELECT(4, VAR r, m’,

lm APP(VAR m’, [VAR l]))])])])]))])))))))))

127

All free variables are spilled into the record r. Then, for example, when d is
needed later, it is SELECTed into the new variable d′, which is used in place of d (to
avoid duplicate variable bindings). The treatment of a and b deserves explanation.
A naive approach would be to fetch a from r each time it is needed. But our
spilling algorithm realizes that using a directly, though it increases the number of
free variables of the subexpression starting right after the RECORD operation, does
not increase this number above N . So it uses the original value of a, and similarly
for b, thus saving several fetches. In fact, there is no need to write a and b to the
record at all, but our one-pass algorithm is not smart enough to realize that.

Unfortunately, the resulting expression still has six free variables at one point,
which is greater than N (in this example). Thus, another spill record must be
created:

am SELECT(0, VAR a, b,

abm SELECT(1, VAR a, c,

abcm SELECT(2, VAR a, d,

abcdm RECORD([(VAR a, OFFp 0), (VAR b, OFFp 0),

(VAR c, OFFp 0), (VAR d, OFFp 0),

(VAR m, OFFp 0)], r,

abr SELECT(3, VAR a, e,

aber SELECT(4, VAR a, f,

abefr SELECT(5, VAR a, g,

befgr RECORD([(VAR b, OFFp 0), (VAR e, OFFp 0),

(VAR f, OFFp 0), (VAR g, OFFp 0),

(VAR r, SELp(2,OFFp 0)),

(VAR r, SELp(3,OFFp 0)),

(VAR r, SELp(4,OFFp 0))], s,

befs SELECT(4, VAR s, c’,

bcefs PRIMOP(+, [VAR b, VAR c’], [h], [

efhs SELECT(5, VAR s, d’,

defhs PRIMOP(+, [VAR d’, VAR e], [i], [

fhis SELECT(3, VAR s, g’,

fghis PRIMOP(+, [VAR f, VAR g’], [j], [

hijs PRIMOP(+, [VAR h, VAR i], [k], [

jks PRIMOP(+, [VAR k, VAR j], [l], [

ls SELECT(6, VAR s, m’,

lm APP(VAR m’, [VAR l])

)])])]))]))]))))))))))

Now there are never more than five free variables at any point. Although it
was not so illustrated, our spilling algorithm would actually introduce both of the
spill records in one pass through the expression.

Note that our spilling algorithm maintains at most one spill record at a time.
When the spill record s is created, all the values from r are copied into it. Of
course, in an expression with a huge number M of free variables, the time spent
in copying spill records will be quadratic in M . One could imagine having several

128 Chapter 11. Register spilling

spill records live at the same time; or making the record r a component of s so
there was a linked list of spill records. Then spill-record creation would be efficient,
but to look up all the variables would take quadratic time. By structuring large
spill records as trees, however, it is possible to spill (and refetch) M variables in
arbitrary order in only logN (M). Such elaborations have not proven necessary, for
reasons discussed below.

The copying of r into s is expressed using the “access path” notation (SELp and
OFFp) of the CPS. There is an important reason for this. The CPS notation allows
for the creation of arbitrarily large records. A single record can have M > N
fields, each of which is a different variable. Without the path notation in record
fields, there is absolutely no way to rewrite the record expression so it has fewer
than M free variables. With the path notation, one can make a record containing
N different values, then make another record, copying the N values from the first
record and including N − 1 more values, and with approximately M/N RECORD

operators, create the large record.

11.1 Rearranging the expression

The astute reader will have noticed that there is no need to spill variables in the
example given; a simple rearrangement of the expression will suffice:

am SELECT(0, VAR a, b,

abm SELECT(1, VAR a, c,

abcm PRIMOP(+, [VAR b, VAR c], [h], [

ahm SELECT(2, VAR a, d,

adhm SELECT(3, VAR a, e,

adehm PRIMOP(+, [VAR d, VAR e], [i], [

ahim PRIMOP(+, [VAR h, VAR i], [k], [

akm SELECT(4, VAR a, f,

afkm SELECT(5, VAR a, g,

afgkm PRIMOP(+, [VAR f, VAR g], [j], [

akjm PRIMOP(+, [VAR k, VAR j], [l], [

lm APP(VAR m, [VAR l])])])))])])))])))

Unfortunately, the problem of reordering directed acyclic graphs for optimal
register allocation is NP-complete [78]. That does not rule out an implementation
of some good heuristics that might in many cases avoid the need to create spill
records. But our measurements have shown this to be unnecessary, as discussed
below.

11.2 The spilling algorithm

Since the spill phase is applied after the closure-conversion phase, all function
definitions are at top level, never nested. The spill algorithm is applied to the
body of each function, and will never encounter a FIX operator.

11.2. The spilling algorithm 129

The function F implements spilling. It takes several arguments describing an
expression e and its context, and returns an expression e′ that uses no more than
N free variables in the context. The context has several parts:

• The results R bound by the immediately previous operator. This is a set of
variables; given that each operator binds no more than one variable, R has
cardinality 0 or 1.

• The current spill record, if any. Initially (at the top of a function) there is no
spill record; one is created when the free-variable count is about to exceed
N . The spill record S consists of the set Sc of variables contained in the the
spill record, and the variable Sv that names the record.

• The uniquely bound variables U . These are variables possibly free in the
subexpression e, but which are not in the current spill record, if any. It must
be that |U | ≤ N , and if Sc �= φ then |U | < N to allow a register to hold the
pointer to the spill record.

• The duplicate variables D. These are variables “still in registers” that are
also contained in the spill record. D can be any subset of Sc such that
|D|+ |U | ≤ N , and if Sc �= φ then |D|+ |U | < N .

So, here is the function F(R, U, D, Sc, Sv, e):
The expression e may use some values, bind some variables, and possibly con-

tinue with the evaluation of a subexpression.

• Let A be the set of arguments—variables used as operands of the “root” (the
first operator) of e,

• let W be the set of variables bound by the root operator of e,

• and let C be the set of continuation expressions with which the root of e
might continue.

These are straightforward to compute; note that for some primops W is empty,
for APP nodes C is empty, and so on.

We now compute the sets Vbefore of variables free in the expression e, and Vafter

of variables free right after the root operator of e has executed. That is,

Vbefore = fv(e)

Vafter =
⋃
c∈C

fv(c)

Let Sbefore = {Sv} if there is a spill record (Sc �= φ), and Sbefore = φ otherwise.
If there is a spill record, we decide whether it will still be useful after the root

operation. If Sc ∩ Vafter = φ, then the spill record contains no useful variables
after the operation, and can then be discarded. Let Safter

v be the empty set if

130 Chapter 11. Register spilling

no spill record is required after the operation (or if none is present before), and
Safter

v = {Sv} otherwise; similarly for Safter
c .

We now calculate the number of registers available to hold duplicate variables
(those also present in the spill record) before the operation:

Ndup = N − |Sbefore| − |(U ∩ Vbefore) ∪R|

This requires some explanation. We have N registers, of which one may be holding
the pointer to the spill record. Some of the other registers may be holding unique
values (those that can’t be refetched from the spill record) that are still live (free
in e). Furthermore, the previous operation may have produced a result and bound
it to a variable. Even if this variable is not live, we must reserve a register for
it; on many machines, when an instruction is executed the result must be put
somewhere!1 Now, any remaining registers can hold duplicate values; presumably
the duplicate values are already sitting in registers. If Ndup < |D|, then we must
discard one of the duplicates. Presumably, the previous operator has produced a
value in some register that must overwrite a duplicate value; we have delayed until
now the decision about which value to discard.

So, we calculate some maximal set D′ such that D′ ⊂ D and |D′| ≤ Ndup.
We choose to discard that member of D that is first used most distantly; that is,
whose first use is most deeply nested within the expression e. Of course, we start
by discarding those elements of D that are not used at all, that is, we start with
D ∩ Vbefore.

Next, we calculate whether it is time to make a new spill record. If

|A ∪ (U ∩ Vafter)| > N − |Safter
v |

we must spill because we cannot simultaneously hold all of the arguments to the
current operator and all the irreplaceable values (those that are live after the
operation but not in the spill record). Or, if

|W ∪ (U ∩ Vafter)| > N − |Safter
v |

we must spill because there is not room to hold both the results of the current
operation and the irreplaceable values needed afterward.

If a spill is necessary, the new contents of the spill record will be Vbefore. We
create a new variable name S′

v to denote the new spill record. We calculate the
new duplicates D′′ = (U ∪D′) ∩ Vbefore, that is, that subset of the new contents
that is currently in registers. Then the result of F is

F(R, U, D, Sc, Sv, e) =
RECORD(get(Vbefore), S

′
v,F(φ, φ, D′′, Vbefore, S

′
v, e)).

The function get makes a list of record fields out of the variables of Vbefore; for
each variable in D′ or U it makes a field of the form (v, OFFp 0), and for the other

1Needless to say, this subtle point was not at first appreciated by the author.

11.2. The spilling algorithm 131

variables in Sc it makes a field of the form (Sv, SELp(i, OFFp 0)). The recursive
call to F is guaranteed not to spill at the root, because its parameter U is empty;
there can be at most one spill per operator in the expression e.

If no spill is necessary, it may still be necessary to fetch some variables from
the current spill record if they are operands of the root operator and not already
in registers. Let F = A−(U∪D′) be the set of variables that must be fetched back
from the spill record. Then there are three cases: |F | = 0, |F | = 1, and |F | > 1.
In the first case, no fetching is necessary, and we have

F(R, U, D, Sc, Sv, e) =
roote(A, W, {F(W, U ∩ Vafter, D

′, Safter
c , Safter

v , c) : c ∈ C})

where roote is the root operator of e applied to the given arguments, result vari-
ables, and continuation expressions. (This is perhaps an abuse of notation, since
roote should take lists not sets: It would probably like to know in what order the
operands appear!)

If |F | = 1, then we must fetch; but there is also the possibility that this is the
very last fetch from this spill record, and we can now discard it: Safter

c = φ in this
case. Then

F(R, U, D, Sc, Sv, e) =
SELECT(i, Sv, v

′,F(φ, U ∩ Vbefore, D
′ ∪ {v′}, Safter

c , Safter
v , e{v �→ v′}))

Finally, if |F | > 1, we cannot use Safter
c , because we still must fetch from Sc

before evaluating the root operator. We have in this case

F(R, U, D, Sc, Sv, e) =
SELECT(i, Sv, v

′,F(φ, U ∩ Vbefore, D
′ ∪ {v′}, Sc, Sv, e{v �→ v′}))

If all this seems tricky, that’s because—unfortunately—it is. The program was
difficult to get right. Fortunately, the simplicity of the CPS interface between the
closure-conversion phase and the spill phase, and between the spill phase and the
next phase, mean that once the spill phase is right, it can be left alone.

Spills are rare. On a modern machine with 32 registers, perhaps 10 of them
are reserved for special uses, leaving N = 22 “general-purpose” registers. When
N is this large, one can expect about one spill for every several thousand lines
of code compiled. The rarity of spills is not a phenomenon peculiar to ML; it is
also noted in conventional C compilers [40]. Furthermore, in Standard ML the
places where there tend to be huge numbers of free variables—causing spills—are
at structure-creation time. Since structures are static objects, evaluated once per
program, the effect of spills on execution time is trivial indeed. This means that
the fancier heuristics mentioned earlier in this chapter are unnecessary.

Our spiller operates in one pass. This is almost obvious from our description of
the recursive, top-down algorithm. There are certain aspects of our presentation—
such as the renaming of variables within the subexpression e when fetching is
required—that appear to require separate traversals of subexpressions. However,
in the actual implementation these are computed on the fly.

132 Chapter 11. Register spilling

Though it is a one-pass algorithm, it is still rather expensive. It is much faster
to check a function body to see if it ever requires more than N free variables than it
is to execute the spill transformation. Since spills are rare, we check each function
body first, and apply the spill function F only if necessary.

CHAPTER TWELVE

SPACE COMPLEXITY

When writing a program, one often wants to calculate its efficiency. The tools of
asymptotic complexity analysis allow us to reason about the time complexity and
space complexity of programs as a function of the size of their inputs. This kind of
reasoning is easier in some languages than others, however. Perhaps in languages
with lazy evaluation—where the compiler attempts to shield the programmer from
the knowledge of exactly which parts of the program are evaluated—reasoning
about time complexity may be particularly difficult [91]. However, most nonlazy
(call-by-value) languages (Algol, Scheme, ML, etc.) pose relatively well-defined
problems for those who wish to analyze time complexity.

Let us consider space complexity: For a program P running on input N , what
is the maximum memory required at any time, as a function of N (ignoring con-
stant factors)? In a language without automatic garbage collection, this is also a
relatively well-defined question. But the presence of a garbage collector compli-
cates the issue, since the purpose of the collector is to relieve the programmer from
any analysis of when memory is reclaimed. We cannot simply count the number
of allocations since the beginning of the program and say that that represents the
memory required, since many of the allocated cells will have been collected. A
useful measure of space complexity must include reasoning about the behavior of
the collector.

It turns out that there are few, if any, language definitions that adequately ad-
dress this issue—that provide enough useful axioms to characterize the asymptotic
space complexity of programs. Most typical is a statement that some subset of the
inaccessible data will be reclaimed:

No Scheme object is ever destroyed. The reason that implementations
of Scheme do not (usually!) run out of storage is that they are permitted
to reclaim the storage occupied by an object if they can prove that the
object cannot possibly matter to any future computation. (Scheme
[69])

There are no rules concerning disposal of inaccessible addresses
(“garbage collection”). (Standard ML [65])

A member of a traced reference type is traced by the garbage collector;
that is, the implementation stores its referent in a system-managed

133

134 Chapter 12. Space complexity

storage pool, determines at runtime when all traced references to it are
gone, and then reclaims its storage. (Modula-3 [27])

What remains unsaid is mostly left so intentionally....
(Oberon [96], in which garbage collection is left unspecified.)

Of the language reference manuals quoted above, the first two include a formal
definition and the last two do not. But none of them give sufficient rules for
reasoning about the space complexity of programs.

The Scheme report adds a mysterious injunction about tail recursion:

Implementations of Scheme are required to be properly tail recursive.
This allows the execution of an iterative computation in constant space,
even if the iterative computation is described by a syntactically recursive
procedure [69].

However, the denotational semantics of Scheme in the same report does not at-
tempt to express this rule formally.

Let us now consider a simple program P :

fun s(0) = nil | s(i) = 0 :: s(i-1)

fun f(n,x) =

let val z = length(x)

fun g() = f(n-1,s(N))

in if n=0 then 0 else g()

end

val result = f(N,nil)

What is the space complexity of this program? Each call to g computes a list of
length N that is passed as an argument to f ; the function f then calls g, perhaps
discarding this list. There are clearly N recursive calls of g.

Consider a “naive” implementation. In the Nth call to g, there are N calls to
f suspended, waiting for subroutines to return. Each of these activations of f has
a different copy of the list x. Therefore, there are N2 list cells active at the same
time, for a space complexity of Θ(N2).

There are two different ways that an implementation might be more clever.
One might notice that when f calls g, it is a “tail call,” so the activation record
for f can be discarded before entry into g. This is a more general case of the “tail
recursion” that the Scheme report alludes to [69]. In that case, only one version
of x will ever be live at any time, so the space complexity is Θ(N).

On the other hand, an implementation might not bother with tail call opti-
mization, but might notice that x is not live in f after the call to g. Then the
garbage collector, when invoked while several activations of f are suspended, can
reclaim the storage for all instantiations of x in suspended activations of f . (This
is done in the Göteborg Lazy-ML compiler [17], which also performs tail-recursion
optimizations.) Then the space complexity is also Θ(N).

Let us adjust the example very slightly, and make f non-tail recursive:

135

fun s(0) = nil | s(i) = 0 :: s(i-1)

fun f(n,x) =

let val z = length(x)

fun g() = f(n-1,s(N))

in if n=0 then 0 else g()+1

end

val result = f(N,nil)

When f calls g, g must return back to f so 1 can be added. For this program P ′,
the naive compiler still uses space Θ(N2). So does the compiler that optimizes
tail calls, because the call to g is no longer a tail call. However, the compiler that
analyzes the liveness of variables after procedure calls may still use only O(N)
space.

Let us consider a third program Q:

fun h(n) = if n=0 then 1 else h(n-1)

val result = h(N)

For this simple example, liveness analysis does not help—an implementation with-
out tail-call optimization will take Θ(N) space, but an implementation with tail-
call optimizations will take Θ(1) space.

Thus, both liveness analysis and tail-call optimizations are necessary for op-
timal memory consumption. To make it easier for programmers to calculate the
asymptotic memory consumption of their programs—independently of any partic-
ular implementation— it is useful to formalize these notions. It turns out that one
of the simplest ways to formalize both notions is using continuation-passing style:

• A variable is statically live after a procedure call if and only if, in the CPS
representation of the program, it is free in the continuation passed to the
call. An implementation can ensure that the representation (closure) of a
function or continuation f contains pointers only to the free variables of f .

• A program compiled using CPS is fully tail recursive if its CPS representation
is reduced to η-normal form before evaluation. This is reached by performing
all η-reductions, that is, replacing all expressions of the form λx.f(x) by f
(see Section 6.2).

Another advantage of continuation-passing style for reasoning about garbage
collection is that there is no “runtime stack” of activation records. Only the local
variables of the current procedure (the procedure executing when the collector is
invoked) are “roots” of garbage collection. Variables that, in conventional compi-
lation, would be in activation records of “suspended” procedures are, in the CPS
version, free variables of continuation closures. But the continuation closures are
just ordinary records reachable from the local variables of the current procedure.

136 Chapter 12. Space complexity

Thus, the compiler, the collector, and the programmer can characterize more pre-
cisely which storage must be preserved.

This is true even for CPS compilers that use stack allocation for continuation
closures. Such compilers [83, 54] use compile-time analysis to see which closures
have a sufficiently predictable extent that they can be allocated on a stack and
deallocated explicitly. These closures must certainly be considered “live” by the
garbage collector; but the point is that this compile-time analysis will stack allocate
only those closures that the garbage collector would have preserved anyway.

12.1 Axioms for analyzing space

We have asserted that the free-variable rule and the η-normal-form rule are useful
for programmers to use in estimating the memory usage of their programs. Let us
now state the rules of memory usage:

• If a record value is reachable, then all of its components are reachable.

• If a constructed (datatype) value is reachable, then the value it carries is
reachable.

• If a function value is reachable, then all of its free variables are reachable.
The free variables of a recursive function include all of the free variables of
function defined in the same mutually recursive definition (val rec).

• If an array or ref is reachable, then so are all of its components.

• Each reachable record, constructed value, function value, or number takes
one unit of storage. Each array or string value takes storage equal to the
number of elements or characters.

• Upon entry to a function f(�x), the value f is reachable, and the variables of
�x—one of which may be the “continuation” —are reachable.

• Values not reachable by the above rules are unreachable.

• Memory usage is proportional to the number of distinct reachable values.

There are two approaches a programmer might use in calculating the variables
free in the continuation. The first, obviously, is to learn the basics of continuation-
passing style—a well-founded, precise, and not-too-complicated notion—and to
understand how her program will look after conversion into CPS. The second is
to have an idea that it means “values needed after the function call.” In general,
these are variables mentioned in the text of the calling function after the function-
call subexpression, but with the exception that if the function call occurs within
one branch of a case or if, the other branches need not be considered. If the pro-
gramming language has a loop construct, then things are a bit more complicated,
but not terribly so.

12.2. Preserving space complexity 137

It may seem a bit severe to require “ordinary programmers” to know about
continuations. But at least we now have a precise definition to use in calculating
space usage; programmers can use the “rough-and-ready” rule most of the time.
In the same way, the “ordinary programmer” does not usually refer directly to The
Definition of Standard ML [65] to clarify a semantic point, but it’s available when
necessary.

What do we mean by “distinct reachable values?” Two values are distinct if the
program can tell them apart by some sequence of operations. In most languages,
two structured (record) values created at different times are always distinct, since
they can be distinguished by “pointer equality.” In ML, there is no “pointer
equality”: two values of a structured type are equal if their components are equal,
and cannot be distinguished in any way. Thus we might say that they are not
“distinct reachable values.”

But all implementations of ML known to the author keep separate copies of
“equal” records if they are (re-)created at different times. This means that the
definition of “distinct” value given in the previous paragraph will not realistically
characterize the space-consumption behavior of ML implementations.

There are two solutions to this problem: One is to give a different definition of
“distinct,” so values created at different times are considered distinct; this can be
done formally by augmenting the semantics of the language to put a unique counter
value into each record. The other is to implement an ML garbage collector that
does “hash consing”—that identifies indistinguishable records (using a hash table)
so only one copy is kept. This hashing approach is consistent with the semantics
of the language, and combined with modern techniques of generational garbage
collection (i.e., to hash-cons only the older generations) might even be efficient.

Rather than prescribe one of these solutions, we will note that all of the theo-
rems alluded to in the subsequent discussion can be proved in either model.

12.2 Preserving space complexity

For programmers wishing to understand how much memory is being used, contin-
uation-passing style might or might not be the best approach. But for an op-
timizing compiler, continuation-passing style is a concise and easily manipulable
representation that quite precisely characterizes liveness properties for garbage
collection. The optimizer can preserve the correct asymptotic space complexity of
programs without even realizing that it is doing so. All we need to do is prove that
the transformations used are conservative: that they preserve asymptotic upper
bounds on space complexity.

We can prove these properties using the denotational semantics of the CPS
augmented with a “space-usage counter.” The proofs are quite technical; they
require few, if any, brilliant insights, and many arguments about reductions, free
variables, environments, contexts, and so on. In this chapter we will argue infor-
mally about these program transformations rather than proving their properties
formally.

138 Chapter 12. Space complexity

β-reduction

Let us first consider β-reduction. We have a CPS expression P1 of the form

FIX([. . . , (f,�v, B), . . .], . . . APP(VAR f, �a) . . .)

Now, we replace the function application by the body of the function, substituting
the actual parameters for the formal parameters, yielding P2:

FIX([. . . , (f,�v, B), . . .], . . . B{�v �→ �a} . . .)

We must argue that if some value x is reachable at any time during the execu-
tion of P2, then it is also reachable at the corresponding time in P1. Clearly
this is true up to the time when execution reaches the APP node (or the substi-
tuted body of B, respectively). (The converse is not true, because f is free (and
therefore reachable) in some subexpressions of P1 whereas it might not be free in
the corresponding subexpressions of P2.) At the subexpression B{�v �→ �a} in P2

the reachable variables are precisely those reachable from the free variables of the
current subexpression:

fv(B{�v �→ �a})

This is equivalent to
(fv(B) − �v) ∪ fv(�a)

The reachable variables of the APP expression are just those reachable from the
free variables of that expression:

fv(APP(VAR f, �a)) = {f} ∪ fv(�a)

Now, the variables reachable from f are, by definition, the free variables of f ;
these are the variables free in the body but not including the formal parameters:
fv(f) = fv(B)− �v. Thus the variables free at the APP node include

{f} ∪ (fv(B)− �v) ∪ fv(�a)

This is a superset of the variables free at the corresponding point in P2 (the closure
for f is reachable in P1 whereas perhaps it is not reachable in P2), and thus this
transformation is conservative.

Dead-variable elimination

Now consider dead-variable elimination. Each binding rule of the CPS has its
own dead-variable-elimination transformation rule; we will consider just a couple
of simple ones:

FIX([(f,�v, B)], E) → E if f �∈ fv(E)

SELECT(i, v, w, E) → E if w �∈ fv(E)

In either case, the free variables of the right-hand side are (at any point in
the program) a subset of the free variables of the left-hand side, and therefore the
same must hold for the reachable values.

12.2. Preserving space complexity 139

Elimination of unused arguments of known functions is very similar to dead-
variable elimination, and can similarly be shown to be conservative. Flattening of a
single record argument into several separate arguments is conservative: Essentially,
the operators that SELECT from the record are moved from the interior of the
function to just before the call, so the record selected from may be “less reachable”
after the optimization, and no value will be “more reachable.”

Constant folding

Constant folding of SELECT operations is conservative. Consider

SELECT(i, v, w, E)

where v is statically bound by a RECORD operator. The variable w is live (after the
optimization) only where v or w was live before the optimization; but if v is live,
then w is reachable (it is a component of the record). Thus the reachability of the
value w is not changed. However, the liveness (and therefore reachability) of the
record v will either decrease or stay the same.

Spilling

Register spilling (see Chapter 11) is conservative. Records introduced by the spiller
have bounded extent—they must disappear before the next procedure call, and in
the CPS each procedure is like an extended basic block without loops. Even though
the spill record may keep some values reachable beyond the point where they are
dead in the untransformed program, it can do so during the creation of only a
bounded number of new values; so the space complexity is increased by at most a
constant increment.

Common-subexpression elimination

General common-subexpression elimination is not conservative of space complexity.
Consider the program

fun s(0) = nil | s(i) = 0 :: s(i-1)

fun f(n) = if n=0 then 0

else let val x = s(N)

val y = f(n-1)

val z = s(N)

in y+length(z)

end

val result = f(N)

The space complexity of this program is N , because at most one list of length N
will be live at one time. But if the common subexpression is eliminated, we have

140 Chapter 12. Space complexity

fun f(n) = if n=0 then 0

else let val x = s(N)

val y = f(n-1)

val z = x

in y+length(z)

end

and now, at the most deeply nested recursive call, there will be N copies of the
list still reachable.

If we look at this program in (mostly) continuation-passing style, however, the
common subexpression is not as obvious:

fun s(i,c) = if i=0 then c(nil)

else let fun c’(a) = c(0::a)

in s(i-1,c’)

end

fun f(n,k) =

if n=0 then k(0)

else let fun c1(x) =

let fun c2(y) =

let fun c3(z) = c(y+length(z))

in s(N,c3)

end

in f(n-1,c2)

end

in s(N,c1)

end

Here the two calls to s have different continuations, and are not really common
subexpressions; so the “duplicate” expression will not be eliminated, and the
blowup is cleverly avoided. Of course, this is more a commentary on the stupidity
of the CSE optimization in CPS than on its cleverness.

If we consider the simpler CSE optimization—as we have implemented it—on
CPS programs, we find that it is conservative. We consider two cases (others are
similar); the first is a common SELECT expression:

SELECT(i, v, w, . . . SELECT(i, v, x, E) . . .) → SELECT(i, v, w, . . . E{x �→ w} . . .)

Even though the liveness of the variable w may increase, the reachability of the
value it points to cannot, since v (which contains it) was live over the entire range
between the binding of w and the binding of x. On the other hand, the record
v is now perhaps less live (and certainly no more live) than it was, and therefore
perhaps less reachable.

Now consider a common RECORD expression:

RECORD(�f, w, . . . RECORD(�f, x, E) . . .) → RECORD(�f, w, . . . E{x �→ w} . . .)

12.2. Preserving space complexity 141

In the new program, the record w is live for a possibly longer period; it might
have been dead at some time between the binding of w and that of x. Thus, at
such a point, the absolute number of reachable values will be higher in the new
program than the old.

Though this transformation might increase the absolute space complexity of the
program, it cannot increase the asymptotic complexity. To see this, we ask: How
many instances of w can exist simultaneously? Each time the RECORD operator is
executed, another instance is created. Each previous instance, if it is still reachable,
must be contained in a closure somewhere; and each closure can contain at most
one instance of w. Therefore, the space complexity can increase by at most one
unit per closure. Since the number of closures is no more than the number of
memory units allocated, the space complexity cannot grow by more than a factor
of two. But this is, of course, a constant factor—thus, each instance of a RECORD

CSE transformation will increase space complexity by at most a constant factor.
Thus, any sequence of K such transformations will only increase space complexity
by at most 2K . And since the number of transformations is a computable function
g of the size S of the program (since the optimizer always halts), the increase in
space complexity can be at most 2g(S). But since S is independent of the size of
the input to the program, the asymptotic space complexity is not changed.

In practice, of course, we expect that this transformation will not increase space
complexity by any large amount, and will save enough time to be worthwhile; if
that turns out not to be the case, we could always disable the optimization.

Hoisting

A hoisting transformation is one that interchanges the order of variable bindings
in a continuation-passing style program. For example, if {f, �x} ∩ fv(C) = φ then

FIX([(f, �x, B)], FIX([(g, �y, C)], E)) → FIX([(g, �y, C)], FIX([(f, �x, B)], E))

Hoisting transformations have no effect on asymptotic space complexity. In this
case (the interchange of two function definitions), the closure for f has exactly the
same free variables that it had before the transformation, and similarly for g,
so reachability is unaffected. Similar arguments can be made for other hoisting
transformations.

The only dangerous hoisting transformations are those that pull bindings out of
function bodies, since these change the free-variable sets—and therefore the size of
closures—of functions. Here there is a strong analogy with common-subexpression
elimination: It is all right to hoist small operations (individual record creations) out
of functions, but not large ones (function calls that create large data structures).
And, just as with CSE, the CPS representation is a bit “too stupid” to hoist large
operations.

142 Chapter 12. Space complexity

12.3 Closure representations

The good news so far has been that many of the interesting transformations and
partial evaluations of continuation-passing-style programs do not increase space
complexity. However, the choice of closure representations can have a great effect.

Flat closures

Thus far in the analysis of space complexity, we have assumed that each function
closure is like a record that holds only the free variables needed by the function—we
call this a “flat” representation; it was used in Cardelli’s ML compiler [26].

A disadvantage of the flat representation is that variables can be copied many
times from one closure to another. Consider

fun f(u,v,w,x,y,z) =

let fun g() =

let fun h() =

let fun i() =

let fun j() = u+v+w+x+y+z

in j

end

in i

end

in h

end

in g

end

Each of the variables u, v, w, x, y, z must be copied from the arguments of f into
the closure of g, and from there into the closure for h, and then into the closures of
i and j. This can be quite expensive; to avoid this problem the method of linked
closures [57] is usually used instead.

