
Practical Optional Types for Clojure

Ambrose Bonnaire-Sergeant
Indiana University

abonnair@indiana.edu

Rowan Davies
University of Western Australia

rowan.davies@uwa.edu.au

Sam Tobin-Hochstadt
Indiana University

samth@indiana.edu

Abstract
Typed Clojure is an optional type system for Clojure, a dynamic
language in the Lisp family that targets the JVM. Typed Clojure’s
type system build on the design of Typed Racket, repurposing in
particular occurrence typing, an approach to statically reasoning
about predicate tests. However, in adapting the type system to Clo-
jure, changes and extensions are required to accommodate addi-
tional language features and idioms used by Clojure programmers.

In this paper, we describe Typed Clojure and present these type
system extensions, focusing on three features widely used in Clo-
jure. First, Java interoperability is central to Clojure’s mission but
introduces challenges such as ubiquitous null; Typed Clojure han-
dles Java interoperability while ensuring the absence of null-pointer
exceptions in typed programs. Second, Clojure programmers id-
iomatically use immutable dictionaries for data structures; Typed
Clojure handles this in the type system with multiple forms of het-
erogeneous dictionary types. Third, multimethods provide extensi-
ble operations, and their Clojure semantics turns out to have a sur-
prising synergy with the underlying occurrence typing framework.

We provide a formal model of the Typed Clojure type system
incorporating these and other features, with a proof of soundness.
Additionally, Typed Clojure is now in use by numerous corpora-
tions and developers working with Clojure, and we report on expe-
rience with the system and its lessons for the future.

1. Clojure with static typing
The popularity of dynamically-typed languages in software devel-
opment, combined with a recognition that types often improve pro-
grammer productivity, software reliability, and performance, has
led to the recent development of a wide variety of optional and
gradual type systems aimed at checking existing programs writ-
ten in existing languages. These include Microsoft’s TypeScript for
JavaScript, Facebook’s Hack for PHP and Flow for JavaScript, and
MyPy for Python among the optional systems, and Typed Racket,
Reticulated Python, and GradualTalk among gradually-typed sys-
tems.1

One key lesson of these systems, indeed a lesson known to early
developers of optional type systems such as StrongTalk, is that type
systems for existing languages must be designed to work with the
features and idioms of the target language. Often this takes the form
of a core language, be it of functions or classes and objects, together
with extensions to handle distinctive language features.

We synthesize these lessons to present Typed Clojure, an op-
tional type system for Clojure. Typed Clojure builds on the core
type checking approach of Typed Racket, an existing gradual type
system for Racket. However, Typed Clojure extends this basic
framework in multiple ways to accommodate the unique idioms

1 We reserve the term “gradual typing” for systems such as Typed Racket
which soundly interoperate between typed and untyped code; systems like
Typed Clojure or TypeScript which do not enforce type invariants we
describe as “optionally typed”.

(ann parent [’{:file (U nil File)} -> (U nil Str)])
(defn parent [{^File f :file}]
(if f (.getParent f) nil))

Figure 1. A simple Typed Clojure program

and features of Clojure, producing an expressive synthesis of ideas
and demonstrating a surprising coincidence between multiple dis-
patch in Clojure and Typed Racket’s occurrence typing framework.

The essence of Typed Clojure, of course, is Clojure, a dynam-
ically typed language in the Lisp family built to run on the Java
Virtual Machine (JVM) which has recently gained popularity as an
alternative JVM language. It offers the flexibility of a Lisp dialect,
including macros, emphasizes a functional style via a standard li-
brary of immutable data structures, and provides interoperability
with existing Java code, allowing programmers to use existing Java
libraries without leaving Clojure. Since its initial release in 2007,
Clojure has been widely adopted for “backend” development in
places where its support for parallelism, functional programming,
and Lisp-influenced abstraction is desired on the JVM. As a result,
it now has an extensive base of existing untyped programs, whose
developers can now benefit from Typed Clojure. As a result, Typed
Clojure is used in industry, experience we discuss in this paper.

Figure 1 presents a simple program demonstrating many aspects
of our system, from simple type annotations to explicit handling of
Java’s null (written nil) in interoperation, as well as an extended
form of occurrence typing and Clojure’s type hints, which are
central to Typed Clojure’s approach to interoperability.

The parent function has the type

[’{:file (U nil File)} -> (U nil Str)]

which means that it takes a hash table whose :file key maps to
either nil or a File, and it produces either nil or a String.
The parent function uses the :file keyword as an accessor
to get the file, checks that it isn’t nil, and then obtains the
parent by making a Java method call. The annotation ^File f
is a type hint on f, which instructs the Clojure compiler (run-
ning prior to Typed Clojure typechecking) to statically resolve
the getParent call to File’s getParent method with signature
String getParent();, rather than using reflection at runtime.

In the remainder of this paper, we describe how Typed Clojure’s
central innovations, including Java interoperability, multimethods,
and heterogeneously-typed immutable maps, enable this example
and many others. We begin with an example-driven presentation of
the main type system features in Section 2. We then incrementally
present a core calculus for Typed Clojure covering all of these
features together in Section 3 and prove type soundness (Section 4).
We then discuss the full implementation of Typed Clojure, dubbed
core.typed, which extends the formal model in many ways, and
the experience gained from its use in Section 5. Finally, we discuss
related work and conclude.

1 2015/2/28

2. Overview of Typed Clojure
We now begin a tour of the central features of Typed Clojure,
beginning with Clojure itself. In our presentation, we will make use
of the full Typed Clojure system to illustrate the key type system
ideas, before studying the core features in detail in section 3.

2.1 Clojure
Clojure (Hickey 2008) is a Lisp built to run on the Java Virtual Ma-
chine with exemplary support for concurrent programming and im-
mutable data structures. It emphasizes mostly-functional program-
ming, restricting imperative updates to a limited set of structures
which have specific thread synchronization behaviour. By default,
it provides fast implementations of immutable lists, vectors, and
hash tables, which are used for most data structures, although it
also provides means for defining new records.

One of Clojure’s primary advantages is easy interoperation with
existing Java libraries. It automatically generates appropriate JVM
bytecode to make Java method and constructor calls, and treats Java
values as any other Clojure value. However, this smooth interop-
erability comes at the cost of pervasive null, which leads to the
possibility of null pointer exceptions—a drawback we address in
Typed Clojure.

2.2 Clojure Syntax
We describe new syntax as they appear in each example, but we
also include the essential basics of Clojure syntax.

nil is exactly Java’s null. Parentheses indicate applications,
brackets delimit vectors, braces delimit hash-maps and double
quotes delimit Java strings. Symbols begin with an alphabetic char-
acter, and a colon prefixed symbol like :a is a keyword.

Commas are always whitespace.

2.3 Typed Racket and occurrence typing
Tobin-Hochstadt and Felleisen (2010) presented Typed Racket with
occurrence typing, a technique for deriving type information from
conditional control flow. They introduced the concept of occurrence
typing with the following example.

#lang typed/racket

(lambda ([x : (U #f Number)])
(if (number? x) (add1 x) 0))

This function takes a value that is either #f or a number, repre-
sented by an untagged union type. The ‘then’ branch has an implicit
invariant that x is a number, which is automatically inferred with
occurrence typing and type checked without further annotations.

We chose to build on the ideas and implementation of Typed
Racket to implement a type system targeting Clojure for several
reasons. Initially, the similarities between Racket and Clojure drew
us to investigate the effectiveness of repurposing occurrence typing
for a Clojure type system—both languages share a Lisp heritage,
similar standard functions (for instance map in both languages is
variable-arity) and idioms. While Typed Racket is gradually typed
and has sophisticated dynamic semantics for cross-language inter-
action, we chose to first implement the static semantics with the
hope to extend Typed Clojure to be gradually typed at a future date.
Finally, Typed Racket’s combination of bidirectional checking and
occurrence typing presents a successful model for type check-
ing dynamically typed programs without compromising soundness,
which is appealing over success typing (Lindahl and Sagonas 2006)
which cannot prove strong properties about programs and soft typ-
ing (Cartwright and Fagan 1991) which has proved too complicated
in practice.

Here is the above program in Typed Clojure.

Example 1(ns demo.eg1
(:refer-clojure :exclude [fn])
(:require [clojure.core.typed :refer [fn U Num]]))

(fn [x :- (U nil Num)]
(if (number? x) (inc x) 0))

This is a regular Clojure file compiled with the Clojure com-
piler, with the ns form declaring a namespace for managing var
and class imports. Here :require declares a runtime dependency
on clojure.core.typed, Typed Clojure’s core namespace, and
:refer brings a collection of vars into scope by name. The
:refer-clojure :exclude option unmaps core vars from the
current namespace—here we unmap clojure.core/fn, which
creates a function from a parameter vector and a body expression,
and import a typed variant of fn that supports type annotations.

