
Experiences using F#
for developing analysis scripts and tools

over search engine query log data

Abstract. We describe our experience using the programming language
F# for analysis of text query logs from the Bing search engine. The goals
of the project were to develop a set of scripts for enabling ad-hoc query
analysis, clustering and feature extraction as well as to provide a subset
of these within a data exploration tool developed for non-programmers.
Where appropriate we describe programming patterns for the text anal-
ysis domain that we used in our project. Our motivation for using F#
was to explore the benefits and weaknesses of F# and functional pro-
gramming in such an application environment. Our investigations showed
that for the target application, common use cases involve the creation
of ad-hoc pipelines of data transformations. F#’s language and library-
level support for such pipelined data manipulation and lazy sequence
evaluation made these aspects of the work both simple and succinct to
express. We also found that when operating at the extremes of data scale,
the ability of F# to natively interoperate with C# provided noticeable
programmer efficiency. At these limits, reusing existing C# applications
may be desirable.

1 Introduction

Query log analysis is one of the techniques that can drive improvement of the
quality of search engine results. Typically, analyses of query logs require both
extensive hardware resources and complex modeling techniques. Our goal in this
research is to explore the suitability of the F# programming language [17] for
ad-hoc analysis of query log data. We focus mainly on the support of F# for
investigative programming and tool building. While the scripts and the applica-
tion that we developed work on multi-core machines and out-of-main-memory
scenarios, efficiency considerations were secondary to ease of use and the ability
to quickly evaluate models over the data. To carry out our evaluation of F#’s
suitability to the domain of query analysis we implemented a few clustering and
feature selection algorithms. We incorporated the techniques that work best on
our data in an application with a graphical frontend. The application allows
browsing, filtering, grouping of the data and display of aggregated patterns.

The field of large scale query log data analysis is driven by the need to im-
prove search engine quality. The dominant systems approaches in the field are
MapReduce [7], SCOPE [4] and DryadLINQ [10] where the focus is on scalabil-
ity. Due to the high latency caused by the large amounts of data and the sharing
of cluster resources between many users, those approaches may not offer quick
turnaround times. An alternative for many information retrieval researchers and

2

practitioners is to analyze a sample of the data using interactive tools like Matlab
or external commands. Those usually require that the data fits in main memory.
The approach that we took with F# offers a middle ground by not requiring the
data to fit in main memory while still allowing for quick compositions of primi-
tives in scripts. Thus, the capabilities of F# for lazy evaluation over sequences
that may not fit in memory, higher-order functions, succinct syntax and the
possibility to define custom abstractions (e.g. pipelines of data transformations)
were important for this project. We also took advantage of F# model for parallel
computations. Even though we consider F# a good match to data analysis tasks
such as ours, reports detailing similar experiences are rare [6]. While some of
the algorithms we implemented were a good match to functional programming,
we also found that some data mining algorithms that involve mutation of state
did not fit the functional programming paradigm. We were still able to express
them in F# using imperative programming.

The majority of open source tools in our field are written in Java. Var-
ious data processing scripts are typically written in Python or Perl. On the
hand, ideas from functional programming underpin the design of MapReduce
and DryadLINQ which have proven effective solutions to data analysis problem
similar to ours. In our project we reap both the benefits of scripting and high-
level programming abstractions that have proven useful in our field using the
same programming language. We were able to build both research style scripts
and seamlessly integrate them into a tool.

We describe the project in the next section. We discuss related work in Sec-
tion 3. In Section 4 we detail our experience with F# and show typical use
cases.

2 Project Description

Our project consisted of two stages: a) investigation of clustering algorithms ap-
plied to query logs (Table 2) and b) implementation of a graphical exploration
tool (Figure 2). In the first part we implemented a few standard clustering algo-
rithms with custom modifications. Even though clustering is well-studied topic
in the statistics, data-mining and machine learning literature, finding a cluster-
ing method that works well on our dataset was a challenging task. The main
reason is that most of the queries are very short. This makes it hard to estimate
distances between the queries which in turn precludes off-the-shelf clustering
tools to work well. Additionally, text clustering algorithms are quite sensitive to
initialization and data preprocessing. While the programming language used for
implementation does not guarantee success for data analysis, the use of F# did
help us in the evaluation of multiple possible algorithms, parameters and data
inputs. We consider that F# was a good match for this problem because of its
ability to create small and easily modifiable programs. We implemented model-
based K-means [21] and LDA [16]. In the second stage we incorporated the most
successful clustering algorithms in a query browser application with a graphical
user interface (Figure 2). We organized the application around datasets derived