Linked closures

With linked closures, the closure of each function h is a record containing

• the values of all variables free in h but not free in the statically enclosing
function g, and

• a pointer to the closure for g.

The variables free in h but not in g are, of course, a subset of the parameters
and locals of h; some implementations put all of these variables in the closure,
which is unnecessary.

It is easy to see that linked closures may save a lot of copying. In the example
above, the closure for g is large (containing u, v, w, x, y, z); but the closure for h

12.3. Closure representations 143

contains just a pointer to g’s closure, and i’s closure contains just a pointer to
h’s, and so on. Of course, when j tries to access its free variables, lots of pointer
traversal may be necessary.

Another advantage of linked closures is that side-effectable variables must not
be copied; linked closures never create more than one copy of a variable. This ad-
vantage does not pertain to implementations of ML, where variables are immutable;
and in implementations of languages such as Scheme, a simple compile-time anal-
ysis can identify which variables are side effected and handle them using a pointer
to a memory cell [55]—the pointer can be copied as necessary.

Using linked instead of flat closures can lead to an increase in asymptotic space
complexity. Consider this program:

fun s(0) = nil | s(i) = 0 :: s(i-1)

fun f() = let val x = s(N)

fun g() = let val z = length(x)

fun h() = z

in h

end

in g

end

fun t(0) = nil

| t(i) = f()() :: t(i-1)

val result = t(N)

With flat closures, each evaluation of f()() yields a closure for h that contains
just an integer z. With linked closures, each closure for h contains a pointer to
the closure for g, which contains a list x of size N . Since this program keeps N
closures for h simultaneously, the complexity with linked closures is N2.

In contrast, the asymptotic complexity of flat closures can never be greater
than that of linked closures. Even though the individual closure records in a flat
implementation may be larger than those in a linked implementation, the increase
in size (i.e., extra pointers to free variables) is a factor related only to the size of
the program, not to the size of the input.

Merged closures

Another strategy used by the Standard ML of New Jersey compiler is merging of
closures. When two functions are adjacent (or can be made adjacent by hoisting),
and have consistent sets of free variables, then both functions can share the same
closure record.

The compiler arranges for all the functions defined in the same mutually re-
cursive definition to share the same closure (see sections 8.1 and 10.2). When a
mutually recursive definition A is nested directly inside another mutually recursive

144 Chapter 12. Space complexity

definition B, then A and B can be merged into one mutually recursive definition.
The same is true if A is inside the body of one of the functions defined by B, as
long as none of the free variables of A are bound by B.

Unfortunately, closure sharing can increase the asymptotic complexity of pro-
grams. Consider the program:

fun s(0) = nil | s(i) = 0 :: s(i-1)

fun f() = let val x = s(N)

fun g() = let val z = length(x)

fun h() = 0

in h

end

fun t(0) = nil

| t(i) = f() :: t(i-1)

val result = t(N)

With the closure-sharing “optimization,” the function f looks like:

fun f() = let val x = s(N)

fun g() = let val z = length(x)

and h() = 0

in g

end

When the closures for g and h are shared, the closure for h is saddled with the
value x, which it does not need. The result is N2 space consumption instead of
N .

The danger of linked or merged closures—that some programs will use far too
much space, without the programmer being able to figure out why—is a very
serious disadvantage. Unless there is a counterbalancing advantage—which there
isn’t, as our measurements in Chapter 15 show—linked and merged closures should
not be used. This does not apply to functions written as mutually recursive by the
programmer, however, which must have some sort of interlinked or merged closures
in any implementation.

12.4 When to initiate garbage collection

Though we have given the definition of “reachable values” (Section 12.1) we have
not explained how the garbage collector implements this definition. Starting with
some “root set” of variables, the collector traverses all values reachable from those
variables, reclaiming the storage of the unreachable values. But what is the “root
set?” The definition of reachable values states the base case of the induction:

12.4. When to initiate garbage collection 145

• Upon entry to a function f(x), the value f is reachable, and the values �x are
reachable.

In continuation-passing style, this is sufficient, since the function f can allocate
only a finite number of records and closures before entering another function; so
we don’t need a definition of the reachable variables during the execution of a
function.

This definition implies that it is permissible to invoke the collector only at the
beginning of a function, and indeed, that is what Standard ML of New Jersey does.
In the CPS representation (after the spill phase), each variable will correspond to
a machine register; the collector can just use the registers as roots of the reachable
graph. At the beginning of each function, a test can be made for exhaustion of
the free space, and the garbage collector can be conditionally invoked.

There is a minor problem, however. Suppose some function f , rarely invoked,
uses register r; but the other functions of the program do not. Then if the garbage
collector is invoked in some other function g, the register r is reachable even though
the computation no longer has any use for it. The data preserved by the collector
will be a superset of the reachable data.

This cannot affect the asymptotic space complexity of the program. If there is
a finite number K of registers, then at worst the space complexity will worsen by
a factor of K, which is a constant. (The argument is quite simple and won’t be
expounded here.)

However, factors of K are to be avoided where possible. Standard ML of New
Jersey uses a descriptor associated with each function, telling the collector which
registers are live; so the collector can implement the definition of Section 12.1 more
faithfully.

The garbage collector cannot be run on every function call—that would waste
too much time. Thus, at any point there will be unreachable records that occupy
memory. The following rule will lead to the right asymptotic behavior, for any
constant R > 1:

• When current memory use is more than R times the amount of reachable data
preserved by the previous garbage collection, start a new garbage collection.

Then the maximum memory usage will be at most R times the maximum amount
of reachable data, and asymptotic space complexity will be conserved.

CHAPTER THIRTEEN

THE ABSTRACT MACHINE

After the spill phase, a CPS expression is in a form where it is very easy to translate
into machine code for a conventional, von Neumann machine. It is useful to define
an abstract machine that generalizes the notion of von Neumann machine; we can
translate CPS into abstract-continuation-machine instructions and then translate
the abstract-machine instructions into the machine code of a particular concrete
machine.

The abstract machine has a state comprising several parts: memory, integer
registers, floating-point registers, and a program counter. Thus, it is similar to
most modern machines, and this similarity is intentional. The abstract-machine
program is a linear sequence of instructions, labels, and literal data; it is essentially
an assembly-language program.

13.1 Compilation units

A compilation unit is a program that is parsed in one batch, translated and opti-
mized in one batch, and then turned into one contiguous piece of target-machine
code. A compilation unit can be as small as a single val declaration or function,
or as large as a group of several modules. Typically it is a single module.

A compilation unit in the source language may make free references to variables
declared in previous compilation units. For the convenience of the CPS optimizer,
and of the target-machine code generator, it is desirable that all compilation units
be closed , that is, make no free references to variables bound elsewhere.

Each compilation unit makes some of its variables available for reference from
other compilation units. For example, in the two compilation units

structure S : sig val x : int val z : int end

= struct val z = 4 and y = 3 and x = 2 end;

local fun f(x) = x+x

in fun g(y) = y*f(S.z)

fun h() = g(0)

end;

147

148 Chapter 13. The abstract machine

the first compilation unit “exports” only the lambda-language variable S, which is
a record of two fields x and z (y is omitted because of the signature). The second
compilation unit makes use of S, and “exports” only g and h.

In the interactive ML system, we have an internal table holding each lambda-
language variable that has been “exported” from a compilation unit; the variable
name is mapped to its runtime value. Let us call this table lookup. Then each
compilation unit can be “closed” by generating lambda-language calls that will call
lookup at runtime. For example, consider a third compilation unit C that refers
to S and g. We can wrap some bindings around its body as follows:

fn lookup =>

let val S = lookup "S"

val g = lookup "g"

in body of C

end

The only free variables of C were S and g, and now these are bound. (In practice,
instead of literal strings "S" and "g" we use numerical indices.)

When each compilation unit is executed, it is applied to the lookup function,
which then performs runtime “linkage” to connect variable uses to their definitions
in other compilation units. But each compilation unit is a formally closed λ-
expression, with no globally free variables.

This closure property simplifies the CPS optimization phases. But it also
simplifies the code generator and the garbage collector! There is never a need for
the machine code of one compilation unit to contain a pointer to another. And,
since all pointers within a compilation unit’s machine code can be made program-
counter relative, machine-code objects never contain pointers. Thus, no link-loader
is needed, and no link-loader interface format is needed either.

Where did the pointers go? In fact, when executing the body of C described
above, the pointers to S and g are available in the closures of whatever functions
require them. Thus, the closure mechanism for managing free variables of functions
generalizes to handle free variables of compilation units as well.

13.2 Interface with the garbage collector

The machine allocates records and arrays in memory. A garbage collector is oc-
casionally invoked that traverses the data structure in memory, using the general-
purpose registers as roots of the graph of pointers, to see which records and arrays
are unreachable from registers—these are garbage. In doing so, it may move
reachable records to eliminate fragmentation; whenever a record is moved, all the
(reachable) pointers to it must be adjusted. This means that the garbage collector
must be able to understand which of the general-purpose registers are pointers,
and which are just integer values (or other nonpointers).

There are three approaches to this problem. The first approach, called “con-
servative garbage collection [18, 24],” treats all registers as pointers, even though

13.2. Interface with the garbage collector 149

some registers might be integers that merely look like pointers. Conservative col-
lection must avoid moving any object pointed to by a register, when that register
might just be an integer whose value is coincidentally the address of an object,
since “adjusting” the integer value will cause the program to go wrong. (Adjusting
a pointer value is all right, since the program will continue to get the same results
when the pointer is dereferenced; but conservative collection doesn’t know how the
program is using the register.)

The second approach is to assume that a garbage collection might happen
at any time—perhaps the collector is invoked by a timer interrupt that might
occur between any adjacent instructions. Then the registers must be divided into
two disjoint sets, one set containing only pointers and the other containing only
nonpointers. Maintaining this invariant is troublesome, especially in the middle of
the allocation of a new record; but it can be done [4].

The third approach is to have periodic “safe points,” at which the contents
of registers are clearly explained to the garbage collector. At a safe point, every
pointer (and only pointers) must be in the pointer registers. We have chosen a
more flexible approach: Instead of using disjoint pointer and nonpointer registers,
we have a “register mask” at each safe point that indicates exactly which registers
contain pointers. This is advantageous because it prevents previously used, dead
registers (those which will be written before they are next read) from causing
useless records to be retained by the garbage collector (see Section 12.4). Garbage
collections can occur only at safe points; between safe points, the contents of
registers and the format of pointers are unrestricted. Each safe point has a test to
see whether the collector must be invoked.

This third approach is the one we are using at present, after some years of using
the “always-safe” second approach. We abandoned the “always-safe” approach
because it greatly complicates the implementation of peephole optimizations in
the target-machine-specific phase of the compiler: Arithmetic on pointers often
leads to “unsafe” temporary values.

We have avoided the “conservative” approach entirely, because of the burden it
places on the garbage collector. Since ML programs allocate records so frequently,
the collector must be as efficient as possible. Also, copying or compacting garbage
can maintain large contiguous free regions (instead of a “free list”), which makes
allocation of new records more efficient. This is more difficult (though still possible
[18]) with conservative collection.

We put a safe point at the beginning of each CPS function. Since functions in
the CPS language do not contain loops, a function can execute for only a bounded
amount of time—and allocate a bounded number of records—before calling another
CPS function (and reaching another safe point). The first instruction of each
function tests to see if the allocation region (from which records and arrays are
allocated) is almost exhausted, and if so invokes the garbage collector. Immediately
before this instruction, there is a register mask, embedded in the machine-code
program. This mask is never “executed,” even though it sits in the instruction
stream, since the function is always entered via a jump to an address following
the mask.

150 Chapter 13. The abstract machine

The test for exhaustion of the allocation region is implemented by a comparison
of the current data pointer (which indicates the next free address that can be
used for allocating a new record) with the data-limit (which indicates the last
address that can be allocated). If the difference is less than the amount of data
allocated in the current CPS function, the collector must be invoked.

It is easy to compute an upper bound on the amount of data allocated by
a CPS function. Each CPS operator allocates a fixed amount of data; one can
traverse the expression tree from the root to a leaf (an APP node) and sum these
amounts to see how much data is allocated along the path. Then one can take
the maximum over all paths (there will be more than one path only if a branch or
SWITCH operator is present).

Let the last allocatable address be L. For efficient implementation of the heap-
limit check in machine language (on most machines), we put in the data limit
register a value L′ = M −L + K, where M is the maximum integer representable
on the machine, and K is a small constant (we use 4096, arbitrarily). Let D be
the current value of the data pointer. Then, for any CPS function that allocates
less than K bytes, the implementation of the heap-exhausted test is quite simple:
we compute D + L′, discard the result, and test for overflow. This can be done in
one instruction on most machines. If the heap is exhausted, an overflow will occur
and a machine interrupt will be generated; the interrupt handler will invoke the
garbage collector. On some machines, it is more convenient (and certainly more
straightforward) to use a compare-and-trap-on-greater-than instruction.

For functions that may allocate more than K bytes, a more complicated test is
required. Let B be the amount to be allocated; as a conservative approximation
we compute D +B +L′ and initiate collection if that overflows. The function that
allocates arrays (whose size is not known at compile time) is an external, assembly-
language function that also makes a more elaborate test for heap exhaustion.

Loop unrolling and in-line expansions will reduce the dynamic frequency of safe
points, and will therefore reduce both the overhead of checking for heap exhaustion
and the overhead of periodically constraining the representation of data in registers
to be “safe.”

13.3 Position-independent code

One minor complication is that each compilation unit must be position indepen-
dent, because the garbage collector may move machine code from one place to
another.

There are two ways that one could implement position independence. The first
is to use program-counter-relative instructions where necessary, both for the targets
of jumps, and for reference to literals (strings and reals) embedded within the
program. This usually suffices. The second way is to give up on PC-independent
code, and just have the garbage collector adjust addresses in programs whenever
machine code is moved; we have not had to do this.

On all machines we have compiled for, it is possible to implement PC-relative

13.4. Special-purpose registers 151

jumps without too much difficulty. However, some recent RISC machines (e.g., the
MIPS and the SPARC) do not have a PC-relative addressing mode for loading the
addresses of literals. What we do on those machines is to use a branch-and-link
instruction (that branches to the next instruction!) to load the program counter
into a register P ; then we add an appropriate offset to the result. There are two
variations on this theme: We can have P point to the beginning of the compilation
unit (or some fixed offset from the beginning, to allow smaller offsets embedded in
instructions), or we can have P point at an arbitrary place (which we must keep
track of). Either scheme has its advantages: For each scheme there is a different
subset of functions for which reloading of P is not necessary.

On some machines, the instruction cache does not track stores into the instruc-
tion stream. Thus, when the garbage collector moves a block of machine code,
it must flush a portion of the instruction cache before executing the moved code.
This is easily accomplished in the runtime system and is not a problem relevant
to the code generator.

13.4 Special-purpose registers

Five of the integer registers are reserved for special purposes, and at least four
“general-purpose” registers must be available to hold values of the CPS language.
Thus, the target machine must have at least nine registers, or must simulate some
of the registers in memory. On machines with more registers, CPS code is more
efficient because more registers may be used in passing arguments to known func-
tions, and there are fewer spills. The number of registers is an input to the CPS
optimization and transformation phases, which use it to limit the number of free
variables of CPS expressions. Otherwise, CPS expressions are independent of the
target machine.

The special registers are:

• The data pointer, which holds the address of the beginning of the free
region, where the next record will be allocated on the heap.

• The data limit, which indicates the end of the free region. When the data
pointer reaches the end of the free region, either a garbage collection must
be done or another free region must be found.

• In some implementations, a store pointer, which points to the modified set
(see Section 16.3), a list of heap locations that have been updated since the
last garbage collection.

• The exception pointer, which holds the current exception handler.

• On the Motorola 68020 processor, which has separate address and data reg-
isters, we use the address registers as “general-purpose” registers. We desig-
nate one of the data registers as an arithmetic temporary in which certain
arithmetic operations must be performed. (This is no fun at all!) On other

152 Chapter 13. The abstract machine

machines, it is still handy to have an arithmetic temporary for certain limited
purposes, so we use one of the general-purpose registers.

Some of the general-purpose registers have conventional meanings for calls to es-
caping functions (those whose call sites are not all known, and which must therefore
use standard calling conventions). The escaping functions fall into a small number
of classes (usually two, as explained in the next paragraph, though languages such
as Prolog might have three), and all of the functions within a class must have the
same calling sequence. We can arbitrarily say that for an N -argument escaping
function, the first formal parameter will be passed in the first general-purpose
register, the second parameter in the second register, and so on.

The different classes of escaping functions are related, however. For the im-
plementations of conventional single-threaded languages (including ML, Scheme,
Lisp, Pascal, etc.) there are two classes of functions: “user functions” and “con-
tinuations.” An escaping user function takes three arguments: its closure, its
“user argument” (the actual parameter written explicitly in the source language),
and its continuation (which may actually occupy several registers, as explained in
Section 10.6). An escaping continuation (and almost all continuations do escape)
takes two arguments: its “user result” (the one returned explicitly by the source
program) and its closure (which may occupy several registers). In fact, the closure
of a continuation is often the same thing as the continuation argument of a recently
called user function. Thus, it is important that the parameter-passing conventions
for escaping functions assign the continuation argument of a user function to the
same register as the closure argument of a continuation.

Thus, for parameter passing to escaping functions, we use the following con-
ventions:

• GP-register 1 is the standard closure register; when calling an escaping
user function, the closure argument is put here. Register 1 can also be used
for other purposes, between calls to escaping functions.

• GP-register 2 is the standard argument register; when calling an escaping
user function, the source-language argument is put here. Also, when calling
an escaping continuation, the source-language result is put here. For source
languages that (unlike ML) permit several arguments to be passed, one would
reserve several GP-registers for this purpose.

• GP-registers 3→ 3+K are used for passing the continuation to escaping user
functions, and (equivalently) to pass the closure of an escaping continuation.
The constant K ≥ 0 is the number of callee-save registers (see Section 10.6),
and must be fixed in advance for all functions.

For calls to known functions, any of the GP registers (including the ones listed
above) may be used. This is because (by definition) all the call sites are known,
and the compiler can arrange the marshaling of actual parameters, and the use of
formal parameters, as it chooses. Also, all bindings of variables inside functions
(e.g., the results of SELECTs, RECORDs, and PRIMOPs) may be put in any of the
general-purpose registers.

13.4. Special-purpose registers 153

How many registers?

It is instructive to see how the registers of real machines are used to implement
our abstract machine.

• On the Vax, there are 14 registers, not including the stack pointer and the
program counter. Even though we do not use a stack, we cannot use the
stack pointer as a general-purpose register because the Unix operating system
dumps information about Unix signals onto the stack. We use five of these
for our “special” registers, leaving nine “general” registers.

• On the MC68020, there are seven “address” registers, not including the stack
pointer which is treated specially by the operating system. We need one of
the address registers as a “pointer temporary” because of the infelicities of
the 68020 instruction set. We use the “data” registers of the 68020 for the
arithmetic temporary, the store pointer, the exception handler, and the data
limit. Unfortunately, the data pointer must go in an address register since
it is frequently used as the address for store instructions. This leaves five
address registers to be used as “general-purpose” registers.

• The MIPS has 32 registers, of which one is always zero, one is used as a
special link register, one is reserved for the “assembler,” two are reserved for
the operating system, one is the stack pointer, one is the “global pointer”
for C programs (including, particularly, the runtime system for ML!). We
need one register for a “pointer temporary” and five for our special registers,
leaving 19 as “general-purpose” registers.

• The SPARC Has 32 registers; instead of reciting a similar litany we will note
that about 20 are available as “general” registers. We do not use the register
windows on the SPARC.

Given that there are N “general” registers, for N ∈ {5, 9, 19, 20} (etc.), we
must observe the following rules:

• The input to the abstract-machine code generation phase must be an expres-
sion of which no subexpression has more than N free variables.

• The spill phase, therefore, must ensure that any subexpression has at most
N free variables.

• The closure phase must ensure that any function has at most N arguments,
including the K “callee-saves” arguments.

• The β-reduction and argument-flattening phase must ensure that any func-
tion has at most N −1−K arguments, where K ≥ 0 is the number of callee-
saves registers. A function with A arguments (before the closure-conversion
phase) may need one additional argument for its closure, and K additional
callee-saves arguments, so A + 1 + K ≤ N .

154 Chapter 13. The abstract machine

Floating-point registers

Most modern machines have disjoint sets of integer and floating-point registers.
There is reason to believe that this separation will endure, since in the hardware
implementation the floating registers must be physically near the floating ALU,
and the integer registers must be physically near the integer ALU and memory-
addressing unit. Furthermore, having two sets of registers allows integer and float-
ing instruction streams—which are interleaved in the machine-language program—
to proceed asynchronously.

The abstract-machine interface, since it is intended to reflect the realities of
von Neumann machines, also has a separate set of floating-point registers. In fact,
there are two disjoint sets:

• those registers not saved across interrupts and garbage collections (i.e., across
safe points), and

• those registers saved across safe points.

Obviously, since our model puts a safe point at the beginning of every function, only
the latter registers can be used for passing parameters in function calls. One can
arrange for the runtime system to save more of the registers at garbage collections
and interrupts, which may increase parameter-passing efficiency but would increase
context-switch time.

There is no provision for passing floating-point registers to escaping functions.
Thus, all floating parameters to escaping functions must be passed boxed, as point-
ers to floating-point values in memory. Calls to known functions, however, can use
the floating-point parameter registers.

For machines (such as the VAX) that do not have separate floating-point reg-
isters, we invent them: We reserve a region of memory to serve as a set of floating-
point registers. On recent VAXes, access to the cache is as fast as access to registers
for most kinds of operands [29], so simulating floating registers in memory causes
some loss of performance but not too much.

13.5 Pseudo-operations

The continuation-machine interface is essentially the assembly language of a con-
ventional von Neumann machine, and as such has several “pseudo-operations” that
manipulate the assembly process but are not actual instructions. These include:

align: Generates enough zero-filled bytes to get to an “aligned” address. On a
typical byte-addressable, 32-bit machine this is an address that is a multiple
of four. We need to align mainly because closures can point into the middle
of machine-code objects (at function entry points), and the garbage collector
is confused by pointers that are not multiples of four.

mark: Generates an embedded descriptor, so if the garbage collector ever finds
a pointer to the immediately following address, it will be able to find the

13.6. Instructions of the continuation machine 155

beginning of the machine code for this compilation unit. The descriptor con-
tains an integer offset from this address to the beginning of the compilation
unit.

emit long(i): Generate a literal integer i in the machine program. This is mainly
used for descriptors of embedded string literals.

define label(l): Associates the current point in the machine-language program
with an assembly-language label l.

emit label(i, l2): Occurring at an address l1 in a program, emits the integer i +
l2 − l1. Thus, it emits the difference (adjusted by a constant) between the
current address and some other specified address. This is useful in position-
independent jump tables for SWITCH operators.

emit string(s): Puts the characters of the string s into the machine-code pro-
gram; this is used (obviously) for string literals.

real constant(s): Puts the floating-point constant s into the machine-code pro-
gram. The argument s is an ASCII representation of the value; the “assem-
bler” translates s into native floating format. This late translation into na-
tive floating-point format allows easy and precise cross compilation (we use
large-precision integers to construct accurate floating-point literals) but—
unfortunately—makes it almost impossible to do constant folding on floating-
point expressions.

13.6 Instructions of the continuation machine

The continuation machine has three “addressing modes” that can be used as
operands of instructions:

register direct: The value held in a machine register is used as an operand.

immediate integer: A literal integer is used as the operand.

immediate label: An address in the machine program is used as the operand.
This address might be the beginning of an escaping function, the location of
a floating-point literal, or the beginning of a string literal. It is typically im-
plemented by a PC-relative addressing mode, to make the program segment
easily movable by the garbage collector.

Some instructions take “target operands” to indicate where a result must be placed.
Obviously, these must be register-direct operands.

Only the register-direct mode may be used for floating-point operands, but
there are instructions for loading and storing floats to/from the floating-point
registers.

Since the continuation-machine is just a von Neumann computer, its instruc-
tions are quite conventional, except for the first two that help implement “safe
points” and PC-relative programs:

156 Chapter 13. The abstract machine

check limit(n): Ensures that at least n bytes of space remain in the allocation
region; if not, give control to the runtime system. This instruction must occur
at a “safe point,” with a mark immediately preceding, and a register mask
right before that. The register mask is typically one 32-bit word, in which a 1
is set for each register containing a live pointer. Other registers may contain
live integers, dead pointers, or garbage; they are preserved unchanged by the
collector.

beginStdFn: Begins a “standard” (escaping) function. On machines that need it,
this translates into a “bogus” branch-and-link to load the program counter
into a register for use in PC-relative instructions.

jump(x): Jumps to location x, where x can be an immediate label or the contents
of a register.

record(l, r): Allocates a record with fields l and puts a pointer to it in register
r. The operand l is a list of fields, each one of which is a pair of operand
and access path. The operand of each field may be any of the three operand
types; the access path is just like the one of the CPS language (page 34).
This rather complicated instruction is discussed in more detail below.

select(i, v, r): Fetches the ith field of record v, putting the result in r. On a 32-
bit byte-addressable machine, this can be written with the register transfer
r←32 M [v + 4i].

offset(i, v, r): Makes r point to the ith field of record v. On a 32-bit byte-
addressable machine, this is r ← v + 4i.

fetchindexb(x, r, z): Indexed, eight-bit fetch to get a byte from a string. On a
byte-addressable machine r←8 M [x+z]. There is an unfortunate restriction
(for the benefit of the MC68020) that r must not be the same register as x
or z.

storeindexb(x, r, z): Stores a byte into a byte array: M [x + z]←8 r.

fetchindexl(x, r, z): Indexed, full-word fetch to get an element of an array or
record. Byte addressably, r ←32 M [x + z], subject to the restriction that r
is not the same register as x or z.

storeindexl(x, r, z): Stores a word into an array.
Byte addressably, M [x + z]←32 r.

ashl(x, y, r): Arithmetic shift left: r ← y · 2x.

ashr(x, y, r): Arithmetic shift right: r ← �y · 2−x
.

orb(x, y, r): Bitwise inclusive or, ri ← xi ∨ yi, for the ith bit of r, for each i.

andb(x, y, r): Bitwise and.

13.6. Instructions of the continuation machine 157

xorb(x, y, r): Bitwise exclusive or.

notb(x, r): Bitwise complement.

add(x, y, r): Integer add: r ← x + y. This instruction may raise the overflow
exception if x + y does not fit in one word, but it is not required to.

addt(x, y, r): Integer add with trap: r ← x + y. This instruction must raise the
overflow exception if x + y does not fit in one word.

sub(x, y, r): Integer subtract: r← y−x. This instruction may, but is not required
to, raise the overflow exception when overflow occurs.

subt(x, y, r): Integer subtract with trap: r ← y − x, raising overflow if overflow
occurs.

divt(x, y): Signed integer divide: y ← sign(y/a) · �(|y/a|)
, raising the divide-
by-zero exception if a = 0, and raising overflow if a �= 0 and y/a is not
representable.

mult(x, y): Signed integer multiply: y ← x · y, raising overflow if the result is not
representable.

bbs(x, l): Branch on bit set: Branch to location l if the number x is odd.

ibranch(c, x, y, l): Integer comparison. If the condition x c y holds, where c is one
of the operators {=, �=, <,≤, >,≥, <u,≤u, >u,≥u}, then branch to address
l. The u indicates an unsigned comparison.

mulf(x, y, r): Floating multiplication; all operands must be floating-point regis-
ters. Overflow exception must be raised on overflow.

divf(x, y, r): Floating division; operands must be floating registers. Divide-by-
zero and overflow must be raised when appropriate.

addf(x, y, r): Floating add; operands must be floating registers. Overflow must
be raised when appropriate.

subf(x, y, r): Floating add; operands must be floating registers. Overflow must
be raised when appropriate.

fbranch(c, x, y, l): Floating comparison. If the condition x c l holds, where c is
one of the operators {=, �=, <,≤, >,≥}, then branch to address l.

loadfloat(x, r): The contents of memory addressed by integer register x are loaded
into floating register r.

storefloat(x, r): The contents of floating register r are stored into memory ad-
dressed by integer register x.

158 Chapter 13. The abstract machine

13.7 Register assignment

The structure of a CPS expression after the spill phase is sufficiently close to the
structure of a abstract continuation-machine program that there’s not much to do
in translating from one to the other. One important part of this translation is the
mapping of CPS variables to machine registers. There is never a danger of running
out of registers (the spill phase has assured that), but a good choice of mapping
can minimize the number of register–register move instructions required.

There are just a few constraints on register assignment:

1. The formal parameters of an escaping function are prescribed by convention,
and must be mapped to a specified list of registers.

2. The formal parameters of a known function may be chosen at will, but all
the callers of that function must use the same assignment.

3. At any CPS expression that binds a variable w and continues with a subex-
pression E, the register chosen for w must be different from all the registers
chosen for variables free in E.

We use some simple greedy heuristics to minimize move instructions; these are
essentially the same as those used in the ORBIT compiler [55]. A most important
heuristic is to delay the choice of registers for formal parameters of a known func-
tion until one of the calls to that function is found. We start generating code with
the first (“outermost”) escaping function. Instructions will be generated top down
starting with the operator closest to the root of the expression tree representing
the body of this function.

At any point in code generation, the assignment of variables to registers is
already decided for all variables whose scope contains the current subexpression.
At the beginning, for example, the only variables whose scope contains the current
subexpression—the body of the first escaping function—are the formal parameters
of that function. Their assignment is already predetermined (by rule 1 above).

Now, assume we have some operator that binds a variable w and continues
with a subexpression E, such as SELECT(i, v, w, E). We now choose a register for
the variable w. We can choose any register except those bound to variables free
in E. Since E must have fewer than N free variables (after the spill phase), there
must be some variable we can choose for w. Now we recur on the expression E.