The typed fn supports optional annotations by adding :- and a
type after a parameter position or binding vector to annotate param-
eter types and return types respectively. Typed Clojure provides a
check-ns function to type checks the current namespace. number?
is a Java instanceof test of java.lang.Number. As in Typed
Racket, U creates an untagged union type, which can take any num-
ber of types.

Typed Clojure can already check all of the examples in Tobin-
Hochstadt and Felleisen (2010)—the rest of this section describes
the extensions necessary to check Clojure code.

2.4 Exceptional control flow
Along with conditional control flow, Clojure programmers rely on
exceptions to assert type-related invariants.

Example 2(fn [x :- (U nil Num)]
(do (if (number? x) nil (throw (Exception.)))

(inc x)))

The do form sequences two expressions returning the latter,
throw corresponds to Java’s throw and (class. args*) is the
syntax for Java constructors—that is a class name with a dot suffix
as the operator followed the arguments to the constructor.

In this example a throw expression guards (inc x), the in-
crement function for numbers, from being evaluated if x is nil,
preventing a possible null-pointer exception.

To check this example, occurrence typing automatically as-
sumes x is a number when checking the second do subexpression
based on the first subexpression. 2 We model this formally (sec-
tion 3.1) and prove null-pointer exceptions are impossible in typed
code (section 4).

2.5 Heterogeneous hash-maps
Hash-maps with keyword keys play a major role in Clojure pro-
gramming. HMap types model the most common usages of key-
word maps.

Example 3(defalias Expr
(U ’{:op ’:if, :test Expr, :then Expr, :else Expr}

’{:op ’:do, :left Expr, :right Expr}
’{:op ’:const, :val Num}))

(defn an-exp [] :- Expr
(let [v {:op :const, :val 1}]

{:op :do, :left v, :right v}))

2 See https://github.com/typedclojure/examples for full exam-
ples. From here we omit ns forms.

2 2015/2/28

The defn macro defines a top-level function, with syntax like
the typed fn. The function an-exp is verified to return an Expr.

The defalias macro defines a type abbreviation which can
reference itself recursively. Here defalias defines Expr that de-
scribes the structure of a recursively-defined AST as a union of
HMaps. A quoted keyword in a type, such as ’:if, is a singleton
type that contains just the keyword. A type that is a quoted map like
’{:op ’:if} is a HMap type with a fixed number of keyword en-
tries of the specified types known to be present, zero entries known
to absolutely be absent, and an infinite number of unknown entries
entries. Since only keyword keys are allowed, they do not require
quoting.

HMaps in Practice The next example is extracted from a produc-
tion system at CircleCI, a company with a large production Typed
Clojure system (section 5.3 presents a case study).

Example 4(defalias RawKeyPair
(HMap :mandatory {:public-key RawKey,

:private-key RawKey},
:complete? true))

(defalias EncKeyPair
(HMap :mandatory {:public-key RawKey,

:enc-private-key EncKey},
:complete? true))

(ann enc-keypair [RawKeyPair -> EncKeyPair])
(defn enc-keypair [kp]

(assoc (dissoc kp :private-key)
:enc-private-key (encrypt (:private-key kp))))

enc-keypair takes an unencrypted keypair and returns an en-
crypted keypair by non-destructively dissociating the raw :private-key
entry with dissoc and associating an encrypted private key as
:enc-private-key on an immutable map with assoc. The
expression (:private-key kp) shows that keywords are also
functions that look themselves up in a map returning the asso-
ciated value or nil if the key is missing. Since EncKeyPair is
:complete?, Typed Clojure enforces the return type does not con-
tain an entry :private-key, and would complain if the dissoc
operation forgot to remove it.

The next example is the same except we use the :absent-keys
HMap option. We also utilize map destructuring, which is binding
position syntax for pattern matching. Parameters are replaced with
maps of symbols to keywords that bind the symbols to lookups on
that keyword, optionally terminated by :as which aliases the pa-
rameter. For example (fn [{^File x :x, :as m}] ...) ex-
pands to a let binding m to the first argument and ^File x to
(:x m). Clojure’s let takes a flat binding vector which can refer
to previous bindings like Scheme’s let*, and a body expression.

Example 5(defalias RawKeyPair
(HMap :mandatory {:public-key RawKey,

:private-key RawKey}))
(defalias EncKeyPair

(HMap :mandatory {:public-key RawKey,
:enc-private-key EncKey},

:absent-keys #{:private-key}))

(ann enc-keypair [RawKeyPair -> EncKeyPair])
(defn enc-keypair [{pkey :private-key, :as kp}]

(assoc (dissoc kp :private-key)
:enc-private-key (encrypt pkey)))

Since this example enforces that :private-key must not ap-
pear in a EncKeyPair Typed Clojure would still complain if we
forgot to dissoc :private-key from the return value. Now,

however we could stash the raw private key in another entry
like :secret-key which is not mentioned by the partial HMap
EncKeyPair without Typed Clojure noticing.

Branching on HMaps Finally, testing on HMap properties al-
lows us to refine its type down branches. dec-map takes an Expr,
traverses to its nodes and decrements their values by dec, then
builds the Expr back up with the decremented nodes.

Example 6
1 (ann dec-leaf [Expr -> Expr])
2 (defn dec-leaf [m]
3 (if (= (:op m) :if)
4 {:op :if,
5 :test (dec-leaf (:test m)),
6 :then (dec-leaf (:then m)),
7 :else (dec-leaf (:else m))}
8 (if (= (:op m) :do)
9 {:op :do,

10 :left (dec-leaf (:left m)),
11 :right (dec-leaf (:right m))}
12 {:op :const,
13 :val (dec (:val m))})))

If we go down the then branch (line 4), since (= (:op m) :if)
is true we remove the :do and :const Expr’s from the type of m
(because their respective :op entries disagrees with (= (:op m) :if))
and we are left with an :if Expr. On line 8, we instead strike out the
:if Expr since it contradicts (= (:op m) :if) being false. Line
9 know we can remove the :const Expr from the type of m because
it contradicts (= (:op m) :do) being true, and we know m is a
:do Expr. Line 12 we strike out :do because (= (:op m) :do)
is false, so we are left with m being a :const Expr.

Section 3.3 discusses how this automatic reasoning is achieved.

2.6 Java interoperability
Clojure supports interoperability with Java, including the ability to
call constructors, methods and access fields.

(fn [f] (.getParent f))

Calls to Java methods and fields have prefix notation like
(.method target args*) and (.field target) respectively,
with method and field names prefixed with a dot and methods tak-
ing some number of arguments.

Unlike Java, Clojure is dynamically typed. We have no type
information about f but we still need to pick a method to call.
The Clojure compiler delegates the choice to runtime using Java
reflection. Unfortunately reflection is slow and unpredictable, so
Clojure supports type hints to help eliminate it where possible,

(fn [^File f] (.getParent f))

Symbols support metadata—the syntax ^File f is a single ex-
pression that is a symbol f with metadata {:tag File}. In binding
positions like (fn [^File f] ...) syntactic occurrences pre-
serve metadata.

The Clojure compiler uses the type hint to statically resolve
the method call to the public String getParent() method of
java.io.File. The call to getParent is unambiguous at runtime
but type checking fails—Typed Clojure considers f to be of type
Any, which is unsafe to use as the target of even a resolved method.
If instead we annotate the function parameter with type File, we
get a static type error.

(fn [f :- File] (.getParent f)) ;; type error

Typed Clojure disallows reflection in typed code so we must add
back the type hint to obtain a well-typed expression.

3 2015/2/28

Example 7(fn [^File f :- File] (.getParent f))

The type hinting system and Typed Clojure’s static type check-
ing are separate, the latter predating the former by several years.
The interaction between them is often not as obvious, for example
Typed Clojure has an explicit type for null null-pointer exceptions
are impossible.

do not need to take nil into account,

Example 8(defn parent [^File f :- (U nil File)]
(if f (.getParent f) nil))

Typed Clojure and Java treat null differently. In Clojure, where
it is known as nil, Typed Clojure assigns it an explicit type
called nil. In Java null is implicitly a member of any refer-
ence type. This means the Java static type String is equivalent
to (U nil String) in Typed Clojure.

Reference types in Java are nullable, so to guarantee a method
call does not leak null into a Typed Clojure program we must
assume methods can return nil.

Example 9(ann parent [(U nil File) -> (U nil Str)])
(defn parent [^File f]

(if f (.getParent f) nil))

In contrast, JVM invariants guarantee that constructors cannot
return null, so we are safe to assume constructors are non-nullable.

Example 10(fn [^String s :- String] :- File
(File. s))

By default Typed Clojure conservatively assumes method and
constructor arguments to be non-nullable, but can be configured
globally for particular positions if needed.

2.7 Multimethods
A multimethod in Clojure is a function with a dispatch function
and a dispatch table of methods. Multimethods are created with
defmulti.

(ann path [Any -> (U nil String)])
(defmulti path class)

The multimethod path has type [Any -> (U nil String)],
an initially empty dispatch table and dispatch function class, a
function that returns the class of its argument or nil if passed nil.