3

Discriminative Words By Cluster

type, function, operator, pattern, types, class, cast, match, discriminated, union, in-
terface, operators, active, matching, functions, generic, units, record, string, unit,
syntax, patterns, module, int, member, measure, static, return, loop, constructor

list, array, seq, map, sample, sequence, code, monad, fold, math, fibonacci, perfor-
mance, arrays, computation, recursion, tail, append, matrix, examples, cheat, com-
prehension, samples, sheet, immutable, monads

download, visual, studio, ctp, powerpack, 2008, 2010, express, pack, mono, power,
compiler, install, 2009, split, 2, october, shell, 0, linux, documentation, beta, vs2010,
4, runtime, september, release, emacs, framework

tutorial, f, programming, async, c, language, vs, parallel, interactive, net, asp, wiki,
book, tutorials, blog, center, workflows, developer, books, lazy, workflow, specification,
msdn, line, command, versus, asynchronous

scale, major, minor, melodic, dorian, chords, natural, harmonic, piano, ukulele, chart,
key , descending, clarinet, sax, uukulele, phrygian, ascending, pentatonic, comparison,
iv, v, hash, fingering, violin, progression, min, statistical, octaves

...
Table 1. Example of discriminative words extracted after clustering queries containing
the word F#

through various operations. Given that many machine learning algorithms take
a dataset and produce a new one (e.g. by filtering or weighting the data points),
the selected abstraction seems natural. It is further reinforced by the F# library
design which encourages that data transformations be obtained by chaining a
few primitives. Thus F#’s standard library gave us a good design pattern to fol-
low. The operations on datasets always return a new dataset without modifying
an existing one in place. This approach is both for convenience, so that the user
can return to an existing dataset later, and because the data may not fit in mem-
ory. We used three different kinds of datasets: 1) datasets containing queries, 2)
datasets containing urls and 3) datasets containing textual features derived from
the query or url datasets. We implemented the following groups of operations
for query and url datasets: 1) filtering; 2) clustering; 3) selection of top data
points (words, queries, urls) by various criteria; 4) grouping; 5) transformations;
6) merging; 7) extraction; 8) comparison;

All operations except extraction, comparison and feature analysis return new
datasets as results. Based on insights from executing various operations the user
can feed new datasets via queries from observed patterns into the system and
proceed iteratively.

We carried out all computations on a high-end desktop using parallel pro-
gramming techniques for the core operations. Due to the large size of the query
log, multiple levels of caching take place before we can import the data in our
application. We import the data from an existing distributed application writ-
ten in C# via a limited number of filtering commands. We store the datasets in
binary files on disk.

4

We demonstrate the usefulness of our tool by an example. The task of this
example is to extract from the query log a list of cooking recipes. To gain an
intuition about the properties of the data, the user can proceed in the following
order: 1) search for queries containing the phrase “cooking recipes”; 2) explore
various analysis views of top features and clusters; 3) notice that the pattern
“/Recipe/X/” where X is the name of a recipe appears more than expected by
chance in the urls; 4) observe that this pattern is associated with websites which
have a large number of hits on cooking recipes.

Fig. 1. Our application main screen

3 Related Work

A popular approach for large scale data processing is MapReduce[7]. MapRe-
duce was inspired by the functions map and reduce from the Lisp programming
language. MapReduce, however, is somewhat inappropriately named because it
combines the functions map and reduce with a third operation: group by. A sim-
ilar monolithic function was proposed in [19] before MapReduce became popular

5

in order to solve elegantly the problem of histogram creation in functional lan-
guages. At the core of the approach of MapReduce is the use of associative
operators to split the problem whose intermediate results will be aggregated.
Sawzall [13] is a special purpose scripting language that is a generalization of
MapReduce. The generalizations in Sawzall are in two ways: a) nested grouping
and b) application of multiple associative operations within groups computed by
a single pass over the data. In our application we also use associative operators
(counts, random samples, filters, groups and within group statistics) and in that
respect we are similar to MapReduce and Sawzall. DryadLINQ[10] is a more gen-
eral approach based on a much larger number of combinators from functional
programming than MapReduce. Among those operations are map, filter, group,
sort, concatenate. DryadLINQ offers a distributed execution of LINQ queries by
dynamic generation of query execution plans. As part of the query execution
DryadLINQ also avoids out-of-memory conditions by data partitioning and seri-
alization via reflection. While some of our code in F# uses similar combinators
as Dryad we do not compute query plans but manually point intermediate re-
sults to disk when necessary. Another large scale data processing system in use
is SCOPE [4]. SCOPE is modeled after SQL but allows users to plug arbitrary
extractors and reducers written in any .Net language. A SCOPE program is
very much like a skeleton or framework used to piece together user-defined C#
functions and orchestrate the distributed execution.