We can continue this until we reach a leaf of the continuation expression. This
will be a node of the form APP(f, �x). Now, there are two cases:

1. f(�v) is an escaping function, or is a known function whose parameter as-
signment has already been decided (because at least one call to it has been
examined already). In this case, the registers associated with �x must be
moved to the registers associated with �v, using move instructions. To the
extent that some values are already in the right registers, fewer moves will
be necessary. If �x overlaps with �v, then it may be necessary to use an extra
temporary register to accomplish the permutation.

13.7. Register assignment 159

2. f(�v) is a known function whose parameter assignment has not yet been
decided. Then we are free to choose that the assignment of registers for
�v can be just the same as that of �x, and no moves at all will be necessary!

In either case, some of the values �x may be constants, not variables; so they won’t
already be in registers. In this case, some sort of load-constant instruction will be
required instead of a move, but this cannot be avoided in any case. For the first
call to a known function, we simply pick an arbitrary register in which to place
the constant, and make this the register assignment for the formal parameter.

Thus at least one of the calls to each known function will be accomplished
without any move instructions. And we can use the heuristic of targeting to
reduce the number of moves in the other calls. Consider again a nonleaf operator
such as SELECT(i, v, w, E). We can examine the expression E to see if it contains
a node APP(f, [. . . , VAR w, . . .]) that uses w as an argument. If so, and if the
parameter assignment for f is already determined, then we should try to place w
in the right register when it is first bound, so no move will be necessary later. Of
course, that register may still be occupied by a variable free in E, in which case
targeting cannot be applied.

We can also use a kind of antitargeting. In choosing a register for w, we might
find a leaf APP(f, �x) where w and �x are disjoint. This means that we should
probably avoid putting w in any of the registers that are formal parameters of f ,
so targeting is more likely to be successful as we bind the rest of the variables �x.

Neither of these heuristics guarantees an optimal register assignment, but they
are simple to implement and seem to produce good results.

Optimal register targeting is NP-complete. We can show this by a reduction
from circular-arc graph K-colorability [41]. A circular-arc graph is one in which
each node is represented by a circular arc (all arcs concentric about the same
point). Two nodes are considered adjacent if their arcs overlap. A graph is K-
colorable if each node can be given a color (from a set of K colors) so adjacent
nodes never have the same color.

Given a circular-arc K-coloring problem, we can transform it into a register-
targeting problem as follows. Pick an arbitrary point on the circle, and “cut”
all the arcs crossing that point. Number each such arc with a register (from a
set of K registers). These represent the registers assigned to the formal param-
eters of a function. Now, as we travel around the circle, the ending of an arc
represents a variable no longer live, and the beginning of the arc represents a new
binding. When we reach the end (i.e., the beginning) of the circle, the arcs that
cross the “cut” have registers already assigned to them; these represent the actual
parameters of a call to some other function that has registers already assigned to
its formal parameters. Our register-targeting algorithm can assign registers and
avoid generating any move instructions if and only if the circular-arc graph was
K-colorable.

To finish the proof of NP-completeness, we must also show that the problem
is in NP; clearly a solution can be generated and checked in polynomial time by a
nondeterministic automaton.

160 Chapter 13. The abstract machine

Of course, targeting within one CPS function is a “small” problem. The larger,
and more interesting, problem is the global assignment of formal parameters (of all
functions) to registers, to globally minimize the number of move instructions. But
consider a recursive function f(�v); we are required to choose registers for the formal
parameters �v that will optimize the number of moves. No matter what registers are
chosen for �v, the problem is reduced to the targeting problem previously described.
Therefore, optimal global register assignment is clearly intractable.

Given that optimal solutions are not possible in polynomial time, and that we
have easy heuristics that give good results, clearly we should be satisfied with the
heuristics.

13.8 Branch prediction

The targeting and antitargeting heuristics need to find an APP node likely to be
executed after the “current” operation. Since the CPS tree for a given function
may include comparison primops and SWITCH operators, there may be several such
APP nodes to choose from. Presumably, the heuristics will perform better if the
most likely taken APP node is used. This requires compile-time estimation of branch
frequencies.

Also, some target machines have conditional-branch instructions that take a
different amount of time for taken and untaken branches. Compile-time branch-
frequency estimation is also useful for these machines, so the most-often-taken
path will be the faster one.

In “conventional” compilers, it is assumed that “loop” branches will usually
be taken. We can phrase this heuristic in the context of continuation-passing
style. We construct the call graph of applications of known functions; that is, the
function names are the nodes of this graph, and there is an edge from A to B if
function A contains an APPlication of function B.

Now, any cycle in this graph is a “loop.” Suppose function A is in a strongly
connected component, and we are considering a branch (a SWITCH or comparison)
within A. One path leads to an APP of a known function B within the same strongly
connected component, and the other path leads to APPs only of functions outside
the component or unknown functions (those extracted from records or received as
formal parameters). Then the we call the path leading to B the “loop edge,” and
we guess that it is more likely taken.

Other heuristics can be applied here. Suppose we have a (source-language) if-
then-else, that leads to a (CPS-language) comparison primop. Now, both paths of
the comparison will APPly the same known (continuation) function at their leaves.
If one path has a shorter path to its leaf (the APP node), we will guess that this
path is more frequently taken. The rationale is that if we guess wrong, the extra
cost incurred by the more frequently taken path will be amortized over a larger
computation anyway.

We have implemented some of these heuristics, but have not measured their
performance.

13.9. Generation of abstract-machine instructions 161

13.9 Generation of abstract-machine instructions

To generate code from the CPS-converted, optimized, closure-converted, spilled
intermediate representation, we make a pool of all functions whose formal param-
eters have been assigned to registers. Initially, this is exactly the set of escaping
functions. When we generate the first call to a known function, we choose a register
assignment for its formal parameters and add it to the pool.

We remove an arbitrary function from the pool, and create a table mapping
CPS variables to registers. We initialize this table with the formal parameters of
the function.

We then traverse the CPS expression, top down. For each operator, there will
be a set of input operands; because of scoping rules and our top-down traversal,
these operands will already be bound to registers in our table. There will be a set of
output operands; we can bind these to registers (and add them to the table) using
the targeting and antitargeting heuristics described above. We then “emit” the
appropriate abstract-machine instructions with the correct registers as operands.
Finally, there will be one, or (for comparisons and SWITCHes) several, subtrees;
upon these the code generator recurs.

The leaves—APP nodes—are handled somewhat differently. There are two
cases: known functions to which no call has yet been generated, and others, for
which the assignment of formal parameters to registers has already been made.
For the former case, we can choose the assignment of formals based on the current
location of the actual parameters, so no move instructions are necessary, as ex-
plained in Section 13.7. Of course, if the same variable is passed to two different
formal parameters (e.g., f(x, x)), then a move is necessary since two different
formals cannot be assigned to the same register.

If the formals have already been bound to registers, then the actuals must be
shuffled around. Permuting N registers may take up to N + 1 move instructions
and may require an extra register to hold a temporary value. For this reason, the
number of parameters to a function must be at least one less than the number of
registers on the machine. We use the “arithmetic temporary” as the extra register
for shuffling.

It is also interesting to remark that on “superscalar” machines, where several
instructions might be executed at once, it might be advantageous to use more
than one temporary register, so there isn’t a sequentially dependent chain of N +1
instructions, but instead several smaller chains.

After emitting the move instructions (if any), we generate a jump, either to
a known label or to a destination held in a register.

13.10 Integer arithmetic

The low-order bit of each (one-word) value at runtime distinguishes pointers from
integers. This works well on byte-addressable machines, where the low-order two
bits of each word-aligned pointer are zero anyway. A low-order one-bit indicates
an integer (or other unboxed value); the upper 31 bits provide the value.

162 Chapter 13. The abstract machine

This distinction is (almost) entirely for the benefit of the garbage-collector,
which must know which objects are pointers that need to be traversed. Tag bits
don’t need to be “checked” at runtime, except in the polymorphic equality function;
the static polymorphic type system makes such checks unnecessary. We do use the
tag bits to distinguish constant data constructors from value-carrying constructors,
but as explained in Section 4.1 we could just as easily do without them.

It is inconvenient to have these tag bits. They prevent users from calculating
with full 32-bit integers, and the tag bits must be stripped off operands and added
to results. Can we do without the tags? In fact, for statically typed languages
such as ML it is possible to garbage collect without any tags, by giving the gar-
bage collector a “road map” of the compile-time types [5]; but this has its own
complications and inconveniences.

So we represent the integer i as the number i′ = 2i + 1. To add two “repre-
sented” numbers i′ and j′, we simply compute k′ = (i′ − 1) + j′, which can be
accomplished in two instructions. If one of the operands happens to be a constant,
we can subtract one at compile time, so the add can be accomplished in just one
instruction. Subtraction works similarly.

To multiply two represented integers i′ and j′ we compute k′ = (i′−1)∗�j′/2
+
1, which takes a subtract, a shift, a multiply, and an add. If one of the operands
is constant we can omit one instruction from this sequence. Division is similar.

Comparison operators need no adjustment, since i < j is equivalent to 2i+1 <
2j + 1.

Some implementations of tagged languages use a low-order zero-bit for integers
and a one-bit for pointers. Then add and subtract take just one instruction,
and multiply takes just two. Most uses of pointers (i.e., fetches and stores) use a
displacement in the machine instruction, so the fact that pointers are “off by one”
can be corrected in the displacement at no cost. There are some machines where
certain instructions (i.e., jump to address contained in register) do not permit a
displacement, so an extra instruction would be required to correct a pointer before
a jump. All in all, this may be a better scheme. However, in a typical Standard
ML of New Jersey program (the compiler compiling itself) we estimate the cost of
handling tag bits to be only 1.65 percent of total runtime [5], so the difference is
not significant.

13.11 Unboxed floating-point values

Floating-point numbers are represented on the heap as pointers to boxed double-
precision values. When a floating value is passed as a parameter to an escaping
function, for example, it is really the pointer to the number that is passed.

A naive approach to floating-point arithmetic in this framework is to implement
add(x, y) as follows, where x and y start out as boxed values in integer registers.

1. Fetch the eight bytes of x into a float register.

2. Fetch the eight bytes of y into a float register.

13.11. Unboxed floating-point values 163

3. Add x and y in registers, yielding z′.

4. Store the eight bytes of z′ into a newly allocated record on the heap.

5. Move a pointer to the new record into an integer register z.

Indeed, if x and y are formal parameters of an escaping function and z is passed
to an escaping function, nothing better can be done. But in general, if we are going
to do further computation with z we can keep the value z′ in a floating register,
without creating the boxed value z at all.

The following strategy is somewhat crude, since it does not use the floating
and integer registers optimally. It is motivated by the desire to keep the CPS rep-
resentation simple, without two different kinds of variables (floating and integer).
But our strategy seems to be reasonably effective.

A floating-point value can be in an integer (pointer) register, a floating register,
or both simultaneously. A floating value fetched from a polymorphic record, or
that’s a formal parameter of an escaping function, arrives in a pointer register
only. Whenever a floating-point value is created (by an arithmetic operation)
it is put only in a floating-point register. When necessary, a value in a floating
register can be put in a pointer register (by storing it on the heap and remembering
the address); a value in a pointer register can be put into a floating register (by
fetching).

Arithmetic operations demand their operands in floating registers, so a fetch
is necessary only for those operands not already in floating registers. Creation of
records, or passing floats to escaping functions, demands boxed values, so a store
is necessary only for those operands not only in integer registers. Once a value is
converted from an integer to a float, or vice versa, it continues to “live” in both
register banks.

The spill phase, and previous phases, have guaranteed that the program can
keep all live variables (including boxed floats) in integer registers. Our method
works well as long as there are as many float registers as “general-purpose” integer
registers. A typical modern computer has 32 integer registers, of which we use
(approximately) 16 for “general” purposes, and 16 or 32 double-precision floating
registers. So our method will work, though it may not use the full complement of
registers efficiently.

Floating parameters to known functions can be passed in floating-point regis-
ters without having to “box” them; but see Section 18.1 for the discussion of a
minor complication.

CHAPTER FOURTEEN

MACHINE-CODE GENERATION

The instructions of the abstract continuation machine must be translated into
native code for the target machine. This is done in two stages; first, from abstract-
machine into “assembly” code, then from assembly code into machine code. The
assembly code is not a text file suitable for processing by a stand-alone assembler;
instead, it is just an internal interface at the approximate semantic level of a typical
assembly language.

Translation from assembly language into machine language has several aspects:
the selection of the appropriate bit patterns for each assembly-language instruction,
addressing mode, and register; the resolution of references to labels; the sizing of
span-dependent instructions; and (on some machines) scheduling of instructions to
minimize pipeline hazards. These will all be discussed at various points throughout
the chapter.

14.1 Translation for the VAX

The VAX [90] has 16 registers, of which one is the program counter and (in prin-
ciple) the others may be used for any purpose. However, the stack pointer register
is treated specially by the operating system; when Unix signals are sent to a pro-
cess, its registers are all pushed “on the stack” (i.e., saved at the location given
by the stack pointer). Thus, only 14 registers are really available for use by the
target-machine-code generator. Of these, we reserve one for the allocation pointer
(dataptr) that indicates the next free location on the heap, one for the data limit
(datalimit) that indicates the end of the free heap space, one for the head of the
store list (storeptr) that points to modified ref cells, one for the current exception
handler exnptr, and one for an arithmetic temporary (arithtemp). This leaves
nine “general-purpose” registers.

If the runtime system does not require a store list (e.g., because it uses virtual
memory to record updates to the mutable store), then a storeptr is not necessary.
Also, in recent VAXes, access to words in the cache is about as fast as access to
registers, for those operands that are not directly used in addressing [29]. This
means that the datalimit, storeptr, exnptr, and perhaps arithtemp could be
kept in memory (probably) without slowing access to them. A convenient place to
keep them would be at small offsets from the stack pointer. Then there would be

165

166 Chapter 14. Machine-code generation

13 “general-purpose” registers. Figure 15.8 shows that there might be a modest
improvement in speed from the increased number of usable registers.

The VAX has no floating-point registers; instead, a double-precision floating-
point value may be kept in a pair of adjacent integer registers. However, the spill
phase of the compiler assumes that every value takes exactly one register, and we
are loath to change it. So we have two choices: We can make some “artificial”
floating-point registers in memory at small offsets from the stack pointer, or we can
use the “naive” approach of unboxing and reboxing floating values before and after
each operation. It turns out that either approach is equally slow; our floating-point
performance on the VAX is not very good.

What remains is just the translation of each of the abstract-machine instruc-
tions into VAX instructions.

Heap-limit check

The heap-limit check is implemented as described in Section 13.2: if L is the end
of the free region, we put 231 − L + 4096 in the limitptr register, and perform

addl3 dataptr, limitptr, arithtemp

on entry to each CPS function. When the dataptr is within 4096 bytes of the end
of the free region, this will cause an integer overflow with the program counter
pointing to the beginning of the addl3 instruction; the trap handler will invoke
the garbage collector and then restart the trapping instruction.

We don’t really care about the result of the add, just whether it overflows.
But we are forced to put the result somewhere! The only available register is the
arithmetic temporary, since any other register might be a procedure parameter
(and thus be holding a useful value across the add).

Note that the overflow trick requires that the free region be in the lower half of
the address space (because signed arithmetic is used). However, in a generational
garbage collector only the youngest generation uses this trick; other generations
may be put in any part of memory.

Simple instructions

The select (and offset) abstract-machine instructions translate directly into VAX
move (and move-address) instructions using the displacement addressing mode.
Similarly, the add and addt instructions both translate into a VAX addl3 in-
structions. Similarly, the abstract-machine instructions sub, subt, ashl, ashr,
mult, divt, orb, andb, notb, xorb, mulf, divf, addf, subf, jump, and bbs
each translate using a single VAX instruction.

A conditional branch of the abstract machine translates into a compare followed
by a conditional branch on the VAX.

14.1. Translation for the VAX 167

Record creation

The most complicated instruction of the abstract machine is the one that allocates
a record on the heap. This instruction has as operands a list of record fields;
each field is either a constant, a register, or a label, sometimes with a path of
displacements and fetches to be followed in gathering the field value.

The VAX can store values in memory without first moving them into registers,
and we take advantage of this. Suppose the second field of a record is

(r5, SELp(3, SELp(2, SELp(0, SELp(6, OFFp 0)))))

This would translate into VAX instructions as

movl 12(r5), arithtemp # SELp(3, ...)

movl *8(arithtemp), arithtemp # SELp(2, SELp(0, ...))

movl 24(arithtemp), 8(dataptr) # SELp(6, OFFp 0)

It is often the case in ML that a record A is constructed using several adjacent
fields from a record B. For example,

fun update_b newb {a,b,c,d,e,f} =

{a=a, b=newb, c=c, d=d, e=e, f=f}

The abstract-machine record instruction from this program might look like:

record([(r2, SELp(0, OFFp 0)), #a

(r7, OFFp 0), #newb

(r2, SELp(2, OFFp 0)), #c

(r2, SELp(3, OFFp 0)), #d

(r2, SELp(4, OFFp 0)), #e

(r2, SELp(5, OFFp 0))], #f

r4)

Whenever two adjacent fields in the new record come from two adjacent source
locations, this can be recognized and a single eight-byte move instruction can be
generated to do both fields at once. The fields (c, d) and (e, f) can be constructed
this way.

Both of these tricks are specific to the VAX; they don’t work on typical
RISC machines, for example, though the two-field-at-a-time trick may work on
the next generation of RISC machines. Furthermore, on RISC machines there
is a quite different trick that is useful, as described in Section 14.3.4. Thus,
memory-to-memory operations vary sufficiently among machines to justify the
quite-complicated record instruction as a primitive of the abstract machine.

14.1.1 Span-dependent instructions

Labels may appear in branch instructions and PC-relative load-literal instructions
(etc.), and the bit patterns for these references cannot be determined until the
sizes of all instructions are known. Unfortunately, most modern computers have

168 Chapter 14. Machine-code generation

span-dependent branch and load instructions; that is, the distance between the
referencing instruction and the referenced label determines the size of the refer-
encing instruction itself. Thus, there is a set of simultaneous equations that must
be satisfied just to determine the sizes of all instructions.

An effective way of solving this problem is by iteration to convergence. Each
span-dependent instruction is assumed to take the minimum possible amount of
space, and the addresses of all labels are calculated. The sizes of span-dependent
instructions are recomputed based on the calculated addresses of labels; then the
addresses of labels are recalculated based on the new sizes of the instructions.
Since it is never necessary to decrease the size of a span-dependent instruction,
this process must converge, because there are only a finite number of possible sizes
for each kind of instruction.

It is interesting to note that we could just as well start with maximum-size
span-dependent instructions and decrease them in each iteration until convergence
is reached; but the solution we obtain in this way will in general be worse than
with the first approach [97].

14.2 Translation for the MC68020

The Motorola 68020 [66] has eight “address” registers (A0–A7) and eight “data”
registers (D0–D7) in addition to the program counter. The address registers can be
used as addresses in load and store operations, but cannot be used as operands in
most kinds of arithmetic instructions. The data registers can be used in arithmetic,
but not as pointers (except with some difficulty). This greatly complicates the
translation of abstract-machine instructions into native code. Indeed, we have not
done as good a job as we could have in instruction selection and register allocation
for this machine.

To avoid the problem of “two kinds of register,” we use only the A registers as
“general-purpose” registers. However, the A7 register is reserved by the operating
system as a stack pointer (as on the VAX, this register is used when saving state
in signal handlers). We use A6 as the dataptr, and A5 as a pointer temporary
(ptrtemp). The pointer temporary is necessary to hold intermediate values that
are used as addresses, or that are generated by load-effective-address instructions;
on the VAX we can use the arithtemp for these purposes because there is no
distinction between address and data registers.

We hold the exnptr, storeptr, and datalimit in D registers, since they are
rarely used directly in addressing.

This leaves only five “general-purpose” A registers that can be used to hold
CPS variables and to pass parameters to CPS procedures. As figure 15.8 shows,
the performance penalty for using such a limited number of registers is about 15
percent (but with a very large variance depending on the individual program).

With ML variables kept in A registers, operations such as select (fetch) and
jump can be expressed very naturally in one instruction on the 68020. But to per-
form arithmetic, one of the operands must be moved to a D register, the operation

14.3. Translation for the MIPS and SPARC 169

is performed (one source is permitted to be an A register), and then the result is
moved back into an A register. This is quite costly. Furthermore, the 68020 has
no provision for automatically raising an interrupt on arithmetic overflow, as is
necessary to satisfy the semantics of ML. So we must execute a trapv (trap-on-
overflow) instruction after any arithmetic instruction whose overflow we need to
detect. Moving operands back and forth, and extra instructions to detect overflow,
combined with the overhead (required on all processors) of stripping and inserting
low-order tag bits on integers, make arithmetic quite costly on this processor.

We keep the heap-limit register in its “natural” form (the end of the heap minus
4096, not subtracted from maxint). The limit check is implemented as a compare
(of dataptr versus limit register), followed by a trap on minus. These are both
small (16-bit) and fast instructions.

A specialized register allocator, or a good peephole optimizer, would reduce
the traffic between A and D registers, but we have not pursued this.

14.3 Translation for the MIPS and SPARC

The MIPS processor [51] has 32 registers, of which one is always zero, one is used
as the target of the “branch-and-link” instruction, two are reserved by the operat-
ing system, one is the stack pointer (used for signal handling), one is the “global
pointer” (used by the C-language runtime system), and one is an “assembler tem-
porary” used in constructing certain idiomatic instruction combinations (both by
the standard system assembler and the SML/NJ code generator).

The SPARC [82] processor has “register windows,” each with eight “input”
registers (used for receiving parameters into procedures), eight “local” registers,
and eight “output” registers (used for passing parameters to other procedures).
There are also eight “global” registers. Upon a procedure call, the window is
usually “shifted,” so the output registers become the input registers of the new
procedure, and the old input and local registers are saved unchanged until the
window is shifted back.

Since we do not use a runtime stack for activation records, register windows do
not fit naturally into our model. Therefore, we never shift windows. Instead, we
treat the registers as 32 general-purpose registers, just like on the MIPS. Of these,
we do not use the the stack pointer (o6), frame pointer (i6), and return address
to C code (i7, and o7 for signal handlers); and we use one register for PC-relative
addressing, as described in the next section.

Standard ML of New Jersey uses some of the remaining registers (on both the
MIPS and SPARC) for dataptr, datalimit, storeptr, exnptr, one arithtemp,
and two to four other temp registers; leaving 16–18 “general” registers to hold
CPS variables. As figure 15.8 shows, this is plenty.

Since the MIPS and SPARC have such a simple and regular instruction set,
translating abstract-machine instructions into target-machine instructions is quite
straightforward. The only two difficulties are PC-relative references, and schedul-
ing of load delays and branch delays.

170 Chapter 14. Machine-code generation

The heap-limit check is a single-cycle instruction that adds the dataptr to the
limitptr and puts the result in register 0 (i.e., throws it away); this will overflow if
the limit is exceeded.

14.3.1 PC-relative addressing

Consider the abstract-machine instruction that might result from the construction
of a closure for the function whose machine code starts at Label328 and with a
free variable whose value is currently in register 13:

record([(Label328, OFFp 0), (R13, OFFp 0)], R4)

To initialize the first field of this record, the address Label328 must be constructed
and then stored into memory. Since the entire block of code for this compilation
unit may be moved by the garbage collector, we should encode into the program
the displacement: the difference between the address of the instruction referring
to Label328 and and the address of Label328 itself.

Many machines have a load-effective-address instruction that can add a con-
stant to the program counter and put the result into a general register. Most RISC
machines do not have such an instruction. The only way we can accomplish this
is to execute a branch-and-link instruction, which jumps to a given target address
and also puts the current PC into a register. But we don’t really want to change
the flow of control—we just want the PC value—so we branch to the next instruc-
tion (actually the instruction following the branch-delay slot). Then we can add a
constant to the link register, to obtain the value Label328.

If we need several PC-relative addresses in the same function, we need only
one branch-and-link instruction; we can adjust all of the additive constants by
appropriate displacements.

14.3.2 Instruction scheduling

On a modern “Reduced Instruction Set Computer” (RISC), instructions are made
simple so as few cycles as possible are required to execute each instruction. For
example, the multiply instruction does not also compute addresses and fetch
operands from memory. Typically, a load instruction adds a constant to a register,
and fetches the resulting address into another register; an arithmetic instruction
takes its operands in registers and puts the result into a register and so on.

The goal is to execute one instruction each cycle; or, on “superscalar” machines,
to execute several instructions per cycle. However, though we can perform an add
in just one cycle, it may not be possible to get the result of a load or multiply
into a register by the end of a cycle. An attempt to use the destination register of a
long-latency instruction (such as load or multiply) too soon after the instruction
is issued will result in a stall during which no further instructions are issued. Such
a situation would occur after the second instruction of this sequence:

14.3. Translation for the MIPS and SPARC 171

add r7 := r2+r4

load r3 := M[r1+8]

add r7 := r7+r3

load r8 := M[r1+4]

The stall can be avoided by executing some other useful instruction that does
not use the result (in this case r3) of the long-latency instruction. For example,
the first two instructions could be interchanged, or the last two instructions could
be interchanged, or both. Then the destination register r3 would never be used
within two cycles of the issue of the load instruction. On most RISC machines,
no stall would occur.

This example illustrates an important point about compiling for RISC ma-
chines: it’s not just that each instruction is simple, so instruction selection is
much easier than on a “Complex Instruction Set Computer” (CISC). It’s that the
compiler is expected to analyze “pipeline hazards” and rearrange instructions to
prevent stalls. This will make the compiled program run much faster, and is called
instruction scheduling.

On the MIPS, not only is the result of the load unavailable for two cycles after
the instruction issue, but there is no hardware stall mechanism. If (in our example)
r3 is used in the instruction immediately following the load, we will (usually) get
the wrong answer. Thus, the compiler must do instruction scheduling, or at least
put a no-op (NOP) instruction after each load instruction, in the delay slot of the
load.

On most RISC machines (including MIPS and SPARC) there is also a delayed
branch: The transfer of control specified by a branch or jump instruction does not
take place until after the following instruction has been executed. The compiler
must either put a NOP in the branch-delay slot, or reschedule instructions to put
a useful instruction there.

Most compilers for RISCs are arranged so that instruction scheduling occurs
in a very late stage. First, a program is translated into machine instructions
ignoring all pipeline hazards, and then instructions are re-arranged to avoid stalls.
Standard ML of New Jersey is very typical in this respect; the abstract “assembly”
code generator knows nothing about load and branch delays, and the “assembler”
performs instruction scheduling.

14.3.3 Anti-aliasing

An instruction scheduler tries to rearrange a sequence of instructions to avoid
runtime delays. But when can instructions be rearranged? More specifically, when
can an adjacent pair of instructions be interchanged?

As long as neither instruction writes a register or memory location that the
other one reads or writes, and neither instruction is a jump, they can be rearranged.
It is easy to see whether an instruction writes or reads a particular register. But
consider the instructions

172 Chapter 14. Machine-code generation

load r2 := M[r7+12]

store M[r8+8] := r3

Do these two instructions refer to the same memory location? The answer depends
on the possible runtime values of r7 and r8; this is the aliasing problem. Without
further information, we can’t know if r7 and r8 are aliases for the same record (with
r7 pointing into the record at a different spot, in this case). So most compilers’
instruction schedulers could not perform this interchange; this restriction might
increase the number of stalls or NOPs in the generated code.

In ML, Lisp, Scheme, Smalltalk, and similar semifunctional languages, the vast
majority of stores are the initializations of immutable objects. This fact can be
valuable to the instruction scheduler.

The creation of a new immutable object on the heap has the following form:

1. Initialization of the fields (stores at constant offsets from the dataptr reg-
ister).

2. Generation of the pointer to the object (a move of the dataptr to a “general-
purpose” register).

3. Adjustment of the dataptr, by adding a constant (the size of the record) to
the dataptr.

Furthermore, any store at a displacement from the dataptr must be an ini-
tialization; any other store must be an update of a mutable ref cell or array.
Therefore:

1. Any initializing store may be interchanged with any adjacent store, initial-
izing or otherwise.

2. Any load may be interchanged with any adjacent initializing store.

3. A load or noninitializing store may not be interchanged with an immediately
preceding move from the dataptr. This ensures that fetches from a newly
created record don’t get moved into the initialization sequence of the record.

4. An initializing store may not be interchanged with an immediately following
move from the dataptr.

If the vast majority of stores are initializing stores, then rules 1 and 2 allow
the instruction scheduler much more flexibility then it would have in a “normal”
compiler. In any mostly functional language, but especially with a compiler that
allocates closures (“activation records”) on the heap and does not write to them
after initializing them, there are few noninitializing stores. However, we have not
attempted to measure whether this leads to significantly better stall elimination.

We can do even better (though in the present compiler we have not imple-
mented what is described next): In ML we can use the static type system to
detect at compile time which loads are from immutable objects. We could prop-
agate this information into the machine-specific assembly language by marking

14.3. Translation for the MIPS and SPARC 173

each load instruction. Then we could interchange any immutable load with any
noninitializing store; the rules listed above do not permit this.

If there are many noninitializing stores, this might provide an important mea-
sure of flexibility to the instruction scheduler.

14.3.4 Alternating temporaries

We also improve pipeline performance by alternating temporary registers. Con-
sider the following (quite typical) record abstract-machine instruction:

record([(R4, SELp(7, OFFp 0)),

(R4, SELp(9, OFFp 0)),

(R6, SELp(0, OFFp 0)),

(R8, SELp(2, OFFp 0))], ...)

A naive instruction sequence to achieve this would be:

LOAD t1 := M[R4+28]

NOP

STORE M[dataptr+0] := t1

LOAD t1 := M[R4+36]

NOP

STORE M[dataptr+4] := t1

LOAD t1 := M[R6+0]

NOP

STORE M[dataptr+8] := t1

LOAD t1 := M[R8+8]

NOP

STORE M[dataptr+12] := t1

The NOP instructions are required because the result of a load cannot be used
in the immediately following cycle. Even on the SPARC, where explicit NOPs are
not required, an attempt to use the result of a load in the following cycle will stall
the pipeline for one cycle (or more).