We can use defmethod to install a method to path.

(defmethod path String [x] x)

Now the dispatch table maps the dispatch value String to the
function (fn [x] x). We add another method which maps File
to the function (fn [^File x] (.getPath x)) in the dispatch
table.

(defmethod path File [^File x] (.getPath x))

After installing both methods, the call

(path (File. "dir/a"))

dispatches to the second method we installed because

(isa? (class "dir/a") String)

is true, and finally returns

((fn [^File x] (.getPath x)) "dir/a").

The isa? function first tries an equality check on its arguments,
then if that fails and both arguments are classes a subclassing check
is returned.

(isa? :a :a) ;=> true
(isa? Keyword Object) ;=> true

We include the above sequence of definitions as example 11.

Example 11(ann path [Any -> (U nil String)])
(defmulti path class)
(defmethod path String [x] x)
(defmethod path File [^File x] (.getPath x))

(path "dir/a") ;=> "a"

Typed Clojure does not predict if a runtime dispatch will be
successful—(path :a) type checks because :a agrees with the
parameter type Any, but throws an error at runtime.

HMap dispatch The flexibility of isa? is key to the generality
of multimethods. In example 12 we dispatch on the :op key of
our HMap AST Expr. Since keywords are functions that look
themselves up in their argument, we simply use :op as the dispatch
function.

Example 12(ann inc-leaf [Expr -> Expr])
(defmulti inc-leaf :op)
(defmethod inc-leaf :if [{tt :test, t :then, e :else}]
{:op :if,
:test (inc-leaf tt),
:then (inc-leaf t),
:else (inc-leaf e)})

(defmethod inc-leaf :do [{l :left, r :right}]
{:op :do,
:left (inc-leaf l),
:right (inc-leaf r)})

(defmethod inc-leaf :const [{v :val}]
{:op :const,
:val (inc v)})

inc-map is like example 6 except the nodes are incremented.
The reasoning is similar, except we only consider one branch (the
current method) by locally considering the current dispatch value
and reasoning about how it relates to the dispatch function. For
example, in the :do method we learn the :op key is a :do, which
narrows our argument type to the :do Expr, and similarly for the
:if and :const methods.

Multiple dispatch isa? is special with vectors—vectors of the
same length recursively call isa? on the elements pairwise.

(isa? [Keyword Keyword] [Object Object]) ;=> true

Example 13 simulates multiple dispatch by dispatching on a
vector containing the class of both arguments. open takes two
arguments which can be strings or files and returns a new file that
concatenates their paths.

We call three different File constructors, each known at
compile-time via type hints. Multiple dispatch follows the same
kind of reasoning as example 12, except we update multiple bind-
ings simultaneously.

2.8 Final example
Example 14 combines everything we will cover for the rest of the
paper: multimethod dispatch, reflection resolution via type hints,
Java method and constructor calls, conditional and exceptional flow
reasoning, and HMaps.

We dispatch on :p to distinguish the two cases of FSM—for
example on :F we know the :file is a file. The body of the first

4 2015/2/28

Example 13(defalias FS (U File String))

(ann open [FS FS -> File])
(defmulti open (fn [l r]

[(class l) (class r)]))
(defmethod open [File File] [^File f1, ^File f2]

(let [s (.getPath f2)]
(do (if (string? s) nil (throw (Exception.)))

(File. f1 s))))
(defmethod open [String String] [s1 s2]

(File. (str s1 "/" s2)))
(defmethod open [File String] [^File s1, ^String s2]

(File. s1 s2))

(open (File. "dir") "a") ;=> #<File dir/a>
(open "dir" "a/b") ;=> #<File dir/a/b>
(open (File. "a/b") (File. "c")) ;=> #<File a/b/c>

Example 14(defalias FSM
(U ’{:p ’:F :file (U nil File)}

’{:p ’:S :str (U nil String)}))

(ann maybe-parent [FSM -> (U nil Str)])
(defmulti maybe-parent :p)
(defmethod maybe-parent :F [{file :file :as m}]

(if (:file m) (.getParent ^File file) nil))
(defmethod maybe-parent :S [{^String str :str}]

(do (if str nil (throw (Exception.)))
(.getParent (File. str))))

(maybe-parent {:p :S :str "dir/a"}) ;=> "dir"
(maybe-parent {:p :F :file (File. "dir/a")});=> "dir"
(maybe-parent {:p :F :file nil}) ;=> nil

Figure 2. Multimethod Examples

method uses type hints to resolve reflection and conditional control
flow to prove null-pointer exceptions are impossible. The second
method is similar except it uses exceptional control flow.

3. A Formal Model of λTC
Now that we have demonstrated the core features Typed Clojure
provides, we link them together in a formal model called λTC . Our
presentation will start with a review of occurrence typing (Tobin-
Hochstadt and Felleisen 2010). Then for the rest of the section
we incrementally add each novel feature of Typed Clojure to the
formalism, interleaving presentation of syntax, typing rules, opera-
tional semantics and subtyping.

The first insight about occurrence typing is that logical formu-
las can be used to represent type information about our programs by
relating parts of the runtime environment to types via propositional
logic. Type Propositions ψ make assertions like “variable x is of
type Number” or “variable x is not nil”—in our logical system we
write these as Numberx and nil x . The other propositions are stan-
dard logical connectives: implications, conjunctions, disjunctions,
and the trivial (tt) and impossible (ff) propositions (Figure 3).

The particular part of the runtime environment we reference
in a type proposition is called the object. The typing judgement
relates an object to every expression in the language. An object is
either empty, written ∅, which says this expression is not known
to evaluate to a particular part of the current runtime environment,
or a variable with some path, written π(x), that exactly indicates

d, e ::= x | v | (e e) | λxτ .e Expressions
| (if e e e) | (let [x e] e)

v ::= s | n | c | [ρ, λxτ .e]c Values
c ::= class | inc | number? Constants

σ, τ ::= > | (
⋃ −→τ) | x:τ

ψ|ψ−−−→
o

τ Types

| (Val s) | C
s ::= k | C | nil | b Value types
b ::= true | false Boolean values

ψ ::= τπ(x) | τπ(x) | ψ ⊃ ψ Propositions
| ψ ∧ ψ | ψ ∨ ψ | tt | ff

o ::= π(x) | ∅ Objects
π ::= −→pe Paths

Γ ::=
−→
ψ Proposition Environment

ρ ::= {−−−−→x 7→ v} Value environments

Figure 3. Syntax of Terms, Types, Propositions and Objects

how the value of this expression can be derived from the current
runtime environment. Type propositions can only reference non-
empty objects.

The second insight is that we can replace the traditional repre-
sentation of a type environment (eg., a map from variables to types)
with a set of propositions, written Γ. Instead of mapping x to the
type Number, we use the proposition Numberx .

Given a set of propositions, we can use logical reasoning to
derive new information about our programs with the judgement
Γ ` ψ. In addition to the standard rules for the logical connectives,
the key rule is L-Update, which combines multiple propositions
about the same variable, allowing us to refine its type.

L-UPDATE
Γ ` τπ′(x) Γ ` νπ(π′(x))

Γ ` update(τ, ν, π)π′(x)

For example, with L-Update we can use the knowledge of Γ `
(
⋃

nil N)x and Γ ` nil x to derive Γ ` Nx . (The metavariable
ν ranges over τ and τ (without variables).) We cover L-Update in
more detail in Section 3.3.

Finally, this approach allows the type system to track program-
ming idioms from dynamic languages using implicit type-based
reasoning based on the result of conditional tests. For instance,
Example 1 only utilises x once the programmer is convinced it
is safe to do so based whether (number? x) is true or false. To
express this in the type system, every expression is described by
two propositions: a ‘then’ proposition for when it reduces to a true
value, and an ‘else’ proposition when it reduces to a false value—
for (number? x) the then proposition is Numberx and the else
proposition is Numberx .

We formalise our type system following Tobin-Hochstadt and
Felleisen (2010) (with differences highlighted in blue). The typing
judgement

Γ ` e : τ ; ψ+|ψ− ; o

says expression e is of type τ in the proposition environment Γ,
with ‘then’ proposition ψ+, ‘else’ proposition ψ− and object o.
We write Γ ` e : τ if we are only interested in the type.

Syntax is given in Figure 3. Expressions include variables, val-
ues, application, abstractions, conditionals and let expressions. All
binding forms introduce fresh variables. Values include booleans,
nil, class literals, keywords, numbers, constants and closures. Value
environments map local bindings to values.

Types include the top type, untagged unions, functions, sin-
gleton types and class instances. We abbreviate Boolean as B,
Keyword as K and Number and N. The type (Val K) is inhabited

5 2015/2/28

by the class literal K and :a is of type K. We abbreviate (
⋃

) as
⊥, (Val nil) as nil, (Val true) as true and (Val false) as false. Func-
tion types contain latent (terminology from (Lucassen and Gifford
1988)) propositions and object, which, along with the return type,
may refer to the function argument. They are latent because they are
instantiated with the actual object of the argument in applications
before they are used in the proposition environment.