Our code for file input and data transformations look similar to the Haskell
code in [8]. However, the F# code is simpler because F#’s type system does not
track side-effects with monads.

A basic research-style search engine in F# is described in [14]. Their im-
plementation uses the F#’s standard library and a library for external memory
algorithms. Some of our code follows a similar style. We also use a combinator-
based approach similar to Haskell.Binary for specifying serializers.

F# was used for a different type of data driven research task in the TrueSkill
system [6]. TrueSkill models the skill level of players in a Bayesian framework.
The data experiments in TrueSkill were carried out in F#.

4 Experiences

Our experience with F# is very positive. It allowed us to immediately focus on
the domain problem of exploring algorithms on query log datasets without pre-
senting software engineering challenges. We found it beneficial to always start
with the smallest program that could possibly solve the problem and then work,
if necessary, towards making it more robust and efficient. We wanted to ex-
plore multiple clustering and feature selection algorithms, as well as multiple
parameterizations, data inputs and initializations. F# was useful for this re-
search problem in the following ways: 1) it helped implement well-understood
baseline methods quickly and gain intuition about properties of the data, 2)
allowed us to easily achieve flexible parameterization via higher-order functions
and thus explore multiple inputs to the algorithms. The only bottleneck related

6

to F# that we encountered had to do with sorting tuples of strings. We were
able to work around it effectively. Other bottlenecks were related to multiple
disk writes or were of algorithmic nature.

type Counts = Counts of int*Dictionary<string,int>
type Document = Document of (string*int)[]
let documentToWordsAndTf (Document wordsAndTf) = wordsAndTf

let countsFromStream (strm: (string*int) seq) =
let d = strm |> Seq.countBy fst |> Dict.fromSeq
Counts (d |> Dict.getValues |> Seq.sum, d)

let kmeans (numClusters: int) (documents: Document []): int [] =
let numUniqueWords =

documents
|> Seq.collect documentToWordsAndTf
|> Seq.distinctBy fst
|> Seq.length
|> float

let negLogProb (Document wordsAndTF) (Counts (total, counts)) =
wordsAndTF
|> Seq.sumBy(fun (word,tf) ->

let wordProb = float ((Dict.getDefault 0 counts word) + 1) / ((float total) + numUniqueWords)
- (float tf)*log wordProb)

let docsToAssignments (clusters: (int*Counts) []) =
let docToCluster(d: Document) = Seq.minBy (snd>>(negLogProb d)) clusters|>fst
documents |> Array.map docToCluster

let assignmentsToClusters (assignments: int []) =
Array.map2 (fun clusterId doc -> (clusterId,doc)) assignments documents
|> Seq.groupBy fst
|> Seq.map (snd >> Seq.collect (snd>>documentToWordsAndTf) >> countsFromStream)
|> Seq.mapi (fun i counts -> (i,counts))
|> Array.ofSeq

let rec loop times assignments =
if times <= 0 then assignments
else assignments

|> assignmentsToClusters
|> docsToAssignments
|> loop (times - 1)

let rand = System.Random 1234
Array.init (Array.length documents) (fun _ -> rand.Next(numClusters))
|> loop 10

Fig. 2. Basic implementation of model-based K-means for document clustering in F#
(after [21]). This is an example of a data mining algorithm that can be expressed in
functional style with the standard F# library.