Unfortunately, the instruction sequence above cannot be rescheduled to avoid
the NOPs. However, if we use two temporary registers t1 and t2 instead of just
t1, then we can achieve a better schedule, as shown in figure 14.1. The instructions
as generated by the abstract-machine-to-assembly-language translator are shown
on the left, and the result after the instruction scheduling phase appears on the
right. On the SPARC, of course, the NOPs need not be written explicitly but the
sequence using only one temporary register will still take just as long because of
pipeline stalls.

If the pipeline was deeper (so the result of a load could not be used for several
following instructions), then it would be useful to have more than two temporary
registers.

Avoiding the reuse of the same temporary register is more generally useful
than just in the translation of the record primitive. The abstract-machine-code

174 Chapter 14. Machine-code generation

LOAD t1 := M[R4+28] LOAD t1 := M[R4+28]

NOP LOAD t2 := M[R4+36]

STORE M[dataptr+0] := t1 STORE M[dataptr+0] := t1

LOAD t2 := M[R4+36] STORE M[dataptr+4] := t2

NOP LOAD t1 := M[R6+0]

STORE M[dataptr+4] := t2 LOAD t2 := M[R8+8]

LOAD t1 := M[R6+0] STORE M[dataptr+8] := t1

NOP STORE M[dataptr+12] := t2

STORE M[dataptr+8] := t1

LOAD t2 := M[R8+8]

NOP

STORE M[dataptr+12] := t2

Figure 14.1. Scheduling with alternating temporaries.

generator uses this technique in choosing which register to bind to a CPS variable.
When a new variable is defined as the result of an operation, any unallocated
register may be bound to it. The compiler chooses the least recently used register
(or some approximation thereof), so the instruction scheduling phase will have
more freedom in rearranging instructions to fill delay slots.

14.4 An example

To show the quality of target-machine code obtained by the Standard ML of New
Jersey compiler, we can work an example. The program on page 83 counts the
number of zeros in a list of integers. Pages 83 through 86 explain how it is in-
line expanded and optimized. After closure-conversion with callee-save registers,
it looks as shown in figure 14.2. In this example, f has no free variables, so closure
analysis for f is pro forma; because f escapes, it requires a closure f’. Similarly,
callee-save registers don’t accomplish much here, but they don’t do any harm
either.

The continuation h has k as a free variable, so a “closure” must be made in
which k0 is saved. But this closure will be passed as the first callee-save argument
of f , occupying the slot where k1 has been. So k1 must also go into h’s closure.

In this example we use square brackets to indicate record-creation.

The spill phase leaves this program unaltered, since no subexpression has very
many free variables.

Figure 14.3 illustrates final code generation into the assembly language of a
RISC-like machine, but without delayed-branch or delayed-load instructions (for
simplicity). The label f is the countzeros function. Like every function and con-
tinuation, it starts with an instruction to check for heap exhaustion; the preceding
two words enable to garbage collector to understand the current context. The

14.4. An example 175

let fun f(clos,l,k0,k1,k2,k3) =

case l

of _::_ => let val a = #0 l

val r = #1 l

in if ieql(0, a)

then let fun h0(n,h1,k2’,k3’) =

let val k0’ = #0 h1

val k1’ = #1 h1

val n’ = 1+n

in k0’(n’,k1’,k2’,k3’)

end

val h1 = [k0,k1]

in f(clos,r,h0,h1,k2,k3)

end

else f(clos,r,k0,k1,k2,k3)

end

| nil => k0(0,k1,k2,k3)

val f_clos = [f]

in c0(f_clos,c1,c2,c3)

end

Figure 14.2. countzeros after closure-conversion.

176 Chapter 14. Machine-code generation

dataptr=r12, datalimit=r13

.word 0b1111110 # bit mask indicating live registers

.word f-L0 # offset to beginning of code string

f: # clos=r1, l=r2, k0=r3, k1=r4, k2=r5, k3=r6

r0 = r12+r13 # will overflow on heap exhaustion

r7 = r2 & 1 # bitwise and to test boxity of l

if r7<>0 goto L1 # branch away if nil

r8 = M[r2+0] # a=r8

r2 = M[r2+4] # r=r2 (targeting for variable r)

if r8<>0 goto L2 # if ieql(0, a)

M[r12] = 33 # store tag for a pair

M[r12+4] = r3 # store first word of pair

M[r12+8] = r4 # store second word of pair

r4 = r12+4 # h1=r4

r12 = r12+12 # adjust dataptr

r3 = h0 # h0=r3

goto f

L2: goto f

L1: r2 = 0 # first argument of k0

jump r3 # invoke k0

.word 0b1111000 # register mask for h0

.word h0-L0 # offset to beginning of code string

h0: # n=r2, h1=r4, k2’=r5, k3’=r6

r0 = r12+r13 # will overflow on heap exhaustion

r3 = M[r4+0] # k0’=r3

r4 = M[r4+4] # k1’=r4

r2 = r2+2 # n’=r2

jump r3

Figure 14.3. Final code for countzeros.

14.4. An example 177

comments at labels f and h0 explain the standard register assignments for formal
parameters of escaping user functions and continuations, respectively.

Since nil is not a pointer, it has a low-order 1 bit; this is used to test the
boxity of the list l. If l is nil, control proceeds to label L1, otherwise it falls
through. The variables a and r are fetched from l; targeting is used to select a
register for r so that no move instruction is required when f is invoked just before
L2. Anti-targeting is used for a, which is not a parameter to any function call,
so that register 2 is not clogged up with a (which would prevent targeting from
working on r).

To make the closure h1 requires three store instructions
and two add instructions. Then it is time to call f ; because of the success of

register targeting, all the parameters except h0 are already in the right place.
Label L2 implements the else clause of the test a = 0; all arguments are

in place, so only a jump is necessary. Here the compiler could use just a bit of
peephole optimization to eliminate the jump to a jump.

Label L1 implements the nil clause of the case. Again, all parameters but r2

are in the right place.
The closure h0 is quite straightforward: it fetches variables k′

0 and k′
1 from the

closure h1, increments n (remember that the representation of n is as 2n + 1, so
an increment must add 2), and invokes k′

0. The parameters k′
2 and k′

3 are already
in the right place.

The only way to make this loop significantly faster is to make it tail-recursive.
This could be done, in principle, by a transformation before the closure phase of
the compiler. But it is difficult to make this transformation sufficiently general.
For example, in this case we would have to rely on the associative law for addition
in order to count the zeros left to right instead of right to left.

Since the function h0 does not allocate any records, we could eliminate its heap-
limit check and still be guaranteed that the heap would not overflow. However,
this could make the asynchronous signal handler wait long periods between safe
points (see Section 16.6).

CHAPTER FIFTEEN

PERFORMANCE EVALUATION

Clearly, some of the optimizations and representations described in this book must
be more useful than others. To find out which ones are most important, we mea-
sured some real programs. We compiled each program with each of the optimiza-
tions disabled in turn, to see the effect of each optimization on the speed and
size of the program. We measured the time taken (and instructions executed)
by the compiled code, the amount of garbage collection, the code size, and other
interesting statistics.

We used six benchmark programs. Each of these is a “real” program written
for a “real” purpose (not just as a benchmark). The programs are described in
figure 15.1 and some statistics about them are given in figure 15.2. For programs
that used functions from the ML standard library (Lex, Yacc, Simple, and VLIW)
the source code includes a copy of the commonly used library functions (244 non-
blank lines) so the effect of the compiler on these functions could be measured.

Key Name Description
l Life The game of Life, written by Chris Reade and described in his

book [68], running 50 generations of a glider gun.
x Lex A lexical-analyzer generator, implemented by James S. Mattson

and David R. Tarditi [15], processing the lexical description of
Standard ML.

y Yacc A LALR(1) parser generator, implemented by David R. Tarditi
[87], processing the grammer of Standard ML.

k Knuth–B An implementation of the Knuth–Bendix completion algo-
rithm, implemented by Gerard Huet, processing some axioms
of geometry.

s Simple A spherical fluid-dynamics program, developed as a “realistic”
FORTRAN benchmark [33], translated into ID [38], and then
translated into Standard ML by Lal George.

v VLIW A Very-Long-Instruction-Word instruction scheduler written by
John Danskin.

Figure 15.1. Description of the benchmark programs.

179

180 Chapter 15. Performance evaluation

Source Compile Code Data Non-GC GC System
Key Program Lines Time Size Size Time Time Time

l Life 117 11.6s 16k 489k 21.1s 0.8s 0.38s
x Lex 1223 71.5 84k 1033k 15.6 1.74 0.21
y Yacc 5785 593.0 269k 1276k 4.41 2.04 0.47
k Knu-B 439 29.1 35k 1619k 11.2 1.15 0.15
s Simple 1002 87.1 75k 5391k 35.2 3.42 0.11
v VLIW 3216 624.0 315k 3598k 28.2 2.19 0.28

Figure 15.2. “Standard” run of each program.

Some basic statistics about each benchmark program. Source Lines
is the number of nonblank, noncomment lines in the source program.
Compile Time is the real time to compile the program (this is higher
than necessary, see page 198). Code Size is the number of bytes in the
compiled program. Data Size is the maximum number of kilobytes
ever observed by the garbage collector (and is therefore a lower bound
for the largest amount of data simultaneously live). Non-GC Time
is the amount of CPU time spent executing the program exclusive of
garbage-collection or operating-system time. GC Time is the CPU
time spent garbage collecting, and System Time is time spent in the
operating system. Elapsed time was within 1.3 percent of the sum of
the three times shown, except for Lex where it was 4.6 percent higher
and Yacc where it was 18 percent higher.

Cache
Key Program Data size Heap size Effectiveness

l Life .48 MB 2 MB 0.30
x Lex 1.01 3 0.29
y Yacc 1.25 4 0.62
k Knuth–Bendix 1.58 8 0.69
s Simple 5.26 16 0.72
v VLIW 3.51 20 0.42

Figure 15.3. Cache effectiveness of the benchmark programs.

“Cache effectiveness” is number of instructions executed per second,
divided by the clock rate of the machine. This definition is appropriate
for the MIPS, which has few pipeline stalls unrelated to the memory
hierarchy; on other machines a more complicated definition would be
necessary. It is probable that cache misses cause the bulk of the effect
noticed in this table.

15.1. Hardware 181

15.1 Hardware

All the programs were run on a MIPS Magnum 3000 workstation with 128 mega-
bytes of memory. However, for running the test programs substantially less mem-
ory was used to simulate a “realistic” environment; figure 15.3 shows the heap
size used for each program. In general, the heap size we used for each program is
about 3–5 times the amount of live data. When the Standard ML of New Jersey
system is run normally, it resizes the heap after each garbage collection to keep
the heap size at the same ratio (usually five) to the amount of live data. However,
for benchmark purposes we kept a fixed size for each program, for the following
reason: If an optimization we were measuring caused the program to use less live
data, that would a very good thing because it can reduce the load on the garbage
collector; and we didn’t want this effect canceled by the automatic heap resizing.

For compiling the programs, we always used a fixed heap size of 70 megabytes,
which is much more than sufficient for these programs; the larger heap size leads
to faster compilation (because of less garbage collection), and we wanted to get
the measurements done quickly.

The Magnum 3000 has a 32 kilobyte direct-mapped instruction cache and a 32
kilobyte direct-mapped write-through data cache “with an 8-deep write buffer and
good DRAM page-mode smarts so that it writes at 1 word/2 cycles much of the
time” [76]. The cache line size is eight words (32 bytes).

The MIPS is a Reduced Instruction Set Computer that “usually” executes one
instruction per cycle; there are relatively few different kinds of pipeline interlocks
that can stall the instruction issue (indeed, MIPS was originally an acronym for
“Microprocessor without Interlocked Pipeline Stages”). However, we found that
on our 25 megahertz workstation we often getting only 7 or 10 million instructions
per second (see figure 15.3). Furthermore, recompiling and rerunning the same
program would often change the execution time by 5–20 percent (see figure 15.13).
There are several possible causes of these effects:

1. A fetch of an instruction not present in the instruction cache (“I-cache miss”)
can cause a several-cycle delay.

2. A fetch or store of a word not present in the data cache (“D-cache miss”)
can cause a several-cycle delay.

3. Several consecutive stores can fill up the write buffer, causing a stall.

4. The TLB (translation lookaside buffer) holds the virtual-memory translations
of 56 user pages and eight kernel pages. If a virtual page not in the TLB is
referenced (a “TLB miss”), then a 10-instruction trap handler is executed to
reload it.

5. A page fault occurs if a virtual page is not in physical memory.

6. An integer multiply or divide, or a floating-point operation, can stall if the
result is demanded before it’s ready.

182 Chapter 15. Performance evaluation

It is difficult to know what the causes of the stalls really are. However, all
the benchmarks were run in very generous physical memory, so it’s probably not
page faults. And the programs don’t do much multiplication or division, and only
Simple does floating-point operations, so that’s probably not the cause either.
Therefore, the problem is likely to lie in the “memory subsystem” comprising
I-cache, D-cache, write buffer, and TLB.

Without running a cache simulator, we can’t tell exactly what is happening.
Direct-mapped caches are especially susceptible to “interference” problems, where
two frequently accessed addresses map to the same cache line and keep knocking
each other out of the cache. This might explain the variation in recompiled pro-
grams, shown in figure 15.13; the ML system may choose to load the recompiled
program at a different address relative to the data it manipulates, or relative to
the ML runtime system, or the data records relative to each other, thus causing
cache conflicts. But this is not a very well-founded explanation of the variability;
it’s just a guess.

ML programs are not alone in spending half their time waiting for cache misses;
the same problem has been noticed in C programs that operate on large data,
running on a Silicon Graphics workstation (also a MIPS processor, but with 64K
primary data cache and 256K secondary cache): Szymanski noticed that CAD
programs operating on data of about 2–3 megabytes spend 40–70 percent of their
time waiting for cache misses [85].

In any case, we have chosen to present most of our results using instruction
counts, rather than execution times, for two reasons:

1. The variability of cache hit rates, even for essentially similar programs, makes
it much harder to compare optimizations that might only improve perfor-
mance by a few percent.

2. Newer computers may have much larger caches, or may use set-associative
caches, either of which will tend to make the cache-miss effects smaller; as
the absolute cache-miss-wait time decreases, so will the relative impact of
differing memory-reference patterns caused by compiler optimizations.

We measure instruction counts as follows: One register of the machine is dedi-
cated to hold the instruction count. (As figure 15.8 shows, the loss of one register
won’t affect the quality of code generation.) At each branch (in the delay slot of
the branch instruction), the register is incremented by the count of instructions
since the last branch, including all NOPs and the instruction-count increment it-
self. The effect of the instruction-count-increment instructions on processing time
is minimal; it’s just like turning off branch-delay scheduling. (We still do load-delay
scheduling.) Furthermore, this measurement technique has no effect whatsoever
on memory reference patterns.

15.2. Measurements of individual optimizations 183

1.0 1.2 1.4 1.6 1.8 2.0 2.2 2.6 3.0
| | | | | | | | | | |

betacontract l kx sv y� •
deadvars l kx svy� •
selectopt l ks� •

| | | | | | | | | | |
0 +20% 40 60 80 100 120 160 200%

Figure 15.4. Crucial optimizations.

This graph shows the effect of disabling selected optimizations on the
run time (instructions executed) of the compiled program. This is a log
scale; the top labels indicate the ratio of performance, and the bottom
labels indicate the percentage increase in instruction count. The letters
indicate the individual programs (see figure 15.1 for the key). The dot
• is the geometric mean of the increases for the individual programs.
The square � shows the average effect on program size of disabling the
optimizations.

15.2 Measurements of individual optimizations

Figures 15.4 and 15.5 show the effect of disabling various individual optimizations.
In most cases, the size and run time of the compiled code increases. It turns out
that three optimizations are much more important than all the rest:

betacontract The in-line expansion of functions called only once (see page 68).

deadvars Eliminating the bindings of unused variables (page 70).

selectopt Constant folding of SELECTs from known records.

However, the amazing utility of these three optimizations may have less to do with
the users’ programs than with the method of translation into mini-ML and then
into continuation-passing style. Danvy and Filinski have recently shown how to
take more care converting into CPS, with the result that there are fewer “trivial”
β-contraction redexes in the resulting expressions [35]. This would not affect the
quality of code generated, but it might save the optimization phase some work; and
it would reduce the size of the CPS expression when it’s at its largest (i.e., before
any contractions), which might save a large amount of memory. It seems, however,
that our CPS-conversion algorithm already uses many of these techniques, so it’s
not clear how much room there is for improvement.

The optimizations listed in figure 15.5 are described in Chapters 6–14. We
simply summarize them here.

184 Chapter 15. Performance evaluation

0.9 1.0 1.1 1.2 1.3 1.4 1.5 1.6 1.7
| | | | | | | | |

eta lkxs vy� •
etasplit l kxs y�•

uncurryl kxs vy � •
dropargs lkxs vy �•
flattenargs l kx svy� •
extraflatten lkxsvy�•
switchopt lkxsvy�•
handlerfold lkxsvy�•
branchfold lkxsvy�•
comparefold lkxsvy �•
hoistup l kx vy�•
hoistdown l kxs vy�•
rangeopt lkxsvy�•
arithopt vy xl sk �•
cse lkxsvy�•
csehoist lkxsvy�•
betaexpand l kxsvy� •
callee-save† yxm•
cross-module l kx sv y �•
argrep lk xsvy � •
load schedule lkx svy�•
branch schedule lkx svy �•

| | | | | | | | |
-10% 0 +10 20 30 40 50 60 70%

Figure 15.5. Effect of various optimizations.

This shows the effect on instructions executed of disabling various op-
timizations. A “good” optimization will appear farther to the right on
this graph, indicating that the code runs slower when the optimization
is disabled. The optimizations are described in the accompanying text.
The letters v, l, x, y, s, k are the individual programs; the black dots are
the averages; the squares show the effect on code size.

† Measurements for the callee-save optimization were done with a
different set of benchmark programs; see the text.

15.2. Measurements of individual optimizations 185

eta Eta reduction (see page 76).

etasplit Inverse eta-reduction (see page 76).

uncurry Uncurrying of curried functions, at call sites where more than one argu-
ment is provided (page 76).

dropargs Eliminating unused arguments to functions (page 72).

flattenargs Replacing an n-tuple argument with n individual arguments (page 71).

extraflatten Replacing an n-tuple argument with n individual arguments, even if
some of the call sites would then require extra SELECT operations (page 71).

switchopt Constant folding of SWITCH operators whose selector argument is an
integer literal (page 73).

handlerfold Elimination of gethdlr operations in the scope of a sethdlr, and
eliminating redundant sethdlrs (page 75).

branchfold Elimination of comparisons whose branch paths are the same (modulo
α-conversion).

comparefold Constant folding of conditional branches (page 74).

hoistup Hoisting function definitions up to merge with other FIXes (see page 97).

hoistdown Pushing function definitions down to merge with other FIXes, and
pushing function and other variable bindings inside conditionals and switches,
if they are not used in more than one branch (page 96).

ifidiom Special recognition of an idiom involving if statements (page 75). Unfor-
tunately, a bug prevented this idiom from being recognized in the test runs,
so the transformation was never made, and there was no effect on run time.

rangeopt A very crude attempt at eliminating comparisons by range analysis on
integer variables. As the graph shows, we didn’t accomplish anything useful.

arithopt Constant folding of integer arithmetic expressions.

cse Common-subexpression elimination (page 99). Clearly a disappointing result.

csehoist An additional hoisting transformation useful for common-subexpression
elimination (page 100). Also disappointing.

betaexpand In-line expansion of functions called more than once (Chapter 7).

186 Chapter 15. Performance evaluation

callee-save Callee-save register allocation (Section 10.6). The measurements for
this optimization were done on the programs Lex, Yacc, and the Standard
ML of New Jersey compiler processing and optimizing its standard library;
the change in time (not instruction count) is shown.

linked closures The “standard” closure representation used for these measure-
ments is “flat” (Section 10.5), in which all free variables of a function appear
directly in its closure (subject to modifications necessary for the callee-save
technique). An alternate representation is “linked,” so some variables do not
appear directly in the closure; instead, a closure may point to the closure for
a statically enclosing function, in which some of the free variables may be
found. It turns out that switching between flat and linked closures makes
no more than a 0.3 percent difference (in instruction count) in any of the
benchmark programs.

cross-module Cross-module optimization. A word of explanation is necessary
here. For the benchmark programs we put all the modules (typically, struc-
ture and functor definitions) into one file for each program, and compile
them all at once. Normally, users would put each module of a program into
a separate file (which is what we did for this line of the graph, to simulate
“turning off cross-module optimization”). In the future, it would be nice to
have the compiler automatically do cross-module optimizations across com-
pilation units in different files.

argrep In the abstract-machine-code-generation phase, the first call to a known
function can specialize the representation of arguments, so no register–register
moves are necessary (page 159).

load schedule In the final target-machine-code-generation phase for the MIPS,
one cannot use the result of a LOAD instruction in the immediately following
instruction. The simplest solution is to put a NOP instruction (and waste
a cycle); but a better solution is to reschedule so that some other useful
instruction is put in the “delay slot” (page 170).

branch schedule On most RISC machines, one instruction after a branch gets
executed even after a branch is taken. Branch scheduling can arrange to put
a useful instruction (instead of a NOP) in that “delay slot” (page 170). This
entry in the graph shows the effect of turning off branch scheduling. However,
unlike all the other rows, here we measure time and not instruction count.
This is because our instruction-counting code usually sits in the branch-delay
slots, and we must remove that code to do branch scheduling. It should also
be remarked that we do not do a state-of-the-art job of branch-scheduling;
we move instructions into the delay slot from above the branch, but not from
the destination of the branch [46].

It is natural to wonder whether all the improvements gained by the various
optimizations of figures 15.4 and 15.5 are independent; that is, if optimization A

15.3. Tuning the parameters 187

hypothetical slv x ky � •
actual l kx sv y� •

| | | | | | | | | | | |
×1 2 3 4 5 6 8 10 20 ×30

Figure 15.6. Many optimizations disabled at once.

This graph shows the effect of disabling all the optimizations of fig-
ure 15.4 and of figure 15.5 from eta through csehoist. The “hypo-
thetical” row shows the product of all the individually measured effects
of the individual optimizations; the “actual” row shows what actually
happens. If the optimizations were all independent of each other, the
two rows would be the same.

makes the program 1.1 times faster, and optimization B makes the program 1.3
times faster, then does the combination of A and B make it 1.43 times faster, or are
they really doing the same thing redundantly? Figure 15.6 shows that, though it
might seem that the first 19 optimizations listed provide eightfold speedup in com-
bination, in fact they really provide only fourfold speedup. This isn’t bad, however;
it means (roughly) that an optimization that “claims” a 12 percent improvement
(the 19th root of 8) may really be yielding an 8 percent improvement (the 19th
root of 4). Thus, the individual “claims” are at least somewhat meaningful.

15.3 Tuning the parameters

The optimizer has several parameters that can be adjusted for better performance.
The “uncurry” optimization requires a few passes of β-contraction to uncover
redexes, but how many? The β-expansion phase has “fudge factors” C, D, and
E; what should their values be? The entire cycle of contract–expand–hoist–CSE
can stop when one round yields no optimizations, but perhaps it can almost as
profitably stop when only n transformations are found. Finally, the runtime system
has a tunable parameter: The ratio of heap-size to live data affects the efficiency
of the garbage collector. Figures 15.7 through 15.12 illustrate the effects of tuning
some of the compiler’s and runtime system’s parameters.

15.4 More about caches

All discussion so far of individual optimizations and parameter tuning has focused
on instruction counts, for reasons explained in Section 15.1. Of course, the user
of a compiler cares about execution time, not instruction count. And it may be

188 Chapter 15. Performance evaluation

0.8 0.9 1.0 1.1 1.2 1.3 1.4 1.5
| | | | | | | |

0 l kxs vy � •
1 l kxs vy � •
2 lkxsvy�•
3 lkxsvy�•
4 lkxsvy�•
5 lkxsvy�•

| | | | | | | |
-20% 10 0 +10 20 30 40 50%

Figure 15.7. Rounds of contraction before η-reduction.

The “uncurrying” optimization is performed in the η-reduction phase
(page 80). Some β-reduction is necessary to turn up instances of “un-
currying” that can be performed. This graph shows the effect of per-
forming n iterations of the β-contraction/constant-folding phase before
the η phase. Execution time for n ≤ 1 is about 8 percent higher than
for n ≥ 2. Clearly, for these programs n = 2 suffices; n = 2 is used for
all of the other benchmark runs described in this chapter.

that some individual optimization decreases the instruction count but increases
the number of cache misses, for no net gain!

Figure 15.14 shows the effect that various optimizations and parameters have
on cache effectiveness. It appears, for example, that load scheduling decreases
cache effectiveness by about 10 percent; this is not surprising, since the effect of
scheduling is to remove NOPs that were very kind to the cache. β-contraction
decreases cache effectiveness by about 15 percent; though it actually increases the
cache effectiveness in the Simple program by a large amount.

The change in cache effectiveness for any optimization can be multiplied by
the change in instruction count (shown in figures 15.5, 15.8, 15.9, etc.) to get the
effect on execution time on this machine. Note that the cache-effectiveness graph
shows the increase in effectiveness caused by leaving an optimization turned on;
figures 15.4 and 15.5 show the increase in instruction count caused by turning an
optimization off.

The most remarkable thing about this graph is that the variance is so much
larger than the average effects. It seems difficult to make useful generalizations
or predictions from this data. Of course, as figure 15.13 shows, even a slight
rearrangement of code and data can have large effects on the effectiveness of the
cache.

Section 18.4 outlines a garbage-collection strategy that might significantly in-
crease cache effectiveness.

15.4. More about caches 189

0.9 1.0 1.1 1.2 1.3 1.4 1.5 1.6 1.7
| | | | | | | | |

maxregs=17 lkxsvy�•
maxregs=16 lkxsvy�•
maxregs=15 lkxsvy�•
maxregs=14 l kxsvy�•
maxregs=13 l kxsvy�•
maxregs=12 l kxsvy�•
maxregs=11 l kxsvy�•
maxregs=10 l kxsvy�•
maxregs=9 l kxsvy�•
maxregs=8l kxs vy � •
maxregs=7l kxs vy �•
maxregs=6l kxsvy� •
maxregs=5l kxsvy� •
maxregs=4l kxsvy� •

| | | | | | | | |
-10% 0 +10 20 30 40 50 60 70%

Figure 15.8. Registers on the target machine.

If we artificially limit the number of registers on the target machine for
which code is generated, we expect to see the performance get worse
as there are more spills, and as the arguments to known functions
can less often fit in registers. This graph shows that the effect is not
noticeable if there are 15 or more registers, and not severe with at least
nine registers. Note that this does not include the “special-purpose”
registers used by the code generator and runtime system, of which
there are about six, or the register reserved for hardware or operating
system, of which there are as many as six on some machines.

Curiously, the Life benchmark (l) runs faster with fewer than nine
registers, as indicated by the datapoints at the extreme left.

190 Chapter 15. Performance evaluation

0.9 1.0 1.1 1.2 1.3 1.4 1.5 1.6 1.7
| | | | | | | | |

rounds=0 l kxsvy� •
rounds=1 l kx svy�•
rounds=2 lkx svy�•
rounds=3 l kx svy�•
rounds=4 lkx svy�•
rounds=5 lkxsvy�•
rounds=6 lkxsvy�•
rounds=7 lkxsvy�•
rounds=8 lkxsvy�•
rounds=9 lkxsvy�•
rounds=10 vyxlsk�•

| | | | | | | | |
-10% 0 +10 20 30 40 50 60 70%

Figure 15.9. Effect of more rounds of in-line expansion.

This shows the effect of increasing the maximum number of rounds
of β-expansion alternating with constant folding and contraction.
Rounds=n indicates that contraction is iterated until convergence; then
there are n rounds, each with one pass of β-expansion followed by con-
traction until convergence. Note that in most cases, this terminates
naturally after a few rounds, which is why there is little difference
between rounds=6 and rounds=9. For the other benchmarks in this
chapter, rounds=10 was used.

15.4. More about caches 191

0.8 0.9 1.0 1.1 1.2 1.3 1.4 1.5
| | | | | | | |

C= -∞ l kxsvy� •
C= -25 l kxsvy� •
C= -20 l kxsvy� •
C= -15 l kxsvy� •
C= -10 lk x svy� •
C= -5 l kx svy� •
C=0 lk x svy� •
C=5 lk x svy� •
C=10 lkx svy� •
C=15 lkx svy� •
C=20 lkxsvy�•
C=25 lkxs vy �•
C=30 lkxvy �•
C=35 lkxs vy �•
C=40 lkxs vy �•
C=45 lkxs y �•
C=50 lkxs vy �•
C=55 lkxv y �•
C=60 lkxy �•
C=65 lkxs y �•
C=70 lkxs y �•

| | | | | | | |
-20% 10 0 +10 20 30 40 50%

Figure 15.10. Optimism of the in-line expander.

The β-expansion phase has a parameter C that indicates the maximum
amount of expected code growth it can tolerate in each individual in-
line expansion (see page 91). The justification for C is that there
may be further contractions in the expanded function body that the
expander can’t quite predict. This shows the effect of various degrees of
optimism (large values of C) and pessimism (small values). The boxes
� indicate the size of the resulting program; as expected, more eager
in-line expansion leads to larger compiled code and faster execution.

For the other benchmarks in this chapter, C = 20 was used.

192 Chapter 15. Performance evaluation

0.6 0.7 0.8 0.9 1.0 1.1 1.2 1.3
| | | | | | | |

reducemore=0 lkxsvy ��•
reducemore=15 �lkxsvy�•
reducemore=30 lkxsvy� �•
reducemore=45 lkxsvy� �•
reducemore=60 lkxsvy� �•
reducemore=100 lkx svy� �•
reducemore=200 l kx svy� �•
reducemore=400 l kx svy� �•
reducemore=800 l kx svy � �•
reducemore=1600 l kxsvy� �•
reducemore=3200 l kxsvy� �•

| | | | | | | |
-40% 30 20 10 0 +10 20 30%

Figure 15.11. Giving up early.