Figure 4 contains the core typing rules. The key rule for reason-
ing about conditional control flow is T-If.

T-IF
Γ ` e1 : τ1 ; ψ1+|ψ1− ; o1

Γ, ψ1+ ` e2 : τ ; ψ2+|ψ2− ; o
Γ, ψ1− ` e3 : τ ; ψ3+|ψ3− ; o

Γ ` (if e1 e2 e3) : τ ; ψ2+ ∨ ψ3+|ψ2− ∨ ψ3− ; o

The propositions of the test expression e1, ψ1+ and ψ1−, are
used as assumptions in the then and else branch respectively. If the
result of the if is a true value, then it either came from e2, in which
case ψ2+ is true, or from e3, which implies ψ3+ is true. The else
proposition is ψ2− ∨ ψ3− similarly. The T-Local rule connects the
type system to the proof system over type propositions via Γ ` τx
to derive a type for a variable. Using this rule, the type system can
then appeal to L-Update to refine the type assigned to x.

We are now equipped to type check Example 1, starting at body:

... (if (number? x) (inc x) 0) ...

We know Γ = (
⋃

nil N)x . The test expression uses T-App,

Γ ` (number? x) : B ; Nx |Nx ; ∅

since number? has type x:>
Nx |Nx−−−−−→
∅

B and x has object x.

Finally we check both branches using the extended proposition
environment as specified by T-If. Going down the then branch, our
new assumption Nx is crucial to check

Γ,Nx ` x : N ; (∪ nil false) x |(∪ nil false) x ; ∅

because we can now satisify the premise of T-Local:

Γ,Nx ` Nx .

Operational semantics We define the dynamic semantics for
λTC in a big-step style using an environment, following Tobin-
Hochstadt and Felleisen (2010). We include both errors and a
wrong value, which is provably ruled out by the type system.
The main judgement is ρ ` e ⇓ α which states that e evaluates to
answer α in environment ρ. We chose to omit the core rules (see
Figure A.17) however a notable difference is nil is a false value,
which affects the semantics of if:

B-IFTRUE
ρ ` e1 ⇓ v1

v1 6= false v1 6= nil
ρ ` e2 ⇓ v

ρ ` (if e1 e2 e3) ⇓ v

B-IFFALSE
ρ ` e1 ⇓ false or ρ ` e1 ⇓ nil

ρ ` e3 ⇓ v
ρ ` (if e1 e2 e3) ⇓ v

Subtyping (Figure 5) is a reflexive and transitive relation with
top type >. Singleton types are instances of their respective
classes—boolean singleton types are of type B, class literals are
instances of Class and keywords are instances of K. Instances of
classes C are subtypes of Object. Since function types are sub-
types of Fn, all types except for nil are subtypes of Object, so >
= (

⋃
nil Object). Function subtyping is contravariant left of the

arrow—latent propositions, object and the result type are covariant.
Subtyping for untagged unions is standard.

S-REFL
` τ <: τ

S-TOP
` τ <:>

S-UNIONSUPER
∃i. ` τ <: σi

` τ <: (
⋃ −→σ i)

S-UNIONSUB
−−−−−−→
` τi <: σ

i

` (
⋃ −→τ i)<: σ

S-FUNMONO

` x:σ
ψ+|ψ−−−−−−→

o
τ <: Fn

S-OBJECT
` C <: Object

S-SCLASS
` (ValC)<: Class

S-SBOOL
` (Val b)<: B

S-SKW
` (Val k)<: K

S-FUN
` σ′ <: σ ` τ <: τ ′

ψ+ ` ψ′+ ψ− ` ψ′−
` o <: o′

` x:σ
ψ+|ψ−−−−−−→

o
τ <: x:σ′

ψ′+|ψ
′
−−−−−−−→

o′
τ ′

Figure 5. Core Subtyping rules

3.1 Reasoning about Exceptional Control Flow
We extend our model with sequencing expressions and errors,
where err models the result of calling Clojure’s throw special
form with some Throwable.

e ::= . . . | err | (do e e) Expressions
Our main insight is as follows: if the first subexpression in a

sequence reduces to a value, then it is either true or false. If we learn
some proposition in both cases then we can use that proposition as
an assumption to check the second subexpression. T-Do formalises
this intuition.

T-DO
Γ ` e1 : τ1 ; ψ1+|ψ1− ; o1

Γ, ψ1+ ∨ ψ1− ` e : τ ; ψ+|ψ− ; o

Γ ` (do e1 e) : τ ; ψ+|ψ− ; o

The introduction of errors, which do not evaluate to either a true
or false value, makes our insight interesting.

T-ERROR
Γ ` err :⊥ ; ff |ff ; ∅

Recall Example 2.

... (do (if (number? x) nil (throw (Exception.)))
(inc x)) ...

As before, checking (number? x) allows us to use the proposi-
tion Nx when checking the then branch.

By T-Nil and subsumption we can propagate this information to
both propositions.

Nx ` nil : nil ; Nx |Nx ; ∅
Furthermore, using T-Error and subsumption we can conclude any-
thing in the else branch.

Nx ` err :⊥ ; Nx |Nx ; ∅
Using the above as premises to T-If we conclude that if the first
expression in the do evaluates successfully, Nx must be true.

(
⋃

nil N)x ` (if (number? x) nil err) : B ; Nx |Nx ; ∅
We can now use Nx in the environment to check the second subex-
pression (inc x), completing the example.

3.2 Precise Types for Heterogeneous maps
Figure 6 presents syntax, typing rules and dynamic semantics in
detail. The type (HMapEMA) includesM, a map of present en-
tries (mapping keywords to types), A, a set of keyword keys that

6 2015/2/28

T-ABS
Γ, σx ` e : τ ; ψ+|ψ− ; o

Γ ` λxσ .e : x:σ
ψ+|ψ−−−−−−→

o
τ ; tt|ff ; ∅

T-SUBSUME
Γ ` e : τ ; ψ+|ψ− ; o

Γ, ψ+ ` ψ′+ Γ, ψ− ` ψ′−
` τ <: τ ′ ` o <: o′

Γ ` e : τ ′ ; ψ′+|ψ
′
− ; o′

T-NUM
Γ ` n : N ; tt|ff ; ∅

T-CONST
Γ ` c : δτ (c) ; tt|ff ; ∅

T-KW
Γ ` k : (Val k) ; tt|ff ; ∅

T-CLASS
Γ ` C : (ValC) ; tt|ff ; ∅

T-TRUE
Γ ` true : true ; tt|ff ; ∅

T-FALSE
Γ ` false : false ; ff |tt ; ∅

T-NIL
Γ ` nil : nil ; ff |tt ; ∅

T-LET
Γ ` e1 : σ ; ψ1+|ψ1− ; o1
ψ′ = (∪ nil false) x ⊃ ψ1+
ψ′′ = (∪ nil false) x ⊃ ψ1−

Γ, σx , ψ
′, ψ′′ ` e : τ ; ψ+|ψ− ; o

Γ ` (let [x e1] e) : τ ; ψ+|ψ−[o1/x] ; o[o1/x]

T-LOCAL
Γ ` τx

σ = (∪ nil false)
Γ ` x : τ ; σx |σx ; x

T-APP

Γ ` e : x:σ
ψf+

|ψf−−−−−−−−→
of

τ ; ψ+|ψ− ; o

Γ ` e′ : σ ; ψ′+|ψ
′
− ; o′

Γ ` (e e′) : τ[o′/x] ; ψf+|ψf−[o′/x] ; of [o′/x]

Figure 4. Typing rules

e ::= . . . | (get e e) | (assoc e e e) Expressions
v ::= . . . | {} Values
τ ::= . . . | (HMapEMA) Types
M ::= {

−−−→
k 7→ τ} HMap mandatory entries

A ::= {
−→
k } HMap absent entries

E ::= C | P HMap completeness tags
pe ::= . . . | keyk Path Elements

T-GETHMAP

Γ ` e : (
⋃ −−−−−−−−−−→

(HMapEMA)
i

) ; ψ1+|ψ1− ; o

Γ ` ek : (Val k)
−−−−−−→
M[k] = τ

i

Γ ` (get e ek) : (
⋃ −→τ i) ; tt|tt ; keyk(x)[o/x]

T-GETHMAPABSENT
Γ ` e : (HMapEMA) ; ψ1+|ψ1− ; o

Γ ` ek : (Val k) k ∈ A
Γ ` (get e ek) : nil ; tt|tt ; keyk(x)[o/x]

T-GETHMAPPARTIALDEFAULT
Γ ` e : (HMapPMA) ; ψ1+|ψ1− ; o

Γ ` ek : (Val k) k 6∈ dom(M) k 6∈ A
Γ ` (get e ek) :> ; tt|tt ; keyk(x)[o/x]

T-ASSOCHMAP
Γ ` e : (HMapEMA)