4.1 Experiences with Algorithm Implementation

We found that the functional programming style fitted well the implementa-
tion of model-based K-means via standard combinators like map and group by.
We show a simple implementation in figure 4 to illustrate the functional pro-
gramming style we tend to use. This script gives results comparable to the ones

7

//create a parser by composing parsing combinators
let lineParser = tuple2 (parseTill "\t")

(restOfLine |>>= fun s -> s.Split([|’\x15’|]))
File.readLines @"input.txt" // read a file into a stream of lines
|> Seq.parseWith lineParser // parse each line using user-defined parser
|> Seq.collect (fun (query,relatedQueries) -> // create pairs of query,relatedQuery

relatedQueries
|> Seq.map (fun relatedQuery -> (query,relatedQuery)))

|> Query.objectsToQueryNodes snd // use in-house library to expand the query string
// to a query object with urls

|> Seq.collect
(fun ((query,relatedQuery), queryNode) ->

queryNode
|> Query.getEdges // extract urls from the query object
|> Seq.map (fun (url,count) ->

[query; relatedQuery; url; count.ToString()] // format result
|> String.concat " "))

|> File.writeLines "outputFile.txt"

Fig. 3. An example of a typical query log processing task in F#. Similar scripts are
usually used only once. Their purpose is usually to change the format or join datasets.

described in the literature for this algorithm [21]. We used this program as a
starting point. We extended the program with other smoothing methods and
used it for the related bisecting K-means algorithm [15]. We found that on pub-
lished datasets modifications to K-means initialization improved results. Thus,
the ability to easily modify programs is valuable for data processing tasks. Pro-
ponents of functional programming have often emphasized that small changes
in the specification have to be reflected as small changes in the implementation.
We found that this was often the case when we the used functional programming
style in F#. We did an equally simple implementation in C# by imperatively
updating matrix values and explicitly manipulating indexes. The resulting im-
plementation was around 200 lines vs. 50 in F#. The high-level implementation
can be easily made parallel by changing Array.map with Array.Parallel.map in
the assignDocsToCluster function.

Unfortunately, we could not use the functional style for the LDA clustering
algorithm. The reason is that efficient implementation of this algorithm involves
mutation of state. For this algorithm we lose the benefits of functional program-
ming, but still retain some of the benefits of F# including code conciseness
resulting from the type inference system.

We found that the kinds of data mining algorithms that benefit from rapid
prototyping similar to k-means include grouping, filtering and applications of
statistical functions over a data collection.

4.2 Experience with Applicative Style

A large amount of the code we wrote used applicative style with F#’s function
application operator as in:
input |> step1 param1 |> step2 |> ... |> output

8

Run on a sample first Run on the complete dataset

input
|> sample 5000
|> step1
|> ...
|> output

input
// remove step |> sample 5000
|> step1
|> ...
|> output

Fig. 4. An example from our practice that applicative style is easily amenable to mod-
ifications.

This code is equivalent to:

output(... (step2 (step1 param1 input))))

It is a convention to use the former style in F# code. Typically each of the
steps does not use global mutable state except I/O. However, the internal im-
plementation of most of the standard library functions and our extensions are
imperative for efficiency. They may use local mutable variables as opposed to a
more mathematical formulation via recursion. It is usually the case that many of
the applied steps are quite simple when considered in isolation. However, when
one attempts to construct directly the code which corresponds to a long pipeline,
which itself may use nested pipelines, one is forced to code loops, nested loops
and mix indices from different conceptual stages together. Such code quickly be-
comes incomprehensible and unmodifiable. In our use cases the ability to easily
modify the code is highly desirable. We found this style is preferable because
one can easily add and remove processing stages. A common idiom is when one
wants to first run the program on a small sample of the data (figure 4.2). As can
be seen in Figure 4.2 the corresponding change is very small. Had the logic been
fused into a single loop such a small change would be more difficult.

A different canonical example from Information Retrieval is a document pro-
cessing pipeline. In F# we use:

document |> tokenize |> stopword |> stem

Some object-oriented implementations of Information Retrieval Systems simu-
late this pattern by a special Pipeline interface which only applies to a stream of
words. As shown in [14] and [12] this pattern does not only apply to processing
words but to the index construction and query matching components of search
engines.

4.3 Experience with Streams

Typical query log datasets do not fit in memory. Due to this reason the ability
to stream over the data is very important. F# supports a good syntax for gener-
ating sequences and a useful library of common operations over sequences. F#’s
library implements imperative streams as enumerators. There are multiple pos-
sible designs for streams each with different trade-offs. Functional streams are a

9

more flexible alternative to imperative streams. Functional streams themselves
could be implemented via recursion [2] or iteration [5]. We experimented with
stream implementation via lazy lists as described in [20]. While we could create
a good syntax due to F#’s workflow support, experiments revealed that lazy
lists were not acceptable for our data loads. The main reason seems to be that
a large number of thunks were created. While one could blame the .Net virtual
machine for not optimizing such patterns, we found that even an optimizing
compiler such as MLton may fail in certain complex cases (even when using the
iterative implementation from [5]).