With reducemore = 0, after each round of β-expansion, the β-
contracter/constant folder iterates until no more contractions are
found. With reducemore = n, it iterates until only “a few” more con-
tractions are performed in one round; and if only n contractions and
expansions are found in any round, no more rounds are done. This
graph indicates the effect of varying n. The triangles � indicate com-
pile time; the other points represent the change in run time and code
size, as usual. Clearly on the medium-size programs used for these
measurements, a value of 200 reduces compile time without affecting
run time much. A value of 15 was used for all the other measurements
in this chapter.

15.4. More about caches 193

0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.61.8 2.2 2.6

| | | | | | | | | | |
R=20 l kx svy •

R=15 l kx svy •

R=12 l kx svy •

R=10 l kx svy •

R=8 l kx svy •

R=6 l kx svy •

R=5 l kx svy •

R=4 l kxs vy •

R=3 l kx s vy •

| | | | | | | | | | |
-80% 60 40 20 0 +20 40 60 80 120 160%

Figure 15.12. GC time vs. heap size.

As the ratio R of heap size to live data goes up, garbage-collection
time should go down. In a nongeneration copying collector, GC time
should be inversely proportional to R− 2, as described in Section 16.1.
This is a log–log plot, where the spacing of the R-axis is according to
log(R−2). We don’t see a straight line because a generational collector
is used, because it’s impossible to keep R constant as the amount of
live data varies, and probably for lots of other reasons. The data seem
to indicate that t ∝ (R − 2)−0.75 for R < 6 and t ∝ (R − 2)−0.25 for
R > 6, approximately.

194 Chapter 15. Performance evaluation

0.6 0.7 0.8 0.9 1.0 1.1 1.2 1.3
| | | | | | | |

Life l llll

Lex x xxxx

Yacc yyyy y

Knuth–B kkkk k

Simple sssss

VLIW vv vvv

| | | | | | | |
-40% 30 20 10 0 +10 20 30%

Figure 15.13. Variability of cache effectiveness.

The cache effectiveness of a given run of a program is quite unpre-
dictable. This graph shows the effect of allocating a small array (sizes
ranging from 0–20,000 bytes) before compiling and running the pro-
gram. The only purpose of the array is to affect the location of the
compiled code, and the layout of the data space. The running time of
the program can vary by 5 to 20 percent, even though the same number
of instructions is executed.

For each program, “1.0” (top axis) or “0” (bottom axis) represents
the cache effectiveness of the “standard run” of the program, shown in
figure 15.2.

15.4. More about caches 195

0.6 0.7 0.8 0.9 1.0 1.1 1.2 1.3
| | | | | | | |

betacontract vyx l sk •
deadvars vyx l s k•
selectopt l sk•
dropargs vyxl sk•
eta vyxl sk•
uncurry yx lsk v•
betaexpand v yx lsk•
cross-module vx l ys k•
argrep vyxl sk•
(βs before η)=1 vy xl s k•
rounds=0 vy xl sk •
rounds=3 vy xl sk•
rounds=6 vy xls k•
maxregs=19 v y xls k•
maxregs=16 v y xls k•
maxregs=8 vy xl s k•
maxregs=7 vy xl s k•
maxregs=6 vy xl s k•
maxregs=5 vy xl s k•
maxregs=4 vy xl s k•
C= -25 y xl s kv•
C= -20 y xl s kv•
C= -15 y xl sk v•
C=0 vy xls k•
C=5 vy xls k•
C=40 vy xls k•
scheduling yx l skv•

| | | | | | | |
-40% 30 20 10 0 +10 20 30%

Figure 15.14. Cache effectiveness.
Some of the optimizations significantly alter the cache hit rate. This shows the gain
or loss in instructions executed per second on a MIPS Magnum 3000 workstation.
For example, using the betacontract optimization decreases cache effectiveness by
14 percent on the average. Setting C = −25 increases cache effectiveness by 8
percent on the average.
Only those optimizations that changed the instructions per second of at least one
program by at least 10 percent are shown here. This graph should not be taken
too seriously; figure 15.13 shows that much of the variation comes not from the
properties of the optimizations but from accidents of program and data placement.

196 Chapter 15. Performance evaluation

0.6 0.7 0.8 0.9 1.0 1.1 1.2 1.3
| | | | | | | |

R=3 lk xs vy •
R=4 lkx s vy •
R=5 lk xs vy •
R=6 lkxs vy •
R=8 lkxs vy •
R=10 lkxs vy •
R=12 lkxs vy •
R=15 lk xs vy •
R=20 lk xs vy •

| | | | | | | |
-40% 30 20 10 0 +10 20 30%

Figure 15.15. Heap size effect on cache effectiveness.

This figure shows the effect of heap size (measured as the ratio R of
heap size to live data) on cache effectiveness. On the top axis, 1.0 rep-
resents the cache effectiveness of the “standard” run (see figure 15.3).

Figure 15.15 shows the effect of heap size on cache effectiveness. For each
program, the size of the live data does not change, but we can vary the heap size.
The advantage of a large heap size is that collections are less frequent (but still
cost the same per collection, see Section 16.1). But we might expect that with
a large heap, cache effectiveness will deteriorate as memory references are spread
out over more addresses.

What is interesting is that cache effectiveness also deteriorates as the heap
size becomes very small. Perhaps with small heaps the garbage collector is run so
frequently that it competes for cache lines with the compiled code, so the compiled
code misses the cache many times before it’s “up to speed.” Note that the cache
effectiveness shown is for the compiled code only, not the garbage collector.

Unlike most compilers, Standard ML of New Jersey uses no runtime stack for
activation records or closures. Instead, all closures are allocated on the garbage-
collected heap. This means that programs allocate new records on the heap
much more frequently than in most systems. Figure 15.16 shows that one word
(four bytes) is allocated for every 3–7 instructions executed. Since assignments to
already-existing reference variables are rare, almost all store instructions are for
the initialization of words on the heap; thus, the “Allocation Rate” shown in the
table can also be construed as the proportion of all instructions that are stores.

Initializing store instructions account for 20.7 percent of all instructions (the
mean of the allocation rates given in the table). We can compare this with C

15.4. More about caches 197

Allocation Data/Heap GC
Key Program Rate Ratio Overhead

l Life .327 .24 .038
x Lex .234 .34 .11
y Yacc .140 .31 .46
k Knuth–B .191 .12 .10
s Simple .134 .33 .097
v VLIW .215 .18 .077

Figure 15.16. Allocation rates and GC overhead.

Standard ML of New Jersey programs do an enormous amount of al-
location on the heap. The Allocation Rate shown in this table is
the ratio of heap-words allocated to instructions executed. Since the
vast majority of store instructions are to initialize words on the heap,
the Allocation Rate is almost the same as the proportion of store
instructions.

We also show the Data/Heap Ratio used in our measurements of the
programs (the inverse of the parameter R shown in figure 15.12), and
the overhead of garbage collection (GC time divided by non-GC time).

programs running on the MIPS, compiled by the MIPS C compiler, in which
stores are 12 percent of all instructions.1 This is quite a significant difference, and
might mean any of the following:

1. ML and C are quite different programming models, and the programs being
compared are doing quite different things.

2. The C compiler is optimizing stores nicely, but doesn’t do as well as ML in
eliminating nonstore instructions.

3. The ML compiler is poorly optimizing memory traffic, but doing well in
eliminating other kinds of instructions.

In any case, it is hard to imagine a higher rate of heap allocation. Even
so, garbage-collection overhead is a reasonable 14 percent (the average for the
six programs); with better tuning of the collector (and by using more than two
generations) this might be reduced by a factor of two.

An important lesson is that programmers should not strive to avoid “consing;”
the system already allocates so much on the heap (especially continuation closures)

1Data taken from Appendix C.4 of Patterson and Hennessy [46], including SW (store-word)
and SD (store-double-precision) instructions (counting the SD instructions twice, to simulate
the two store instructions necessary to implement them on a MIPS R3000); and including only
the GCC, Spice, and TeX benchmarks. The DLX machine used for Hennessy and Patterson’s
measurements is very similar to the MIPS.

198 Chapter 15. Performance evaluation

that the impact of program transformations meant to avoid allocation is likely to
be minimal.

15.5 Compile time

Standard ML of New Jersey takes a long time to compile. There are several
culprits:

• The optimization phases (in many cases) are written “like prototypes,” and
too little attention is paid to how fast they run.

• A lot of work is done in nonproductive phases (such as hoisting, common-
subexpression elimination, etc.).

• The translation into lambda-language, and then into CPS, generates a lot of
unnecessary redexes; these redexes must then be reduced by the optimization
phase. With a bit more sophistication, perhaps they could be generated
“already-reduced” [35].

Some of these problems are easy to fix. For example, it is trivial to disable
the hoisting and common-subexpression-elimination phases, to set the reducemore
parameter to 400 (as described in figure 15.11), and so on. After making these
adjustments, we measured the time to compile our six benchmark programs. The
compile times and the breakdown by phases of the compiler, are shown in fig-
ure 15.17.

There’s a real shocker here: The “assembly” phase—which includes the resolu-
tion of span-dependent instructions, instruction scheduling (which takes about
a third of the time shown), and generation of the actual bit patterns of the
instructions—takes more time than all the rest of the phases put together! Clearly,
there is some problem with an algorithm or data structure; these simple tasks
should not take nearly that long.

How much could the compile time be improved? We believe that the speed
of the closure phase could be doubled without too much work; the speed of the
assembly phase could be quintupled; and, by ripping out all the data gathering
for optimizations that turned out to be useless (see figure 15.5) and implementing
a smarter CPS converter, the speed of the optimization phase (β-contraction, in-
line expansion, etc.) could be doubled. This would about double the speed of
compilation overall.

Even so, the speed of compilation would then be about 25 lines per second on a
twenty-MIPS machine. This is terrible; a good fast C compiler can compile about
400 lines of C per second [39] on a similar machine. There are two consolations,
however:

1. With our compiler, you don’t have to write your programs in C; and

2. Computers are getting faster at a faster rate than programs are getting bigger
(we hope).

15.5. Compile time 199

Life Lex Yacc Knu-B Simp VLIW Avg.
Compile time 11s 88 499 29 120 328
Parse 5.9% 4.7 3.4 5.9 3.8 3.6 4.6%
Semantics 8.1 7.3 4.0 6.4 7.7 4.7 6.4
Translate 0.7 0.5 0.3 0.7 0.4 0.4 0.5
Convert 1.1 0.8 0.6 1.2 0.7 0.7 0.8
Optimize 9.4 24.3 24.4 20.9 29.4 15.4 20.6
Closure 12.9 8.1 9.8 8.7 6.0 13.1 9.8
Spill 0.8 0.7 1.0 0.7 0.4 0.7 0.7
Generate 8.4 5.8 4.1 7.5 3.8 4.3 5.6
Assemble 52.6 48.0 52.4 48.0 47.9 57.1% 51.0

Figure 15.17. Time spent in different phases of the compiler.

This table shows the total compile time for each benchmark (when cer-
tain nonproductive optimizations are disabled), and the percentage of
time spent in each phase. Parse includes lexical analysis and LALR(1)
table interpretation. Semantics includes building the annotated ab-
stract syntax tree and type checking. Translate is from abstract syn-
tax to mini-ML (lambda language); Convert is from lambda language
to CPS. Optimize includes the η, β-contract, and β-expand phases.
Generate is the generation of abstract-machine instructions and the
translation to “assembly” language for the MIPS. Assemble includes
span-dependent jump resolution and instruction scheduling.

200 Chapter 15. Performance evaluation

15.6 Comparison with other compilers

There are several Standard ML compilers available [21]:

• Standard ML of New Jersey as described in this book.

• Poly/ML, an implementation of ML in the Poly language [63], runs on
Motorola 68020 and SPARC machines. Poly/ML is reported [21] to compile
faster, and run slower than SML/NJ.

• Poplog ML is an implementation of ML in the Poplog system developed at
the University of Sussex; it runs on VAX, MC68020, Intel 386, and SPARC
machines. Poplog ML is reported [21] to compile faster, and run slower, than
Poly/ML.

• Edinburgh ML is an implementation of the core language (without mod-
ules) that uses a byte-code interpreter written in C. It is portable to most
machines with a C compiler but is quite slow.

• The Kit Compiler, a direct implementation by Nick Rothwell of The Def-
inition of Standard ML [65]; this is intended for research and requires orders
of magnitude more time and space (for compilation and for execution) than
a “real” compiler.

• ANU ML, developed at the Australian National University, implements the
core language of the Definition and an old version of modules. It compiles
to native code on MC68020, VAX, and Pyramid.

• MicroML, developed at the University of Umea (Sweden), is an interpreter
for an ML subset that runs on IBM PCs.

There are also two good compilers for CAML, a nonstandard ML developed at
INRIA: the CAML compiler [25], which generates native code for several machines;
and CAML Light [58], an amazingly fast byte-code interpreter that can compile
in at least an order of magnitude less memory than SML/NJ. (See figure 15.19.)

We tested Poly/ML and SML/NJ on our six benchmark programs, running on
a SparcStation 2 (the only modern platform on which they both run). Figure 15.18
shows the results. Poly/ML compiles about 2.7 times percent faster; but SML/NJ
programs run 1.7 times faster than Poly/ML programs, on the average (geometric
mean). SML/NJ reportedly uses about 1.5 times as much heap space for execution
[21], and seems to use about 2–3 times as much for compilation. On a 68020-based
platform (e.g., a Sun-3), SML/NJ probably generates only slightly better code than
Poly/ML (since our translation from abstract to native code for that machine is
not as good as it could be). So on obsolete architectures with tiny memories,
Poly/ML may do better than SML/NJ.

Figure 15.19 compares implementations of several programming languages on
the Knuth–Bendix benchmark. Standard ML of New Jersey does quite well, espe-
cially on the RISC machine (the DECstation 5000 has a MIPS processor).

15.7. Conclusions 201

Poly/ML 1.99 SML/NJ 0.73
Compile Run Compile Run
Time Time Time Time

Life 3 30.4 10 23.6
Lex 18 24.9 48 18.0
Yacc 91 11.0 180 7.9
Knuth–B 9 34.1 24 20.6
Simple 20 260.5 62 54.4
VLIW 55 50.3 157 39.3

Figure 15.18. Comparison of Poly/ML and SML/NJ.

This table shows compile time and run time in seconds (CPU time was
within 1% of elapsed time) on a SparcStation 2 with 48 megabytes of
memory. Both Poly/ML and SML/NJ were internal, not-yet-released
versions of September, 1991. Poly/ML uses infinite-precision inte-
gers while SML/NJ uses finite precision; it’s not clear how much of
an advantage this gives SML/NJ. Commercially released versions of
Poly/ML as of this date are significantly slower than 1.99.

15.7 Conclusions

What have we learned from all these measurements? There are some conclusions
that can be drawn:

• If something could be done (hardware or software) about cache misses, pro-
grams would run about twice as fast. Perhaps the solution is to have a
megabyte data cache that can hold the entire youngest generation.

• The three most important optimizations are β-contraction, dead-variable
elimination, and constant folding of fetches from immutable records.

• In-line expansion, η-reduction, flattening of tuple arguments, and uncurrying
save lots of time but not as much space.

• Elimination of unused procedure arguments, evaluation of arithmetic opera-
tors with constant arguments, and cross-module optimization save plenty of
time but save even more space.

• Constant folding of comparisons doesn’t save time but saves a significant
amount of space.

202 Chapter 15. Performance evaluation

Sun 3/280 DECstation 5000/200
16 Mbytes 16 Mbytes

Execute GC Execute GC
CAML V2-6.1 14.5 14.8 6.2 6.2
CAML Light 0.2 28.3 6.5
SML/NJ 0.65 9.6 0.3 1.7 0.1
SML/NJ 0.65 x-mod 8.5 0.3 1.4 0.1
LeLisp 15.23 4.1 1.4
SunOS 3.5, cc -O 4.35
gcc 1.37.1, gcc -O 4.22
Ultrix 4.0, cc -O2 0.90

Figure 15.19. Comparison of several different compilers.

Xavier Leroy translated Gerard Huet’s Knuth–Bendix completion pro-
gram into several different languages, and ran it on two different ma-
chines [59]. (The program is the same as the Knuth–Bendix benchmark
referred to elsewhere in this chapter, but with simpler input data.) This
table shows non-GC run time and GC time for each version of the pro-
gram. Since the program uses higher-order functions, Leroy had to
do manual lambda lifting to write the program in Lisp and C, and in
some places had to use explicit closures (structures containing function
pointers).

CAML [25] is a different version of the ML language (i.e., not Standard
ML) developed at INRIA; CAML V2-6.1 is a native-code compiler that
shares the LeLisp runtime system, and CAML Light [58] is a compiler
with a byte-code interpreter written in C. SML/NJ x-mod refers to
Standard ML of New Jersey with all modules placed in one file to allow
cross-module optimization.

15.7. Conclusions 203

• Choosing register assignments for formal parameters of known functions on
the basis of the actual parameters of the first-encountered call (argrep) is
quite useful.

• Several optimizations don’t seem to accomplish anything at all: more aggres-
sive flattening of tuple arguments; constant folding of SWITCH operators,
analysis of exception handler variables, and arithmetic; range analysis of inte-
gers; common-subexpression elimination; and the recognition of comparisons
whose then and else clauses are identical.

• After CPS conversion and callee-save register analysis, there is no appreciable
difference between flat and linked closure representations.

• Hoisting of closures up and down to accomplish closure sharing does not
accomplish much. Given the potential space-complexity danger of closure
sharing (see Section 12.3), this optimization seems not to be worthwhile.

• About 17 general registers on the target machine (including five or six reg-
isters that ML uses for special purposes) seem to suffice, and 14 is almost as
good. This does not include any registers reserved for special purposes by
the hardware or operating system.

• Two rounds of in-line expansion will catch most useful β-reductions, except
in unusual programs.

• The heuristics used by the β-expander seem to be robust.

• For the two-generation garbage collector currently used by Standard ML of
New Jersey [6], increasing the heap size beyond six times the amount of live
data gives diminishing returns.

• Standard ML of New Jersey “conses” furiously, but still manages to achieve
good performance.

CHAPTER SIXTEEN

THE RUNTIME SYSTEM

The compilation technology described in this book uses heap allocation very heav-
ily: for data constructors, n-tuples, closures, continuations, and references. The
most important job of a runtime system—for compilers built this way—is to man-
age and garbage collect the heap, and do so as efficiently as possible. Therefore,
this chapter concentrates on garbage collection; other aspects of the runtime sys-
tem less relevant to optimization using continuations are described in our article
on the runtime system [7].

16.1 Efficiency of garbage collection

We define the amortized cost of a garbage-collection algorithm as the time spent
divided by the number of cells reclaimed. We assume that, in the long run, the
number of cells allocated is approximately equal to the number of cells reclaimed.
The “time spent” includes all time for memory management, including the execu-
tion of the collector itself, and the overhead for allocation of new records; but not
the initialization of those records, which must occur no matter what the algorithm.

Consider two styles of collection algorithms: mark-and-sweep garbage collec-
tion and copying collection. Mark-and-sweep collection proceeds by first traversing
the graph of all reachable records (starting at a specified set of “roots,” see Sec-
tions 12.4 and 13.2), and marking anything it reaches. Then the collector sweeps
through all records in order of address, putting any unmarked cells on a free list.

Copying collection works by traversing the graph of all reachable records start-
ing at the roots, and copying any record it reaches to a to-space. As it copies a
record, it leaves in the old copy a forwarding pointer that points to the new copy,
so if another pointer to the old record is traversed, the same new copy is used.
When the graph is completely traversed, the from-space containing old copies and
garbage is now completely devoid of useful data, and is now usable as a large,
contiguous free space for more allocation.

Now, either algorithm might work by a depth-first or a breadth-first traversal,
or might traverse the live data in any other order. In any case, the time taken for
the traversal is proportional to the amount of live data L. The sweep phase takes
time proportional to M , the amount of memory swept. So the time taken by one
mark and sweep is c1L+c2M , and the time taken by one copying collection is c3L.

205

206 Chapter 16. The runtime system

The number of words reclaimed is just M − L, the size of the space collected
minus the number of live words. Now the amortized cost of garbage collection is
just

costmark&sweep =
c1L + c2M

M − L
costcopying =

c3L

M − L

It is instructive to see how low these costs can become. If we just run the same
program in a larger memory, L will not change but M can grow arbitrarily large.
Larger M will decrease the cost; in the limit

lim
M→∞

costmark&sweep = c2 lim
M→∞

costcopying = 0

Thus the cost per word of mark and sweep collection can never be less than c2,
whereas there is no inherent lower bound on the cost of copying collection.

But what if c2 is quite small? This constant represents the size of the inner
loop of the sweep phase, and c2 might be as little as one or two instructions per
word. Unfortunately, however, Standard ML of New Jersey allocates one new
word on the heap for every five instructions executed (on the average); if there is
an extra cost of one or two instructions to sweep this word, that’s a 20–40 percent
overhead just for the sweep phase of garbage collection. Clearly, then, to support
code compiled to allocate at such a ferocious rate, copying collection is required.

M never quite reaches infinity, unfortunately, and we would like to get a realistic
estimate of the cost per reclaimed word of garbage collection. A very useful—just
about necessary—adjunct of the basic copying collection algorithm is generational
garbage collection, described in Section 16.3. With generational collection, the
copying collector can concentrate on a region of memory that has a very high
proportion of garbage.

In fact, in the Standard ML of New Jersey collector, the copying collector
finds an average of 98.7 percent garbage in its from-space when copying any given
generation. This is an average taken from runs of the six benchmark programs
described in Chapter 15, with a ratio of heap size to live data (summed over all
generations) of six. With a simple two-space copying collector, of course, the
percentage of garbage would be 66.6 in this amount of memory (each semispace
would have a ratio M/L of 3). Clearly, generational garbage collection is very
effective.

Thus the average proportion of live data in the from-space is only .013; let us
suppose that c3 is 20 instructions, more or less. Then for every word allocated,
we’ll have to pay c3L/M or 0.26 instructions to collect it; if a word is allocated
for every five instructions of execution, then the overhead for garbage collection is
.052, or about 5 percent. This approximates (slightly optimistically) the overhead
measured; see Chapter 15.

16.2 Breadth-first copying

Cheney’s copying collection algorithm [28] is one of the simplest to implement.
It is essentially a breadth-first search that copies live records from from-space to

16.3. Generational garbage collection 207

to-space. A breadth-first search requires a queue to keep track of nodes seen but
not yet processed; Cheney’s algorithm uses the to-space itself for the queue.

The basic operation of the algorithm is to forward a pointer. Given a p that
points to a record in from-space, forward(p) points to the new copy in to-space. If
the record has not yet been copied, it is first copied into to-space and a forwarding
pointer is installed in the old copy. If a forwarding pointer is already there, then
it is returned as the result of forward (p). In pseudo-code:

forward(p) =
if p[0] is a forwarding pointer
then return p[0]
else let L be the length of the object p points to

for i← 0 to L− 1
do copy p[i] to location next + i

p[0]← next
next ← next + L
return p[0]

How can we tell if p[0] is a forwarding pointer? Well, the forwarding pointers
are exactly those pointers in from-space that point to to-space; this is a simple
address-range test.

Now, the “main loop” of the algorithm just tries to forward everything. First
the root set is forwarded; then each field of every record in the to-space is for-
warded. The pointer scan points at the first unforwarded object; the pointer next
points at the first free word in to-space. When scan catches up with next, the
collection is finished.

scan ← next
for i← 0 to number-of-roots
do root i ← forward(root i)
while scan < next

do let L be the length of the object scan points to
for i← 0 to L− 1
do scan[i]← forward(scan[i])

scan ← scan + L

16.3 Generational garbage collection

The technique of generational garbage collection [60] relies on two observations
about Lisp and functional programs:

1. Newer cells tend to point to older cells.

2. Newer cells tend to be shorter lived than older cells.

208 Chapter 16. The runtime system

When one writes cons(a,b) in a program, one constructs a newer cell that
points to two older cells. The only way that an older cell can point to a newer
cell is if it is modified after it is created, which is rare in Lisp and Scheme and
impossible in ML (except for ref cells).

When a cell has been accessible for a long time, it’s typically part of a global
data structure that will continue to be necessary. New cells tend to be intermediate
results of computations that will soon be useless. In this respect, dynamically
allocated list cells are quite unlike radioactive atoms, whose future lifetimes are
unrelated to their past lifetimes.

Now, we can take advantage of these two observations. Observation 2 implies
that we should concentrate our garbage-collection efforts on the newer cells (which
have a higher proportion of garbage), and observation 1 makes it possible to do
so.

Allocated cells will be kept in several distinct areas Gi of memory, called gen-
erations. Cells in the same generation are of similar age, and all the records in
generation Gi are older than the records in generation Gi+1. This implies (by
observation 1) that for i < j, there are (almost) no pointers from Gi into Gj .

Consider the newest generation, Gn. The copying garbage collector may be
applied to this generation, using the global variables and runtime stack as a root
set. Because (almost) no pointers in the other generations can possibly point to
records in Gn, the other generations (almost) need not be considered as roots.
The garbage collector may copy the reachable objects of Gn into a new generation
Gn

′ without touching the other generations. This is advantageous because Gn is
expected (by observation 2) to have a higher proportion of garbage than any of
the other generations.

In general, the garbage collector can work on generation Gi if it also works on
all the newer generations; that is, it may work on any subset Gi, Gi+1, ..., Gn of
the generations. For greatest efficiency, the garbage collector should usually copy
just Gn, but occasionally copy the older generations.

In practice, generational garbage collection performs extremely well; though it
is typically implemented only for programming languages (such as Lisp, Scheme,
ML, Smalltalk, etc.) where modification of older objects is relatively rare. In
general, it is widely agreed that garbage collection need not take more than 5
percent of computation time.

The algorithm depends on the fact that cells contain pointers only to older cells.
In the presence of assignments to older ref cells, this acyclic condition will not
hold. Lieberman and Hewitt [60] handle this problem by making such fields point
indirectly through an “assignment table.” This requires either special hardware,
or several instructions in software each time a reference variable is accessed.

A simpler scheme devised by Ungar [89] keeps a set of addresses of cells that
point to newer cells; this set must be maintained with the help of the allocat-
ing program—whenever it assigns a pointer into an existing cell, it must add
the address of that cell to the modified set. Then, when collecting generations
Gk, . . . , Gn, the modified sets of generations G0, . . . , Gk−1 must be treated as root
pointers.

16.3. Generational garbage collection 209

This scheme makes fetching the contents of a ref very cheap—since the data
structure for the modified set need not be consulted—but assigning a ref requires
a few instructions (or special hardware). An update that stores a nonpointer
value cannot create a root of garbage collection, though; if these updates can be
identified at compile time, it is not necessary to generate code to augment the
modified set for them. Therefore, to support Ungar’s scheme, it is helpful to have
two different operators for assignment (called := and unboxedassign) for storing
pointers and nonpointers, respectively. Then nonpointer assignment can go at full
speed. The choice of pointer or nonpointer assignment operator should be made
early in compilation; see Section 4.4. Of course, when it is not known at compile
time whether a particular value is a pointer, the := operator must be used.

Shaw [79] uses the virtual memory of the machine. All the pages in the older
generations are initially made read-only. An attempt to update a ref cell will
cause a page fault; the fault handler can put the page in a set of modified older-
generation pages, and make the page writable. Subsequent updates to that page
will go at full speed, and the entire contents of each page in the modified set must
be scanned at garbage-collection time.

With this virtual-memory method, it is helpful to separate the older generations
into at least three parts:

1. Immutable records, list cells, closures, and other pointer-containing objects.
These will never be updated.

2. Mutable, pointer-containing, references and arrays. These must be marked
read-only, and handled as described in the previous paragraph.

3. Mutable byte arrays, immutable strings; references and arrays that contain
only unboxed values. These never contain pointers, so even though they may
be updated they cannot cause problems for generational garbage collectors;
they are marked as writable in the virtual-memory system.

The static type system of ML makes it easy to achieve this separation; for other
languages, where all objects are potentially mutable even though few updates may
be performed, it is not possible to separate mutable from immutable objects.

This separation might not help enormously; good measurements have not yet
been done. In any case, to separate objects of different kinds it is helpful to
have different operators for making immutable records, possibly pointer-containing
refs, nonpointer-containing refs, and immutable strings (of bytes) and mutable
byte arrays. Thus, for example, we have makeref and makerefunboxed to make
possibly pointer-containing and nonpointer-containing references, respectively.

Note that an implementation is unlikely to need both the distinction between
:= and unboxedassign and between makeref and unboxedmakeref, since it is
unlikely that Ungar’s technique and Shaw’s will both be used in the same runtime
system. We provide both in the CPS language to maintain some implementation
independence.

210 Chapter 16. The runtime system

16.4 Runtime data formats

One way to streamline the garbage collector is to make the formats of runtime data
as simple as possible. For Standard ML, we divide all objects into two categories:

1. Pointer containing: Each word is either a pointer or a tagged integer. These
objects include n-tuples, records, closures, data constructors, arrays, and
references.

2. Nonpointer containing: There are no pointers anywhere in the object, so
each word or byte can have an arbitrary bit pattern. These objects include
strings, byte arrays, floating-point numbers, floating-point arrays, machine
instructions.

An object starts with one descriptor word, which indicates the kind of the
object (not the source-language type) and its length. There are just two differ-
ent kinds of pointer-containing objects: immutable records (including closures,
data constructors, etc.) and mutable arrays. Similarly, there are two kinds of
nonpointer-containing objects: immutable strings (including real numbers, float
vectors, machine-code segments, etc.) and mutable byte arrays (including float
arrays). In a Lisp or Smalltalk system, where there is runtime type checking,
descriptors would need to include much more information to distinguish types of
objects.