Γ ` ek : (Val k) Γ ` ev : τ k 6∈ A
Γ ` (assoc e ek ev) : (HMapEM[k 7→ τ]A) ; tt|ff ; ∅

S-HMAP
∀i.M[ki] = σi and ` σi <: τi A1 ⊇ A2

` (HMapEMA1)<: (HMapE {
−−−→
k 7→ τ}

i
A2)

S-HMAPP
∀i.M[ki] = σi and ` σi <: τi

` (HMapCMA′)<: (HMapP {
−−−→
k 7→ τ}

i
A)

S-HMAPMONO
` (HMapEMA)<: Map

B-ASSOC
ρ ` e ⇓ m
ρ ` ek ⇓ k
ρ ` ev ⇓ vv

v = m[k 7→ vv]

ρ ` (assoc e ek ev) ⇓ v

B-GET
ρ ` e ⇓ m
ρ ` e′ ⇓ k
k ∈ dom(m)
m[k] = v

ρ ` (get e e′) ⇓ v

B-GETMISSING
ρ ` e ⇓ m
ρ ` e′ ⇓ k
k 6∈ dom(m)

ρ ` (get e e′) ⇓ nil

Figure 6. HMap Syntax, Typing and Operational Semantics

are known to be absent and tag E which is either C (“complete”) if
the map is fully specified byM, and P (“partial”) if there are un-
known entries. To ease presentation, if an HMap has completeness
tag C then A implicitly contains all keywords not in the domain of
M. Keys cannot be both present and absent.

The expressions (get m :a) and (:a m) are semantically
identical, though we only model the former to avoid the added
complexity of keywords being functions. To simplify presentation,
we only provide syntax for the empty map literal and restrict lookup
and extension to keyword keys. The metavariable m ranges over
the runtime value of maps {

−−−−→
k 7→ v}, usually written {

−→
k v}.

Subtyping for HMaps designate Map as a common supertype
for all HMaps. S-HMap says that an HMap is a subtype of another
HMap if they agree on E, agree on mandatory entries with subtyp-
ing and at least cover the absent keys of the supertype. Complete
maps are subtypes of partial maps as long as they agree on the
mandatory entries of the partial map via subtyping (S-HMapP).

The typing rules for get consider three possible cases. T-
GetHMap models a lookup that will certainly succeed, T-GetHMapAbsent
a lookup that will certainly fail and T-GetHMapPartialDefault a
lookup with unknown results. Lookups on unions of HMaps are
only supported in T-GetHMap, in particular to support looking up
:op on a map of type Expr (Example 3) where every element in
the union contains the key we are looking up. The objects in the
T-Get rules are more complicated than those in T-Local—the next
section discusses this in detail. Finally T-AssocHMap extends an
HMap with a mandatory entry while preserving completeness and
absent entries, and enforcing k 6∈ A to prevent badly formed types.

The semantics for get and assoc are straightforward. If the entry
is missing, B-GetMissing produces nil.

3.3 Paths
Recall the first insight of occurrence typing—we can reason about
specific parts of the runtime environment using propositions. The
way to refer to parts of the runtime environment with occurrencing
is via path elements. A path consists of a series of path elements
applied right-to-left to a variable written π(x). Tobin-Hochstadt
and Felleisen (2010) introduce the path elements car and cdr to
reason about selector operations on cons cells. We instead want to
reason about HMap lookups and calls to class.

Key path element We introduce our first path element keyk ,
which represents the operation of looking up a key k. We directly
relate this to our typing rule T-GetHMap (Figure 6) by checking the
then branch of the first conditional test is checked in an equivalent
version of Example 3.

7 2015/2/28

(fn [m :- Expr]
(if (= (get m :op) :if)

{:op :if, ...}
(if ...)))

We do not specifically support = in our calculus, but on key-
word arguments it works identically to isa? which we model in
Section 3.5. Intuitively, if Γ ` e : τ ; ψ+|ψ− ; o then (= e :if) has
the true and false propositions

(Val :if)x |(Val :if)x [o/x]

where substitution reduces to tt if o = ∅.
We start with proposition environment Γ = Exprm. Since Expr

is a union of HMaps, each with the entry :op, we can use T-
GetHMap.

Γ ` (get m :op) : K ; tt|tt ; key:op(m)

Using our intuitive definition of = above, we know

Γ ` (= (get m :op) :if):B ; (Val :if)key:op(m)|(Val :if)key:op(m) ; ∅

Going down the then branch gives us the extended environment Γ′

= Exprm,(Val :if)key:op(m). Using L-Update we can combine what
we know about object m and object key:op(m) to derive

Γ′ ` (HMapP{:op :if, :test Expr , :then Expr , :else Expr } {})m
The full definition of update is given in Figure 10 which con-

siders both keys a path elements as well as the class path element
described below. In the absence of paths, update simply performs
set-theoretic operations on types; see Figure 11 for details.

Class path element Our second path element class is used in the
latent object of the constant class function. Like Clojure’s class
function class returns the argument’s class or nil if passed nil.

pe ::= . . . | class Path Elements

δτ(class) = x:> tt|tt−−−−→
class(x)

(
⋃

nil Class)

The dynamic semantics are given in Figure 8. The definition of
update supports various idioms relating to class which we intro-
duce in Section 3.5.

3.4 Java Interoperability and Type Hints
In Section 2.6 we discussed the role of type hints to help eliminate
reflective calls. In this section, we introduce our model of Java
and provide user-facing syntax corresponding to Clojure’s Java
interoperability forms and type hinted forms. Then we model the
Clojure compiler’s compile-time reflection resolution algorithm. To
achieve this, first we define notation for non-reflective Java forms
that unambiguously call a field, method or constructor. Then we
define a rewrite relation that uses type hints to resolve reflection
explicitly. Finally we give typing rules that model how Typed
Clojure interacts with non-reflective calls.

We present Java interoperability in a restricted setting without
class inheritance, overloading or Java Generics.

We extend the syntax in Figure 7 with type hinted expressions,
reflective and non-reflective Java field lookups and calls to methods
and constructors. We model the syntax after the ‘dot’ special form
to prevent ambiguity—(.fld e) is now (. e fld), (.mth e es*)
is (. e (mth −→es)) and (.class es*) is (newC −→es). The reflective
expressions come without typing rules because Typed Clojure only
reasons about resolved reflection (as demonstrated in Section 2.6).
The method call (. e (mthC1

[[
−→
Ci],C2]

−→ei)) is a non-reflective call to

the mth method on class C1, with Java signature C2 mth (
−→
Ci);.

The field access (. e fldC1
C2

) calls the field on class C1 with Java

e ::= . . .̂C x | (let [̂ C x e] e) Expressions
| (. e fld) | (. e (mth −→e)) | (new C −→e)

| (. e (mthC
[[
−→
C],C]

−→e)) Non-reflective Expressions

| (. e fldCC) | (new
[
−→
C]
C −→e)

v ::= . . . | C {
−−−−→
fld : v} Values

γ ::= ? | C Type Hints
Σ ::= {−−→x : γ} Type Hint Environment

ce ::= {mths 7→ {
−−−−−−−−−→
[mth, [

−→
C], C]}, Class descriptors

flds 7→ {
−−−−−→
[fld, C]},

ctors 7→ {
−−→
[
−→
C]}}

CT ::= {
−−−−−→
C 7→ ce} Class Table

T-NEWSTATIC−−−−−−−−−−−−−→
Convert(Ci) = τi Convert(C) = τ

−−−−−−→
Γ ` ei : τi

Γ ` (new
[
−→
Ci]

C −→ei) : τ ; tt|ff ; ∅

T-METHODSTATIC−−−−−−−−−−−−−→
Convert(Ci) = τi Convert(C1) = σ

Convertnil(C2) = τ Γ ` e : σ
−−−−−−→
Γ ` ei : τi

Γ ` (. e (mthC1

[[
−→
Ci],C2]

−→ei)) : τ ; tt|tt ; ∅

Fld(CT , C, fld) = [C,Cf] if [fld, Cf] ∈ CT [C][flds]

Ctor(CT , C, [
−→
Cp]) = [

−→
Cp] if [

−→
Cp] ∈ CT [C][ctors]

Mth(CT , C,mth, [
−→
Cp]) = [C, [

−→
Cp], Cr] if [mth, [

−→
Cp], Cr] ∈ CT [C][mths]

Convertnil(Void) = nil
Convertnil(C) = (

⋃
nil C)

Convert(Void) = nil
Convert(C) = C

B-FIELD
ρ ` e ⇓ v1

JVMgetstatic[C1, v1, f ld, C2] = v

ρ ` (. e fldC1
C2

) ⇓ v

B-NEW −−−−−−−→
ρ ` ei ⇓ vi

JVMnew[C1, [
−→
Ci], [

−→vi]] = v

ρ ` (new
[
−→
Ci]

C −→ei) ⇓ v

B-METHOD

ρ ` em ⇓ vm
−−−−−−−−→
ρ ` ea ⇓ va

JVMinvokestatic[C1, vm,mth, [
−→
Ca], [−→va], C2] = v

ρ ` (. em (mthC1

[[
−→
Ca],C2]

−→ea)) ⇓ v

Figure 7. Java Interoperability Syntax, Typing and Operational
Semantics

signatureC2 fld;. The constructor invocation (new
[
−→
Ci]

C −→ei) calls

the constructor with Java signature C (
−→
Ci);.