The F# workflow syntax for sequences works well when the iteration resem-
bles a for-loop, but is harder to use in other more complex cases, for example
when merging or joining two sorted sequences.

We learned to be careful when using lazy evaluation of streams and external
mutable state, because the result depends on the order of evaluation. There is
no protection against such problems in F# and in some cases the obtained result
might be intended (e.g inserting print statements while debugging).

One should select carefully the tradeoffs between arrays and sequences. In
general, one has to be careful not to unintendedly reuse a sequence twice because
this might repeat long computations or produce a different result. A common
example of the latter is a random number generator. Frequent materialization of
sequences using arrays might end up slower than sequences because of memory
accesses and cause of out-of-memory exceptions on high data loads.

F# does not have sophisticated code rewrite system for library writers to
implement Haskells optimized streams. F# relies instead on the virtual machine
to optimize pipelines of sequences. While sequence of pipelines (of maps, filters,
etc.) are slower than direct loops, we did not find this to be a bottleneck in
practice.

Programs that are expressed as a pipeline composed from various stages
can be considered declarative. Therefore, the internal implementation of the
combinators matters for efficiency only. The default combinators are in F#’s
Seq module, but one could also use LINQ in the same way, or user-defined
implementations. We have experimented with lazy functional streams, ”push-
based” streams, and streams based on message passing. In ”push-based” streams
the producer pushes items into the pipeline. The Unix command line offers a
similar, but more restricted programming model, the major practical difference
in our use cases being that one cannot nest other commands within a command.
Stream-based interfaces are ubiquitous in functional programming.

4.4 Experience with Scripting

We give an example of a possible use of F# for scripting in our domain. In this
example we read a file whose lines are formatted as ”headQuery \t relatedQuery1
0x15 relatedQuery2 ...”. The goal in this example is to expand each pair of
query and related query to a list of corresponding urls and click counts. We
use an in-house service to fill in the required data. The final result is a list

10

of (headQuery1,relatedQuery1,url1,count1) tuples written to a file. We use the
collect function twice to emit multiple values in the resulting stream. In this
example, we use parsing combinators from FParsec [18] as a way to declare the
input format. FParsec an implementation of the parsing combinators described
in [11] for F#. Our experience is that it is possible to use parsing combinators
for many ad-hoc formats which arise in our practice. We found it very useful
that simple tasks such as the one described can be expressed both in short and
readable code.

Custom code for input/output formatting is typical for many text processing
tasks. While FParsec may be quite useful, its use can be avoided if one has
control over the formatting specification. For those cases we describe the format
using a simple library of serialization combinators, the most common of which
are int,string, tuple2, list, etc. for parsing objects of the corresponding types.
The type of the record for output can in principle be obtained using reflection,
but the input type needs to be specified somehow because of the static typing
in F#. We found the approach of building a schema with functions convenient.
Here is some typical code:

// specification of the format
let schema = string @ (list string) // use of @ operator to denote a tuple of two elements
// output code
someSequence
|> Seq.outputRecords schema "filename"

// input code
Seq.inputRecords schema "filename"
|> processSequence

This pattern avoids the need to deal with parsing and output formatting and
error prone issues such as string escaping and byte manipulation. It is also very
efficient because there is no string parsing. This is a very successful example of
the power of functional programming combinators because it gives gains in both
programmer and program efficiency. Similar combinators are found in Haskell’s
Data.Binary library.

4.5 Experience with Parallel Computations

Common cases of parallel computations in our application involve filters, trans-
formations, and groupings. Typically for each group we compute a number of
statistics. In many cases the the operations we encountered were associative or
could be derived from associative operations. Example of associative operations
are sums, counts, random samples, filters. Textbook examples of operations that
can be decomposed into associative operations are the average and the standard
deviation. An important characteristic in our use cases and in many other In-
formation Retrieval applications is that the input is usually large and read from
a file. In some cases, the generated output is also large. In the field of Infor-
mation Retrieval the major paradigms for grouping and reductions within each
groups are MapReduce [7] and its Sawzall [13] generalization, SCOPE [4] and
DryadLINQ [10]. Programs written for those systems require dedicated clusters