Usually, a pointer contains the address of the first (nondescriptor) word of an
object, and the descriptor may be found by looking at the previous word. But it
is often convenient to allow pointers to point to the middle of objects:

• When several functions share a closure (see page 107), some function pointers
must point into the middle of the closure record.

• When accessing elements of an array sequentially, the compiler may use a
strength-reduction optimization that allows pointers into the middle of the
array (we have not implemented this).

• One compilation unit usually has many entry points in the same machine-
code string, each of which may be pointed to from closures.

• When accessing characters of a string or float array sequentially, strength
reduction may allow pointers into the middle of the array (we have not
implemented this, and cannot; see below).

We solve this problem in one way for pointer-containing objects and another
way for string objects. For pointer-containing objects, we observe that all integers
(and other unboxed values) have a low-order 1 bit; all pointers (to word-aligned
data) have low-order 00 bits. Therefore, we make descriptors (at the beginnings
of objects) have low-order 10 bits. Given a pointer to the middle of an object, one
simply searches backward sequentially to find a word whose low-order bits are 10.

If we have a large object with many pointers to the middle of it, this backward
sequential search would have to be done for each pointer. We can solve this

16.5. Big bags of pages 211

problem, if necessary, by filling the from-space version of the object with special
forwarding pointers that point to the appropriate places in the middle of the to-
space copy; then the full backward search will only be done once.

For machine-code objects, we require that the entry points be specially marked.
For any location l in the object that can be pointed at directly, the previous bytes
(l−4) . . . (l−1) must contain a back-pointer descriptor that indicates the distance
backward to the beginning of the object.

This solution works well for the entry points to a machine-code string. However,
it is not useful for strength reduction in traversing arbitrary strings and byte arrays,
because there is no room for the back pointers when any element of the array may
be addressed by the program. Thus, we can’t point into the middle of arbitrary
byte data.

Because nonpointer-containing objects don’t need to be scanned by the collec-
tor, it is helpful for the forward procedure to copy them to a different region of
the to-space, so the region between scan and next contains only pointer-containing
objects. Then the nested loop of the garbage-collection function (above) can be
unnested to process each word individually: Integers and descriptors are left un-
changed, and pointers are forwarded. The ability to scan objects word-by-word
becomes even more valuable for virtual-memory-based concurrent or generational
collectors [7, 8].

16.5 Big bags of pages

It’s a bit wasteful to use a full word for the descriptor of each object. The solution
is to group many objects together on the same page, and let one descriptor cover
the whole page [45]; this is known as a BIBOP (BIg Bag Of Pages) scheme. For
example, if we have a large number of two-word records (as is the case), we can
reserve one or more regions of memory for them, and store them without descrip-
tors. Testing the size of an object now requires looking up the high-order bits
of its address in a “BIBOP table.” John Reppy is experimenting with 64-kbyte
“BIBOP pages” in the Standard ML of New Jersey compiler, so a single 64-kbyte
array can hold eight-bit descriptors for all the BIBOP pages in a 32-bit address
space.

To keep things simple for the compiled code, we don’t have to use the BIBOP
table for the youngest generation of data. That is, compiled code will allocate ev-
erything, with descriptors, on the heap as it did before. But the garbage collector
will strip the descriptors off some objects and put them in BIBOP pages. The
separation of pointer-containing and nonpointer-containing objects for a genera-
tional collector, described earlier in the chapter, may also be done by the garbage
collector when moving objects out of the youngest generation.

Of course, this complicates the procedure for determining the kind of an object
(its size, and whether it contains pointers) at runtime. But ML has a static type
system, so the program never needs to perform this procedure. Only the garbage
collector and the polymorphic equality function need to determine the kind of an

212 Chapter 16. The runtime system

object at runtime.
Using the BIBOP scheme might save 33 percent of memory, except in the

youngest generation, assuming that most objects that survive the first garbage
collection are two-word records (which is very likely true!). It turns out that
closures are the majority of objects allocated (and they are usually larger than
two words), but closures tend to become garbage before the first collection, and
the longer-lived objects have a narrow distribution of object sizes.

The garbage collector (scanner) may now be slowed down by a constant factor
as it looks up descriptors in BIBOP tables. But Section 16.1 shows that an increase
in the constant factor c3 can be compensated for by increasing the amount of
memory M ; and the savings in memory from the BIBOP scheme could provide
this extra M . On the whole, then, the BIBOP trick might save time and space,
or it might not.

16.6 Asynchronous interrupts

Often it is desired to interrupt the program asynchronously (e.g., when a timer
interrupt occurs). Suppose we take a naive approach to this, and just write all
the registers (including the program counter) to a record. When it is desired to
resume the interrupted program, we can load the registers from this record and
continue.

But what if a garbage collection occurs while this special saved-register record
exists? Some of the fields of this record are pointers, some are nonpointers, some
are unboxed integers that masquerade as pointers, and so on. The garbage collector
does not have enough information to decode this record.

Furthermore, there may be dozens, or thousands, of such records. In a mul-
tithreaded system in which timer interrupts are used to switch between threads
(see Chapter 17), each suspended thread will be a special continuation made by
interrupting a running process.

A simple solution is to interrupt the program only at safe points (see page 148).
We can get the program to stop at the very next safe point just by setting the
limit register to maxint; at the next safe point an overflow interrupt will occur.
Thus, the action taken on an asynchronous interrupt should be to modify the limit
register.

In a typical Unix operating system, the sequence of events upon reception of a
signal would be [72]:

1. Event occurs; operating system notifies client program by “calling” client’s
signal-handler procedure according to standard C-language calling conven-
tion. Registers are pushed on stack.

2. C-language signal handler sets saved copy of limit register (on the stack) to
maxint, then returns.

3. Operating system pops saved registers (including modified limit register)
from stack, “resumes” client.

16.6. Asynchronous interrupts 213

4. At the next safe point, the limit check overflows, causing a trap.

5. Operating system notifies client program by calling client’s signal-handler
procedure. Now, registers can be saved safely. All the registers including
the saved PC are written into a special continuation closure. The function
pointer of this closure is just a special code fragment that loads all the
registers from the closure and jumps to the saved PC (also extracted from
the special closure).

6. The ML signal handler is invoked, with the specially constructed continuation
closure as an argument. If and when the ML signal handler wants to resume
the program that was running at the time of the signal, it just throws to this
continuation.

In reality, things are more complicated. First, in most versions of Unix the
order that the operating system pushes registers on the stack is not documented
or repeatable; this problem can be solved by appropriate trickery [7] that costs
about two extra memory references per register (plus a few more instructions).
Second, it is necessary to tell the operating system to reenable the signal that
occurred; this is usually done by “returning” from the C-language signal handler,
so this return must be made to happen [72]. Third, those registers indicated by
the register mask to hold nonpointers must be held in a separate, nonpointer-
containing object that the closure points to.

Suppose the boon of changing the operating-system interface were granted to
us. Then we could have a much more efficient response to a signal: The operating
system could notify the client process that a signal had arrived by setting its limit
register.1 This would replace steps 1–3 above, saving two context switches: from
the operating system into the client and back to the operating system.

Since fantastic wishes usually come in threes, we could also desire to change the
hardware: Let us wish for an overflow exception (a compare-and-trap instruction
would be just as good) that traps in user mode, without entering the hardware’s
privileged mode. Then another context switch or so could be avoided.

We still have one wish left over, which we could expend on a larger, write-back
cache (see Section 18.4).

Although our method of handling asynchronous signals on conventional hard-
ware and operating systems is cumbersome, it is not prohibitively expensive: Total
signal-handling time (into the ML signal handler and back) is about 0.3 millisec-
onds on a SparcStation 2, for example [73].

1Eric Cooper [30] is now experimenting with this technique in a special-purpose machine on
which ML is used for writing device drivers.

CHAPTER SEVENTEEN

PARALLEL PROGRAMMING

The call-with-current-continuation primitive allows Standard ML of New Jersey
to support several different models of shared-memory parallel and concurrent pro-
gramming. Examples of such models are:

• A generalization of Hoare’s Communicating Sequential Processes [49, 50]
known as Concurrent ML, in which different threads communicate syn-

chronously through unidirectional channels [70, 71, 73].

• ML-Threads [31], inspired by Modula-2+ threads (lightweight processes with
shared variables and locks) [22, 23], which was based on Mesa processes [56],
a generalization of Hoare’s Monitors [48].

• A version of Futures similar to those in Multilisp [44] that allows a graph-
reduction style of synchronization even in a strict functional language.

In any of these models, we take a standard sequential programming language
(e.g., Standard ML, C, or Modula-2) and add primitives for starting new threads
(lightweight processes, threads of execution that share memory) and communicat-
ing and synchronizing between threads.

In implementing any of these parallel-programming languages on a multipro-
cessor, there are two problems to be solved:

1. Scheduling threads of execution; managing queues of threads that are ready
to run, that are waiting for events generated by other threads; encapsulating
the state of a thread so control may be transferred to the scheduler, and then
back to resume the encapsulated state of another thread.

2. Multiprocessing: arranging for several processors to be running simul-
taneously in the same address space; communication between processors;
concurrent garbage collection of a program running on several processors.

In addressing these problems it is necessary to have cooperation among the
compiler, the runtime system and garbage collector, the scheduler, and the op-
erating system. For example, the compiler must generate reentrant code, so two
different threads can be executing the same function at the same time without

215

216 Chapter 17. Parallel programming

trashing each others’ variables. The runtime system must allow for individual lo-
cal storage for each thread. The operating system should allow for nonblocking
input/output operations, so one thread’s attempt to do input will not prevent the
other threads from running.

The call-with-current-continuation primitive provides a way to encapsulate the
state of a thread (as a continuation) so neatly that almost the entire scheduling
problem can be solved at the level of the source langauge (in this case ML) without
involving the compiler or the runtime system [93].

To illustrate this, we will describe the (uniprocessor) implementation of a very
simple concurrency package. In a later section we will address issues related to
multiprocessing.

17.1 Coroutines and semaphores

To show how threads may be implemented without modification of the compiler
or runtime system, we will invent a very crude model of concurrent computation
using coroutines and semaphores. We are not advocating the use of this model as a
programming language, since it relies on the programmer to avoid race conditions
and is expressed at a low level. But it makes a good short illustration of the use
of first-class continuations to implement schedulers.

The signature of our concurrency package includes a function fork to start a
new thread, a type semaphore with operations P and V:

signature COROUTINES =

sig val fork: (unit->unit) -> unit

val yield: unit -> unit

type semaphore

val semaphore: unit -> semaphore

val P: semaphore -> unit

val V: semaphore -> unit

end

Given a function f , fork(f) starts f running in parallel; in essence, the call
to f() returns immediately so f is running at the same time as the caller. This
package does not have preemptive scheduling, however, so each thread should
periodically call yield to let some other thread(s) run for a while.

A semaphore is a special variable with two states, free and busy. When a thread
performs P on a free semaphore, it becomes busy; but P on a busy semaphore
blocks the thread until some other thread performs a V . When V is performed
on a busy semaphore, either the semaphore becomes free (if there was no thread
blocked by P on that semaphore), or one thread waiting (by P) is resumed. V on
a free semaphore is undefined.

We can write a simple program with coroutines and semaphores to illustrate.
There are two arrays A and B of integers. One thread takes numbers out of A,
doubles them, and puts them into B; the other thread takes numbers from B,

17.1. Coroutines and semaphores 217

fun back_and_forth(initial) =

let open Coroutines

fun busy() = let val s = semaphore()

in P s; s

end

val free = semaphore

type slot = {value: int ref, put: semaphore, get: semaphore}

fun nlist 0 f = nil | nlist i f = f i :: nlist (i-1) f

val A = arrayoflist(

map(fn i => {value=ref i, put=busy(), get=free()})

initial)

val B = arrayoflist(nlist 10

(fn j => {value=ref 0, put=free(), get=busy()}))

val Alen = Array.length A and Blen = Array.length B

fun thread1 (i,j) =

let val {value=Av,put=Ap,get=Ag} = A sub i

val {value=Bv,put=Bp,get=Bg} = B sub j

val x = (P Ag; !Av)

in V Ap; P Bp; Bv := 2*x; V Bg;

yield();

thread1((i+1) mod Alen, (j+1) mod Blen)

end

fun thread2 (i,j) =

let val {value=Av,put=Ap,get=Ag} = A sub i

val {value=Bv,put=Bp,get=Bg} = B sub j

val x = (P Bg; !Bv)

in V Bp; P Ap; Av := x div 2; V Ag;

yield();

thread2((i+1) mod Alen, (j+1) mod Blen)

end

in fork(fn()=>thread1(0,0)); thread2(0,0)

end

Figure 17.1. A program using coroutines and semaphores.

218 Chapter 17. Parallel programming

structure Coroutines : COROUTINES =

struct

val queue : unit cont list ref = ref nil

fun enqueue k = queue := !queue @ [k]

fun dispatch() = let val head::rest = !queue

in queue := rest; throw head ()

end

fun fork f = callcc(fn k => (enqueue k; f(); dispatch()))

fun yield() = if random() then ()

else callcc(fn k => (enqueue k; dispatch()))

datatype sem = FREE | BUSY of unit cont list

type semaphore = sem ref

fun semaphore () = ref FREE

fun P sem = case !sem

of FREE => sem := BUSY nil

| BUSY waiters =>

callcc(fn k =>

(sem := BUSY(waiters@[k]);

dispatch()))

fun V sem = case !sem

of BUSY nil => (sem := FREE)

| BUSY(w::rest) => (sem := BUSY rest;

enqueue w)

end

Figure 17.2. The implementation of coroutines with semaphores.

Note that @ is list concatenation in ML.

halves them, and puts them back into A. But a thread may not remove a value
from an array until it has been put there by the other thread, that is, it can’t grab
the same value twice. And a thread may not overwrite a value in its output array
until the previous element in that slot has been read by the other thread. This
style of interaction is reminiscent of “I-structures” [16].

Each “slot” is implemented by an int ref and two semaphores. When the slot
is “full,” then the put semaphore for that slot is busy and the get semaphore is
free; when it is “empty,” put is busy and get is free. Before putting something
into a slot, a thread must P the put semaphore; afterward, it should V the get
semaphore to signal the availability of the data. To extract data from a slot, it’s
the other way around.

The complete program is shown in figure 17.1. The initial contents of the A
array are specified by the list initial; the B array starts out with 10 empty slots.

17.2. Better programming models 219

The implementation of this coroutine package is even simpler than its client.
We need a run queue of ready-to-execute threads. Each suspended thread is rep-
resented by a unit cont, a continuation to which we throw a place-holder “unit”
value. The queue itself is a reference to a list of suspended threads; we add to the
queue by appending to the end of the list, and remove items from the queue at the
head of the list (there are, of course, more efficient ways of implementing queues).
Enqueue adds a thread to the tail of the queue; dispatch removes a thread from
the queue and resumes it.

The fork(f) function is implemented by first using callcc to make a continu-
ation k that will resume the caller of fork. Then k is enqueued, and the function
f is executed. Thus, the “child” is executing and the “parent” is put on the run
queue. Presumably, the child will yield from time to time, and then eventually be
resumed each time. Finally, the function f will return; we dispatch another thread
and the child thread terminates (dispatch never “returns”); the number of threads
on the run queue (plus the number of threads on semaphore queues) goes down
by one).

To yield is even simpler: We use callcc to encapsulate the state of the current
thread, enqueue that state, and dispatch the head of the run queue. However, we
don’t have to yield every time; just for fun, we can flip a random coin and yield
only if tails comes up.

A semaphore is represented as a ref to a datatype with two constructors, BUSY
and FREE. A busy semaphore also has a list of threads that are blocked trying to
do a P operation on that semaphore. Semaphores are created initially free.

To P a free semaphore, one just makes it busy (with no waiters) and returns.
To P a busy semaphore, one adds oneself to the list of waiters and dispatches a
ready thread from the run queue.

To V a busy semaphore with no waiters, one just makes it free. If there are
waiters, any one of the waiters is removed from the list and enqueued on the run
queue.

Because this is a coroutine package, in which there are never two threads run-
ning at exactly the same time, it is unnecessary to worry about simultaneous
execution of P and V (or P and P , etc.). In a true multiprocessor version, or in a
uniprocessor version with preemptive scheduling, the usual techniques for mutual
exclusion (interlocked test-and-set instructions, etc.) would be used.

17.2 Better programming models

Concurrent threads using P and V are quite low level. For the convenience of the
programmer, and for the robustness of the application, one might wish to program
using monitors, synchronous channels, futures, directed logic variables [53], or I-
structures. Any of these models can be implemented with P and V . However, it
may be better to think of callcc and interlocked test-and-set instructions as the
primitives, since semaphores already introduce a notion of queuing, and the im-
plementation of any concurrency package may have its own preferred arrangement

220 Chapter 17. Parallel programming

of queues.

As shown in the previous section, callcc is a clean and expressive tool for
managing threads and resumption points. However, one would like it to be efficient.
Since a parallel program might be expected to use its concurrency primitives (P ,
V , fork, and yield in our example) quite frequently, they should not be expensive.

In a language implementation with a runtime stack, call with current contin-
uation must copy the stack and throw must restore it. Since the stack can grow
arbitrarily high, callcc can get quite expensive. The problem can be partially
avoided by keeping the stack small, and dumping the stack into the garbage-
collected heap when it grows too big; but this adds many complications of its own
[47].

Since Standard ML of New Jersey has no runtime stack, there is nothing to
copy. Call with current continuation (and throw) costs no more than an ordinary
procedure call, plus the cost of installing an exception handler: perhaps a dozen
instructions, depending on the number of free variables in the continuation. This
makes a very attractive system for implementing concurrency packages. At least
two such packages are under serious development [73, 31].

17.3 Multiple processors

Call with current continuation solves the problem of multiple threads very nicely.
When it is desired to run those threads on more than one processor, more work is
needed [31].

We first consider the case where there is a fixed number of processors, all
dedicated to the same parallel program. There are several resources to manage:
registers, stack, heap, input/output, and so on.

In principle, SML/NJ uses no runtime stack. But ML functions can call C
functions that do use the stack. In our runtime system, a thread is never preempted
while executing a C function (since there are no “safe points” in C code; see
Section 16.6). Therefore, it suffices to have one stack segment per processor; we
don’t need a stack for each thread.

What about the heap? If several processors are simultaneously allocating on
the same heap, some sort of locking is required to avoid overwriting the same
new record. But since allocation is so frequent, locking on each allocation would
be prohibitively expensive. A better solution is to have each processor allocate
in its own area of the heap. That is, we give each processor a large chunk of
contiguous free space in which to allocate, and we guarantee that no two processors
are allocating in the same place. If one processor allocates faster than the others,
it will exhaust its chunk first; we can just give it another chunk. When we run out
of chunks, a garbage collection must be initiated.

Again, we don’t need one chunk per thread, just per processor. Different threads
on the same processor are never allocating simultaneously (since they are never
running simultaneously, and are never preempted in the middle of an allocation).

Any thread may attempt to perform input or output that might block. In this

17.4. Multiprocessor garbage collection 221

case, the processor should somehow proceed with the execution of another ready
thread. Finally, on a real multicomputer the number of processors available to
a client process may not be fixed, as the operating system reallocates processors
among clients. Both of these problems can be solved by an appropriate operating
system interface [3].

17.4 Multiprocessor garbage collection

When a garbage collection is required, it seems like a good idea to take advan-
tage of the multiprocessor. There are two basic approaches: indexgarbage collec-
tion!multiprocessor

1. Make the garbage collector run in parallel on all the processors [44].

2. Make the garbage collector run at the same time as some of the allocating
threads [36, 10].

Both of these problems are reasonably well studied; and there is undoubtedly
further work to be done on each. We should remark our preference for the latter
scheme, based on the following observation: If the overhead of garbage collection
is about 5 percent, then one garbage-collector processor should be able to keep up
with about 20 allocating processors; furthermore, the overhead of collection can be
adjusted as desired by adding more memory to the system. Of course, in a system
with many more than 20 processors, some combination of the two approaches may
be necessary.

CHAPTER EIGHTEEN

FUTURE DIRECTIONS

A piece of software is never finished. We have several ideas for improvements to
optimizer and code generator of the SML/NJ compiler.

One big problem is the slowness, and the vast amount of memory required, for
compilation; Section 15.5 shows the time taken by each phase of the compiler. It
appears that the front end is much faster than the back end; much of the credit
goes to David MacQueen’s designs for the fast pattern-match compiler [19], the fast
module system [61], and the fast type checker; these have proved to be bottlenecks
in some other Standard ML compilers. The problem lies in the optimizer, code
generator, and instruction scheduler; Section 15.5 discusses how we plan to speed
up the back end by a large factor.

18.1 Control dependencies

There are some new kinds of information we could exploit in the CPS optimizer
and instruction scheduler. The idea is to make a more precise model of control
dependencies. Consider the following CPS fragment:

if PRIMOP(> , [VAR i, 0], [], [

then SELECT(2, VAR a, w, ...),

else ...])

If i > 0, the second field of record a will be fetched and execution will continue
from there; if i ≤ 0, the fetch won’t be done.

Now, suppose we would like to hoist the SELECT above the comparison. There
are several reasons we might like to do this: to remove loop-invariant code from a
loop, to perform common-subexpression elimination, to do instruction scheduling
on a superscalar computer, or to “flatten” an n-tuple function parameter. Since
the SELECT is not a “side effect,” we should be able to execute it even if it’s not
called for. If i ≤ 0 then w will turn out not to be useful, but the program should
not be incorrect.

The problem is that if i ≤ 0 there is no guarantee that a is a valid address.
Suppose i is the tag of a data constructor and a is the carried value. Depending on
the value of i, a could be a record-pointer, an integer, a real number, or a string.

223

224 Chapter 18. Future directions

Fetching a might cause a page fault immediately (if a is an integer), or load a
“bad pointer” into registers (if a is a string or real value, whose second field is an
arbitrary bit pattern).

This problem occurs in all compilers. To hoist a fetch above a conditional
jump, it’s necessary to prove that the address fetched is a valid address even when
the “else” path is taken. (If the address is invalid in the “then” case, that’s the
programmer’s responsibility; or, in safe languages such as ML, an impossibility.)
This proof can be quite difficult using dataflow analysis.

We can exploit the properties of the ML language, however. The CPS-language
SELECT is from a lambda-language SELECT, which in turn is from a pattern match of
a record or data constructor. The CPS-language greater-than comparison is either
from a lambda-language primop or from a lambda-language SWITCH operator. If
from the former, then the type of a cannot possibly depend on the value of i—
integer comparisons in ML programs can’t affect the types of variables. If from
the latter, however, there can be a dependence: The comparison may be checking
which data constructor has been applied to a value.

Unfortunately, during the conversion from lambda language to CPS, informa-
tion about the source of the comparison is lost. To hold on to this information,
we need to augment the CPS language with some extra control-dependence in-
formation. For each branching operator, we can “bind” an artificial variable; at
any of the operators after the branch, we can “use” this variable. As an example,
consider this ML program fragment:

case (z,i)

of (x::r,0) => x+2

| (y::r,_) => y+i

| _ => i

After translation to CPS, it might look like this:

1 PRIMOP(boxed, [VAR z], [], [

2 PRIMOP(ieql, [VAR i, INT 0], [], [

3 SELECT(0, VAR z, x,

4 PRIMOP(+ , [VAR x, INT 2], [w], [

5 APP(VAR k, [VAR w])])),

6 SELECT(0, VAR z, y,

7 PRIMOP(+ , [VAR x, VAR i], [u], [

8 APP(VAR k, [VAR w])]))]),

9 APP(VAR k, [VAR i])])

The SELECTs of lines 3 and 6 can be hoisted above the comparison of line 2, but
not above the boxity test of line 1. This information could be generated trivially
by the pattern-match compiler. We might augment the CPS to bind an artificial
variable v in line 1, and note the dependence on v of lines 3 and 6. Then lines 3
and 6 could both be hoisted above line 2 to eliminate the common subexpression;
but they could not be hoisted above line 1 without violating a scope rule for v.

18.2. Type information 225

There are several kinds of operations that we might like to hoist above com-
parisons, and that could benefit from this kind of control-dependency information:

• Fetches from records (SELECT), as described above.

• Fetches from and updates to arrays; these are dependent on the pattern-
match comparisons just like SELECT, and also on array-bounds checks and
comparisons.

• Unboxing of floating-point values; since floats are represented as pointers to
double-precision numbers, unboxing them requires a fetch. This fetch can
fail—just as a SELECT can—if hoisted above a pattern-matching compari-
son. However, such hoisting becomes very desirable if we want to be able to
pass unboxed floating-point values to known functions, especially in loops.

To make use of this technique in the instruction scheduler, it would be necessary to
propagate the dependency information all the way into assembly language, which
would be tedious but not difficult in principle.

18.2 Type information

A different solution to the problem described in the previous section is to carry
information about static types from the source language through the λ-language
into the CPS. Then we could know that the type of variable x is real, so it can
definitely be unboxed without harm; that a is int×int, so it can be fetched from
without harm; and so on.

However, having a typed CPS language would require the manipulation and
reduction of types whenever β-reductions (and other transformations) are per-
formed. Although this is certainly possible to do, it is painful enough that we have
decided to avoid this approach.

18.3 Loop optimizations

Many compilers have special optimizations for loops: hoisting of loop-invariant
computations, induction-variable analysis, strength reduction, and loop unrolling.
As explained in Chapter 9, hoisting of loop-invariant computations can be done by
common-subexpression elimination and β-reduction without knowing what a loop
is; and loop unrolling is just a special case of in-line expansion.

But loop unrolling can be made more profitable with special attention to loop-
exit tests. Consider a typical case:

fun dotprod(A,B) =

let val N = length(A)

fun f(s,i) = if i>=N then s

else f(s+(a sub i)*(b sub i), i+1)

in f(0.0, 0)

end

226 Chapter 18. Future directions

In continuation-passing style the program looks substantially the same:

fun dotprod(A,B,k) =

let val N = length(A)

fun f(s,i) =

if i>=N then k(s)

else let val x = A sub i

val y = B sub i

val z = x*y

val s’ = s+z

val i’ = i+1

in f(s’,i’)

end

in f(0.0, 0)

end

Now, for efficiency we might unroll the loop by substituting for f(s’,i’):

fun dotprod(A,B,k) =

let val N = length(A)

fun f(s,i) =

if i>=N then k(s)

else let val x = A sub i

val y = B sub i

val z = x*y

val s’ = s+z

val i’ = i+1

in if i’>=N then k(s’)

else let val x’ = A sub i’

val y’ = B sub i’

val z’ = x’*y’

val s’’ = s’+z’

val i’’ = i’+1

in f(s’’,i’’)

end

end

in f(0.0, 0)

end

Our compiler can get this far already, without knowing about loops. But we
haven’t really accomplished much, because the loop-exit tests are still sprinkled
through the unrolled loop.

A useful optimization here would be to eliminate the test i′ ≥ N by modifying
the test at the top of the loop to compare i + 1 ≥ N ; if this modified test failed,
then a special loop-exit sequence would test whether i ≥ N . Thus:

18.4. Garbage collection 227

fun dotprod(A,B,k) =

let val N = length(A)

fun f(s,i) = ... (as before)

fun f’(s,i) =

let val i’ = i+1

val i’’ = i’+1

in if i’>=N then f(s,i)

else let val x = A sub i

val y = B sub i

val z = x*y

val s’ = s+z

val x’ = A sub i’

val y’ = B sub i’

val z’ = x’*y’

val s’’ = s’+z’

in f’(s’’,i’’)

end

end

in f’(0.0, 0)

end

This already runs significantly faster because there are fewer branches. But
now the problem (especially on a pipelined, VLIW, or superscalar machine) is
that there is a long chain of data dependencies in the computation of i′′ and s′′.
To solve the problem for i′′, we can calculate i′′ = i + 2. The result is a loop
on which software pipelining [2] would get very good performance on a typical
superscalar machine.

So far in the discussion of this program, we have ignored the array-bounds check
on the subscripting of A and B. We might like to continue to write programs in a
“safe” language, in which case we can’t “turn off” the array-bounds checking. But
induction-variable analysis can be used in this case (and others) to determine that
i is always safely within the bounds of the array A. With a little extra work, the
bounds check for B might also be hoisted outside the loop. (A is treated differently
from B in that N is defined to be the length of A.)

Shivers [80] has implemented (and proven correct) several kinds of loop opti-
mizations in a continuation-passing-style Scheme compiler.

18.4 Garbage collection

According to the data shown in Chapter 15, half of the execution time of a typical
program is spent waiting for cache misses. It may be possible to use the garbage
collector as a tool for improving the locality of reference of the program.

With a generational garbage collector, performance might be greatly improved
by putting the youngest generation entirely in the cache. Heap allocations touch
the entire youngest generation cyclically, so “locality of reference” is only achieved
by caching it all. Furthermore, only a few percent of the youngest generation are

228 Chapter 18. Future directions

copied to older generations; a write-back cache would avoid any main-memory
traffic for most data, which become garbage before the first collection.

Collections should not be too frequent, however, for two reasons: Starting the
collector incurs nontrivial overhead (7600 cycles in Standard ML of New Jersey
on the MIPS); and the longer one waits before a collection, the more records have
turned into garbage. Therefore, the strategy of fitting the youngest generation in
cache will probably perform well only with half-megabyte caches, or larger.

Zorn [98] has detailed measurements of the interaction of garbage collection
and cache performance (in Common Lisp), as well as some recommendations for
collector and cache design that can significantly improve cache performance.

18.5 Static single-assignment form

The CPS language shares an important property with static single-assignment
form [34]: Each variable is assigned (bound) only once. However, what in SSA
is just an edge in the flow graph is—in CPS—a call to a known function. Calls
to known functions have an implicit assignment of actual parameters to formal
parameters; in SSA these are represented by “φ-functions,” which maintain the
fiction of single assignment. By gathering information in our CPS optimizer about
all the different actual parameters passed into a given formal parameter of a known
function, we can get the effect of the φ-functions in CPS. Doing this would allow us
to implement some of the efficient optimization algorithms (constant propagation
[94], etc.) that work on static single-assignment form.