We model Clojure’s reflection resolution algorithm as a rewrite
relation Σ `CTr e ⇒ e′ which rewrites e to a possibly-less
reflective expression e′ with respect to type hint environment Σ and
Java class table CT . For example, R-FieldElimRefl emits a non-
reflective field if it can find a field matching the type hint inferred
on e′.

R-FIELDELIMREFL

Σ `CTr e ⇒ e′ Σ `h e
′ : C

Fld(CT , C, fld) = [Ct, Cf]

Σ `CTr (. e fld)⇒ (. e′ fldCt
Cf

)

Type hint inference is given by the judgement Σ `h e : γ which
infers the (possibly-unknown) type hint γ of expression e in type
hint environment Σ. We defer the remainder of the rules for rewrit-
ing and the definition of type hint inference to the supplemental
material.

As an example, we rewrite a simple field reference, with the
assumptions that that the class Point has a field x of Java type N and
Σ(p) = Point . In rewriting the expression (. p x), Point is inferred

8 2015/2/28

δ(class, C {
−−−−→
fld : v}) = C

δ(class, C) = Class
δ(class, [ρ, λxτ .e]c) = Fn
δ(class, [vd, t]m) = Multi
δ(class,m) = Map

δ(class, true) = B
δ(class, false) = B
δ(class, k) = K
δ(class, nil) = nil

Figure 8. Primitives

as the type hint of p and N is the field type by Fld (Figure 7). Now
we just plug in the new information into our new expression

(. p xPoint
N).

Now we present the typing rules for resolved Java interoperabil-
ity. T-FieldStatic checks a resolved field expression by ensuring the
target has the correct static type, then returns a nilable type corre-
sponding the Java type.

T-FIELDSTATIC
Convert(C1) = σ Convertnil(C2) = τ Γ ` e : σ

Γ ` (. e fldC1
C2

) : τ ; tt|tt ; ∅
To continue our example, assume Γ = Pointp. T-FieldStatic

therefore produces the type (
⋃

nil N) for the entire expression.
The rules T-MethodStatic and T-NewStatic work similarly

(Figure 7), varying in the choice of nilability in the conversion
function—methods can return nil but constructors cannot.

The evaluation rules B-Field, B-New and B-Method (Figure 7)
simply evaluate their arguments and call the relevant JVM opera-
tion, which do not model—Section 4 states our exact assumptions.

3.5 Multimethod preliminaries: isa?
We now consider the isa? operation, a core part of the dispatch
mechanism for multimethods. Recalling the examples in Sec-
tion 2.7, isa? is a subclassing test for classes, otherwise an equality
test—we do not model the semantics for vectors.

The key component of the T-IsA rule is the IsAProps metafunc-
tion (Figure 9), used to calculate the propositions for isa? tests.

T-ISA
Γ ` e : σ ; ψ′+|ψ

′
− ; o

Γ ` e′ : τ IsAProps(o, τ) = ψ+|ψ−
Γ ` (isa? e e′) : B ; ψ+|ψ− ; ∅

As an example, (isa? (class x) K) has the true and false proposi-
tions IsAProps(class(x), (Val K)) = Kx |Kx , meaning that if this
expression produces true, x is a keyword, otherwise it is not.

The operational behavior of isa? is given by B-IsA (Figure 9).
IsA explicitly handles classes in the second case.

3.6 Multimethods
To ease presentation, we present immutable multimethods, with
syntax and semantics given in Figure 9. defmethod returns a new
extended multimethod without changing the original multimethod.
Example 11 is now written

(let [path (defmulti [Any -> (U nil String)] class)]
(let [path (defmethod path String [x] x)]
(let [path (defmethod path File [^File x]

(.getPath x))]
(path "dir/a")))) ;=> "a"

The type (Multi σ σ′) characterizes multimethods with in-
terface type σ and dispatch function type σ′ . The expression
(defmulti σ e) defines a multimethod with interface type σ and

e ::= . . . | (defmulti τ e) Expressions
| (defmethod e e e) | (isa? e e)

v ::= . . . | [v, t]m Values
σ, τ ::= . . . | (Multi τ τ) Types
t ::= {−−−→v 7→ v} Multimethod dispatch table

T-DEFMULTI

σ = x:τ
ψ+|ψ−−−−−−→

o
τ ′ σ′ = x:τ

ψ′+|ψ
′
−−−−−−−→

o′
τ ′′ Γ ` e : σ′

Γ ` (defmulti σ e) : (Multiσ σ′) ; tt|ff ; ∅

T-DEFMETHOD

τm = x:τ
ψ+|ψ−−−−−−→

o
σ τd = x:τ

ψ′
+
|ψ′−−−−−−−→
o′

σ′

Γ ` em : (Multi τm τd) IsAProps(o′, τv) = ψ′′+|ψ
′′
−

Γ ` ev : τv Γ, τx , ψ
′′
+ ` eb : σ ; ψ+|ψ− ; o

Γ ` (defmethod em ev λx
τ .eb) : (Multi τm τd) ; tt|ff ; ∅

IsAProps(class(π(x)), (ValC)) = Cπ(x)|Cπ(x)
IsAProps(o, (Val s)) = ((Val s)x |(Val s)x)[o/x]

if s 6= C
IsAProps(o, τ) = tt|tt otherwise

S-PMULTIFN

` σt <: x:σ
ψ+|ψ−−−−−−→

o
τ

` σd <: x:σ
ψ′

+
|ψ′−−−−−−−→
o′

τ ′

` (Multiσt σd)<: x:σ
ψ+|ψ−−−−−−→

o
τ

S-PMULTI
` σ <: σ′ ` τ <: τ ′

` (Multiσ τ)<: (Multiσ′ τ ′)

S-MULTIMONO

` (Multix:σ
ψ+|ψ−−−−−−→

o
τ x:σ

ψ′
+
|ψ′−−−−−−−→
o′

τ ′)<: Multi

B-DEFMETHOD
ρ ` e ⇓ [vd, t]m
ρ ` e′ ⇓ vv
ρ ` ef ⇓ vf

v = [vd, t[vv 7→ vf]]m

ρ ` (defmethod e e′ ef) ⇓ v

B-DEFMULTI
ρ ` e ⇓ vd
v = [vd, {}]m

ρ ` (defmulti τ e) ⇓ v

B-BETAMULTI
ρ ` e ⇓ [vd, t]m
ρ ` e′ ⇓ v′

ρ ` (vd v
′) ⇓ ve

GM(t, ve) = vf
ρ ` (vf v

′) ⇓ v
ρ ` (e e′) ⇓ v

GM(t, ve) = vf if −→vfs = {vf}
where −→vfs = {vf |(vv , vf) ∈ t and IsA(vv , ve) = true}

GM(t, ve) = err otherwise

B-ISA
ρ ` e1 ⇓ v1
ρ ` e2 ⇓ v2

IsA(v1, v2) = v

ρ ` (isa? e1 e2) ⇓ v

IsA(v, v) = true v 6= C
IsA(C,C′) = true ` C <: C′

IsA(v, v′) = false otherwise

Figure 9. Multimethod Syntax, Typing and Operational Semantics

dispatch function e. The expression (defmethod em ev ef) ex-
tends multimethod em and to map dispatch value ev to ef in an
extended dispatch table. The value [v, t]m is the runtime value of a
multimethod with dispatch function v and dispatch table t.

The T-DefMulti rule ensures that the type of the dispatch func-
tion has at least as permissive a parameter type as the interface
type. For example, we can check the definition from our translation
above of Example 11 using T-DefMulti.

` (defmulti σ class) : (Multiσ σ′) ; tt|ff ; ∅

where σ = x:> tt|tt−−−→
∅

τ and σ′ = x:> tt|tt−−−−→
class(x)

(
⋃

nil Class).

Since the parameter types agree, this is well-typed.

9 2015/2/28

restrict(τ, σ) = ⊥
if 6 ∃v. ` v : τ ; ψ1 ; o1
and ` v : σ ; ψ2 ; o2

restrict((
⋃ −→τ), σ) = (

⋃ −−−−−−−−→
restrict(τ, σ))

restrict(τ, σ) = τ if ` τ <: σ
restrict(τ, σ) = σ otherwise

remove(τ, σ) = ⊥ if ` τ <: σ

remove((
⋃ −→τ), σ) = (

⋃ −−−−−−−−→
remove(τ, σ))

remove(τ, σ) = τ otherwise

Figure 11. Restrict and Remove

The T-DefMethod rule is carefully constructed to ensure we
have a syntactic lambda expression as the right-most subexpres-
sion. This way we can manually check the body of the lambda un-
der an extended environment as sketched in Example 12. We use
IsAProps to compute the proposition for this method, since isa? is
used at runtime in multimethod dispatch.