11

// group by key, compute the number of values and their sum for each group
// input is a sequence of (key,value) tuples

// Solution using standard F# Seq module
input
|> Seq.groupBy fst //materializes values within groups
|> Seq.map (fun (key,values) ->

key, (values |> Seq.length
,values |> Seq.sumBy snd))

//Result is seq<’key*(int*int)>

// Solution using our "push-based" stream implementation to avoid
// unnecessary materialization of intermediate results
let spec = by (fst, split2(len(), sumBy snd))
input
|> toParallelStream
|> run spec
//Result is Dictionary<’key, (int*int)>

Fig. 5. A comparision between F#’s groupBy and our push-based grouping operator
“by”. Our implementation avoids storing intermediate results.

and specialized software. The simplest strategy we used was to split the input
file into chunks with number equal to the number of CPUs, run computations
for each chunk and aggregate the results.
We utilized a more complex strategy for computing groups and results within the
groups. F#’s Seq module contains a groupBy function. This function, however,
materializes intermediate values that fall within each group. If the input is large,
usage of this function will cause the program to run out of memory. In some cases,
the values within groups may not be required but only some statistics that can
be computed in limited memory. We use ”push-based” streams to avoid storing
lists of values within groups. Instead only a few numbers are stored within each
group. To produce multiple results from the same stream we use the split com-
binator. We can handle nested groups and support a few more combinators in
addition to “by”, “len”, “sum” and “split”. Those are collect (for emitting mul-
tiple values); map (for transformation of values); distinct (for obtaining distinct
values), topBy (for obtaining top values by a criterion); values (for collecting in-
termediate results). We used on object-oriented implementation which allowed
for chaining transformers and consumers. By using our combinators we create
a specification which is passed to a “run” function. The run function takes an
parallel stream, which can be split into chunks. The run function applies the
specification to each chunk to produce intermediate results. When all interme-
diate results are computed the the run function aggregates them. Essentially,
our specifications allow for composable and more general “MapReduce” style
programs.

An important point is that even with a push-based stream implementation
one can write programs that run out of memory. One option for us would have
been to extend our combinators to handle out-of-memory conditions, but we
found out that multiple disk writes are detrimental to speed-ups that can be
achieved a muticore desktop. Therefore, we took care to avoid materialization

12

let emitFeatures cont = collect (fun (query,urlAndClicks) ->
urlAndClicks
|> Seq.collect (fun (url,clickCount) ->

url
|> featurize
|> Seq.map (fun feature ->

feature,(query,url,clickCount))))
cont

let features = parallelStream
|> run (emitFeatures (by(fst, len())))

let query (query,_,_) = query
let url (_,url,_) = url
let clickCount (_,_,clickCount) = clickCount
let topFeatures = features |> Dict.toSeq |> Seq.topBy 50 (snd>>desc) |> Dict.fromSeq
let spec = emitFeatures //generate features and query-url data

(filter (fst>>Dict.hasKey topFeatures) //filter top features
(by (fst, (map snd //take (query,url,clickCount) data

(split2 (by (query,sumBy clickCount) //compute query view
,by (url, sumBy clickCount))))))) //compute url view

parallelStream
|> run spec

Fig. 6. A realistic example of the use of grouping and stream splitting combinators
which operate in parallel on a stream read from disk. This example also illustrates the
need to split the program into two programs to avoid materialization of unnecessary
results.

of large intermediate results by decomposing a program into multiple programs.
The following example shows a case we encountered. In this example, the input
data is in the form of a stream of queries, each query pointing to a list of urls
and click counts:
seq{(query1, [(url11, clickCount11);(url12,clickCount12);...)]);

(query2, [(url21, clickCount21); ...])}.

We would like to a) extract features from each url; b) compute top url features
by number of queries generating the feature; c) compute two views for the top
features: query view and url view. The features we have in mind are strings
like ”city=?” and are useful because they allow for extraction of values from a
category. An alternative feature is the website extracted from the url. Therefore
this program is useful for organizing queries by website as well. Instead of writing
the program as a single expression we split the program into two phases: 1)
extraction of top features; 2) given top features, compute both query and url
views simultaneously (using the split combinator). In this way, we read the input
data twice but do not write to disk. An alternative that is shorter to write, but
slower to execute because of disk writes, would be to compute the results for
each feature and its ”score” in the same pass and then select best features. The
solution to this task is given in figure 4.5.