18.6 State threading

It might be a good idea to make the creation and use of the updateable store
more explicit, by having state variables produced as the result of assignment (:=
and update) operations and consumed as arguments of fetch (! and subscript)
operations. Then CPS would truly be a “functional” language. Many constraints
on CPS transformations (i.e, that an update should not be hoisted above another
update) that are implictly present in various phases of the compiler would now be
direct consequences of variable-scope rules.

Introducing store-valued variables allows the possibility that the program would
no longer have a single-threaded store; that is, to evaluate a program it might be
necessary to have more than one copy of the memory. While this might be very
useful (in a replay debugger, for example [88]), it doesn’t fit naturally on a von
Neumann machine. Thus, it would be necessary to restrict programs (or CPS-
conversion algorithms) to be single-threaded.

APPENDIX A

INTRODUCTION TO ML

This appendix describes enough of the ML language to understand the examples
in the rest of the book. We cover only the core language (without the module
system) here, though a summary of the module system is given in Section 4.8. For
more thorough coverage, see Reade [68], Paulson [67], or Sokolowski [81].

One of the distinguishing features of Standard ML is its facility for data struc-
turing. As in other languages, there are atomic types (such as integer), cartesian
product types (records), and disjoint sum types (which are like variants in Pascal
or unions in C); but everything seems to fit together more safely and elegantly in
ML.

The atomic types include int (integers), real (floating point numbers), and
string (sequences of zero or more characters).

Given types t1, t2, ..., tn with n ≥ 2, one can make the cartesian product type
t1 × t2 × · · · × tn. (In ML syntax, the × is written using a star *.) This is called
an n-tuple; for example, int*int*string is a 3-tuple type containing values like
(3,6,"abc").

A record type is a syntactic sugaring of an n-tuple (for n ≥ 0) in which each
“field” is given a name. For example, the type

{wheels: int, passengers: int, owner: string}

contains values like

{wheels=4, passengers=6, owner="Fred"}

and is much like—though not interchangeable with—the type int*int*string.

A union type can have values of several different forms; for example, a list value
can be either a pair or nil. Unlike the union of C (or the variant record of Pascal),
ML requires a tag on each value to distinguish which of the kinds it belongs to. It
is impossible to extract information from the value without first checking the tag,
so unions in ML are much safer to use. (The tag is called a constructor in ML.)

The datatype keyword is used to declare union types. In a datatype declara-
tion, there is a list of constructor names, each of which specifies the type of value
associated with it. For example,

229

230 Appendix A. Introduction to ML

datatype vehicle =

CAR of {wheels: int, passengers: int, owner: string}

| TRUCK of real

| MOTORCYCLE

each value of type vehicle can be a car, a truck, or a motorcycle. If a car, it
carries a record value (two integers and a string). If a truck, it carries a real value
indicating its gross weight. And motorcycles all look the same: MOTORCYCLE is
called a constant constructor because it carries no value.

Types can be polymorphic: a function or constructor can operate on objects of
different—though similar—types. For example, the list datatype can be used to
make lists of integers, lists of reals, lists of integer-lists, etc.

datatype ’a list = nil | :: of ’a * ’a list

The symbol :: is just an identifier like TRUCK or nil. The type variable ’a before
list indicates that list is not a type, it’s a type constructor: that is, it must be
applied to a type argument like int or string before it is meaningful as a type.
Type constructors are written after the types they are applied to, so int list is
the type of lists of integers.

The :: (pronounced “cons”) constructor carries a value of type ’a * ’a list;
that is, a pair whose first element is type ’a and whose second element is a list
of ’a. If we have a list of strings, the first element is a string and the second is
another list of strings (the “tail” of the list).

Though ’a can stand for any type—one could make an int list list—the
elements of any one list must all be the same type. If it is necessary to have a list
containing different types of objects, one can use a datatype as the argument of
the list type constructor: a vehicle list can contain both cars and trucks.

Most data structures are immutable: they can’t be modified by assignment
statements. For example, if the variable a holds the record value describing Fred’s
6-passenger car (shown above), then it is not possible to alter the passengers field
to be 7, nor is it possible to alter a to point to a different record. What you might
do instead is make an entirely new record equal to

{wheels=4, passengers=7, owner="Fred"}

and bind it to the variable b.
However, there is an exception to this rule. There is a special datatype ref of

mutable references:

datatype ’a ref = ref of ’a

This built-in datatype has “special” properties, unlike the list datatype which—
though predefined in Standard ML—could just as easily be part of a user’s pro-
gram. In particular, if r is a reference variable (say an int ref), then r may be
assigned (using an assignment operator :=) to hold a different value. And if a field
of a record or tuple is a reference:

A.1. Expressions 231

{wheels=4, passengers=ref 6, owner="Fred"}

then that field can be assigned a different value. But note that this record has
type

{wheels: int, passengers: int ref, owner: string}

which is not the same as the type of Fred’s original car.

A.1 Expressions

Expressions in ML take several forms:

exp → id
An expression can be a single identifer. ML has two kinds of identifiers: Al-
phanumeric identifiers are composed of letters and digits starting with a letter
(just like in Pascal; except that underscore and apostrophe are also allowed
in alphanumeric identifiers). Symbolic identifiers are made up of the char-
acters !%&$+-/:<=>?@\~\^|#*‘ in any combination. Some alphanumeric
combinations are reserved words (like let and end); so are some symbolic
combinations (like | and =>).

exp → exp id exp
An infix operator can be put between two expressions, like a+b or (a+b)*c or
a*b+c. Different operators have different precedences, as in Pascal or C. In
ML, however, any identifier can be made infix with a specified precedence;
and operators like + and * are just ordinary identifiers that are infix by
default.

exp → (exp)
An expression may be enclosed in parentheses without changing its meaning;
this is useful to override the usual precedence of operators, just as in Pascal.

exp → exp exp
Function application is expressed in ML by writing the function followed by
its argument. Thus f x is f applied to x. If you write f(x) it looks a bit
more like Pascal, but the parentheses are not necessary—you could just as
well write (f)x. An expression can evaluate to a function; if g y returns
a function as a result, then that function can be applied to x by writing
(g y) x. But in fact, function application associates to the left, so g y x

parses the same as (g y) x. On the other hand, the argument to a function
call might also be a function call, as in f(g y) or even (g y)(h x). Every
function in ML takes exactly one parameter.

232 Appendix A. Introduction to ML

exp → id
exp → id exp
exp → exp id exp

Datatype values are constructed either with a constant data constructor (the
first of these three rules), or with a value-carrying constructor applied to an
argument (the second rule). A value-carrying constructor may be declared
infix as long as the value it carries is a 2-tuple; in this case the constructor is
written between its two arguments, as in the third grammar rule above. The
list constructor :: is an example of this: 3::nil is a singleton list in which
:: is applied to the pair (3,nil). And :: is declared right-associative, so
1::2::3::4::nil is a list of four integers.

exp → (exp, exp)
exp → (exp, exp, exp)

One can construct n-tuples in ML by writing two or more expressions sep-
arated by commas, surrounded by parentheses. When the tuple expression
is evaluated, a record is built in memory. This is a bit like cons in Lisp or
new (with initializing assignments) in Pascal. The record (3,"a",7) is a
3-tuple that contains an integer, a string, and an integer; it’s not the same
as ((3,"a"),7) which is a 2-tuple containing a 2-tuple and an integer.

The restriction that functions take only one argument may seem rather harsh;
in fact, one commonly passes an n-tuple to a function, as in f(x,y,z). This
looks comfortably like an n-argument function.

exp → {exprow}
exprow → id = exp
exprow → exprow , id = exp

A record expression is a series of field expressions, enclosed in braces, with
associated field names. The field names need not be declared in advance.

exp → let dec in exp end

A let expression introduces a local declaration dec. The names defined by
this declaration are visible only between the let and the end. The forms of
declaration are given in section A.3.

exp → fn pat => exp
The keyword fn is pronounced lambda, and defines anonymous functions.

The grammar-symbol pat stands for pattern; an example of a simple pattern
is just an identifier (but see below). Thus fn x => x+3 is a function that
adds three to its argument, so (fn x=>x+3)7 is 10.

Lambda-expressions can be nested, as in fn x=> fn y=>x+y which is a func-
tion that returns a function. ML has lexical (static) scope, so
(fn x=> fn y=>x+y)3 is identical in meaning to fn y=>3+y in all contexts.
Nested lambdas provide an alternate way of making multiple-argument func-
tions, so if f is fn x=>fn y=>fn z=>x+y+z then one could apply f to three
arguments by writing f a b c; in this case f is called a “curried” function.

A.2. Patterns 233

Actually, the syntax for fn-expressions is richer than implied by the grammar
rule above. More precisely:

exp → fn match
where a match is a list of rules separated by bars:

match → rule
match → match | rule
rule → pat => exp

When a function defined with several rules is applied to an argument, the
patterns are examined in order to find the first one that matches. Then the
expression corresponding to that pattern is evaluated.

exp → case exp of match
A case expression evaluates its exp argument, and tests the patterns in the
match to find the first one that matches; then the variables (if any) of the
matching pattern are bound, and the right-hand-side expression is evaluated.

A.2 Patterns

The simplest pattern is just a variable (which always matches), but there are other
kinds:

pat → constant
When the pattern is an integer, real, or string constant c, it matches only
the value c. If the argument is not equal to c, it fails to match the pattern.
Note that the compile-time type checking ensures the type of the constant
(e.g. int) will always be the same as the type of the argument.

pat → id
When the pattern is a constant constructor (defined by a previous datatype
declaration), it matches only that constant. Compile-time type checking
ensures that the argument will be a member of the right datatype. If the
identifier has not been declared a constructor by a datatype declaration,
then it stands for a variable in the match—with quite a different behavior
(see below). This is often a source of great confusion (and bugs). The
problem can be ameliorated by the convention that constructors (except,
unfortunately, nil) start with capital letters and variables do not.

pat → id pat
When the pattern is a constructor applied to a pattern p, then the pat-
tern matches if the argument was built using the same constructor and if p
matches the value carried by that constructor in the argument. Thus the
pattern TRUCK 3.5 matches a value built by the expression TRUCK(2.5+1.0)

but not the values MOTORCYCLE or TRUCK(3.0).

234 Appendix A. Introduction to ML

pat → (pat)
A pattern may be parenthesized to disambiguate syntax, without changing
its meaning.

pat → (pat, pat)
pat → (pat, pat, pat)

An n-tuple pattern (for any n ≥ 2) matches an n-tuple argument if and
only if each of the elements of the tuple pattern matches the corresponding
element of the argument. Static type checking ensures that the argument is
an n-tuple (for the right n).

pat → {patrow}
patrow → id = pat , patrow
patrow →
patrow → ...

A record pattern is a sequence of id=pat, where the ids are the record labels.
Like a tuple pattern, the record pattern matches if all of the fields match the
fields of the argument. A record pattern may end with an ellipsis (...), in
which case the remaining fields of the argument automatically match; but
the names of the remaining fields must be determinable at compile time.

pat →
The underscore _ is a wild-card pattern that matches any argument.

pat → id
When the pattern is an identifier not declared as a constructor, then a new
variable is bound to the argument, which always matches. Thus the function
fn x=>x+3 has a pattern x which is a variable. When the function is applied
to an argument, a new instantiation of x takes on the value of the argument.
The scope of x is the entire right-hand-side of the function (i.e., x+3); so this
function adds three to its argument. Static type checking will ensure that
the argument is always an integer.

The function fn(a,b)=>a+b*2 has a pair (2-tuple) pattern as its formal param-
eter; the first element of the pair will be bound to the variable a, and the second
to the variable b. So even though ML requires all functions to have exactly one
argument, multiple-argument functions can be simulated in a very conventional
style.

Now consider a function that treats empty and singleton lists differently from
longer lists:

fn nil => 0

| x::nil => 1

| z => 2

The first rule matches only the empty list. the second rule matches a cons cell if
the head and the tail match; but the head always matches (since x is a variable)
and the tail matches only the empty list (nil); so the second rule matches lists of
length one. The final rule catches anything that didn’t match the first two rules.

A.3. Declarations 235

A.3 Declarations

Several kinds of things can be declared in ML, each with a different keyword to
introduce the declaration:

dec → val pat = exp
A val declaration can be used to define a new variable, as in val x=5 which
binds x to 5. In this case, the pattern is a simple variable pattern which
always matches.

Another use of the val declaration is to extract fields of records:

val (a,(b,c),d) = g(x)

In this case, the type returned by g(x) must be a 3-tuple whose second
element is a pair. The first and last components of the 3-tuple are bound to
a and d, and the elements of the pair are bound to b and c.

Finally, it is possible to make val declarations that are not guaranteed to
match, as in

val TRUCK gross_weight = v

If the vehicle v is indeed a truck, then the variable gross weight will be bound
to the value carried by the TRUCK constructor. Otherwise, the val declaration
fails by raising the Bind exception.

dec → val rec pat = exp
Normally, the scope of the identifiers bound by a val declaration does not
include the expression exp in the declaration. However, the keyword rec

indicates a recursive declaration; in this case the exp must start with the
keyword fn. Thus, a function to compute the length of a list:

val rec length = fn nil => 0 | fn a::r => 1+length(r)

dec → fun clauses
It is convenient to have syntactic sugar for val rec declarations. Some
examples (and their meanings without using fun) are shown here:

fun length nil = 0 val rec length = fn nil => 0

| length (a::r) = | (a::r) =>

1+length(r) 1+length(r)

fun f a b c = a+b+c val rec f = fn a=>fn b=>fn c=>a+b+c

Note that even though f is not recursive, the rec keyword does no harm.

236 Appendix A. Introduction to ML

dec → datatype datbind
Datatypes are declared using the syntax described at the beginning of this
appendix.

dec → type type-binding
Type abbreviations declare a new type equivalent to some existing (perhaps
unnamed) one. For example,

type intpair = int*int

type comparison = int*int -> bool

The type intpair will now be the same as int × int , and comparison is an
abbreviation for “function from pair of integers to Boolean.” Type abbrevi-
ations can be parametrized, as in

type ’a pair = ’a * ’a

type ’b predicate = ’b -> bool

dec → dec dec
Several declarations in a row may be used wherever one is permitted. The
identifiers bound by the earlier declarations may be used by the later ones.

dec → etc.
There are several other kinds of declarations, which we lack the space to
explain here.

A.4 Some examples

To illustrate the use of ML, we will explain some of the examples used elsewhere
in the book. First, the countzeros program from page 83:

fun count p = let fun f (a::r) = if p a then 1+f(r) else f r

| f nil = 0

in f

end

fun curry f x y = f(x,y)

val countzeros = count (curry (fn (w,z)=> w=z) 0)

The function count takes an argument p and returns as a result another func-
tion that takes a list argument. That function returns an integer. A simpler way
to understand this is that count is a curried function of two arguments. In any
case, its type is

count: (’a -> bool) -> ((’a list) -> int)

count: (’a -> bool) -> ’a list -> int

A.4. Some examples 237

The type is written twice, the second time with the minimal number of parentheses
(note that -> associates to the right).

The compiler can automatically infer the type of count (and, in fact, of all
functions). In this case, since p is applied to an argument, it must be a function;
and since the result of this application is used in an if expression, p must return
a bool as a result. The fact that the second argument is written variously as
a::r and nil implies that it must be a list; furthermore (because of the repetition
of a) the elements of the list must match the type of p’s argument. Finally, the
expression 1+count(r) returned by the then clause implies that count returns an
integer.

So what does count do? The argument p is a predicate that is applied to
each element of the list. If the list is empty (count p nil), then 0 is returned.
Otherwise, if p yields true on the first element of the list, we return 1 plus count p

of the tail of the list; if p yields false, we don’t add 1. Thus, count tells us how
many elements of the list match the predicate.

The curry function takes a function f as an argument. f is a function that takes
a 2-tuple as an argument. The result of curry f is a function fn x=>fn y=>...

that takes a single argument x and returns a function fn y=> that takes a single
argument y. The result of this function is just f(x,y). So curry f returns the
“curried” version of f.

The countzeros function counts the number of zeros in a list of integers. It
does this by applying count to the apropriate predicate. Before count actually
executes, of course, it must be applied to another argument (a list); so countzeros

won’t do much until applied to a list of integers.

Now consider the eq function from page 27. Here we have omitted some cases
for conciseness:

fun eq(RECORD(a,i),RECORD(b,j)) =

arbitrarily(i=j andalso eqlist(a,b), false)

| eq(INT i, INT j) = i=j

| eq(STRING a, STRING b) = arbitrarily(a=b, false)

| eq(ARRAY nil, ARRAY nil) = true

| eq(ARRAY(a::_), ARRAY(b::_)) = a=b

| eq(FUNC a, FUNC b) = raise Undefined

| eq(_,_) = false

and eqlist(a::al, b::bl) = eq(a,b) andalso eqlist(al,bl)

| eqlist(nil, nil) = true

The fun...and syntax allows the definition of mutually recursive functions eq and
eqlist. The function eq gives the semantics of pointer equality on a pair of
dvalue arguments (see page 24), and eqlist simulates pointer equality on a pair
of dvalue lists.

Call eq’s two arguments x and y. If they are both RECORDs, then the field-list of
x will be bound to a and the field-list of y will be bound to b; their offsets will be
bound to i and j respectively. Then the function arbitrarily will be evaluated

238 Appendix A. Introduction to ML

with two arguments. The first argument uses the andalso keyword, which does
short-circuit Boolean evaluation; equivalently,

if i=j then eqlist(a,b) else false

The second argument is just false; arbitrarily just returns one of its arguments
(see page 3).

Thus, testing the equality of records will result (if i=j) in a call to the eqlist

function, which may recursively call eq.
If one argument is a RECORD and the other is not, then the first pattern to

match is (_,_); the corresponding expression returns false.
If both arguments are STRINGs, then the third pattern matches.
If both arguments are ARRAYs, then either the fourth or the fifth pattern

matches depending on whether the element-lists are both nil.
If both arguments are FUNCs, then the sixth pattern matches. Then the ex-

pression raise Undefined is evaluated, which raises an exception. In this case,
eq returns no result at all, and control passes to the nearest enclosing exception
handler.

The function eqlist has two clauses; one that matches nonempty lists and one
that matches empty lists. The nonempty case tests equality of the first elements,
and recurs on the rest of the lists. But what if the lists are of different lengths, in
which case the recursion will eventually lead to a case where one list is nil and the
other is not? Then neither of the patterns matches; the runtime exception Match

will be raised.

APPENDIX B

SEMANTICS OF THE CPS

This semantics is explained in Chapter 3.

functor CPSsemantics(

structure CPS: CPS

val minint: int val maxint: int

val minreal: real val maxreal: real

val string2real: string -> real

eqtype loc

val nextloc: loc -> loc

val arbitrarily: ’a * ’a -> ’a

type answer

datatype dvalue = RECORD of dvalue list * int

| INT of int

| REAL of real

| FUNC of dvalue list ->

(loc*(loc->dvalue)*(loc->int))->

answer

| STRING of string

| BYTEARRAY of loc list

| ARRAY of loc list

| UARRAY of loc list

val handler_ref : loc

val overflow_exn : dvalue

val div_exn : dvalue

) :

sig val eval: CPS.var list * CPS.cexp ->

dvalue list ->

(loc*(loc->dvalue)*(loc->int)) ->

answer

end =

struct

type store = loc * (loc -> dvalue) * (loc -> int)

fun fetch ((_,f,_): store) (l: loc) = f l

fun upd ((n,f,g):store, l: loc, v: dvalue) =

239

240 Appendix B. Semantics of the CPS

(n, fn i => if i=l then v else f i, g)

fun fetchi ((_,_,g): store) (l: loc) = g l

fun updi ((n,f,g):store, l: loc, v: int) =

(n, f, fn i => if i=l then v else g i)

exception Undefined

fun eq(RECORD(a,i),RECORD(b,j)) =

arbitrarily(i=j andalso eqlist(a,b), false)

| eq(INT i, INT j) = i=j

| eq(REAL a, REAL b) = arbitrarily(a=b, false)

| eq(STRING a, STRING b) = arbitrarily(a=b, false)

| eq(BYTEARRAY nil, BYTEARRAY nil) = true

| eq(BYTEARRAY(a::_), BYTEARRAY(b::_)) = a=b

| eq(ARRAY nil, ARRAY nil) = true

| eq(ARRAY(a::_), ARRAY(b::_)) = a=b

| eq(UARRAY nil, UARRAY nil) = true

| eq(UARRAY(a::_), UARRAY(b::_)) = a=b

| eq(FUNC a, FUNC b) = raise Undefined

| eq(_,_) = false

and eqlist(a::al, b::bl) = eq(a,b) andalso eqlist(al,bl)

| eqlist(nil, nil) = true

fun do_raise exn s = let val FUNC f = fetch s handler_ref

in f [exn] s

end

fun overflow(n: unit->int,

c: dvalue list -> store -> answer) =

if (n() >= minint andalso n() <= maxint)

handle Overflow=> false

then c [INT(n())]

else do_raise overflow_exn

fun overflowr(n,c) =

if (n() >= minreal andalso n() <= maxreal)

handle Overflow => false

then c [REAL(n())]

else do_raise overflow_exn

fun evalprim (CPS.+ : CPS.primop,

[INT i, INT j]: dvalue list,

[c]: (dvalue list -> store -> answer) list) =

overflow(fn()=>i+j, c)

| evalprim (CPS.-,[INT i, INT j],[c]) =

overflow(fn()=>i-j, c)

241

| evalprim (CPS.*,[INT i, INT j],[c]) =

overflow(fn()=>i*j, c)

| evalprim (CPS.div,[INT i, INT 0],[c]) = do_raise div_exn

| evalprim (CPS.div,[INT i, INT j],[c]) =

overflow(fn()=>i div j, c)

| evalprim (CPS.~,[INT i],[c]) = overflow(fn()=>0-i, c)

| evalprim (CPS.<,[INT i,INT j],[t,f]) =

if i<j then t[] else f[]

| evalprim (CPS.<=,[INT i,INT j],[t,f]) =

if j<i then f[] else t[]

| evalprim (CPS.>,[INT i,INT j],[t,f]) =

if j<i then t[] else f[]

| evalprim (CPS.>=,[INT i,INT j],[t,f]) =

if i<j then f[] else t[]

| evalprim (CPS.ieql,[a,b],[t,f]) =

if eq(a,b) then t[] else f[]

| evalprim (CPS.ineq,[a,b],[t,f]) =

if eq(a,b) then f[] else t[]

| evalprim (CPS.rangechk, [INT i, INT j],[t,f]) =

if j<0

then if i<0

then if i<j then t[] else f[]

else t[]

else if i<0

then f[] else if i<j then t[]

else f[]

| evalprim (CPS.boxed, [INT _],[t,f]) = f[]

| evalprim (CPS.boxed, [RECORD _],[t,f]) = t[]

| evalprim (CPS.boxed, [STRING _],[t,f]) = t[]

| evalprim (CPS.boxed, [ARRAY _],[t,f]) = t[]

| evalprim (CPS.boxed, [UARRAY _],[t,f]) = t[]

| evalprim (CPS.boxed, [BYTEARRAY _],[t,f]) =t[]

| evalprim (CPS.boxed, [FUNC _],[t,f]) = t[]

| evalprim (CPS.!, [a],[c]) =

evalprim(CPS.subscript, [a, INT 0],[c])

| evalprim (CPS.subscript, [ARRAY a, INT n],[c]) =

(fn s => c [fetch s (nth(a,n))] s)

| evalprim (CPS.subscript, [UARRAY a, INT n],[c]) =

(fn s => c [INT(fetchi s (nth(a,n)))] s)

| evalprim (CPS.subscript, [RECORD(a,i), INT j],[c]) =

c [nth(a,i+j)]

| evalprim (CPS.ordof, [STRING a, INT i],[c]) =

c [INT(String.ordof(a,i))]

| evalprim (CPS.ordof, [BYTEARRAY a, INT i],[c]) =

(fn s => c [INT(fetchi s(nth(a,i)))] s)

242 Appendix B. Semantics of the CPS

| evalprim (CPS.:=, [a, v],[c]) =

evalprim(CPS.update, [a, INT 0, v], [c])

| evalprim (CPS.update, [ARRAY a, INT n, v],[c]) =

(fn s => c [] (upd(s,nth(a,n),v)))

| evalprim (CPS.update, [UARRAY a, INT n, INT v],[c]) =

(fn s => c [] (updi(s,nth(a,n),v)))

| evalprim (CPS.unboxedassign, [a, v], [c]) =

evalprim(CPS.unboxedupdate, [a, INT 0, v], [c])

| evalprim (CPS.unboxedupdate,

[ARRAY a, INT n, INT v],[c]) =

(fn s => c [] (upd(s,nth(a,n), INT v)))

| evalprim (CPS.unboxedupdate,

[UARRAY a, INT n, INT v],[c]) =

(fn s => c [] (updi(s,nth(a,n),v)))

| evalprim (CPS.store,

[BYTEARRAY a, INT i, INT v],[c]) =

if v < 0 orelse v >= 256

then raise Undefined

else (fn s => c [] (updi(s,nth(a,i),v)))

| evalprim (CPS.makeref, [v],[c]) = (fn (l,f,g) =>

c [ARRAY[l]] (upd((nextloc l, f,g),l,v)))

| evalprim (CPS.makerefunboxed, [INT v],[c]) = (fn (l,f,g) =>

c [UARRAY[l]] (updi((nextloc l, f,g),l,v)))

| evalprim (CPS.alength, [ARRAY a], [c]) =

c [INT(List.length a)]

| evalprim (CPS.alength, [UARRAY a], [c]) =

c [INT(List.length a)]

| evalprim (CPS.slength, [BYTEARRAY a], [c]) =

c [INT(List.length a)]

| evalprim (CPS.slength, [STRING a], [c]) =

c [INT(String.size a)]

| evalprim (CPS.gethdlr, [], [c]) =

(fn s => c [fetch s handler_ref] s)

| evalprim (CPS.sethdlr, [h], [c]) =

(fn s => c [] (upd(s,handler_ref,h)))

| evalprim (CPS.fadd, [REAL a, REAL b],[c]) =

overflowr(fn()=>a+b, c)

| evalprim (CPS.fsub, [REAL a, REAL b],[c]) =

overflowr(fn()=>a-b, c)

| evalprim (CPS.fmul, [REAL a, REAL b],[c]) =

overflowr(fn()=>a*b, c)

| evalprim (CPS.fdiv, [REAL a, REAL 0.0],[c]) =

do_raise div_exn

| evalprim (CPS.fdiv, [REAL a, REAL b],[c]) =

overflowr(fn()=>a/b, c)

243

| evalprim (CPS.feql, [REAL a, REAL b],[t,f]) =

if a=b then t[] else f[]

| evalprim (CPS.fneq, [REAL a, REAL b],[t,f]) =

if a=b then f[] else t[]

| evalprim (CPS.flt,[REAL i,REAL j],[t,f]) =

if i<j then t[] else f[]

| evalprim (CPS.fle,[REAL i,REAL j],[t,f]) =

if j<i then f[] else t[]

| evalprim (CPS.fgt,[REAL i,REAL j],[t,f]) =

if j<i then t[] else f[]

| evalprim (CPS.fge,[REAL i,REAL j],[t,f]) =

if i<j then f[] else t[]

type env = CPS.var -> dvalue

fun V env (CPS.INT i) = INT i

| V env (CPS.REAL r) = REAL(string2real r)

| V env (CPS.STRING s) = STRING s

| V env (CPS.VAR v) = env v

| V env (CPS.LABEL v) = env v

fun bind(env:env, v:CPS.var, d) =

fn w => if v=w then d else env w

fun bindn(env, v::vl, d::dl) =

bindn(bind(env,v,d),vl,dl)

| bindn(env, nil, nil) = env

fun F (x, CPS.OFFp 0) = x

| F (RECORD(l,i), CPS.OFFp j) = RECORD(l,i+j)

| F (RECORD(l,i), CPS.SELp(j,p)) = F(nth(l,i+j), p)

244 Appendix B. Semantics of the CPS

fun E (CPS.SELECT(i,v,w,e)) env =

let val RECORD(l,j) = V env v

in E e (bind(env,w,nth(l,i+j)))

end

| E (CPS.OFFSET(i,v,w,e)) env =

let val RECORD(l,j) = V env v

in E e (bind(env,w,RECORD(l,i+j)))

end

| E (CPS.APP(f,vl)) env =

let val FUNC g = V env f

in g (map (V env) vl)

end

| E (CPS.RECORD(vl,w,e)) env =

E e (bind(env,w,

RECORD(map (fn (x,p) =>

F(V env x, p)) vl, 0)))

| E (CPS.SWITCH(v,el)) env =

let val INT i = V env v

in E (nth(el,i)) env

end

| E (CPS.PRIMOP(p,vl,wl,el)) env =

evalprim(p,

map (V env) vl,

map (fn e => fn al =>

E e (bindn(env,wl,al)))

el)

| E (CPS.FIX(fl,e)) env =

let fun h r1 (f,vl,b) =

FUNC(fn al => E b (bindn(g r1,vl,al)))

and g r = bindn(r, map #1 fl, map (h r) fl)

in E e (g env)

end

val env0 = fn x => raise Undefined

fun eval (vl,e) dl = E e (bindn(env0,vl,dl))

end

APPENDIX C

OBTAINING

STANDARD ML OF NEW JERSEY

Standard ML of New Jersey is the work of many people (see page ix). The system
was developed jointly at Princeton University and AT&T Bell Laboratories, with
contributions from other places.

245

Standard ML of New Jersey can be obtained from http://smlnj.org

APPENDIX D

READINGS

This book covers the optimizer and code generator of the Standard ML of New
Jersey compiler. The following works describe other aspects of the system:

Appel and MacQueen [13] A Standard ML Compiler. Describes the state of
the work at a very early stage.