We continue with the next line of the translation of Example 11.
From the previous line we have Γ = (Multiσ σ′)path, so

Γ ` (defmethod prop String λx> .x) : (Multiσ σ′) ; tt|ff ; ∅

We know prop is a multimethod by Γ, so now we check the body
of this method.

Γ,>x , Stringx ` x : String ; tt|ff ; ∅

The new proposition Stringx is derived by

IsAProps(class(x), (Val File)) = Stringx |Stringx .

The body of the let is checked by T-App because (Multi σ σ′) is
a subtype of its interface type σ.

Multimethod definition semantics are straightforward. B-DefMulti
creates a multimethod with the given dispatch function and an
empty dispatch table. B-DefMethod produces a new multimethod
with an extended dispatch table. B-BetaMulti invokes the dispatch
function with the evaluated argument to obtain the dispatch value,
and uses GM (which models Clojure’s get-method) to extract the
appropriate method. The call to GM only returns a value if there
is exactly one method such that the corresponding dispatch value
is compatible, using IsA, with the result of the dispatch function.
Finally we return the result of applying the extracted method and
the original argument.

4. Metatheory
We prove type soundness follow using the same technique as Tobin-
Hochstadt and Felleisen (2010). We also include errors and a
wrong value and prove well-typed programs do not go wrong.

Rather than modelling Java’s dynamic semantics, we instead
make our assumptions about Java explicit. We concede that method
and constructor calls may diverge or error, but we assume they can
never go wrong. (Assumptions for other operations are given in the
supplemental material).

Assumption 1 (JVMnew). If ∀i. vi = Ci {
−−−−−→
fldj : vj} or vi = nil

and vi is consistent with ρ then either

• JVMnew[C, [
−→
Ci], [

−→vi]] = C {
−−−−−→
fldk : vk}which is consistent with ρ,

• JVMnew[C, [
−→
Ci], [

−→vi]] = err, or
• JVMnew[C, [

−→
Ci], [

−→vi]] is undefined.

For the purposes of our soundness proof, we require that all
values are consistent. Consistency ensures that occurrence typing
does not refer to variables hidden inside a closure.

Definition 1. v is consistent with ρ iff ∀ [ρ1, λx
σ .e]c in v, if `

[ρ1, λx
σ .e]c : τ ; tt|ff ; ∅ and ∀ o′ in τ, either o′ = ∅, or o′ =

π′(x), or ρ(o′) = ρ1(o′).

Our main lemma says if there is a defined reduction, then
the propositions, object and type are correct. The metavariable α
ranges over v, err and wrong.

Lemma 1. If Γ ` e : τ ; ψ+|ψ− ; o, ρ |= Γ, ρ is consistent, and
ρ ` e ⇓ α then either

• ρ ` e ⇓ v and all of the following hold:
1. either o = ∅ or ρ(o) = v,
2. either TrueVal(v) and ρ |= ψ+ or FalseVal(v) and ρ |=
ψ−,

3. ` v : τ ; ψ′+|ψ′− ; o′ for some ψ′+, ψ′− and o′, and
4. v is consistent with ρ, or

• ρ ` e ⇓ err.

Proof. By induction on the derivation of the typing judgement.
(Full proof given as lemma A.7).

We can now state our soundness theorem.

Theorem 1 (Type soundness). If Γ ` e : τ ; ψ+|ψ− ; o and
ρ ` e ⇓ v then ` v : τ ; ψ′+|ψ′− ; o′ for some ψ′+, ψ′− and o′

Theorem 2 (Well-typed programs don’t go wrong). If ` e :
τ ; ψ+|ψ− ; o then 6` e ⇓ wrong.

5. Experience
Typed Clojure is implemented as a Clojure library named core.typed.
In contrast to Racket, Clojure does not provide extension points to
the macroexpander. To satisfy our goals of providing Typed Clojure
as a library that works with the latest version of the Clojure com-
piler, core.typed is implemented as an external static analysis
pass that must be explicitly invoked by the programmer. Therefore,
core.typed is in a sense a linter.

This means that type checking is truly optional. On the positive
side, core.typed is flexible to the needs of a dynamically typed
programmer, encouraging experimentation with programs that may
not type check. On the negative side, programmers must remember
to type check their namespaces, though since type checking is a
function call away, it is easily integrated as editor shortcuts or
continuous integration. Also, programs cannot depend on the static
semantics of Typed Clojure, meaning that type-based optimisation
is impossible. If this were not the case, we could dispose of type-
hints altogether, and simply use static types to resolve reflection.

5.1 Further Extensions
Datatypes, Records and Protocols Clojure features datatypes and
protocols. Datatypes are Java classes declared final with public final
fields. They can implement Java interfaces or protocols, which are
similar to interfaces but already-defined classes and nil may extend
protocols. Typed Clojure can reason about most of these features,
including the ability to define polymorphic datatypes and protocols
and utilising the Java type system to help check implemented inter-
face methods.

Mutation and Polymorphism Clojure supports mutable refer-
ences with software-transactional-memory which Typed Clojure
defines bivariantly—with write and read type parameters as in
the atomic reference (Atom2 Int Int) which can write and read

10 2015/2/28

update((HMapEMA), ν, π :: keyk) = (HMapEM[k 7→ update(τ, ν, π)] A) ifM[k] = τ

update((HMapEMA), τ, π :: keyk) = ⊥ if ` nil 6<: τ and k ∈ A
update((HMapEMA), τ, π :: keyk) = ⊥ if ` nil <: τ and k ∈ A
update((HMapEMA), ν, π :: keyk) = (HMapEMA) if k ∈ A
update((HMapPMA), τ, π :: keyk) = (∪ (HMapPM[k 7→ τ] A) if ` nil <: τ,

(HMapPM (A ∪ {k}))) k 6∈ dom(M) and k 6∈ A
update((HMapPMA), ν, π :: keyk) = (HMapPM[k 7→ update(>, ν, π)] A) if k 6∈ dom(M) and k 6∈ A
update((HMapPMA), ν, π :: keyk) = (HMapPM[k 7→ update(>, ν, π)] A)

update((
⋃ −−−−−−−−−−→

(HMapEMA)
i

), ν, π :: keyk) = (
⋃ −−−−−−−−−−−−−−−−−−−−−−−−−−→

update((HMapEMA), ν, π :: keyk)
i

)
update(τ, (ValC), π :: class) = update(τ, C, π)

update(τ, (ValC), π :: class) = update(τ, C, π) if 6 ∃C′ . ` C′ <: C and C′ 6= C
update(τ, σ, π :: class) = update(τ,Object, π) if ` σ <: Object
update(τ, σ, π :: class) = update(τ, nil , π) if ` Object <: σ
update(τ, σ, π :: class) = update(τ, nil, π) if ` σ <: nil
update(τ, σ, π :: class) = update(τ,Object, π) if ` nil <: σ
update(τ, ν, π :: class) = τ
update(τ, σ, ε) = restrict(τ, σ)
update(τ, σ, ε) = remove(τ, σ)

Figure 10. Type Update

(ann clojure.core/swap!
(All [w r b ...]
[(Atom2 w r) [r b ... b -> w] b ... b -> w]))

(swap! (atom :- Num 1) + 2 3);=> 6 (atom contains 6)

Figure 12. Type annotation and example call of swap!

Int. Typed Clojure also supports parametric polymorphism, in-
cluding Typed Racket’s variable-arity polymorphism (Strickland
et al. 2009), which enables us to assign a type to functions like
swap! (figure 12), which takes a mutable atom, a function and ex-
tra arguments, and swaps into the atom the result of applying the
function to the atom’s current value and the extra arguments.

5.2 Limitations
Java Arrays Java arrays are known to be statically unsound. Bracha
et al. (1998) summarises the approach taken to regain runtime
soundness, which involves checking array writes at runtime.

Typed Clojure implements an experimental partial solution,
making arrays bivariant, separating the write and read types into
contravariant and covariant parameters. If the array originates from
typed code, then we may track the write and read parameters stati-
cally. Currently arrays from foreign sources have their write param-
eter set to to ⊥, protecting typed code from writing something of
incorrect type. However there are currently no casting mechanisms
to convince Typed Clojure the foreign array is writeable.

Array-backed sequences Typed Clojure assumes sequences are
immutable. This is almost always true, however for performance
reasons, sequences created from Java arrays (and Iterables) reflect
future writes to the array in the ‘immutable’ sequence. While dis-
turbing and a clear unsoundness in Typed Clojure, this has not yet
been an issue in practice and is strongly discouraged as undefined
behavior: “Robust programs should not mutate arrays or Iterables
that have seqs on them.” (Hickey 2015).