While we investigated possible solutions to the simultaneous processing of
split streams, we observed two styles for processing sequences: ”pull-style” cor-
responding to F# sequences and lazy evaluation, and ”push-style” corresponding
to message passing and reactive programming with events. ”Pull-style” can eas-
ily handle merging or joining of sequences, while it fails if a sequence needs to be

13

split. ”Push-style” fails on merging two sorted sequences. The duality between
both styles has also been observed for event processing in user interfaces [1].

In addition to the combinators described above, we implemented parallel fil-
ters, histograms, transposition of a sparse matrix of (query,url) pairs in external
memory and random sampling.

4.6 Experience with Tool Building

F# was also very useful for developing the user interface of the application. We
used the C# user interface designer but implemented the behaviors for graphical
elements from F#. Our application is parameterization rich, i.e. the user can
input parameters from multiple graphical elements. To translate the user input
to executable code, we mapped input from each selected user-interface element
to a higher-order function. We composed all selections to obtain a function that
is passed as a parameter to an operation over a dataset.
The basic design that we followed when connecting behaviors to the user interface
was to use closures as callbacks. The benefit for us was that parameters such
as datasets that are used in a user operation are automatically captured. This
programming pattern may cause resource leaks since references to datasets are
kept in closures. To solve this problem, any callback that we create returns
an IDisposable object representing the assigned closure. We gather all objects
corresponding to a view such as a tab and assign them to a field in the tab.
Thus, when a tab is closed we release the captured resources deterministically.

4.7 Efficiency

Query mining can be quite CPU and I/O intensive depending on the task. Of
the CPU intensive operations string processing and especially string sorting are
the most notorious. String sorting using the generic .Net sorting functions was
unacceptably slow because .Net does not implement a specialized string sorting
algorithm as in [3]. An investigation of standard library implementation of sort-
ing in Java, Haskell and Ocaml revealed lack of efficient implementation of string
sorting in those libraries as well. Our implementation of string sorting was based
on the reference C implementation from [3]. It was easier to translate this imple-
mentation to C# than to F#. Thus, C# can be used as a lower-level imperative
language when needed. Since both C# and F# share a common representation
of types no foreign-function interface is necessary.

This is in contrast to other functional languages such as OCaml or Haskell
where C is the foreign-function language. When interfacing with C polymorphism
cannot be easily achieved without explicitly passing a dictionary of conversion
functions. Boxing and unboxing penalties are usually incurred in those cases.
Thus, compared to other functional languages F# has the advantage of running
on the same virtual machine as a lower-level language.

We also hit a performance issue by using comparisons of tuples. Those issues
were due to F#’s new powerful equality or comparison constructs. Unfortunately,
under high loads, when hashing or sorting tuples of objects we found that those

14

constructs did not perform well. In such circumstances, in order to resolve the
efficiency issue, it is best practice to switch from unnamed tuples to using named
types as hash or sorting keys.

In a few cases we had to modify our code to gain efficiency but lost some
readability. For example, instead of using strings we had to remap them to
integer ids. To make this common task easier, we implemented a function with
the following signature:

val withConvertToIds: ((‘a -> int) -> ‘b) -> (‘a Ids*‘b)
where
type ’a Ids =

class
member idToObject : int -> ’a
member objectToId : ’a -> int

end

We can run a computation within this function that remaps the ids and returns
the actual result and an object which can perform the reverse map.

Another example of inefficiency is transposing a sparse matrix of queries and
urls. Instead of using the obvious algorithm with Seq.collect and Seq.groupBy
that works well in main memory, we had to hash manually the strings to integers
and group by integer ids to avoid string sorting.

Except the issue caused by tuple comparisions, all of those pitfalls would have
occurred independently of the programming language. They are either represen-
tation or algorithm dependent. During the early stages of development efficiency
is not a requirement but may become later on. Due to this reason the possibility
for variable mutation and C# interfacing is a strong point of F# in our use
cases.