Appel and MacQueen [14] Standard ML of New Jersey. Summarizes the
work done to date.

Baudinet and MacQueen [19] Tree Pattern Matching for ML. Describes an
efficient algorithm for generating good decision trees from pattern matches.

MacQueen [61] The Implementation of Standard ML Modules. An efficient
algorithm that avoids much copying of static semantic information when
functors are applied.

MacQueen [62] A Higher-Order Type System for Functional Programming. A
rationale for the Standard ML module language design.

Appel, Duba, and MacQueen [9] Profiling in the Presence of Optimization
and Garbage Collection. A simple, mostly conventional approach to execu-
tion profiling with call counts and timer interrupts.

Appel and Jim [11] Continuation-Passing, Closure-Passing Style. A short pa-
per summarizing some of the representations and algorithms described in
this book.

Appel [6] Simple Generational Garbage Collection and Fast Allocation. Covers
the two-generation garbage collector (vintage 1988–91) and the (no longer
used) page-fault-trap method of heap-overflow detection.

Appel [7] A Runtime System. Describes in some detail the runtime system
(vintage 1990) of Standard ML of New Jersey, with the exception of the
two-generation garbage collector.

Duba, Harper, and MacQueen [37] Typing First-Class Continuations in ML.
Formalizes the polymorphic type checking of call-with-current-continuation .

247

2 Appendix D. Readings

Tolmach and Appel [88] Debugging Standard ML Without Reverse Engineer-
ing. A novel and efficient replay debugger for SML/NJ, which takes ad-
vantage of first-class continuations and is independent of the code generator
and the runtime system.

Tarditi, Acharya, and Lee [86] No Assembly Required: Compiling Standard
ML to C. The translation to abstract-machine instructions (after the spill
phase of the SML/NJ compiler) is replaced by a translation to unreadable
but quite portable C code.

Reppy [72] Asynchronous Signals in Standard ML. Describes the design, imple-
mentation, and use of a mechanism for handling asynchronous signals, such
as user interrupts.

Reppy [73] Concurrent Programming with Events—The Concurrent ML Man-
ual. Concurrent ML (CML) is a system for concurrent programming in
Standard ML. A CML program consists of a set of threads (or lightweight
processes). Communication with other threads is done by synchronous mes-
sage passing on channels.

Reppy and Gansner [74] The eXene Library Manual. A Concurrent-ML in-
terface to X windows that allows a much cleaner style of programming than
the usual kind of X interface.

Cooper and Morrisett [31] Adding Threads to Standard ML. Multiple threads
of control added to Standard ML of New Jersey, using shared variables, mu-
tex locks, conditions, and signals.

48

BIBLIOGRAPHY

[1] Alfred V. Aho, Ravi Sethi, and Jeffrey D. Ullman. Compilers: Principles,
Techniques, and Tools. Addison-Wesley, Reading, MA, 1985.

[2] Alexander Aiken and Alexandru Nicolau. Optimal loop parallelization. SIG-
PLAN Notices (Proc. SIGPLAN ’88 Conf. on Prog. Lang. Design and Imple-
mentation), 23(7):308–17, 1988.

[3] Thomas E. Anderson, Brian N. Bershad, Edward D. Lazowska, and Henry M.
Levy. Scheduler activations: Effective kernel support for the user-level man-
agement of parallelism. In Proc. 13th Symp. on Operating System Principles,
October 1991. ACM Press, New York. (in press).

[4] Andrew W. Appel. Allocation without locking. Software—Practice and Ex-
perience, 19(7):703–5, 1989.

[5] Andrew W. Appel. Runtime tags aren’t necessary. Lisp and Symbolic Com-
putation, 2:153–62, 1989.

[6] Andrew W. Appel. Simple generational garbage collection and fast allocation.
Software—Practice and Experience, 19(2):171–83, 1989.

[7] Andrew W. Appel. A runtime system. Lisp and Symbolic Computation,
3(343-80), 1990.

[8] Andrew W. Appel. Garbage collection. In Topics in Advanced Language
Implementation Techniques, Peter Lee, editor. MIT Press, Cambridge, MA,
1991.

[9] Andrew W. Appel, Bruce F. Duba, and David B. MacQueen. Profiling in the
presence of optimization and garbage collection. Technical Report CS-TR-
197-88, Princeton University, Dept. Comp. Sci., Princeton, NJ, 1987.

[10] Andrew W. Appel, John R. Ellis, and Kai Li. Real-time concurrent collection
on stock multiprocessors. SIGPLAN Notices (Proc. SIGPLAN ’88 Conf. on
Prog. Lang. Design and Implementation), 23(7):11–20, 1988.

[11] Andrew W. Appel and Trevor Jim. Continuation-passing, closure-passing
style. In Sixteenth ACM Symp. on Principles of Programming Languages,
pages 293–302, 1989. ACM Press, New York.

249

25 BIBLIOGRAPHY

[12] Andrew W. Appel and Trevor T. Y. Jim. Optimizing closure environment
representations. Technical Report 168, Dept. of Computer Science, Princeton
University, Princeton, NJ, 1988.

[13] Andrew W. Appel and David B. MacQueen. A Standard ML compiler. In
Functional Programming Languages and Computer Architecture (LNCS 274),
Gilles Kahn, editor, pages 301–24, 1987. Springer-Verlag, New York.

[14] Andrew W. Appel and David B. MacQueen. Standard ML of New Jersey.
In Third Int’l Symp. on Prog. Lang. Implementation and Logic Programming,
Martin Wirsing, editor, August 1991. Springer-Verlag, New York. (in press).

[15] Andrew W. Appel, James S. Mattson, and David R. Tarditi. A lexical analyzer
generator for Standard ML. Distributed with Standard ML of New Jersey,
December 1989.

[16] Arvind, Riyashur S. Nikhil, and Keshav K. Pingali. I-structures: Data
structures for parallel computing. In Proc. PARLE Conference, LNCS 259,
September 1986. Springer-Verlag, New York.

[17] Lennart Augustsson. Garbage collection in the < ν, g >-machine. Technical
Report PMG memo 73, Dept. of Computer Sciences, Chalmers University of
Technology, Goteborg, Sweden, December 1989.

[18] Joel F. Bartlett. Compacting garbage collection with ambiguous roots. Tech-
nical Report 88/2, DEC Western Research Laboratory, Palo Alto, CA, 1988.

[19] Marianne Baudinet and David MacQueen. Tree pattern matching for ML.
Available from David MacQueen, AT&T Bell Laboratories, 600 Mountain
Avenue, Murray, Hill, NJ 07974, 1986.

[20] Robert L. Bernstein. Producing good code for the case statement. Software
— Practice and Experience, 15(10):1021–24, October 1985.

[21] David Berry. SML resources. Sent to the SML mailing list by db@lfcs.ed.ac.uk,
May 1991.

[22] A. D. Birrell, J. V. Guttag, J. J. Horning, and R. Levin. Synchronization
primitives for a multiprocessor: A formal specificati on. In Proceedings of
the 11th ACM Symposium on Operating Systems Princi ples, pages 94–102,
November 1987. ACM Press, New York. Published as Operating Systems
Review, 21(5).

[23] Andrew D. Birrell. An introduction to programming with threads. Research
Report 35, DEC Systems Research Center, Palo Alto, CA, January 1989.

[24] Hans-Juergen Boehm and Mark Weiser. Garbage collection in an uncoopera-
tive environment. Software—Practice and Experience, 18(9):807–20, 1988.

0

BIBLIOGRAPHY 25

[25] CAML: The reference manual (version 2.3). Projet Formel, INRIA-ENS, June
1987.

[26] Luca Cardelli. Compiling a functional language. In 1984 Symp. on LISP and
Functional Programming, pages 208–17, 1984. ACM Press, New York.

[27] Luca Cardelli, James Donahue, Lucille Glassman, Mick Jordan, Bill Kalsow,
and Greg Nelson. Modula-3 report. Technical Report Research Report 31,
DEC Systems Research Center, Palo Alto, CA, 1988.

[28] C. J. Cheney. A nonrecursive list compacting algorithm. Communications of
the ACM, 13(11):677–78, 1970.

[29] Douglas W. Clark. Pipelining and performance in the VAX 8800 processor.
In Proc. 2nd Intl. Conf. Architectural Support for Prog. Lang. and Operating
Systems, pages 173–79, 1987. ACM Press, New York.

[30] Eric C. Cooper. Carnegie Mellon Univ., Pittsburgh, PA, personal communi-
cation, 1991.

[31] Eric C. Cooper and J. Gregory Morrisett. Adding threads to Standard ML.
Technical Report CMU-CS-90-186, School of Computer Science, Carnegie
Mellon University, Pittsburgh, PA, December 1990.

[32] G. Cousineau, P. L. Curien, and M. Mauny. The categorical abstract machine.
In Functional Programming Languages and Computer Architecture, LNCS Vol
201, J. P. Jouannaud, editor, pages 50–64, 1985. Springer-Verlag, New York.

[33] W. P. Crowley, C. P. Hendrickson, and T. E. Rudy. The SIMPLE code.
Technical Report UCID 17715, Lawrence Livermore Laboratory, Livermore,
CA, February 1978.

[34] Ron Cytron, Jeanne Ferrante, Barry K. Rosen, Mark N. Wegman, and F. Ken-
neth Zadeck. An efficient method of computing static single assignment form.
In Proc. 16th ACM Symp. on Principles of Programming Languages, pages
25–35, January 1989. ACM Press, New York.

[35] Olivier Danvy and Andrzej Filinski. Representing control. Technical Report
TR-CS-91-2, Kansas State University, Manhattan, KS, February 1991.

[36] Edsger W. Dijkstra and Leslie Lamport. On-the-fly garbage collection: An
exercise in cooperation. Communications of the ACM, 21(11):966–75, 1978.

[37] Bruce Duba, Robert Harper, and David MacQueen. Typing first-class con-
tinuations in ML. In Eighteenth Annual ACM Symp. on Principles of Prog.
Languages, pages 163–73, Jan 1991. ACM Press, New York.

[38] K. Ekanadham and Arvind. SIMPLE: An exercise in future scientific pro-
gramming. Technical Report Computation Structures Group Memo 273, MIT,
Cambridge, MA, July 1987. Simultaneously published as IBM/T.J. Watson
Research Center Research Report 12686, Yorktown Heights, NY.

1

25 BIBLIOGRAPHY

[39] Christopher W. Fraser and David R. Hanson. A retargetable compiler for
ANSI C. SIGPLAN Notices, 26(8), August 1991. to appear.

[40] Christopher W. Fraser and David R. Hanson. Simple register spilling in a
retargetable compiler. submitted for publication, 1991.

[41] Michael R. Garey and David S. Johnson. Computers and Intractability: A
Guide to the Theory of NP-completeness. W. H. Freeman and Co., New York,
1979.

[42] M. J. C. Gordon, A. J. R. G. Milner, L. Morris, M. C. Newey, and C. P.
Wadsworth. A metalanguage for interactive proof in LCF. In Fifth ACM
Symp. on Principles of Programming Languages, 1978. ACM Press, New York.

[43] Michael J. C. Gordon. The Denotational Description of Programming Lan-
guages. Springer-Verlag, New York, 1979.

[44] Robert H. Halstead Jr. Multilisp: A language for concurrent symbolic
computation. ACM Transactions on Programming Languages and Systems,
7(4):501–38, October 1985.

[45] David R. Hanson. A portable storage management system for the Icon pro-
gramming language. Software—Practice and Experience, 10:489–500, 1980.

[46] John L. Hennessy and David A. Patterson. Computer Architecture: A Quan-
titative Approach. Morgan Kaufmann, San Mateo, CA, 1990.

[47] Robert Hieb, R. Kent Dybvig, and Carl Bruggeman. Representing control in
the presence of first-class continuations. In Proc. ACM SIGPLAN ’90 Conf.
on Prog. Lang. Design and Implementation, pages 66–77, 1990. ACM Press,
New York.

[48] C A. R. Hoare. Monitors: An operating system structuring concept. Comm.
ACM, 17(10):549–57, October 1974.

[49] C. A. R. Hoare. Communicating sequential processes. Comm. ACM,
17(8):666–77, August 1978.

[50] C. A. R. Hoare. Communicating Sequential Processes. Prentice-Hall, Engle-
wood Cliffs, NJ, 1985.

[51] Gerry Kane. MIPS Risc Architecture. Prentice-Hall, Englewood Cliffs, NJ,
1988.

[52] Richard Kelsey and Paul Hudak. Realistic compilation by program transfor-
mation. In Sixteenth ACM Symp. on Principles of Programming Languages,
pages 281–92, 1989. ACM Press, New York.

2

BIBLIOGRAPHY 25

[53] Alon Kleinman, Yael Moscowitz, Amir Pnueli, and Ehud Shapiro. Communi-
cation with directed logic variables. In Proc. 18th ACM Symp. on Principles
of Programming Languages, pages 221–32, January 1991. ACM Press, New
York.

[54] D. Kranz, R. Kelsey, J. Rees, P. Hudak, J. Philbin, and N. Adams. ORBIT:
An optimizing compiler for Scheme. SIGPLAN Notices (Proc. Sigplan ’86
Symp. on Compiler Construction), 21(7):219–33, July 1986.

[55] David Kranz. ORBIT: An optimizing compiler for Scheme. PhD thesis, Yale
University, New Haven, CT, 1987.

[56] Butler W. Lampson and David D. Redell. Experience with processes and
monitors in Mesa. Communications of the ACM, 23(2):105–17, February 1980.

[57] P. J. Landin. The mechanical evaluation of expressions. Computer J.,
6(4):308–20, 1964.

[58] Xavier Leroy. The ZINC experiment: an economical implementation of the
ML language. Technical Report No. 117, INRIA, February 1990.

[59] Xavier Leroy. INRIA, personal communication, 1991.

[60] Henry Lieberman and Carl Hewitt. A real-time garbage collector based on
the lifetimes of objects. Communications of the ACM, 23(6):419–29, 1983.

[61] David B. MacQueen. The implementation of Standard ML modules. In ACM
Conf. on Lisp and Functional Programming, pages 212–23, 1988. ACM Press,
New York.

[62] David B. MacQueen. A higher-order type system for functional programming.
In Research Topics in Functional Programming, pages 353–68, 1990. Addison-
Wesley, Reading, MA.

[63] David C. J. Matthews. Papers on Poly/ML. Technical Report T.R. No. 161,
Computer Laboratory, University of Cambridge, February 1989.

[64] Robin Milner. A proposal for Standard ML. In ACM Symposium on LISP
and Functional Programming, pages 184–97, 1984. ACM Press, New York.

[65] Robin Milner, Mads Tofte, and Robert Harper. The Definition of Standard
ML. MIT Press, Cambridge, MA, 1989.

[66] Motorola, Inc. MC68020 32-Bit Microprocessor User’s Manual. Prentice-Hall,
Englewood Cliffs, NJ, 1985.

[67] Laurence C. Paulson. ML for the Working Programmer. Cambridge University
Press, Cambridge, 1992.

[68] Chris Reade. Elements of Functional Programming. Addison-Wesley, Reading,
MA, 1989.

3

25 BIBLIOGRAPHY

[69] J. Rees and W. Clinger (eds.). Revised report on the algorithmic language
Scheme. SIGPLAN Notices, 21(12):37–79, 1986.

[70] John H. Reppy. Synchronous operations as first-class values. SIGPLAN No-
tices (Proc. SIGPLAN ’88 Conf. on Prog. Lang. Design and Implementation),
23(7):250–59, 1988.

[71] John H. Reppy. First-class synchronous operations in Standard ML. Technical
Report TR 89-1068, Cornell University, Dept. of Computer Science, Ithaca,
NY, 1989.

[72] John H. Reppy. Asynchronous signals in Standard ML. Technical Report TR
90-1144, Cornell University, Dept. of Computer Science, Ithaca, NY, 1990.

[73] John H. Reppy. Concurrent programming with events. Technical report,
Cornell University, Dept. of Computer Science, Ithaca, NY, 1990.

[74] John H. Reppy and Emden R. Gansner. The eXene library manual. Cornell
Univ. Dept. of Computer Science, March 1991.

[75] J. C. Reynolds. Types, abstraction, and parametric polymorphism. In IFIP
Conference, R. E. A. Mason, editor, pages 513–24, 1983.

[76] Chris Rowen. Mips Corporation, personal communication, 1991.

[77] David A. Schmidt. Denotational Semantics: A Methodology for Language
Development. Allyn and Bacon, Boston, 1986.

[78] Ravi Sethi. Complete register allocation problems. SIAM J. Computing,
4(3):226–48, 1975.

[79] Robert A. Shaw. Improving garbage collector performance in virtual memory.
Technical Report CSL-TR-87-323, Stanford University, Palo Alto, CA, 1987.

[80] Olin Shivers. Control-Flow Analysis of Higher-Order Languages. PhD thesis,
Carnegie-Mellon University, Pittsburgh, PA, May 1991. CMU-CS-91-145.

[81] Stefan Sokolowski. Applicative High Order Programming: the Standard ML
perspective. Chapman & Hall Computing, London, 1991.

[82] The SPARC Architecture Manual. Sun Microsystems, Inc., Mountain View,
CA, 1987.

[83] Guy L. Steele. Rabbit: a compiler for Scheme. Technical Report AI-TR-474,
MIT, Cambridge, MA, 1978.

[84] Joseph E. Stoy. Denotational Semantics: The Scott-Strachey Approach to
Programming Language Theory. MIT Press, Cambridge, MA, 1977.

[85] Thomas Szymanski. AT&T Bell Labs, personal communication, 1991.

4

BIBLIOGRAPHY 2

[86] David R. Tarditi, Anurag Acharya, and Peter Lee. No assembly required:
Compiling Standard ML to C. Technical Report CMU-CS-90-187, Carnegie-
Mellon Univ., Pittsburgh, PA, November 1990.

[87] David R. Tarditi and Andrew W. Appel. ML-Yacc, version 2.0. Distributed
with Standard ML of New Jersey, April 1990.

[88] Andrew P. Tolmach and Andrew W. Appel. Debugging Standard ML with-
out reverse engineering. In Proc. 1990 ACM Conf. on Lisp and Functional
Programming, pages 1–12, June 1990. ACM Press, New York.

[89] David M. Ungar. The Design and Evaluation of a High Performance Smalltalk
System. MIT Press, Cambridge, MA, 1986.

[90] VAX Architecture Handbook. Digital Equipment Corp., Maynard, MA, 1979.

[91] Philip Wadler. Strictness analysis aids time analysis. In Fifteenth Annual
ACM Symp. on Principles of Prog. Languages, pages 119–32, Jan 1988. ACM
Press, New York.

[92] Philip Wadler and Stephen Blott. How to make ad-hoc polymorphism less
ad hoc. In Sixteenth Annual ACM Symp. on Principles of Prog. Languages,
pages 60–76, January 1989. ACM Press, New York.

[93] Mitchell Wand. Continuation-based multiprocessing. In Conf. Record of the
1980 Lisp Conf., pages 19–28, August 1980. ACM Press, New York.

[94] Mark N. Wegman and F. Kenneth Zadeck. Constant propagation with con-
ditional branches. ACM Trans. on Prog. Lang. and Systems, 13(2):181–210,
April 1991.

[95] J. Welsh, W. J. Sneeringer, and C. A. R. Hoare. Ambiguities and insecurities
in Pascal. Software—Practice and Experience, 7(6):685–96, 1977.

[96] N. Wirth. The programming language Oberon. Software—Practice and Ex-
perience, 18(7), July 1988.

[97] W. Wulf, R. K. Johnsson, C. B. Weinstock, C. B. Hobbs, and C. M. Geschke.
Design of an Optimizing Compiler. Elsevier North-Holland, New York, 1975.

[98] Benjamin Zorn. The effect of garbage collection on cache performance. Tech-
nical Report CU-CS-528-91, University of Colorado, Boulder, CO, May 1991.

55

INDEX

η-reduction, 185

68020, see MC68020

abstract machine, see machine, abstract
abstract syntax, 9
access links, 103
access path, 12, 34, 61, 128, 156
activation record, 103
Ada, 7
address, span-dependent, 167
addressing mode, 155
alength, 32
aliasing, 9, 171
allocation rate, 196, 197
alternating temporaries, 173
answer, 24
APP, 12, 14, 34
arbitrarily, 24
arguments

atmoic, 13
atomic, 11
elimination of, 72, 184, 185
flattening, 70–2, 184, 185
multiple, 16, 58

arithmetic, 57
finite precision, 23

ARRAY, 25
array-bounds check, 30
assembly language, 1, 10, 154
assignment, 31, 32
asynchronous signals, 212

backpatching, 10
benchmark, 179
β-contraction, 68, 183
β-expansion, 81, 83–92, 184, 185, 190,

191

β-reduction, 4
BIBOP, 40, 211
block structure, 5
Boolean idiom optimization, 75, 185
bound variable, 18
boxed, 30
boxed value, 39, 62
branch

folding, 184, 185
optimization, 74
prediction, 160

byte, 25, 32
BYTEARRAY, 25

C language, 7
cache, 187

and garbage collection, 227
effectiveness, 180, 194, 195
MIPS, 181
miss, 181, 182
vs. heap size, 196

call with current continuation, see callcc
call-by-value, 4
callcc, 64–6, 215
callee-save, see register
CAML, 200, 202
cascading optimizations, 78
cexp, 12
Church–Rosser property, 68
closed function, 19
closure, 11, 18, 103, 148

conversion, 10, 18, 103–24
flat, 142, 186
for linkage, 148
linked, 142, 186
merged, 93, 143
record, 18

256

INDEX 2

code generation, 161, 165
common-subexpression elimination, 99–

102, 139, 184, 185
Communicating Sequential Processes, 215
comparison

folding, 74
operator, 13, 59

compilation unit, 16, 20, 147
compile time, 198
computer, see machine
CON, 50, 60
concurrency, see parallel programming
Concurrent ML, 215
conditional branch, 28, 58
constant, 155

folding, 68–76, 184, 185
constructor, 11, 38, 229

constant, 39
exception, 42, 61, 63
representation, 39–43, 60

continuation, 2, 15, 17, 59
continuation-passing style, 2, 9, 11
control dependency, 223
control flow, 13
coroutine, 216
CPS, see continuation-passing style
CPS conversion, 9, 55–66

data limit, see register
data pointer, see register
data representation, 37
dataflow analysis, 5, 22
datatype, 11, 37, 38, 229

special, 62
dead variable, 70, 79, 183
DECON, 50, 61
denotable value, 24
dropping arguments, see arguments, elim-

ination of
dvalue, 24

Edinburgh ML, 200
enumeration, 39
environment, 33
equality, 24, 27, 29
escaping function, 16, 76, 156, 161
η-reduction, 76, 82, 184
eval, 26
exception

constructor, 42
raising, 28

exception handler, 17, 25, 32, 63–4
optimization, 75

externals, 26

FIX, 12, 14, 35
fixed point, 11
flattening arguments, see arguments, flat-

tening
floating-point, 155, 162

CPS operators, 33
VAX, 166

fn, 232
FORTRAN, 1
free variable, 10, 18, 20, 21, 148
FUNC, 25
function

definition, 59
known, 161
nested, 5, 7, 10, 20
open, 103
parameter, see register
user, 17

function, recursive, 11, 14, 36
functor, 41, 53
futures, 215

garbage collection
avoiding, 122, 123
cheap, 124
concurrent, 221
conservative, 148
efficiency analysis, 205–6
generational, 25, 31, 32, 207, 227
hash-consing, 27
heap size ratio, 181
in other languages, 7
interface, 144, 148–51, 154–6, 162
measurement, 180, 193, 196, 197,

203
space-complexity, 133
tagless, 40, 45, 162
vs. allocation, 197
vs. closure strategy, 113, 143–4

gethdlr, 32
graph coloring, 159

HANDLE, 50, 63

57

2 INDEX

Haskell, 7
heap, 24
heap limit check, 150, 156

MC68020, 169
MIPS & SPARC, 169
VAX, 166

heap size, 181
higher-order function, 7
hoisting, 93–7, 141

above conditionals, 224
for common-subexpression elimina-

tion, 100
measurement of, 184, 185

I-structure, 218
immutable data, 8, 14, 25, 104, 230
in-line expansion, 4, see β-expansion
indexed jump, 13
indistinguishable objects, 27
instruction count, 182
instruction scheduling, see scheduling
INT, 12, 13, 24
integer

arithmetic, 161
infinite precision, 40

interlocked test-and-set, 219
interrupts, 212
inverse η-reduction, 185
inverse η-reduction, 76, 81, 184

LABEL, 12, 20
label, 155
lambda language, 50, 55
λ-calculus, 1, 4, 9, 18
lazy language, 7, 9
Lazy-ML, 134
length

of array or string, 32
lexical analysis, 9
lexical scope, 34
lightweight process, 215–20
limit check, see heap limit check
link-loader, 148
linkage, 26
Lisp, 4, 5, 7, 8, 38, 40, 152, 172, 202,

207, 208, 210, 228, 232
list, 230
live variable, 22, 134–45, 156
loc, 24

location, 24
loop, 101, 160, 225

unrolling, 86, 225
loop-invariant computation, 97, 101–2,

223

machine
abstract, 147
MC68020, see MC68020
MIPS, see MIPS
SPARC, see SPARC
VAX, see VAX
von Neumann, 4, 11, 18, 147, 155

machine code, 18
makeref, 32
makerefunboxed, 32
maxint, 23
MC68020, 151, 153, 156, 168–9, 200
merged closures, see closure, merged
Mesa, 215
minint, 23
MIPS, 151, 153, 169–74, 180–2, 186, 195,

197, 200
Miranda, 7
ML, 6

introduction to, 229–38
ML-Threads, 215
Modula, 133
Modula-2+, 215
modules, 52–3
Monitors, 215
Motorola 68020, see MC68020
Multilisp, 215
multiprocessing, 215, 220
multiway branch, 13
mutable data, 9, 25
mutual recursion, see recursive function

Oberon, 134
OFFp, 12, 35, 61
OFFSET, 12, 14, 34
optimization

across function boundaries, 5
across module boundaries, 186
before CPS conversion, 37
cascading, 78
data structures needed, 80

ORBIT, 158
order of evaluation, 1, 13

58

INDEX 2

ordof, 31
overflow, 25, 28

parallel programming, 215–21
parsing, 9
Pascal, 2, 7, 18, 123
pattern, 233
pattern match, 38
PC-relative address, 150, 156, 167, 170
PDG, see program-dependence graph
pipeline interlock, 6, 171
pointers

distinguishing from integers, 39
Poly/ML, 200, 201
polymorphic type, 7, 37
polymorpic type, 230

Poplog ML, 200
position-independent code, 150
PRIM, 50
PRIMOP, 12
primop, 12, 50, 58
program-dependence graph, 4
Prolog, 17

quadruple, 4

RAISE, 50, 63
range analysis, 184, 185
rangechk, 29
reachable value, 136–45, 148
REAL, 12, 13, 24
RECORD, 12, 14, 24, 34, 56
record creation, 167
record optimization, 73
record type, 37, 229

recursive function, see function, recur-
sive

reducemore, 192
register

allocation, 6, 20
alternating, 173
and access paths, 73
as root for GC, 145, 148–9
assignment, 158–60, 177
at interrupt, 212–3
callee-save, 114–22, 124, 152, 185
closure pointer, 106
data limit, 150, 151
data pointer, 151

exception pointer, 32, 63, 151
floating-point, 147, 154, 157, 162–3
for CPS variable, 158, 161
function parameter, 71, 72, 106, 152,

158, 161
instruction count, 182
integer, 147
jump to, 156, 161–2
mask, 145, 149, 156, 176
on MC68020, 151, 156, 168–9
on MIPS and SPARC, 169–74
on VAX, 165–8
quantity on target machine, 22, 73,

109, 111, 112, 153, 189, 203
rule, finite, 22
special, 151–3
spill, see spill
store pointer, 151
targeting, see register assignment
temporary, 173
transfer, 4
windows, 169

return address, 2, 59
return value, 16
runtime data formats, 210
runtime system, 25

safe point, 149, 156, 212
scheduling

instructions, 6, 10, 170, 184, 186
processes, 215

Scheme, 7, 11, 133
scope rules, 17
scope, lexical, 17
SELECT, 12, 14, 34, 56
select optimization, 69, 183
SELp, 12, 35, 61
semantics

of CPS, 23–36
of ML, 8

semaphore, 216
sethdlr, 32
side effect, 5, 24, 57, see also immutable

data
analysis, 74

signals, asynchronous, 212
slength, 32
Smalltalk, 7
space complexity, 133–45

59

26 INDEX

span-dependent instruction, 167
SPARC, 151, 153, 169–74, 200, 201
spill, 10, 22, 69, 100, 119, 125–32, 139,

151, 153, 189
SSA, see static single-assignment form
stack, 136

in parallel language, 220
stack pointer, 165
Standard ML, see ML
Standard ML of New Jersey, 9
static binding, 7
static single-assignment form, 4, 228
store, 24, 25
store, 32
store pointer, see register
strict language, 4, 7
STRING, 12, 13, 25
string, 32, 55, 63
string2real, 23
structure, 52
subscript, 30
substitution, 5
SWITCH, 12, 13, 35, 62, 73
SWITCH optimization, 184, 185
syntax, 9

tag bit, 161
tag, runtime, 40
tail call, 14, 66
tail recursion, 134
tail-recursion

elimination, 3
targeting, see register assignment
temporaries

alternating, 173
thread, see lightweight process
throw, see callcc
thunk, 9
tuple, 37, 38, 58, 229

tuple operators, 11
type

checking, 9
in CPS notation, 225
inference, 7, 237

UARRAY, 25
unboxed value, 24, 32
unboxedassign, 31, 32
unboxedupdate, 31

uncurrying, 76–8, 81, 184, 185, 188
union type, see datatype

value, 12, 13
VAR, 12, 13
var, 12
variable binding, 18
variant record, 11, 37
VAX, 115, 154, 165–8, 200
vectorization, 6

0