Gradual typing Gradual typing ensures sound interoperability
between typed and untyped code by enforcing invariants of the
type system via run-time contracts. Currently, interactions between
typed and untyped Clojure code are unchecked which can violate

the expectations of Typed Clojure. We hope to add support for
gradually typing in the future.

5.3 Case Study
CircleCI provides continuous integration services built with a mix-
ture of open- and closed-source. Typed Clojure has been used at
CircleCI in production Clojure systems for at least two years.

CircleCI provided the first author access to the main closed-
source backend system written in Clojure and Typed Clojure. We
conducted a study of the effectiveness of Typed Clojure in prac-
tice. There is no clear metric for quantifying typed Clojure code,
since untyped code can be freely mixed and some seemingly typed
namespaces are not checked regularly. We manually type checked
all namespaces that depend on clojure.core.typed and consid-
ered those with type errors as untyped. We then searched the re-
maining typed code for unsafe Typed Clojure operations like var
annotations with :no-check and the tc-ignore macro, which in-
struct Typed Clojure to ignore the specified code, and also consid-
ered those untyped. Furthermore, we manually collected and in-
spected all top-level annotations and classified them.

We determined that CircleCI has a Clojure code base of approx-
imately 50,000 lines, including around 10,000 lines of typed code.
Out of 588 top-level var annotations, 270 (46%) were checked an-
notations of functions defined in typed code, 129 (22%) annotations
assigned types to external libraries and the remaining 189 (32%)
annotated ‘unchecked’ user code. HMaps were a valuable feature,
with 38 (59%) out of 64 total type aliases featuring them; see ex-
ample 4 for an instance.

Based on this and other interactions with Typed Clojure users,
it is clear the main barrier to entry to Typed Clojure for large
systems is the requirement to annotate functions outside the borders
of typed code. We conjecture that this can be addressed by making
annotations available for popular libraries.

6. Related Work
Multimethods Millstein and Chambers and collaborators present
a sequence of systems (Chambers 1992; Chambers and Leavens
1994; Millstein and Chambers 2002) with statically-typed multi-
methods and modular type checking. In contrast to Typed Clojure,
in these system methods declare the types of arguments that they

11 2015/2/28

expect which corresponds to exclusively using class as the dis-
patch function in Typed Clojure. However, Typed Clojure does not
attempt to rule out failed dispatches at runtime.

Record Types Row polymorphism (Wand 1989; Cardelli and
Mitchell 1991; Harper and Pierce 1991), used in systems such
as the OCaml object system, provides many of the features of
HMap types, but defined using universally-quantified row vari-
ables. HMaps in Typed Clojure are instead designed to be used
with subtyping, but nonetheless provide similar expressiveness, in-
cluding the ability to require presence and absence of certain keys.

Dependent JavaScript (Chugh et al. 2012) can track similar
invariants as HMaps with types for JS objects. They must deal with
mutable objects, they feature refinement types and strong updates
to the heap to track changes to objects.

Typed Lua (Maidl et al. 2014) has table types which track
entries in a mutable Lua table. Typed Lua changes the dynamic
semantics of Lua to accommodate mutability: Typed Lua raises
a runtime error for lookups on missing keys—HMaps consider
lookups on missing keys normal.

The integration of completeness information, crucial for many
examples in Typed Clojure, is not provided by any of these systems.

Java Interoperability in Statically Typed Languages Scala (Oder-
sky et al. 2006) has nullable references for compatibility with Java.
Programmers must manually check for null as in Java to avoid
null-pointer exceptions.

Other optional and gradual type systems In addition to Typed
Racket, several other gradual type systems have been developed re-
cently, targeting existing dynamically-typed languages. Reticulated
Python (Vitousek et al. 2014) is an experimental gradually typed
system for Python, implemented as a source-to-source translation
that inserts dynamic checks at language boundaries and supporting
Python’s first-class object system. Typed Clojure does not support
a first-class object system because Java (and Clojure) have nominal
classes, however HMaps offer an alternative to the structural ob-
jects offered by Reticulated. Similarly, GradualTalk (Allende et al.
2014) offers gradual typing for SmallTalk, with nominal classes.

Optional types, requiring less implementation effort and avoid-
ing any runtime cost, have been widely adopted in industry, includ-
ing Hack, an extension to PHP (Facebook 2014), and Flow (Face-
book 2015) and TypeScript (Microsoft 2014), two extensions of
JavaScript. These systems all support some form of occurrence typ-
ing, but not in the generality presented here, nor do they include the
other features we have presented.

7. Conclusion
We have presented Typed Clojure, an optionally-typed version of
Clojure whose type system works with a wide variety of distinctive
Clojure idioms and features. Although based on the foundation of
Typed Racket’s occurrence typing approach, Typed Clojure both
extends the fundamental control-flow based reasoning as well as
applying it to handle seemingly unrelated features such as multi-
methods. In addition, Typed Clojure supports crucial features such
as heterogeneous maps and Java interoperability while integrating
these features into the core type system.

The result is a sound, expressive, and useful type system which,
when implemented in core.typed with appropriate extensions,
suitable for typechecking significant amount of existing Clojure
programs. As a result, Typed Clojure is already successful: it is
widely used in the Clojure community among both enthusiasts and
professional programmers and recieves contributions from many
developers.

However, there is much more that Typed Clojure can pro-
vide. Most significantly, Typed Clojure currently does not provide

gradual typing—ineraction between typed and untyped code is
unchecked and thus unsound. We hope to explore the possibilites
of using existing mechanisms for contracts and proxies in Java and
Clojure to enable sound gradual typing for Clojure.

Additionally, the Clojure compiler is unable to use Typed Clo-
jure’s wealth of static information to optimze programs. Addressing
this requires not only first enabling sound gradual typing, but also
integrating Typed Clojure into the Clojure tool chain more deeply,
so that its information can be passed on to the compiler.

Finally, our case study and broader experience indicate that
Clojure programmers still find themselves unable to use Typed
Clojure on some of their programs for lack of expressiveness. This
requires continued effort to analyze and understand the relevant
features and idioms and develop new type checking approaches.

Acknowledgements
Thanks to Andrew Kent and Andre Kuhlenschmidt for comment on
drafts of this paper.

References
E. Allende, O. Callau, J. Fabry, É. Tanter, and M. Denker. Gradual typing

for smalltalk. Science of Computer Programming, 96:52–69, 2014.
G. Bracha, M. Odersky, D. Stoutamire, and P. Wadler. Making the future

safe for the past: Adding genericity to the java programming language.
In OOPSLA, 1998.

L. Cardelli and J. C. Mitchell. Operations on records. In Mathematical
Structures in Computer Science, pages 3–48, 1991.

R. Cartwright and M. Fagan. Soft typing. In Proc. PLDI, 1991.
C. Chambers. Object-oriented multi-methods in cecil. In Proc. ECOOP,

1992.
C. Chambers and G. T. Leavens. Typechecking and modules for multi-

methods. In Proc. OOPSLA, 1994.
R. Chugh, D. Herman, and R. Jhala. Dependent types for javascript. In

Proc. OOPSLA, 2012.
Facebook. Hack language specification. Technical report, 2014.
Facebook. Flow language specification. Technical report, 2015.
R. Harper and B. Pierce. A record calculus based on symmetric concatena-

tion. In Proc. POPL, 1991.
R. Hickey. The clojure programming language. In Proc. DLS, 2008.
R. Hickey. Clojure sequence documentation, February 2015. URL http:

//clojure.org/sequences.
T. Lindahl and K. Sagonas. Practical type inference based on success

typings. In Proc. PPDP, 2006.
J. M. Lucassen and D. K. Gifford. Polymorphic effect systems. In Proc.

POPL, 1988.
A. M. Maidl, F. Mascarenhas, and R. Ierusalimschy. Typed lua: An optional

type system for lua. In Proc. Dyla, 2014.
Microsoft. Typescript language specification. Technical Report Version 1.4,

2014.
T. Millstein and C. Chambers. Modular statically typed multimethods. In

Information and Computation, pages 279–303. Springer-Verlag, 2002.
M. Odersky, V. Cremet, I. Dragos, G. Dubochet, B. Emir, S. McDirmid,

S. Micheloud, N. Mihaylov, M. Schinz, E. Stenman, L. Spoon,
M. Zenger, and et al. An overview of the scala programming language
(second edition). Technical report, EPFL Lausanne, Switzerland, 2006.

T. S. Strickland, S. Tobin-Hochstadt, and M. Felleisen. Practical variable-
arity polymorphism. In Proc. ESOP, 2009.

S. Tobin-Hochstadt and M. Felleisen. Logical types for untyped languages.
In Proc. ICFP, ICFP ’10, 2010.

M. M. Vitousek, A. M. Kent, J. G. Siek, and J. Baker. Design and evaluation
of gradual typing for python. In Proc. DLS, 2014.

M. Wand. Type inference for record concatenation and multiple inheritance,
1989.

12 2015/2/28