5 Conclusion

We described our experience using the programming language F# for ad-hoc
analysis of query logs. Our usage of F# focused on key text analysis tasks and
resulted in a graphical application for browsing logs. We focused on algorithm
implementation as well as ad-hoc scripts. In some cases the algorithm could
be easily expressed in functional programming style, while in others we had
to resort to imperative programming. The F# language allowed us to easily
formulate scripts to carry out typical tasks and we believe offered productivity
gains in implementation. In our view F# is a very practical language which
proved to be a good match for our usage. There are not many programming
languages which can combine the conciseness of popular scripting languages like
Python or Ruby with the speed of C# for typical use cases, and at the same time
encourage functional programming style. Some of the programming abstractions
we used have appeared in various domain specific languages for the analysis of
search engine data. Those abstractions have roots in functional programming

15

and their use is encouraging because they bring elegant and useful techniques
from functional programming into mainstream practice. We believe we are the
first to apply those abstractions to log analysis tasks using a language with
heritage from the functional programming community.

6 Acknowledgements

We are thankful to Don Syme for his useful feedback on our paper.

References

1. Reactive extensions for .Net (Rx).
2. Harold Abelson and Gerald J. Sussman. Structure and Interpretation of Computer

Programs. MIT Press, Cambridge, MA, USA, 1996.
3. Jon L. Bentley and Robert Sedgewick. Fast algorithms for sorting and searching

strings. In SODA ’97: Proceedings of the eighth annual ACM-SIAM symposium
on Discrete algorithms, pages 360–369, Philadelphia, PA, USA, 1997. Society for
Industrial and Applied Mathematics.

4. Ronnie Chaiken, Bob Jenkins, P. Larson, Bill Ramsey, Darren Shakib, Simon
Weaver, and Jingren Zhou. Scope: easy and efficient parallel processing of massive
data sets. Proc. VLDB Endow., 1(2):1265–1276, 2008.

5. Duncan Coutts, Roman Leshchinskiy, and Don Stewart. Stream fusion: From lists
to streams to nothing at all. In Proceedings of the ACM SIGPLAN International
Conference on Functional Programming, ICFP 2007, April 2007.

6. Pierre Dangauthier, Ralf Herbrich, Tom Minka, and Thore Graepel. Trueskill
through time: Revisiting the history of chess. In NIPS, 2007.

7. Jeffrey Dean and Sanjay Ghemawat. Mapreduce: simplified data processing on
large clusters. In OSDI’04: Proceedings of the 6th conference on Symposium on
Opearting Systems Design & Implementation, pages 10–10, Berkeley, CA, USA,
2004. USENIX Association.

8. J. R. Heard. Beautiful code, compelling evidence. functional programming for
information visualization and visual analytics.

9. John Hughes. Generalising monads to arrows. Science of Computer Programming,
37:67–111, May 2000.

10. Michael Isard, Mihai Budiu, Yuan Yu, Andrew Birrell, and Dennis Fetterly. Dryad:
distributed data-parallel programs from sequential building blocks. In EuroSys ’07:
Proceedings of the 2nd ACM SIGOPS/EuroSys European Conference on Computer
Systems 2007, pages 59–72, New York, NY, USA, 2007. ACM.

11. Daan Leijen and Erik Meijer. Parsec: A practical parser library, 2001.
12. Marc Najork Stephen Robertson Nick Craswell, Dennis Fetterly and Emine Yilmaz.

Microsoft research at trec 2009: Web and relevance feedback tracks. In 18th Text
Retrieval Conference (TREC), 2009.

13. Rob Pike, Sean Dorward, Robert Griesemer, and Sean Quinlan. Interpreting the
data: Parallel analysis with sawzall. Sci. Program., 13(4):277–298, 2005.

14. Stefan Savev. A search engine in a few lines.: yes, we can! In SIGIR ’09: Proceedings
of the 32nd international ACM SIGIR conference on Research and development in
information retrieval, pages 772–773, New York, NY, USA, 2009. ACM.

16

15. M. Steinbach, G. Karypis, and V. Kumar. A comparison of document clustering
techniques. Technical Report 00-034, University of Minnesota, 2000.

16. M. Steyvers and T. Griffiths. Probabilistic topic models.
17. Don Syme, Adam Granicz, and Antonio Cisternino. Expert F#, Apress, 2008.
18. Stephan Tolksdorf. Fparsec: http://www.quanttec.com/fparsec/, 2009.
19. Philip Wadler. A new array operation. In Proc. of a workshop on Graph reduction,

pages 328–335, London, UK, 1987. Springer-Verlag.
20. Philip Wadler, Walid Taha, and David Macqueen. How to add laziness to a strict

language without even being odd.
21. Shi Zhong and Joydeep Ghosh. Generative model-based document clustering: a

comparative study. Knowl. Inf. Syst., 8(3):374–384, 2005.

